
pypmj Documentation
Release 2.2.0

Carlo Barth

Apr 23, 2018

Contents

1 Contents 3
1.1 pypmj package . 3
1.2 Extensions . 20

2 Indices and tables 23

Python Module Index 25

i

ii

pypmj Documentation, Release 2.2.0

The pypmj (python project manager for JCMsuite; pronounce “py pi m de”) package extends the python interface
shipped with the finite element Maxwell solver JCMsuite, distributed by the JCMwave GmbH.

It simplifies the setup, execution and data storage of JCMsuite simulations. Some of the main advantages are:

• The JCMsuite installation directory, the preferred storage directories and computation resources can be set up
using a configuration file.

• Projects can be collected in one place as a project library and used from there.

• Parameter scans can be efficiently executed and evaluated using the SimulationSet class. Different combinations
of input parameter lists make nested loops unnecessary.

• User defined processing of post process results.

• Computational costs and user results are efficiently stored in an HDF5 data base.

• Automatic detection of known results in the database.

Contents 1

pypmj Documentation, Release 2.2.0

2 Contents

CHAPTER 1

Contents

1.1 pypmj package

1.1.1 Module contents

pypmj

The pypmj (python project manager for JCMsuite; pronounce “py pi m de”) package extends the python interface
shipped with the finite element Maxwell solver JCMsuite, distributed by the JCMwave GmbH.

It simplifies the setup, execution and data storage of JCMsuite simulations. Some of the main advantages are:

• The JCMsuite installation directory, the preferred storage directories and computation resources can be set up
using a configuration file.

• Projects can be collected in one place as a project library and used from there.

• Parameter scans can be efficiently executed and evaluated using the SimulationSet class. Different combinations
of input parameter lists make nested loops unnecessary.

• User defined processing of post process results.

• Computational costs and user results are efficiently stored in an HDF5 data base.

• Automatic detection of known results in the database.

Copyright(C) 2016 Carlo Barth, Helmholtz Zentrum Berlin für Materialien und Energie GmbH. (This software project
is controlled using git)

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details. You should have received a copy of the GNU General Public License along
with this program. If not, see <http://www.gnu.org/licenses/>.

3

http://www.gnu.org/licenses/

pypmj Documentation, Release 2.2.0

pypmj.import_jcmwave(jcm_install_path=None)
Imports jcmwave as jcm and jcmwave.daemon as daemon into the pypmj namespace and sets the
__jcm_version__ module attribute.

Parameters jcm_install_path (str or NoneType, default None) – Sets the path
to the JCMsuite installation directory in the current configuration. If None, it is assumed that the
path is already configured. Raises a RuntimeError in that case if the configuration is invalid.

pypmj.jcm_license_info(log=True, return_output=False)
Prints and/or returns the current JCMsuite license information. Returns None, if jcmwave is not yet imported.

pypmj.jcm_version_info(log=True, return_output=False)
Prints and/or returns the current JCMsuite version information. Returns None, if jcmwave is not yet imported.

pypmj.load_config_file(filepath)
Reset the current configuration and overwrite it with the configuration in the config file specified by filepath.

pypmj.load_extension(ext_name)
Loads the specified extension of pypmj.

See pypmj.extensions for a list of extensions.

pypmj.set_log_file(directory=’logs’, filename=’from_date’)
Sets up the logging to a log-file if this is not already configured.

Parameters

• directory (str, default 'logs') – The directory in which the logging file
should be created as an absolute or relative path. It will be created if does not exist.

• filename (str, default 'from_date') – The name of the logging file. If
‘from_date’, a date string will be used (format: %y%m%d.log).

1.1.2 pypmj.core module

Defines the centerpiece class SimulationSet of pypmj and the abstraction layers for projects, single simulations. Also,
more specialized simulation sets such as the ConvergenceTest-class are defined here.

Authors : Carlo Barth

class pypmj.core.ConvergenceTest(project, keys_test, keys_ref, duplicate_path_levels=0, stor-
age_folder=’from_date’, storage_base=’from_config’, tran-
sitional_storage_base=None, combination_mode=’product’,
check_version_match=True, resource_manager=None)

Bases: object

Class to set up, run and analyze convergence tests for JCMsuite projects. A convergence test consists of a
reference simulation and (a) test simulation(s). The reference simulation should be of much higher accuracy
than any of the test simulations.

This class initializes two SimulationSet instances. All init arguments are the same as for SimulationSet, except
that there are two sets of keys.

Parameters

• project (JCMProject, str or tuple/list of the form
(specifier,) – working_dir) JCMProject to use for the simulations. If no JCMProject-
instance is provided, it is created using the given specifier or, if project is of type tuple,
using (specifier, working_dir) (i.e. JCMProject(project[0], project[1])).

4 Chapter 1. Contents

pypmj Documentation, Release 2.2.0

• keys_test/keys_ref (dict) – These are keys-dicts as used to initialize a Simula-
tionSet. The keys_ref must correspond to a single simulation. The syntax is the same as for
SimulationSet, which we repeat here: There are two possible use cases:

1. The keys are the normal keys as defined by JCMsuite, containing all the values that need
to passed to parse the JCM-template files. In this case, a single computation is performed
using these keys.

2. The keys-dict contains at least one of the keys [constants, geometry, parameters] and no
additional keys. The values of each of these keys must be of type dict again and contain
the keys necessary to parse the JCM-template files. Depending on the combination_mode,
loops are performed over any parameter-sequences provided in geometry or parameters.
JCMgeo is only called if the keys in geometry change between consecutive runs. Keys
in constants are not stored in the HDF5 store! Consequently, this information is lost, but
also adds the flexibility to path arbitrary data types to JCMsuite that could not be stored
in the HDF5 format.

• duplicate_path_levels (int, default 0) – For clearly arranged data storage,
the folder structure of the current working directory can be replicated up to the level given
here. I.e., if the current dir is /path/to/your/pypmj/ and duplicate_path_levels=2, the sub-
folders your/pypmj will be created in the storage base dir (which is controlled using the
configuration file). This is not done if duplicate_path_levels=0.

• storage_folder (str, default 'from_date') – Name of the subfolder inside
the storage folder in which the final data is stored. If ‘from_date’ (default), the current
date (%y%m%d) is used. Note: in contrast to a single SimulationSet, subfolders ‘Test’ and
‘Reference’ are created inside the storage folder for the two sets.

• storage_base (str, default 'from_config') – Directory to use as the base
storage folder. If ‘from_config’, the folder set by the configuration option Storage->base is
used.

• transitional_storage_base (str, default None) – Use this directory as the
“real” storage_base during the execution, and move all files to the path configured using
storage_base and storage_folder afterwards. This is useful if you have a fast drive which
you want to use to accelerate the simulations, but which you do not want to use as your
global storage for simulation data, e.g. because it is to small.

• combination_mode ({'product', 'list'}) – Controls the way in which se-
quences in the geometry or parameters keys are treated.

– If product, all possible combinations of the provided keys are used.

– If list, all provided sequences need to be of the same length N, so that N simulations are
performed, using the value of the i-th element of each sequence in simulation i.

• check_version_match (bool, default True) – Controls if the versions of
JCMsuite and pypmj are compared to the versions that were used when the HDF5 store
was used. This has no effect if no HDF5 is present, i.e. if you are starting with an empty
working directory.

• resource_manager (ResourceManager or NoneType, default None) –
You can pass your own ResourceManager-instance here, e.g. to configure the resources to
use before the ConvergenceTest is initialized. The resource_manager will be used for both
of the simulation sets. If None, a ResourceManager-instance will be created automatically.

add_resources(n_shots=10, wait_seconds=5, ignore_fail=False)
Tries to add all resources configured in the configuration using the JCMdaemon.

1.1. pypmj package 5

pypmj Documentation, Release 2.2.0

analyze_convergence_results(dev_columns, sort_by=None, data_ref=None)
Calculates the relative deviations to the reference data for the columns in the dev_columns. A new
DataFrame containing the test simulation data and the relative deviations is created (as class attribute an-
alyzed_data) and returned. It is sorted in ascending order by the first dev_column or by the one specified
by sort_by. A list of all deviation column names is stored in the deviation_columns attribute.

If more than 1 dev_columns is given, the mean deviation is also calculated and stored in the DataFrame
column ‘deviation_mean’. It is used to sort the data if sort_by is None.

close_stores()
Closes all HDF5 stores.

get_current_resources()
Returns a list of the currently configured resources, i.e. the ones that will be added using add_resources.

make_simulation_schedule()
Same as for SimulationSet.

Calls the make_simulation_schedule method for both sets.

open_stores()
Opens all HDF5 stores.

reset_resources()
Resets the resources to the default configuration.

run(run_ref_with_max_cores=’AUTO’, save_run=False, **simuset_kwargs)
Runs the reference and the test simulation sets using the simuset_kwargs, which are passed to the run-
method of each SimulationSet-instance.

Parameters

• run_ref_with_max_cores (str (DaemonResource nickname) or
False,) – default ‘AUTO’ If ‘AUTO’, the DaemonResource with the most cores is
automatically determined and used for the reference simulation with a multiplicity of 1
and all configured cores as n_threads. If a nickname is given, all configured cores of this
resource are used in the same way. If False, the currently active resource configuration is
used. The configuration for the test simulation set remains untouched.

• save_run (bool, default False) – If True, the utility function
run_simusets_in_save_mode is used for the run.

run_reference_simulation(run_on_resource=’AUTO’, save_run=False, **simuset_kwargs)
Runs the reference simulation set using the simuset_kwargs, which are passed to the run-method.

Parameters

• run_on_resource (str (DaemonResource.nickname) or False,
default 'AUTO') – If ‘AUTO’, the DaemonResource with the most cores is automat-
ically determined and used for the reference simulation with a multiplicity of 1 and all
configured cores as n_threads. If a nickname is given, all configured cores of this resource
are used in the same way. If False, the currently active resource configuration is used.

• save_run (bool, default False) – If True, the utility function
run_simusets_in_save_mode is used for the run.

run_test_simulations(save_run=False, **simuset_kwargs)
Runs the test simulation set using the simuset_kwargs, which are passed to the run-method.

Parameters save_run (bool, default False) – If True, the utility function
run_simusets_in_save_mode is used for the run.

6 Chapter 1. Contents

pypmj Documentation, Release 2.2.0

use_only_resources(names)
Restrict the daemon resources to names. Only makes sense if the resources have not already been added.

Names that are unknown are ignored. If no valid name is present, the default configuration will remain
untouched.

write_analyzed_data_to_file(file_path=None, mode=’CSV’, **kwargs)
Writes the data calculated by analyze_convergence_results to a CSV or an Excel file.

mode must be either ‘CSV’ or ‘Excel’. If file_path is None, the default name results.csv/xls in the storage
folder is used. kwargs are passed to the corresponding pandas functions.

class pypmj.core.JCMProject(specifier, working_dir=None, project_file_name=None,
job_name=None)

Bases: object

Represents a JCMsuite project, initialized using a path specifier (relative to the projects path specified in the
configuration), checks its validity and provides functions to copy its content to a working directory, remove it
afterwards, etc.

Parameters

• specifier (str or list) –

Can be

– a path relative to the projects path specified in the configuration, given as complete str
to append or sequence of strings which are .joined by os.path.join(),

– or an absolute path to the project directory.

• working_dir (str or None, default None) – The path to which the files in the
project directory are copied. If None, a folder called current_run is created in the current
working directory

• project_file_name (str or None, default None) – The name of the project
file. If None, automatic detection is tried by looking for a .jcmp or .jcmpt file with a line
that starts with the word Project. If this fails, an Exception is raised.

• job_name (str or None, default None) – Name to use for queuing system such
as slurm. If None, a name is composed using the specifier.

copy_to(path=None, overwrite=True, sys_append=True)
Copies all files inside the project directory to path, overwriting it if overwrite=True, raising an Error
otherwise if it already exists.

Note: Appends the path to sys.path if sys_append=True.

get_file_path(file_name)
Returns the full path to the file with file_name if present in the current project. If this project was already
copied to a working directory, the path to this directory is used. Otherwise, the source directory is used.

get_project_file_path()
Returns the complete path to the project file.

merge_pp_files_to_project_file(pp_files)
Creates a backup of the project file and appends the contents of the pp_files (single file or list) to the project
file. This is useful if additional post processes should be executed without modifying the original project
file. The path to the backup file is stored in the project_file_backup_path attribute.

remove_working_dir()
Removes the working directory.

1.1. pypmj package 7

pypmj Documentation, Release 2.2.0

restore_original_project_file()
Overwrites the original project file with the backup version if it exists.

show_readme(try_use_markdown=True)
Returns the content of the README.md file, if present. If try_use_markdown is True, it is tried to display
the mark down file in a parsed way, which might only work inside ipython/jupyter notebooks.

class pypmj.core.QuantityMinimizer(project, fixed_keys, duplicate_path_levels=0, stor-
age_folder=’from_date’, storage_base=’from_config’,
combination_mode=’product’, resource_manager=None)

Bases: pypmj.core.SimulationSet

check_validity_of_input_args()
Checks if the provided fixed_keys describe a single simulation.

make_simulation_schedule()

minimize_quantity(x, quantity_to_minimize, maximize_instead=False, processing_func=None,
wdir_mode=’keep’, jcm_geo_kwargs=None, jcm_solve_kwargs=None,
**scipy_minimize_kwargs)

TODO

Parameters

• x (string type) – Name of the input parameter which is the input argument to the
function that will be minimized.

• quantity_to_minimize (string type) – The result quantity for which the min-
imium should be found. This must be calculated by the processing_func.

• maximize_instead (bool, default False) – Whether to search for the maxi-
mum instead of the minimum.

• processing_func (callable or NoneType, default None) – Function
for result processing. If None, only a standard processing will be executed. See the docs
of the Simulation.process_results-method for more info on how to use this parameter.

• wdir_mode ({'keep', 'delete'}, default 'keep') – The way in which
the working directories of the simulations are treated. If ‘keep’, they are left on disk.
If ‘delete’, they are deleted.

• jcm_solve_kwargs (jcm_geo_kwargs,) – Keyword arguments which are directly
passed to jcm.geo and jcm.solve, respectively.

• will be passed to the scipy.optimize.minimize
(scipy_minimize_kwargs) –

• function. –

pickle_optimization_results(file_name=’optimization_results.pkl’)

class pypmj.core.ResourceManager
Bases: object

Class for convenient management of resources in all objects that are able to provoke simulations, i.e. call
jcmwave.solve.

add_resources(n_shots=10, wait_seconds=5, ignore_fail=False)
Tries to add all resources configured in the configuration using the JCMdaemon.

get_current_resources()
Returns a list of the currently configured resources, i.e. the ones that will be added using add_resources.

8 Chapter 1. Contents

pypmj Documentation, Release 2.2.0

load_state()
Loads a previously saved state.

reset_daemon()
Resets the JCMdaemon, i.e. disconnects it and resets the queue.

reset_resources()
Resets the resources to the default configuration.

save_state()
Saves the current resource configuration internally, allowing to reset it to this state later.

use_only_resources(names)
Restrict the daemon resources to names. Only makes sense if the resources have not already been added.

Names that are unknown are ignored. If no valid name is present, the default configuration will remain
untouched.

use_single_resource_with_max_threads(resource_nick=None, n_threads=None)
Changes the current resource configuration to only a single resource. This resource can be specified by
its nickname. If resource_nick is None, the resource with the maximum available cores will be detected
automatically from the current configuration. The multiplicity of this resource will be set to 1, and the
number of threads to the maximum or the given number n_threads.

class pypmj.core.Simulation(keys, project=None, number=0, stored_keys=None, stor-
age_dir=None, rerun_JCMgeo=False, store_logs=True, result-
bag=None, **kwargs)

Bases: object

Describes a distinct JCMsuite simulation by its keys and path/filename specific attributes. Provides method to
perform the simulation , i.e. run JCMsolve on the project and to process the returned results using a custom
function. It then also holds all the results, logs, etc. and can return them as a pandas DataFrame.

Parameters

• keys (dict) – The keys dict passed as the keys argument of jcmwave.solve. Used to
translate JCM template files (i.e. *.jcmt-files).

• project (JCMProject, default None) – The JCMProject instance related to this
simulation.

• number (int) – A simulation number to identify/order simulations in a series of multi-
ple simulations. It is used as the row index of the returned pandas DataFrame (e.g. by
_get_DataFrame()).

• stored_keys (list or NoneType, default None) – A list of keys (must be a
subset of keys.keys()) which will be part of the data in the pandas DataFrame, i.e. columns
in the DataFrame returned by _get_DataFrame(). These keys will be stored in the HDF5
store by the SimulationSet-instance. If None, a it is tried to generate an as complete list of
storable keys as possible automatically.

• storage_dir (str (path)) – Path to the directory were simulation working directo-
ries will be stored. The Simulation itself will be in a subfolder containing its number in the
folder name. If None, the subdirectory ‘standalone_solves’ in the current working directory
is used.

• rerun_JCMgeo (bool, default False) – Controls if JCMgeo needs to be called
before execution in a series of simulations.

• store_logs (bool, default True) – If True, the ‘Error’ and ‘Out’ data of the logs
returned by JCMsuite will be added to the results dict returned by process_results, and
consequently stored in the HDF5 store by the parent SimulationSet instance.

1.1. pypmj package 9

pypmj Documentation, Release 2.2.0

• resultbag (jcmwave.Resultbag or None, default None) – Experimental!

Assign a resultbag (see jcmwave.resultbag for details).

compute_geometry(**jcm_kwargs)
Computes the geometry (i.e. runs jcm.geo) for this simulation.

The jcm_kwargs are directly passed to jcm.geo, except for project_dir, keys and working_dir, which are
set automatically (ignored if provided).

find_file(pattern)
Finds a file in the working directory (see method working_dir()) matching the given (fnmatch.filer-) pat-
tern. The working directory is scanned recursively.

Returns None if no match is found, the file path if a single file is found, or raises a RuntimeError if multiple
files are found.

find_files(pattern, only_one=False)
Finds files in the working directory (see method working_dir()) matching the given (fnmatch.filer-) pattern.
The working directory is scanned recursively.

If only_one is False (default), returns a list with matching file paths. Else, returns None if no match is
found, the file path if a single file is found, or raises a RuntimeError if multiple files are found.

forget_jcm_results_and_logs()

process_results(processing_func=None, overwrite=False)
Process the raw results from JCMsolve with a function processing_func of one input argument. The input
argument, which is the list of results as it was set in _set_jcm_results_and_logs, is automatically passed to
this function.

If processing_func is None, the JCM results are not processed and nothing will be saved to the HDF5 store,
except for the computational costs.

The processing_func must be a function of one or two input arguments. A list of all results returned by
post processes in JCMsolve are passed as the first argument to this function. If a second input argument is
present, it must be called ‘keys’. Then, the simulation keys are passed (i.e. self.keys). This is useful to use
parameters of the simulation, e.g. the wavelength, inside your processing function. It must return a dict
with key-value pairs that should be saved to the HDF5 store. Consequently, the values must be of types
that can be stored to HDF5, otherwise Exceptions will occur in the saving steps.

remove_working_directory()
Removes the working directory.

set_pass_computational_costs(val)
Sets the value of pass_computational_costs.

solve(pp_file=None, additional_keys=None, **jcm_kwargs)
Starts the simulation (i.e. runs jcm.solve) and returns the job ID.

Parameters

• pp_file (str or NoneType, default None) – File path to a JCM post pro-
cessing file (extension .jcmp(t)). If None, the get_project_file_path of the current project is
used and the mode ‘solve’ is used for jcmwave.solve. If not None, the mode ‘post_process’
is used.

• additional_keys (dict or NoneType, default None) – dict which will be
merged to the keys-dict before passing them to the jcmwave.solve-method. Only new keys
are added, duplicates are ignored and not updated.

• jcm_kwargs are directly passed to jcm.solve, except for (The)
–

10 Chapter 1. Contents

pypmj Documentation, Release 2.2.0

• keys and working_dir, which are set (project_dir,) –

• (ignored if provided) (automatically) –

solve_standalone(processing_func=None, wdir_mode=’keep’, run_post_process_files=None,
resource_manager=None, additional_keys_for_pps=None,
jcm_solve_kwargs=None)

Solves this simulation and returns the results and logs.

Parameters

• processing_func (callable or NoneType, default None) – Function
for result processing. If None, only a standard processing will be executed. See the docs
of the Simulation.process_results-method for more info on how to use this parameter.

• wdir_mode ({'keep', 'delete'}, default 'keep') – The way in which
the working directories of the simulations are treated. If ‘keep’, they are left on disk.
If ‘delete’, they are deleted.

• run_post_process_files (str, list or NoneType, default None) –
File path or list of file paths to post processing files (extension .jcmp(t)) which should be
executed subsequent to the actual solve. This calls jcmwave.solve with mode post_process
internally. The results are appended to the jcm_results-list of the Simulation instance.

• resource_manager (ResourceManager or NoneType, default None) –
You can pass your own ResourceManager-instance here, e.g. to configure the resources to
use before the SimulationSet is initialized. If None, a ResourceManager-instance will be
created automatically.

• additional_keys_for_pps (dict or NoneType, default None) – dict
which will be merged to the keys-dict of the Simulation instance before passing them to the
jcmwave.solve-method in the post process run. This has no effect if run_post_process_files
is None. Only new keys are added, duplicates are ignored and not updated.

• jcm_solve_kwargs (dict or NoneType, default None) – These keyword
arguments are directly passed to jcm.solve, except for project_dir, keys and working_dir,
which are set automatically (ignored if provided).

view_geometry()
Opens the grid.jcm file using JCMview if it exists.

working_dir()
Returns the name of the working directory, specified by the storage_dir and the simulation number.

It is constructed using the global SIM_DIR_FMT formatter.

class pypmj.core.SimulationSet(project, keys, duplicate_path_levels=0, stor-
age_folder=’from_date’, storage_base=’from_config’,
use_resultbag=False, transitional_storage_base=None,
combination_mode=’product’, check_version_match=True,
resource_manager=None, store_logs=False, mini-
mize_memory_usage=False)

Bases: object

Class for initializing, planning, running and processing multiple simulations.

Parameters

• project (JCMProject, str or tuple/list of the form
(specifier,working_dir)) – JCMProject to use for the simulations. If no
JCMProject-instance is provided, it is created using the given specifier or, if project is of
type tuple, using (specifier, working_dir) (i.e. JCMProject(project[0], project[1])).

1.1. pypmj package 11

pypmj Documentation, Release 2.2.0

• keys (dict) – There are two possible use cases:

1. The keys are the normal keys as defined by JCMsuite, containing all the values that need
to passed to parse the JCM-template files. In this case, a single computation is performed
using these keys.

2. The keys-dict contains at least one of the keys [constants, geometry, parameters] and no
additional keys. The values of each of these keys must be of type dict again and contain
the keys necessary to parse the JCM-template files. Depending on the combination_mode,
loops are performed over any parameter-sequences provided in geometry or parameters.
JCMgeo is only called if the keys in geometry change between consecutive runs. Keys
in constants are not stored in the HDF5 store! Consequently, this information is lost, but
also adds the flexibility to path arbitrary data types to JCMsuite that could not be stored
in the HDF5 format.

• duplicate_path_levels (int, default 0) – For clearly arranged data storage,
the folder structure of the current working directory can be replicated up to the level given
here. I.e., if the current dir is /path/to/your/pypmj/ and duplicate_path_levels=2, the sub-
folders your/pypmj will be created in the storage base dir (which is controlled using the
configuration file). This is not done if duplicate_path_levels=0.

• storage_folder (str, default 'from_date') – Name of the subfolder inside
the storage folder in which the final data is stored. If ‘from_date’ (default), the current date
(%y%m%d) is used.

• storage_base (str, default 'from_config') – Directory to use as the base
storage folder. If ‘from_config’, the folder set by the configuration option Storage->base is
used.

• use_resultbag (bool, str (file path) or jcmwave.Resultbag,
default False) – Experimental!

Whether to use a resultbag (see jcmwave.resultbag for details). If a str is given, it
is considered as the path to the resultbag-file. If a False, the standard saving pro-
cess using directories and data files is used. If True, the standard resultbag file ‘result-
bag.db’ in the storage directory is used. You can also pass a jcmwave.Resultbag-instance.
Use the get_resultbag_path()-method to get the path of the current resultbag. result-
bag() returns the jcmwave.Resultbag-instance. Use the methods rb_get_log_for_sim and
rb_get_result_for_sim to get logs and results from the resultbag for a particular simulation.
Note: using a resultbag will ignore settings for store_logs.

• transitional_storage_base (str, default None) – Use this directory as the
“real” storage_base during the execution, and move all files to the path configured using
storage_base and storage_folder afterwards. This is useful if you have a fast drive which
you want to use to accelerate the simulations, but which you do not want to use as your
global storage for simulation data, e.g. because it is to small.

• combination_mode ({'product', 'list'}) – Controls the way in which se-
quences in the geometry or parameters keys are treated.

– If product, all possible combinations of the provided keys are used.

– If list, all provided sequences need to be of the same length N, so that N simulations are
performed, using the value of the i-th element of each sequence in simulation i.

• check_version_match (bool, default True) – Controls whether the versions
of JCMsuite and pypmj are compared to the versions that were used when the HDF5 store
was created. This has no effect if no HDF5 store is present, i.e. if you are starting with an
empty working directory.

12 Chapter 1. Contents

pypmj Documentation, Release 2.2.0

• resource_manager (ResourceManager or NoneType, default None) –
You can pass your own ResourceManager-instance here, e.g. to configure the resources
to use before the SimulationSet is initialized. If None, a ResourceManager-instance will be
created automatically.

• store_logs (bool, default False) – Whether to store the JCMsuite logs to the
HDF5 file (these may be cropped in some cases).

• minimize_memory_usage (bool, default False) – Huge parameter scans can
cause python to need massive memory because the results and logs are kept for each simu-
lation. Set this parameter to true to minimize the memory usage. Caution: you will loose all
the jcm_results and logs in the Simulation-instances.

STORE_META_GROUPS = ['parameters', 'geometry']

STORE_VERSION_GROUP = 'version_data'

add_resources(n_shots=10, wait_seconds=5, ignore_fail=False)
Tries to add all resources configured in the configuration using the JCMdaemon.

all_done()
Checks if all simulations are done, i.e. already in the HDF5 store.

append_store(data)
Appends a new row or multiple rows to the HDF5 store.

close_store()
Closes the HDF5 store.

compute_geometry(simulation, **jcm_kwargs)
Computes the geometry (i.e. runs jcm.geo) for a specific simulation of the simulation set.

Parameters

• simulation (Simulation or int) – The Simulation-instance for which the ge-
ometry should be computed. If the type is int, it is treated as the index of the simulation in
the simulation list.

• jcm_kwargs are directly passed to jcm.geo, except for (The) –

• keys and working_dir, which are set automatically
(project_dir,) –

• if provided) ((ignored) –

fix_h5_store(try_restructure=True, brute_force=False)
Tries to remove duplicate rows in the HDF5 store based on the stored keys. If try_restructure is True, the
HDF5 store is also restructured using ptrepack to possibly free disc space and optimize the compression. If
problems persist, set brute_force=True which will remove all rows with duplicate indices (warning: data
gets lost!).

get_all_keys()
Returns a list of all keys that are passed to JCMsolve.

get_current_resources()
Returns a list of the currently configured resources, i.e. the ones that will be added using add_resources.

get_project_wdir()
Returns the path to the working directory of the current project.

get_resultbag_path()

get_store_data()
Returns the data currently in the store.

1.1. pypmj package 13

pypmj Documentation, Release 2.2.0

is_store_empty()
Checks if the HDF5 store is empty.

make_simulation_schedule(fix_h5_duplicated_rows=False)
Makes a schedule by getting a list of simulations that must be performed, reorders them to avoid unnec-
essary calls of JCMgeo, and checks the HDF5 store for simulation data which is already known. If dupli-
cated rows are found, a RuntimeError is raised. In this case, you can rerun make_simulation_schedule with
fix_h5_duplicated_rows=True to try to automatically fix it. Alternatively, you could call the fix_h5_store-
method yourself.

num_sims_to_do()
Returns the number of simulations that still needs to be solved, i.e. which are not already in the store.

open_store()
Closes the HDF5 store.

rb_get_log_for_sim(sim)
Returns the logs for the simulation sim from the resultbag. sim must be simulation number or a Simulation-
instance of the current simulations-list.

rb_get_result_for_sim(sim)
Returns the logs for the simulation sim from the resultbag. sim must be simulation number or a Simulation-
instance of the current simulations-list.

reset_resources()
Resets the resources to the default configuration.

resultbag()
Returns the resultbag (jcmwave.Resultbag-instance) if configured using the class attribute use_resultbag.
Else, raises RuntimeError.

run(processing_func=None, N=’all’, auto_rerun_failed=1, run_post_process_files=None, ad-
ditional_keys=None, wdir_mode=’keep’, zip_file_path=None, show_progress_bar=False,
jcm_geo_kwargs=None, jcm_solve_kwargs=None, pass_ccosts_to_processing_func=False)
Convenient function to add the resources, run all necessary simulations and save the results to the HDF5
store.

Parameters

• processing_func (callable or NoneType, default None) – Function
for result processing. If None, only a standard processing will be executed. See the docs
of the Simulation.process_results-method for more info on how to use this parameter.

• N (int or 'all', default 'all') – Number of simulations that will be pushed
to the jcm.daemon at a time. If ‘all’, all simulations will be pushed at once. If many
simulations are pushed to the daemon, the number of files and the size on disk can grow
dramatically. This can be avoided by using this parameter, while deleting or zipping the
working directories at the same time using the wdir_mode parameter.

• auto_rerun_failed (int or bool, default 1) – Controls whether/how of-
ten a simulation which failed is automatically rerun. If False or 0, no automatic rerunning
will be done.

• run_post_process_files (str, list or NoneType, default None) –
File path or list of file paths to post processing files (extension .jcmp(t)) which should
be executed subsequent to the actual solve. In contrast to the procedure in the
solve_single_simulation method, a merged project file is created in this case, i.e. the con-
tent of the post processing files is appended to the actual project file. The original project
file is backed up and restored after the run.

14 Chapter 1. Contents

pypmj Documentation, Release 2.2.0

• additional_keys (dict or NoneType, default None) – dict which will
be merged to the keys-dict of the Simulation instance before passing them to the
jcmwave.solve-method. Only new keys are added, duplicates are ignored and not updated.
These values are not stored in the HDF5 store!

• wdir_mode ({'keep', 'zip', 'delete'}, default 'keep') – The way
in which the working directories of the simulations are treated. If ‘keep’, they are left on
disk. If ‘zip’, they are appended to the zip-archive controled by zip_file_path. If ‘delete’,
they are deleted. Caution: if you zip the directories and extend your data later in a way
that the simulation numbers change, problems may occur.

• zip_file_path (str (file path) or None) – Path to the zip file if
wdir_mode is ‘zip’. The file is created if it does not exist. If None, the default file name
‘working_directories.zip’ in the current storage_dir is used.

• jcm_solve_kwargs (jcm_geo_kwargs,) – Keyword arguments which are directly
passed to jcm.geo and jcm.solve, respectively.

• pass_ccosts_to_processing_func (bool, default False) – Whether to
pass the computational costs as the 0th list element to the processing_func.

solve_single_simulation(simulation, compute_geometry=True, run_post_process_files=None,
additional_keys_for_pps=None, jcm_geo_kwargs=None,
jcm_solve_kwargs=None)

Solves a specific simulation and returns the results and logs without any further processing and without
saving of data to the HDF5 store. Recomputes the geometry before if compute_geometry is True.

Parameters

• simulation (Simulation or int) – The Simulation-instance for which the ge-
ometry should be computed. If the type is int, it is treated as the index of the simulation in
the simulation list.

• compute_geometry (bool, default True) – Runs jcm.geo before the simula-
tion if True.

• run_post_process_files (str, list or NoneType, default None) –
File path or list of file paths to post processing files (extension .jcmp(t)) which should be
executed subsequent to the actual solve. This calls jcmwave.solve with mode post_process
internally. The results are appended to the jcm_results-list of the Simulation instance.
Note: this feature is yet incompatible with use_resultbag!

• additional_keys_for_pps (dict or NoneType, default None) – dict
which will be merged to the keys-dict of the Simulation instance before passing them to the
jcmwave.solve-method in the post process run. This has no effect if run_post_process_files
is None. Only new keys are added, duplicates are ignored and not updated.

• jcm_geo_kwargs (dict or NoneType, default None) – These keyword ar-
guments are directly passed to jcm.geo, except for project_dir, keys and working_dir,
which are set automatically (ignored if provided).

• jcm_solve_kwargs (dict or NoneType, default None) – These keyword
arguments are directly passed to jcm.solve, except for project_dir, keys and working_dir,
which are set automatically (ignored if provided).

use_only_resources(names)
Restrict the daemon resources to names. Only makes sense if the resources have not already been added.

Names that are unknown are ignored. If no valid name is present, the default configuration will remain
untouched.

1.1. pypmj package 15

pypmj Documentation, Release 2.2.0

write_store_data_to_file(file_path=None, mode=’CSV’, **kwargs)
Writes the data that is currently in the store to a CSV or an Excel file.

mode must be either ‘CSV’ or ‘Excel’. If file_path is None, the default name results.csv/xls in the storage
folder is used. kwargs are passed to the corresponding pandas functions.

1.1.3 pypmj.parallelization module

Definitions classes for convenient usage of the jcmwave.daemon to run jobs in parallel. The class DaemonResource
gives eaccess to both, workstations and queues and eases their configuration. The ResourceDict-class serves as a set
of such resources and provides methods to set their properties all at once.

Authors : Carlo Barth

exception pypmj.parallelization.DaemonError(message)
Bases: exceptions.Exception

Exception raised for errors in adding daemon resources.

expression
Input expression in which the error occurred.

message
str – Explanation of the error.

class pypmj.parallelization.DaemonResource(daemon_, hostname, login, JCM_root, multi-
plicity_default, n_threads_default, stype, nick-
name, **kwargs)

Bases: object

Computation resource that can be used by the daemon-module of the JCMsuite python interface. This can be a
workstation or a queue.

Holds all properties which are necessary to call the add_workstation or add_queue methods of the
jcmwave.daemon. Frequently changed attributes like the multiplicity and the number of threads can be changed
by convenient methods. Default values for these properties can be restored, just as every other state can be saved
and restored.

Parameters

• daemon (module) – The daemon submodule of the jcmwave package delivered with your
JCMsuite installation.

• hostname (str) – Hostname of the server as it would be used for e.g. ssh. Use localhost
for the local computer.

• JCM_root (str (path), default None) – Path to the JCMsuite root installation
folder. If None, the same path as on the local computer is assumed.

• login (str) – The username used for login (a password-free login is required)

• multiplicity_default (int) – The default number of CPUs to use on this server.

• n_threads_default (int) – The default number of threads per CPU to use on this
server.

• stype ({'Workstation', 'Queue'}) – Type of the resource to use in the JCMsuite
daemon utility.

• nickname (str, default None) – Shorthand name to use for this server. If None,
the hostname is used.

16 Chapter 1. Contents

pypmj Documentation, Release 2.2.0

• **kwargs – Add additional key-value pairs to pass to the daemon functions (which are
add_workstation and add_queue) on your own risk.

add()
Adds the resource to the current daemon configuration.

add_repeatedly(n_shots=10, wait_seconds=5, ignore_fail=False)
Tries to add the resource repeatedly for n_shots times.

get_available_cores()
Returns the total number of currently configured cores for this resource, i.e. multiplicity*n_threads.

maximize_multiplicity(multiplicity=None)
Changes n_threads to 1 and the multiplicity to the product of the currently configured multiplicity and
n_threads or to the given number multiplicity.

maximize_n_threads(n_threads=None)
Changes the multiplicity to 1 and the number of threads to the product of the currently configured multi-
plicity and n_threads or to the given number n_threads.

restore_default_m_n()
Restores the default values for multiplicity and n_threads.

restore_previous_m_n()
Restores the default values for multiplicity and n_threads.

save_m_n()
Saves the currently active multiplicity and n_threads.

They can be restored using the restore_previous_m_n-method.

set_m_n(m, n)
Shorthand for setting multiplicity and n_threads both at a time.

set_multiplicity(value)
Set the number of CPUs to use.

set_n_threads(value)
Set the number of threads to use per CPU.

class pypmj.parallelization.ResourceDict(*args, **kwargs)
Bases: dict

Subclass of dict for extended handling of DaemonResource instances.

add_all()
Calls the add method for all resources.

add_all_repeatedly(n_shots=10, wait_seconds=5, ignore_fail=False)
Calls the add_repeatedly method for all resources.

get_all_queues()
Returns a list of all resources with stype==’Queue’.

get_all_workstations()
Returns a list of all resources with stype==’Workstation’.

get_resource_names()
Just a more meaningful name for the keys()-method.

get_resource_with_most_cores()
Determines which of the resources has the most usable cores, i.e. multiplicity*n_threads, and returns its
nickname and this number.

1.1. pypmj package 17

pypmj Documentation, Release 2.2.0

get_resources()
Just a more meaningful name for the values()-method.

set_m_n_for_all(m, n)
Shorthand for setting multiplicity and n_threads for all resources.

pypmj.parallelization.read_resources_from_config(daemon_)
Reads all server configurations from the configuration file.

It is assumed that each server is in a section starting with Server:. For convenience, use the function addServer
provided in write_config_file.py.

pypmj.parallelization.savely_convert_config_value(value)
Tries to convert a configuration value from a string type to int. If value is not a string type, a ConfigurationError
is raised. If value does not consist of digits only, the input string is returned.

1.1.4 pypmj.utils module

Defines functions and classes which are internally used in all parts of pypmj, but may also be relevant to the user. Most
importantly, the functions run_simusets_in_save_mode and send_status_email are defined here.

Authors : Carlo Barth

class pypmj.utils.Capturing
Bases: list

Context manager to capture any output printed to stdout.

based on: http://stackoverflow.com/questions/16571150/ how-to-capture-stdout-output-from-a-python-
function-call

class pypmj.utils.DisableLogger(level=20)
Bases: object

Context manager to disable all logging events below specific level.

pypmj.utils.append_dir_to_zip(directory, zip_file_path)
Appends a directory to a zip-archive.

Raises an exception if the directory is already inside the archive.

pypmj.utils.assign_kwargs_to_functions(functions, kwargs, ignore_unmatched=True)
Uses inspect to assign which argument in kwargs belongs to which of the functions in the functions list.

If functions have any common argument names, an Error is raised. If ignore_unmatched is True, unassigned
arguments are ignored. Returns a list of kwargs-dictionaries, one for each function.

pypmj.utils.check_type_consistency_in_sequence(sequence)
Checks if all elements of a sequence have the same type.

pypmj.utils.computational_costs_to_flat_dict(ccosts, _sub=False)
Converts the computational costs dict as returned by JCMsolve to a flat dict with only scalar values (i.e. numbers
or strings).

This is useful to store the computational costs in a pandas DataFrame. Keys which have sequence values with a
length other than 1 are converted to single values, while appending an underscore plus index to the key.

pypmj.utils.file_content(file_path)
Returns the content of an existing file.

pypmj.utils.get_folders_in_zip(zipf)
Returns a list of all folders and files in the root level of an open ZipFile.

18 Chapter 1. Contents

http://stackoverflow.com/questions/16571150/

pypmj Documentation, Release 2.2.0

pypmj.utils.get_len_of_parameter_dict(d)
Given a dict, returns the length of the longest sequence in its values.

pypmj.utils.infer_dtype(obj)
Tries to infer the numpy.dtype (or equivalent) of the elements of a sequence, or the numpy.dtype (or equivalent)
of the object intelf if it is no sequence.

pypmj.utils.is_callable(obj)
Return whether the object is callable (i.e., some kind of function).

Note that classes are callable, as are instances with a __call__() method.

pypmj.utils.is_sequence(obj)
Checks if a given object is a sequence by checking if it is not a string or dict, but has a __len__-method.

This might fail!

pypmj.utils.lists_overlap(list_1, list_2)
Checks if two lists have no common elements.

pypmj.utils.obj_to_fixed_length_Series(obj, length)
Generates a pandas Series with a fixed len of length with the best matching dtype for the object.

If the object is sequence, the rows of the Series are filled with its elements. Otherwise it will be the value of the
first row.

pypmj.utils.query_yes_no(question, default=’yes’)
Ask a yes/no question via raw_input() and return their answer.

“question” is a string that is presented to the user. “default” is the presumed answer if the user just hits <Enter>.
It must be “yes” (the default), “no” or None (meaning an answer is required of the user).

pypmj.utils.relative_deviation(sample, reference)
Returns the relative deviation d=|A/B-1| of sample A and reference B.

A can be a (complex) number or a list/numpy.ndarray of (complex) numbers. In case of complex numbers, the
average relative deviation of real and imaginary part (d_real+d_imag)/2 is returned.

pypmj.utils.rename_directories(renaming_dict)
Safely renames directories given as old_name:new_name pairs as keys and values in the renaming_dict.

It first renames all old names to unique temporary names, and renames these to the new_names in a second step.
This produces some overhead, but circumvents the problem of overlapping names in the old and new names.
Safely ignores missing directories.

pypmj.utils.rm_empty_directory_tail(path, stop_at=None)
Removes all empty directories of a path recursively, starting at the tail, until a non empty directory is found or
path is the same directory given in stop_at.

pypmj.utils.run_simusets_in_save_mode(simusets, Ntrials=5, **kwargs)
Given a list of SimulationSets, tries to run each SimulationSet Ntrials times, starting at the point where it was
terminated by an unwanted error.

The kwargs are passed to the run-method of each set or to the send_status_email utility function. They are
automatically assigned. Status e-mails are sent if configured in the configuration file.

pypmj.utils.send_status_email(text, subject=’JCMwave Simulation Information’, sub-
ject_prefix=”, subject_suffix=”)

Tries to send a status e-mail with the given text using the configured e-mail server and address.

pypmj.utils.split_path_to_parts(path)
Splits a path to its parts, so that os.path.join(*parts) gives the input path again.

1.1. pypmj package 19

pypmj Documentation, Release 2.2.0

pypmj.utils.tForm(t1)
Returns a well formated time string.

pypmj.utils.wait_for_all_other_daemons()
Waits for all other currently active JCMdaemon processes to finish on UNIX systems.

pypmj.utils.walk_df(df, col_vals, keys=None)
Recursively finds a row in a pandas DataFrame where all values match the values given in col_vals for the keys
(i.e. column specifiers) in keys.

If no matching rows exist, None is returned. If multiple matching rows exist, a list of indices of the matching
rows is returned.

Parameters

• df (pandas.DataFrame) – This is the DataFrame in which a matching row should be
found. For efficiency, it is not checked if the keys are present in the columns of df, so this
should be checked by the user.

• col_vals (dict or OrderedDict) – A dict that holds the (single) values the match-
ing row of the DataFrame should have, so that df.loc[match_index, key) == col_vals[key]
for all keys in the row with index match_index. If keys is only a subset of the keys in the
dict, remaining key-value pairs are ignored.

• keys (sequence (list/tuple/numpy.ndarray/etc.), default None) –
keys (i.e. columns in df) to use for the comparison. The keys must be present in col_vals. If
keys is None, all keys of col_vals are used.

1.2 Extensions

1.2.1 pypmj.extension_antenna

TODO: Explanation

Authors: Niko Nikolay, Carlo Barth

class pypmj.extension_antenna.FarFieldEvaluation(simulation=None, direction=None,
resolution=25, geometry=’2D’,
subfolder=’post_processes’)

Bases: object

TODO: Explanation

Parameters

• simulation (pypmj.core.Simulation) – The simulation instance for which the
far field evaluation should be performed.

• direction ({'half_space_up', 'half_space_down', 'point_up',) –
‘point_down’, None} Direction specification for the far field evaluation. If None, the com-
plete space will be considered. If ‘half_space_up’/ ‘half_space_down’, only the upper/lower
half space will be considered. If ‘point_up’/’point_down’, a single evaluation point in up-
ward/downward direction will be used. Note: If a point direction is used, the resolution
parameter will be ignored.

• resolution (int, default 25) – . . .

• geometry ({'2D', '3D'}, default '2D') – . . .

20 Chapter 1. Contents

pypmj Documentation, Release 2.2.0

• subfolder (str, default 'post_processes') – Folder name of the subfolder
in the project working directory into which the post processing jcmp(t)-files should be writ-
ten.

analyze_far_field(**simulation_solve_kwargs)
Analyzes the far field of the current simulation. Checks if the expected .jcm-result files already exist and
runs the simulation plus necessary post-processes if not. Afterwards, it executes the standard far field
processing (using the _process_far_field_data-method).

load_far_field_data(file_path)
Loads far field data from the .npz-file located at file_path.

save_far_field_data(file_path, compressed=True)
Saves the far field data to the file at file_path using the numpy.savez (or numpy.savez_compressed method
if compressed is True).

pypmj.extension_antenna.far_field_processing_func(pps)
This is the processing function for the far field evaluation as needed for the core.Simulation.process_results-
method (which is also used be the run-methods). It reads the far field, refractive index and the evaluation points
from the far field post-processes.

pypmj.extension_antenna.read_jcm_far_field_tables(jcm_files)
This is the processing function for the far field evaluation as needed for the core.Simulation.process_results-
method (which is also used be the run-methods). It reads the far field, refractive index and the evaluation points
from the far field post-processes.

1.2. Extensions 21

pypmj Documentation, Release 2.2.0

22 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

23

pypmj Documentation, Release 2.2.0

24 Chapter 2. Indices and tables

Python Module Index

p
pypmj, 3
pypmj.core, 4
pypmj.extension_antenna, 20
pypmj.parallelization, 16
pypmj.utils, 18

25

pypmj Documentation, Release 2.2.0

26 Python Module Index

Index

A
add() (pypmj.parallelization.DaemonResource method),

17
add_all() (pypmj.parallelization.ResourceDict method),

17
add_all_repeatedly() (pypmj.parallelization.ResourceDict

method), 17
add_repeatedly() (pypmj.parallelization.DaemonResource

method), 17
add_resources() (pypmj.core.ConvergenceTest method),

5
add_resources() (pypmj.core.ResourceManager method),

8
add_resources() (pypmj.core.SimulationSet method), 13
all_done() (pypmj.core.SimulationSet method), 13
analyze_convergence_results()

(pypmj.core.ConvergenceTest method), 5
analyze_far_field() (pypmj.extension_antenna.FarFieldEvaluation

method), 21
append_dir_to_zip() (in module pypmj.utils), 18
append_store() (pypmj.core.SimulationSet method), 13
assign_kwargs_to_functions() (in module pypmj.utils),

18

C
Capturing (class in pypmj.utils), 18
check_type_consistency_in_sequence() (in module

pypmj.utils), 18
check_validity_of_input_args()

(pypmj.core.QuantityMinimizer method),
8

close_store() (pypmj.core.SimulationSet method), 13
close_stores() (pypmj.core.ConvergenceTest method), 6
computational_costs_to_flat_dict() (in module

pypmj.utils), 18
compute_geometry() (pypmj.core.Simulation method),

10
compute_geometry() (pypmj.core.SimulationSet

method), 13

ConvergenceTest (class in pypmj.core), 4
copy_to() (pypmj.core.JCMProject method), 7

D
DaemonError, 16
DaemonResource (class in pypmj.parallelization), 16
DisableLogger (class in pypmj.utils), 18

E
expression (pypmj.parallelization.DaemonError at-

tribute), 16

F
far_field_processing_func() (in module

pypmj.extension_antenna), 21
FarFieldEvaluation (class in pypmj.extension_antenna),

20
file_content() (in module pypmj.utils), 18
find_file() (pypmj.core.Simulation method), 10
find_files() (pypmj.core.Simulation method), 10
fix_h5_store() (pypmj.core.SimulationSet method), 13
forget_jcm_results_and_logs() (pypmj.core.Simulation

method), 10

G
get_all_keys() (pypmj.core.SimulationSet method), 13
get_all_queues() (pypmj.parallelization.ResourceDict

method), 17
get_all_workstations() (pypmj.parallelization.ResourceDict

method), 17
get_available_cores() (pypmj.parallelization.DaemonResource

method), 17
get_current_resources() (pypmj.core.ConvergenceTest

method), 6
get_current_resources() (pypmj.core.ResourceManager

method), 8
get_current_resources() (pypmj.core.SimulationSet

method), 13
get_file_path() (pypmj.core.JCMProject method), 7

27

pypmj Documentation, Release 2.2.0

get_folders_in_zip() (in module pypmj.utils), 18
get_len_of_parameter_dict() (in module pypmj.utils), 18
get_project_file_path() (pypmj.core.JCMProject

method), 7
get_project_wdir() (pypmj.core.SimulationSet method),

13
get_resource_names() (pypmj.parallelization.ResourceDict

method), 17
get_resource_with_most_cores()

(pypmj.parallelization.ResourceDict method),
17

get_resources() (pypmj.parallelization.ResourceDict
method), 17

get_resultbag_path() (pypmj.core.SimulationSet
method), 13

get_store_data() (pypmj.core.SimulationSet method), 13

I
import_jcmwave() (in module pypmj), 3
infer_dtype() (in module pypmj.utils), 19
is_callable() (in module pypmj.utils), 19
is_sequence() (in module pypmj.utils), 19
is_store_empty() (pypmj.core.SimulationSet method), 13

J
jcm_license_info() (in module pypmj), 4
jcm_version_info() (in module pypmj), 4
JCMProject (class in pypmj.core), 7

L
lists_overlap() (in module pypmj.utils), 19
load_config_file() (in module pypmj), 4
load_extension() (in module pypmj), 4
load_far_field_data() (pypmj.extension_antenna.FarFieldEvaluation

method), 21
load_state() (pypmj.core.ResourceManager method), 8

M
make_simulation_schedule()

(pypmj.core.ConvergenceTest method), 6
make_simulation_schedule()

(pypmj.core.QuantityMinimizer method),
8

make_simulation_schedule() (pypmj.core.SimulationSet
method), 14

maximize_multiplicity() (pypmj.parallelization.DaemonResource
method), 17

maximize_n_threads() (pypmj.parallelization.DaemonResource
method), 17

merge_pp_files_to_project_file()
(pypmj.core.JCMProject method), 7

message (pypmj.parallelization.DaemonError attribute),
16

minimize_quantity() (pypmj.core.QuantityMinimizer
method), 8

N
num_sims_to_do() (pypmj.core.SimulationSet method),

14

O
obj_to_fixed_length_Series() (in module pypmj.utils), 19
open_store() (pypmj.core.SimulationSet method), 14
open_stores() (pypmj.core.ConvergenceTest method), 6

P
pickle_optimization_results()

(pypmj.core.QuantityMinimizer method),
8

process_results() (pypmj.core.Simulation method), 10
pypmj (module), 3
pypmj.core (module), 4
pypmj.extension_antenna (module), 20
pypmj.parallelization (module), 16
pypmj.utils (module), 18

Q
QuantityMinimizer (class in pypmj.core), 8
query_yes_no() (in module pypmj.utils), 19

R
rb_get_log_for_sim() (pypmj.core.SimulationSet

method), 14
rb_get_result_for_sim() (pypmj.core.SimulationSet

method), 14
read_jcm_far_field_tables() (in module

pypmj.extension_antenna), 21
read_resources_from_config() (in module

pypmj.parallelization), 18
relative_deviation() (in module pypmj.utils), 19
remove_working_dir() (pypmj.core.JCMProject method),

7
remove_working_directory() (pypmj.core.Simulation

method), 10
rename_directories() (in module pypmj.utils), 19
reset_daemon() (pypmj.core.ResourceManager method),

9
reset_resources() (pypmj.core.ConvergenceTest method),

6
reset_resources() (pypmj.core.ResourceManager

method), 9
reset_resources() (pypmj.core.SimulationSet method), 14
ResourceDict (class in pypmj.parallelization), 17
ResourceManager (class in pypmj.core), 8
restore_default_m_n() (pypmj.parallelization.DaemonResource

method), 17

28 Index

pypmj Documentation, Release 2.2.0

restore_original_project_file() (pypmj.core.JCMProject
method), 7

restore_previous_m_n() (pypmj.parallelization.DaemonResource
method), 17

resultbag() (pypmj.core.SimulationSet method), 14
rm_empty_directory_tail() (in module pypmj.utils), 19
run() (pypmj.core.ConvergenceTest method), 6
run() (pypmj.core.SimulationSet method), 14
run_reference_simulation()

(pypmj.core.ConvergenceTest method), 6
run_simusets_in_save_mode() (in module pypmj.utils),

19
run_test_simulations() (pypmj.core.ConvergenceTest

method), 6

S
save_far_field_data() (pypmj.extension_antenna.FarFieldEvaluation

method), 21
save_m_n() (pypmj.parallelization.DaemonResource

method), 17
save_state() (pypmj.core.ResourceManager method), 9
savely_convert_config_value() (in module

pypmj.parallelization), 18
send_status_email() (in module pypmj.utils), 19
set_log_file() (in module pypmj), 4
set_m_n() (pypmj.parallelization.DaemonResource

method), 17
set_m_n_for_all() (pypmj.parallelization.ResourceDict

method), 18
set_multiplicity() (pypmj.parallelization.DaemonResource

method), 17
set_n_threads() (pypmj.parallelization.DaemonResource

method), 17
set_pass_computational_costs() (pypmj.core.Simulation

method), 10
show_readme() (pypmj.core.JCMProject method), 8
Simulation (class in pypmj.core), 9
SimulationSet (class in pypmj.core), 11
solve() (pypmj.core.Simulation method), 10
solve_single_simulation() (pypmj.core.SimulationSet

method), 15
solve_standalone() (pypmj.core.Simulation method), 11
split_path_to_parts() (in module pypmj.utils), 19
STORE_META_GROUPS (pypmj.core.SimulationSet

attribute), 13
STORE_VERSION_GROUP (pypmj.core.SimulationSet

attribute), 13

T
tForm() (in module pypmj.utils), 19

U
use_only_resources() (pypmj.core.ConvergenceTest

method), 6

use_only_resources() (pypmj.core.ResourceManager
method), 9

use_only_resources() (pypmj.core.SimulationSet
method), 15

use_single_resource_with_max_threads()
(pypmj.core.ResourceManager method),
9

V
view_geometry() (pypmj.core.Simulation method), 11

W
wait_for_all_other_daemons() (in module pypmj.utils),

20
walk_df() (in module pypmj.utils), 20
working_dir() (pypmj.core.Simulation method), 11
write_analyzed_data_to_file()

(pypmj.core.ConvergenceTest method), 7
write_store_data_to_file() (pypmj.core.SimulationSet

method), 15

Index 29

	Contents
	pypmj package
	Extensions

	Indices and tables
	Python Module Index

