

 Navigation

 	
 index

 	
 next |

 	pypass documentation

python-pass

	python-pass
	Testing

	Documentation

	Project Status

	API

	Manpage
	Synopsis

	Description

	Commands

	Simple Examples

	Extended Git Example

	Files

	Environement Variables

	See Also

	Author

	Copying

 Copyright .
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pypass documentation

python-pass

[image: https://travis-ci.org/ReAzem/python-pass.svg?branch=master]
 [https://travis-ci.org/ReAzem/python-pass]
 [https://coveralls.io/r/ReAzem/python-pass?branch=master][image: Documentation Status]
 [https://readthedocs.org/projects/pypass/][image: Latest Version]
 [https://pypi.python.org/pypi/pypass/]For fun, I have decided to write pass [http://www.passwordstore.org/] in Python.

Python-pass will provide the same functionality as pass [http://www.passwordstore.org/]. In addition, it will be usable as a library.

Testing

Python-pass is tested for python 2.7, 3.2, 3.3, 3.4, pypy and pypy3

On your machine

	Install the requirements: sudo apt-get install -y gnupg tree

	Import the testing GPG key: gpg --allow-secret-key-import --import pypass/tests/test_key_sec.asc

	Trust the key: gpg --import-ownertrust pypass/tests/test_ownertrust.txt

	Run the tests: tox

With Docker

	Run the tests in a container: make test

	Or, get a shell with pypass installed: make run

Documentation

Documentation for python-pass is available on pypass.rtfd.org [http://pypass.readthedocs.org/].

You can build the documentation and the man page yourself with tox -edocs. The HTML documentation will be built in docs/build/html and the man page will be built in docs/build/man.

Project Status

Bash completion

Comming soon.

pypass init

	[X] pypass init - creates a folder and a .gpg-id file

	[X] Support --path option

	[] re-encryption functionality

	[X] Should output: Password store initialized for [gpg-id].

	[X] --clone <url> allows to init from an existing repo

pypass insert

	[X] pypass insert test.com prompts for a password and creates a test.com.gpg file

	[X] multi-line support

	[X] create a git commit

	[] When inserting in a folder with a .gpg-id file, insert should use the .gpg-id file’s key

pypass show

	[X] pypass show test.com will display the content of test.com.gpg

	[X] --clip, -c copies the first line to the clipboard

	
	[] --password, and --username options.

	Accepted format:

<the_password>
login: <the_login>
url: <the_url>

pypass connect (or ssh)

This new command should connect to a server using an encrypted rsa key.

pypass ls

	[X] pypass ls shows the content of the password store with tree

	[X] pypass invokes pypass ls by default

	[X] pypass ls subfolder calls tree on the subfolder only

	[X] Hide .gpg at the end of each entry

	[X] Accept subfolder argument

	[X] First output line should be Password Store

pypass rm

	[X] pypass rm test.com removes the test.com.gpg file

	[] pypass remove and pypass delete aliases

	[X] pypass rm -r folder (or --recursive) will remove a folder and all of it’s content (not interactive!)

	[X] Ask for confirmation

pypass find

	[X] pypass find python.org pypass will show a tree with password entries that match python.org or pass

	[X] Accepts one or many search terms

pypass cp

	[X] pypass cp old-path new-pah copies a password to a new path

	[] Dont overwrite

pypass mv

	[X] pypass mv old-path new-path moves a password to a new path

	[] Dont overwrite

pypass git

	[X] Pass commands to git

	[X] pypass git init should behave differently with an existing password store

	[X] Add tests

pypass edit

	[X] pypass edit test.com will open a text editor and let you edit the password

pypass grep

	[X] pypass grep searchstring will search for the given string inside all of the encrypted passwords

pypass generate

	[] pypass generate [pass-name] [pass-length] Genrates a new password using of length pass-length and inserts it into pass-name.

	[] --no-symbols, -n

	[] --clip, -c

	[] --in-place, -i

	[] --force, -f

 Copyright .
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pypass documentation

API

	
class pypass.PasswordStore(path='/home/docs/.password-store', git_dir=None)

	This is a Password Store

	Parameters:	
	path – The path of the password-store. By default,
‘$home/.password-store’.

	git_dir – The git directory of the password store. By default,
it looks for a .git directory in the password store.

	
static generate_password(digits=True, symbols=True, length=15)

	Returns a random password

	Parameters:	
	digits – Should the password have digits? Defaults to True

	symbols – Should the password have symbols? Defaults to True

	length – Length of the password. Defaults to 15

	
get_decypted_password(path, entry=None)

	Returns the content of the decrypted password file

	Parameters:	
	path – The path of the password to be decrypted. Example:
‘email.com’

	entry – The entry to retreive. (EntryType enum)

	
get_passwords_list()

	Returns a list of the passwords in the store

	Returns:	Example: [‘Email/bob.net’, ‘example.com’]

	
git_init(git_dir=None)

	Transform the existing password store into a git repository

	Parameters:	git_dir – Where to create the git directory. By default, it will
be created at the root of the password store in a .git
folder.

	
static init(gpg_id, path, clone_url=None)

	Creates a password store to the given path

	Parameters:	
	gpg_id – Default gpg key identification used for encryption and
decryption. Example: ‘3CCC3A3A’

	path – Where to create the password store. By default, this is
$home/.password-store

	clone_url – If specified, the clone_url parameter will be used
to import a password store from a git repository.
Example: ssh://myserver.net:/home/bob/.password-store

	Returns:	PasswordStore object

	
insert_password(path, password)

	Encrypts the password at the given path

	Parameters:	
	path – Where to insert the password. Ex: ‘passwordstore.org’

	password – The password to insert, can be multi-line

	
class pypass.EntryType

	
	
hostname = None

	hostname entry

	
password = None

	password entry

	
username = None

	username/login entry

 Copyright .
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	pypass documentation

Manpage

Synopsis

pypass [COMMAND] [OPTIONS] [ARGS]

Description

pypass is a Python implementation of pass, a very simple password store that keeps passwords inside gpg2(1) encrypted files inside a simple directory tree residing at ~/.password-store. The pyppass utility provides a series of commands for manipulating the password store, allowing the user to add, remove, edit, synchronize, generate, and manipulate passwords.

If no COMMAND is specified, COMMAND defaults to either show or ls, depending on the type of specifier in ARGS. Otherwise COMMAND must be one of the valid commands listed below.

Several of the commands below rely on or provide additional functionality if the password store directory is also a git repository. If the password store directory is a git repository, all password store modification commands will cause a corresponding git commit. See the EXTENDED GIT EXAMPLE section for a detailed description using init and git(1).

The init command must be run before other commands in order to initialize the password store with the correct gpg key id. Passwords are encrypting using the gpg key set with init.

Commands

	init [–path=sub-folder, -p sub-folder] gpg-id...

	Initialize new password storage and use gpg-id for encryption. Multiple gpg-ids may be specified, in order to encrypt each password with multiple ids. This command must be run first before a password store can be used. If the specified gpg-id is different from the key used in any existing files, these files will be reencrypted to use the new id. Note that use of gpg-agent(1) is recommended so that the batch decryption does not require as much user intervention. If –path or -p is specified, along with an argument, a specific gpg-id or set of gpg-ids is assigned for that specific subfolder of the password store. If only one gpg-id is given, and it is an empty string, then the current .gpg-id file for the specified sub-folder (or root if unspecified) is removed.

	ls subfolder

	List names of passwords inside the tree at subfolder by using the tree(1) program.

	grep search-string

	Searches inside each decrypted password file for search-string, and displays line containing matched string along with filename. Uses grep(1) for matching. Make use of the GREP_OPTIONS environment variable to set particular options.

	find pass-names...

	List names of passwords inside the tree that match pass-names by using the tree(1) program.

	show [–clip, -c] pass-name

	Decrypt and print a password named pass-name. If –clip or -c is specified, do not print the password but instead copy the first line to the clipboard using xclip(1) and then restore the clipboard after 45 (or PASSWORD_STORE_CLIP_TIME) seconds.

	insert [–multiline, -m] [–force, -f] pass-name

	Insert a new password into the password store called pass-name. If –multiline or -m is specified, the default text editor specified by the environment variable EDITOR, or editor(1) as a fallback, will be opened and the password will be inserted after the editor exits. Otherwise, a prompt will ask for the password until correctly typed twice. Prompt before overwriting an existing password, unless –force or -f is specified.

	edit pass-name

	Edit an existing password using the default text editor specified by the environment variable EDITOR or using editor(1) as a fallback. This mode makes use of temporary files for editing, but care is taken to ensure that temporary files are created in /dev/shm in order to avoid writing to difficult-to-erase disk sectors. If /dev/shm is not accessible, fallback to the ordinary TMPDIR location, and print a warning.

	generate [–no-symbols, -n] [–clip, -c] [–in-place, -i | –force, -f] pass-name pass-length

	Generate a new password using pwgen(1) of length pass-length and insert into pass-name. If –no-symbols or -n is specified, do not use any non-alphanumeric characters in the generated password. If –clip or -c is specified, do not print the password but instead copy it to the clipboard using xclip(1) and then restore the clipboard after 45 (or PASSWORD_STORE_CLIP_TIME) seconds. Prompt before overwriting an existing password, unless –force or -f is specified. If –in-place or -i is specified, do not interactively prompt, and only replace the first line of the password file with the new generated password, keeping the remainder of the file intact.

	rm [–recursive, -r] [–force, -f] pass-name

	Remove the password named pass-name from the password store. This command is alternatively named remove or delete. If –recursive or -r is specified, delete pass-name recursively if it is a directory. If –force or -f is specified, do not interactively prompt before removal.

	mv [–force, -f] old-path new-path

	Renames the password or directory named old-path to new-path. This command is alternatively named rename. If –force is specified, silently overwrite new-path if it exists. If new-path ends in a trailing /, it is always treated as a directory. Passwords are selectively reencrypted to the corresponding keys of their new destination.

	cp [–force, -f] old-path new-path

	Copies the password or directory named old-path to new-path. This command is alternatively named copy. If –force is specified, silently overwrite new-path if it exists. If new-path ends in a trailing /, it is always treated as a directory. Passwords are selectively reencrypted to the corresponding keys of their new destination.

	git git-command-args...

	If the password store is a git repository, pass git-command-args as arguments to git(1) using the password store as the git repository. If git-command-args is init, in addition to initializing the git repository, add the current contents of the password store to the repository in an initial commit. If the git config key pass.signcommits is set to true, then all commits will be signed using user.signingkey or the default git signing key. This config key may be turned on using: pass git config –bool –add pass.signcommits true

	help

	Shows usage message.

	Version

	Shows version information

Simple Examples

	Initialize password store

	zx2c4@laptop ~ $ pass init Jason@zx2c4.com
mkdir: created directory ‘/home/zx2c4/.password-store’
Password store initialized for Jason@zx2c4.com.

	List existing passwords in store

	zx2c4@laptop ~ $ pypass
Password Store
├── Business
│ ├── some-silly-business-site.com
│ └── another-business-site.net
├── Email
│ ├── donenfeld.com
│ └── zx2c4.com
└── France
├── bank
├── freebox
└── mobilephone

Alternatively, “pypass ls”.

	Find existing passwords in store that match .com

	zx2c4@laptop ~ $ pypass find .com
Search Terms: .com
├── Business
│ ├── some-silly-business-site.com
└── Email
├── donenfeld.com
└── zx2c4.com

Alternatively, “pypass search .com”.

	Show existing password

	zx2c4@laptop ~ $ pypass Email/zx2c4.com
sup3rh4x3rizmynam3

	Copy existing password to clipboard

	zx2c4@laptop ~ $ pypass -c Email/zx2c4.com
Copied Email/jason@zx2c4.com to clipboard. Will clear in 45 seconds.

	Add password to store

	zx2c4@laptop ~ $ pypass insert Business/cheese-whiz-factory
Enter password for Business/cheese-whiz-factory: omg so much cheese
what am i gonna do

	Add multiline password to store

	zx2c4@laptop ~ $ pypass insert -m Business/cheese-whiz-factory
Enter contents of Business/cheese-whiz-factory and press Ctrl+D when
finished:

Hey this is my
awesome
multi
line
passworrrrrrrrd.
^D

	Generate new password

	zx2c4@laptop ~ $ pypass generate Email/jasondonenfeld.com 15
The generated password to Email/jasondonenfeld.com is:
$(-QF&Q=IN2nFBx

	Generate new alphanumeric password

	zx2c4@laptop ~ $ pypass generate -n Email/jasondonenfeld.com 12
The generated password to Email/jasondonenfeld.com is:
YqFsMkBeO6di

	Generate new password and copy it to the clipboard

	zx2c4@laptop ~ $ pypass generate -c Email/jasondonenfeld.com 19
Copied Email/jasondonenfeld.com to clipboard. Will clear in 45 sec‐
onds.

	Remove password from store

	zx2c4@laptop ~ $ pypass remove Business/cheese-whiz-factory
rm: remove regular file ‘/home/zx2c4/.password-store/Business/cheese-
whiz-factory.gpg’? y
removed ‘/home/zx2c4/.password-store/Business/cheese-whiz-factory.gpg’

Extended Git Example

Here, we initialize new password store, create a git repository, and then manipulate and sync passwords. Make note of the arguments to the first call of pass git push; consult git-push(1) for more information.

	zx2c4@laptop ~ $ pypass init Jason@zx2c4.com

	mkdir: created directory ‘/home/zx2c4/.password-store’
Password store initialized for Jason@zx2c4.com.

	zx2c4@laptop ~ $ pypass git init

	Initialized empty Git repository in /home/zx2c4/.password-store/.git/
[master (root-commit) 998c8fd] Added current contents of password store.
1 file changed, 1 insertion(+)
create mode 100644 .gpg-id

zx2c4@laptop ~ $ pypass git remote add origin kexec.com:pass-store

	zx2c4@laptop ~ $ pypass generate Amazon/amazonemail@email.com 21

	mkdir: created directory ‘/home/zx2c4/.password-store/Amazon’
[master 30fdc1e] Added generated password for Amazon/amazonemail@email.com
to store.
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 Amazon/amazonemail@email.com.gpg
The generated password to Amazon/amazonemail@email.com is:
<5m,_BrZY`antNDxKN<0A

	zx2c4@laptop ~ $ pypass git push -u –all

	Counting objects: 4, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 921 bytes, done.
Total 4 (delta 0), reused 0 (delta 0)
To kexec.com:pass-store
* [new branch] master -> master
Branch master set up to track remote branch master from origin.

	zx2c4@laptop ~ $ pypass insert Amazon/otheraccount@email.com

	Enter password for Amazon/otheraccount@email.com:
som3r3a11yb1gp4ssw0rd!!88**
[master b9b6746] Added given password for Amazon/otheraccount@email.com to
store.
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 Amazon/otheraccount@email.com.gpg

	zx2c4@laptop ~ $ pypass rm Amazon/amazonemail@email.com

	rm: remove regular file ‘/home/zx2c4/.password-store/Amazon/amazone‐
mail@email.com.gpg’? y
removed ‘/home/zx2c4/.password-store/Amazon/amazonemail@email.com.gpg’
rm 'Amazon/amazonemail@email.com.gpg'
[master 288b379] Removed Amazon/amazonemail@email.com from store.
1 file changed, 0 insertions(+), 0 deletions(-)
delete mode 100644 Amazon/amazonemail@email.com.gpg

	zx2c4@laptop ~ $ pypass git push

	Counting objects: 9, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (7/7), 1.25 KiB, done.
Total 7 (delta 0), reused 0 (delta 0)
To kexec.com:pass-store

Files

	~/.password-store

	The default password storage directory.

	~/.password-store/.gpg-id

	Contains the default gpg key identification used for encryption and decryption. Multiple gpg keys may be specified in this file, one per line. If this file exists in any sub directories, passwords inside those sub directories are encrypted using those keys. This should be set using the init command.

Environement Variables

	PASSWORD_STORE_DIR

	Overrides the default password storage directory.

	PASSWORD_STORE_KEY

	Overrides the default gpg key identification set by init. Keys must not contain spaces and thus use of the hexidecimal key signature is recommended. Multiple keys may be specified separated by spaces.

	PASSWORD_STORE_GIT

	Overrides the default root of the git repository, which is helpful if PASSWORD_STORE_DIR is temporarily set to a sub-directory of the default password store.

	PASSWORD_STORE_CLIP_TIME

	Specifies the number of seconds to wait before restoring the clipboard, by default 45 seconds.

	PASSWORD_STORE_UMASK

	Sets the umask of all files modified by pypass, by default 077.

	EDITOR

	The location of the text editor used by edit.

See Also

gpg2(1), git(1), xclip(1).

Author

pypass was written by Alexandre Viau <alexandre@alexandreviau.net>. For updates and more information, a project page is available on the World Wide Web (https://github.com/ReAzem/python-pass).

pass was written by Jason A. Donenfeld ⟨Jason@zx2c4.com⟩. For updates and more information, a project page is available on the World Wide Web ⟨http://www.passwordstore.org/⟩.

Copying

python-pass is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or(at your option) any later version.

python-pass is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with python-pass. If not, see <http://www.gnu.org/licenses/>.

 Copyright .
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	pypass documentation

Index

 E
 | G
 | H
 | I
 | P
 | U

E

 	

 	EntryType (class in pypass)

G

 	

 	generate_password() (pypass.PasswordStore static method)

 	get_decypted_password() (pypass.PasswordStore method)

 	

 	get_passwords_list() (pypass.PasswordStore method)

 	git_init() (pypass.PasswordStore method)

H

 	

 	hostname (pypass.EntryType attribute)

I

 	

 	init() (pypass.PasswordStore static method)

 	

 	insert_password() (pypass.PasswordStore method)

P

 	

 	password (pypass.EntryType attribute)

 	

 	PasswordStore (class in pypass)

U

 	

 	username (pypass.EntryType attribute)

 Copyright .
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

_static/comment-close.png

search.html

 Navigation

 		
 index

 		pypass documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.2.2.

_static/up.png

_static/comment.png

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/minus.png

