

Welcome to pypid’s documentation!

Contents:

	pypid package
	Submodules

	pypid.pypid module

	Module contents

	pypid
	pypid package
	Submodules

	pypid.pypid module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

pypid package

Submodules

pypid.pypid module

	
class pypid.pypid.Firstlowpass(wc)

	Bases: object

Implements a first-order lowpass filter.

Based on specified cut-off freq. (wc) in rad/s. Running the filter is
accomplished by calling the execute method repeatedly.

	
execute(dt, x)

	One step of the filter with input x and sample time dt

	Args:

	dt (float): timestep in seconds
x (float): filter input

	Returns:

	float: filter output

	
reset(initcond)

	Reset with new initial conditions

	
class pypid.pypid.Pid(Kp, Ki, Kd, maxIout=None, inputIsAngle=False, inputFilterOrder=0, derivFilterOrder=0)

	Bases: object

PID controller

Standard controller is initiated by defining the gains as

	Kp, Proportional gain

	Ki, Integral gain

	Kd, Derivative gain

General workflow is to instatiate the basic controller object,
then setup the architctureal and filter options,
then when using the feedback

	change the setpoint (goal) by with the set_setpoint() attribute

	
	call the execute() attribute with the sample time and

	state/process-variable (input to the controller) to generate the
control output

Optional Variants:

Rate Sensor

In the standard from the derivative of the process variable is
estimated based on the input. If there is a separate sensor for the
process-variable and the rate of the process variable (e.g., compass
and gyro), this can be included in the call to execute.
- To use - Call execute with the optional dstate input argument
The dstate value should be the measure rate of change.

Angular Input

If the input/process-variable has a discontinuity, e.g, and angle
that wraps at 360 or 2*pi, the controller will unwrap accordingly.

To use, call the set_inputisangle(True)

Input Filter

Puts a low-pass filter in the input/state/process-variable input.
Filter can…

	none: order=0

	first-order: order=1

	second-order: order=2

The cut-off frequency (wc) is specified in rad/s

To use, call the set_inputfilter() function, specifing order and cut-off

Derivative Filter

Puts a low-pass filter on the derivative estimate. Same filters
as the input filter

To use, call the set_derivfilter() function with order and cut-off

Derivative Feedback

In standard form (derivfeedback=False),
the derivative term is calculated based on the
derivative of the error (setpoint-state).
The alternative (derivfeedback=True) is for the derivative in the
feedback path so that the derivative term is the derivative of state alone.
- To use, call the set_derivfeedback(Truee) function

Anti-Windup

The maximum contribution of the I term in the controller output is set
by the maxIout parameter. This is set in units of controller output,
so the internal integration limit is back calculated based on the value
of Ki.

To use, call the set_maxIout() function.

Rate Limits TODO

	
execute(dt, state, dstate=None)

	Pid implementation call

	Args:

	dt(float): time step in seconds
state(float): process variable, fed back from plant
dstate(floaT): rate of change of process variable.

If dstate is None, then will estimate derivative from the state input
Use both state and dstate inputs if you have a position and rate sensor

	Returns:

	numpy array of length 7…

	Output(P+I+D)

	P

	I

	D

	Error

	Setpoint

	Derivative estimate

	Integrator estimate

	
initfilter(order, wc)

	Returns the appropriate filter - used as common way for setting
input filters

	
reset_filters()

	Reset filters using current setpoint as initial values

	
set_Ki(Ki)

	Set integrtor gain - also zero the integrator

	
set_derivfeedback(derivfeedback)

	Set/unset use of derivative in feedback loop

	Args:

	derivfeedback (bool):

	True: derivative in feedback path

	False: derivative in forward path

	
set_derivfilter(order, wc)

	Set derivative filter type and cutoff freq.

	Args:

	order (int): 0 (no-filter, 1 (first-order) or 2 second-order)
wc (float): cutoff frequency in rad/s

	
set_inputfilter(order, wc)

	Set input filter type and cutoff freq.

	Args:

	order (int): 0 (no-filter, 1 (first-order) or 2 second-order)
wc (float): cutoff frequency in rad/s

	
set_inputisangle(inputIsAngle, bound=3.141592653589793)

	Set/unset input as an angle

	Args:

	inputIsAngle (bool):

	False - no discontinuity (default)

	True - input with discontinuity

bound (float): sets bounds for discontinuity
e.g., bound=pi (default) for angle in radians to limit to +/-pi
e.g., bound=180.0 (default) for angle in radians to limit to +/-180

	
set_maxIout(maxIout)

	Set anti-windup integration maximum

	Args:

	maxIout (float): maximum value for integration contribution to outpu

	
set_setpoint(setpoint)

	Change the setpoint (goal) of the control loop

	Args:

	setpoint (float): new setpoint value

	
class pypid.pypid.Secondbutter(wc)

	Bases: object

Implementation of second-order lowpass Butterworth fitler based
on cut-off freq (wc) in rad/s

	
execute(dt, x)

	One step of the filter with input x and sample time dt

	Args:

	dt (float): timestep in seconds
x (float): filter input

	Returns:

	float: filter output

	
reset(initcond)

	Reset with new initial conditions

	
class pypid.pypid.Zerolowpass

	Bases: object

Place older filter object - passthrough

	
execute(dt, x)

	Passthrough

	Args:

	dt (float): timestep
x (float): input to fitler

	Returns:

	float: returns x

	
reset(initcond)

	

	
pypid.pypid.angleError(A, B=0.0, bound=180.0)

	Find difference/error of A-B within range +/-bound.
For angles in degrees, bound is +/-180 degrees

	
pypid.pypid.saturate(num, level)

	Takes min of num and level, preserving sign

	Args:

	num (float): Value to apply saturation to
level (float): Absolute maximum

	Returns:

	float: saturated value

Module contents

pypid

	pypid package
	Submodules

	pypid.pypid module

	Module contents

pypid package

Submodules

pypid.pypid module

	
class pypid.pypid.Firstlowpass(wc)

	Bases: object

Implements a first-order lowpass filter.

Based on specified cut-off freq. (wc) in rad/s. Running the filter is
accomplished by calling the execute method repeatedly.

	
execute(dt, x)

	One step of the filter with input x and sample time dt

	Args:

	dt (float): timestep in seconds
x (float): filter input

	Returns:

	float: filter output

	
reset(initcond)

	Reset with new initial conditions

	
class pypid.pypid.Pid(Kp, Ki, Kd, maxIout=None, inputIsAngle=False, inputFilterOrder=0, derivFilterOrder=0)

	Bases: object

PID controller

Standard controller is initiated by defining the gains as

	Kp, Proportional gain

	Ki, Integral gain

	Kd, Derivative gain

General workflow is to instatiate the basic controller object,
then setup the architctureal and filter options,
then when using the feedback

	change the setpoint (goal) by with the set_setpoint() attribute

	
	call the execute() attribute with the sample time and

	state/process-variable (input to the controller) to generate the
control output

Optional Variants:

Rate Sensor

In the standard from the derivative of the process variable is
estimated based on the input. If there is a separate sensor for the
process-variable and the rate of the process variable (e.g., compass
and gyro), this can be included in the call to execute.
- To use - Call execute with the optional dstate input argument
The dstate value should be the measure rate of change.

Angular Input

If the input/process-variable has a discontinuity, e.g, and angle
that wraps at 360 or 2*pi, the controller will unwrap accordingly.

To use, call the set_inputisangle(True)

Input Filter

Puts a low-pass filter in the input/state/process-variable input.
Filter can…

	none: order=0

	first-order: order=1

	second-order: order=2

The cut-off frequency (wc) is specified in rad/s

To use, call the set_inputfilter() function, specifing order and cut-off

Derivative Filter

Puts a low-pass filter on the derivative estimate. Same filters
as the input filter

To use, call the set_derivfilter() function with order and cut-off

Derivative Feedback

In standard form (derivfeedback=False),
the derivative term is calculated based on the
derivative of the error (setpoint-state).
The alternative (derivfeedback=True) is for the derivative in the
feedback path so that the derivative term is the derivative of state alone.
- To use, call the set_derivfeedback(Truee) function

Anti-Windup

The maximum contribution of the I term in the controller output is set
by the maxIout parameter. This is set in units of controller output,
so the internal integration limit is back calculated based on the value
of Ki.

To use, call the set_maxIout() function.

Rate Limits TODO

	
execute(dt, state, dstate=None)

	Pid implementation call

	Args:

	dt(float): time step in seconds
state(float): process variable, fed back from plant
dstate(floaT): rate of change of process variable.

If dstate is None, then will estimate derivative from the state input
Use both state and dstate inputs if you have a position and rate sensor

	Returns:

	numpy array of length 7…

	Output(P+I+D)

	P

	I

	D

	Error

	Setpoint

	Derivative estimate

	Integrator estimate

	
initfilter(order, wc)

	Returns the appropriate filter - used as common way for setting
input filters

	
reset_filters()

	Reset filters using current setpoint as initial values

	
set_Ki(Ki)

	Set integrtor gain - also zero the integrator

	
set_derivfeedback(derivfeedback)

	Set/unset use of derivative in feedback loop

	Args:

	derivfeedback (bool):

	True: derivative in feedback path

	False: derivative in forward path

	
set_derivfilter(order, wc)

	Set derivative filter type and cutoff freq.

	Args:

	order (int): 0 (no-filter, 1 (first-order) or 2 second-order)
wc (float): cutoff frequency in rad/s

	
set_inputfilter(order, wc)

	Set input filter type and cutoff freq.

	Args:

	order (int): 0 (no-filter, 1 (first-order) or 2 second-order)
wc (float): cutoff frequency in rad/s

	
set_inputisangle(inputIsAngle, bound=3.141592653589793)

	Set/unset input as an angle

	Args:

	inputIsAngle (bool):

	False - no discontinuity (default)

	True - input with discontinuity

bound (float): sets bounds for discontinuity
e.g., bound=pi (default) for angle in radians to limit to +/-pi
e.g., bound=180.0 (default) for angle in radians to limit to +/-180

	
set_maxIout(maxIout)

	Set anti-windup integration maximum

	Args:

	maxIout (float): maximum value for integration contribution to outpu

	
set_setpoint(setpoint)

	Change the setpoint (goal) of the control loop

	Args:

	setpoint (float): new setpoint value

	
class pypid.pypid.Secondbutter(wc)

	Bases: object

Implementation of second-order lowpass Butterworth fitler based
on cut-off freq (wc) in rad/s

	
execute(dt, x)

	One step of the filter with input x and sample time dt

	Args:

	dt (float): timestep in seconds
x (float): filter input

	Returns:

	float: filter output

	
reset(initcond)

	Reset with new initial conditions

	
class pypid.pypid.Zerolowpass

	Bases: object

Place older filter object - passthrough

	
execute(dt, x)

	Passthrough

	Args:

	dt (float): timestep
x (float): input to fitler

	Returns:

	float: returns x

	
reset(initcond)

	

	
pypid.pypid.angleError(A, B=0.0, bound=180.0)

	Find difference/error of A-B within range +/-bound.
For angles in degrees, bound is +/-180 degrees

	
pypid.pypid.saturate(num, level)

	Takes min of num and level, preserving sign

	Args:

	num (float): Value to apply saturation to
level (float): Absolute maximum

	Returns:

	float: saturated value

Module contents

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pypid	

 	
 	
 pypid.pypid	
 Module contining the PID controller class.

Index

 A
 | E
 | F
 | I
 | P
 | R
 | S
 | Z

A

 	
 	angleError() (in module pypid.pypid)

E

 	
 	execute() (pypid.pypid.Firstlowpass method)

 	(pypid.pypid.Pid method)

 	(pypid.pypid.Secondbutter method)

 	(pypid.pypid.Zerolowpass method)

F

 	
 	Firstlowpass (class in pypid.pypid)

I

 	
 	initfilter() (pypid.pypid.Pid method)

P

 	
 	Pid (class in pypid.pypid)

 	
 	pypid (module)

 	pypid.pypid (module), [1]

R

 	
 	reset() (pypid.pypid.Firstlowpass method)

 	(pypid.pypid.Secondbutter method)

 	(pypid.pypid.Zerolowpass method)

 	
 	reset_filters() (pypid.pypid.Pid method)

S

 	
 	saturate() (in module pypid.pypid)

 	Secondbutter (class in pypid.pypid)

 	set_derivfeedback() (pypid.pypid.Pid method)

 	set_derivfilter() (pypid.pypid.Pid method)

 	
 	set_inputfilter() (pypid.pypid.Pid method)

 	set_inputisangle() (pypid.pypid.Pid method)

 	set_Ki() (pypid.pypid.Pid method)

 	set_maxIout() (pypid.pypid.Pid method)

 	set_setpoint() (pypid.pypid.Pid method)

Z

 	
 	Zerolowpass (class in pypid.pypid)

 nav.xhtml

 Table of Contents

 		
 Welcome to pypid’s documentation!

 		
 pypid package

 		
 Submodules

 		
 pypid.pypid module

 		
 Module contents

 		
 pypid

 		
 pypid package

 		
 Submodules

 		
 pypid.pypid module

 		
 Module contents

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

