
pyownet Documentation
Release 0.11.0.dev2

Stefano Miccoli

Sep 27, 2017

Contents

1 Contents 3
1.1 Introduction . 3
1.2 Installation . 4
1.3 pyownet.protocol — low level interface to owserver protocol 5

2 Indices and tables 15

i

ii

pyownet Documentation, Release 0.11.0.dev2

Abstract

pyownet is a pure Python client library for accessing a 1-Wire® network by means of OWFS and the owserver
network protocol.

Contents 1

pyownet Documentation, Release 0.11.0.dev2

2 Contents

CHAPTER 1

Contents

Introduction

pyownet is a pure Python client library for accessing a 1-Wire network using an OWFS owserver. A brief intro-
duction to the main components with which pyownet interacts is given below.

1-Wire

1-Wire® is a a single contact serial interface developed by Maxim Integrated™. A typical 1-Wire network is
composed by a master device and a collection of slave devices/sensors. The master device is usually connected to
a host computer via a serial or USB interface, but also embedded or bus bridging solutions are possible.

See also:

1-Wire Maxim 1-Wire technology brief from Maxim Integrated

1-Wire Wikipedia description of the 1-Wire bus system on Wikipedia

OWFS and the owserver protocol

The “1-Wire File System”, in short OWFS, is a software system that allows to access a 1-Wire bus via a supported
master device. OWFS comprises many different modules which offer different access protocols to 1-Wire data:
owhttpd (http), owftpd (ftp) and owfs (filesystem interface via FUSE). Since only a single program can
access the 1-Wire bus at one time, there is also a back end component, owserver, that arbitrates access to the
bus from multiple client processes. Client processes can query an owserver (the program) via network sockets
speaking the ‘owserver’ protocol. OWFS offers many language bindings for writing owserver clients: among
others c, java, perl, php, python, which can be found in the OWFS source tree under the module/ownet directory.

See also:

OWFS 1-Wire File System - development site official OWFS site

owserver protocol brief

The owserver protocol follows a client-server paradigm: the client makes a connection to the listening socket of
the owserver program and sends a message. The server replies with another message, and then either closes the

3

https://www.maximintegrated.com/en/products/digital/one-wire.html
https://en.wikipedia.org/wiki/1-Wire
http://sourceforge.net/p/owfs/code/ci/master/tree/module/ownet/
http://owfs.org/

pyownet Documentation, Release 0.11.0.dev2

connection or waits for other messages1. The default port 4304/tcp (and 4304/udp, although UDP is not used) is
registered at the IANA as owserver service for this purpose.

Both the client and server messages are composed by a fixed length header and a variable length payload. The
header structure is defined in the OWFS source tree in file module/owlib/src/include/ow_message.h
as:

#include <stdint.h>

/* message to owserver */
struct server_msg {

int32_t version;
int32_t payload;
int32_t type;
int32_t control_flags;
int32_t size;
int32_t offset;

};

/* message to client */
struct client_msg {

int32_t version;
int32_t payload;
int32_t ret;
int32_t control_flags;
int32_t size;
int32_t offset;

};

#define OWSERVER_PROTOCOL_VERSION 0

The version member is set to OWSERVER_PROTOCOL_VERSION, payload is the payload length (in bytes),
while server_msg.type is a constant that describes the type of request made to the server (see also Mes-
sage types). client_msg.ret is a server return code (used to signal errors or abnormal situations) while
control_flags are used to control various aspects of the owserver protocol (see also Flags).

After the header the actual payload is transmitted, as a (binary) stream of bytes (of length server_msg.
payload or client_msg.payload).

See also:

owserver network protocol protocol specification

pyownet package contents

To time pyownet comprises a single module pyownet.protocol, which is a low-level implementation of
the client side of the owserver protocol. It can be considered a replacement of the OWFS module ownet.
connection (to be found in module/ownet/python).

Although low-level, it’s use is fairly simple, due to the peculiar OWFS design, with it’s file-system like structure.

A higher-level module pyownet.sensors is under development.

Installation

Source code

Source code for pyownet is hosted on GitHub: https://github.com/miccoli/pyownet . The project is registered on
PyPI: https://pypi.python.org/pypi/pyownet .

1 For a discussion of this type of keep-alive connection see Persistent vs. non-persistent proxy objects..

4 Chapter 1. Contents

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?search=4304#table-service-names-port-numbers
http://owfs.org/index.php?page=owserver-protocol
http://sourceforge.net/p/owfs/code/ci/master/tree/module/ownet/python/
https://github.com/miccoli/pyownet
https://pypi.python.org/pypi/pyownet

pyownet Documentation, Release 0.11.0.dev2

Python version support

The code base is written in Python 2, but Python 3 is fully supported: running the 2to3 tool will generate valid
and, whenever possible, idiomatic Python 3 code. The Python 2 version should be considered legacy: the present
documentation refers only to the Python 3 version.

Explicitly supported versions are Python 2.6, 2.7, 3.3 through 3.6.

Install from PyPI

The preferred installation method is from PyPI via pip:

pip install pyownet

This will install the pyownet package in the default location.

If you are also interested in usage examples and tests you can download the source package from the PyPI down-
loads, unpack it, and install:

python setup.py install

In the source tree there will be example and test directories.

Install from GitHub

The most complete source tree is kept on GitHub:

git clone https://github.com/miccoli/pyownet.git
cd pyownet
python setup.py install

Usually the master branch should be aligned with the most recent release, while there could be other feature
branches active.

Reporting bugs

Please open an issue on the pyownet issues page.

pyownet.protocol — low level interface to owserver protocol

Warning: This software is still in alpha testing. Although it has been successfully used in production
environments for more than 4 years, its API is not frozen yet, and could be changed.

The pyownet.protocol module is a low-level implementation of the client side of the owserver protocol.
Interaction with an owserver takes place via a proxy object whose methods correspond to the owserver protocol
messages.

>>> from pyownet import protocol
>>> owproxy = protocol.proxy(host="server.example.com", port=4304)
>>> owproxy.dir()
['/10.000010EF0000/', '/05.000005FA0100/', '/26.000026D90200/', '/01.000001FE0300/
→˓', '/43.000043BC0400/']
>>> owproxy.read('/10.000010EF0000/temperature')
b' 1.6'

1.3. pyownet.protocol — low level interface to owserver protocol 5

https://docs.python.org/3/library/2to3.html#to3-automated-python-2-to-3-code-translation
https://pypi.python.org/pypi/pyownet
https://pip.pypa.io/en/stable/user_guide/#installing-packages
https://pypi.python.org/pypi/pyownet#downloads
https://pypi.python.org/pypi/pyownet#downloads
https://github.com/miccoli/pyownet/issues

pyownet Documentation, Release 0.11.0.dev2

Persistent vs. non-persistent proxy objects.

The owserver protocol presents two variants: non-persistent connection and persistent connection. In a non-
persistent connection a network socket is bound and torn down for each client-server message exchange; the
protocol is stateless. For a persistent connection the same socket is reused for subsequent client-server interactions
and the socket has to be torn down only at the end of the session. Note that there is no guarantee that a persistent
connection is granted by the server: if the server is not willing to grant a persistent connection, the protocol
requires a fall-back towards a non-persistent connection.

Correspondingly two different proxy object classes are implemented: non-persistent and persistent.

• Non-persistent proxy objects are thread-safe: at each method call of this class, a new socket is bound and
torn down after a reply is received. Even if multiple threads use concurrently the same pyownet proxy
object, there is no risk of garbling the order of the responses.

• Persistent proxy objects are not thread safe: on the first call to a method, a socket is bound to the owserver
and kept open for reuse in subsequent calls; it is responsibility of the user to explicitly close the connection
at the end of a session. This mode is not thread safe because if multiple threads use the same socket to send
messages to an owserver, there is no guarantee that they will receive the respective answer due to a race
condition on the single socket stream. If a single persistent proxy object has to be used by multiple threads,
a locking mechanism has to be implemented, to prevent concurrent use of the persistent socket.

In general, if performance is not an issue, it is safer to use non-persistent connection proxies: the protocol is
simpler to manage, and usually the cost of creating a socket for each message is negligible with respect to the
1-wire network response times.

Timeouts

owserver operations are synchronous: on a given socket connection, the server waits for an incoming client mes-
sage, replies to the message, and closes the connection (when in non-persistent mode) or starts over (when in
persistent mode.) Since 1-wire replies can take a long time to be generated, after receiving a request, the server
sends keepalive frames at 1 second intervals to signal the client that the connection is still alive and that a response
is in preparation.

All methods of a pyownet proxy object are blocking: method calls return only after a server response is received.
To avoid dead-locks, two different timeout mechanisms are implemented:

• a low level timeout on socket operations,

• a high level timeout valid for owserver messages.

The low level timeout is applied to all socket operations: when the timeout is expired1 a ConnError is raised.
This typically happens if there are network problems or the owserver crashes.

The high level timeout is optional, and is specified as a keyword argument to the proxy object methods. If
timeout==0 the operation blocks as long as the owserver sends keepalive packets. For timeout>0, after
timeout seconds a OwnetTimeout exception is raised. Please note that the check for an expired timeout is
performed only after a keepalive packet is received from the server, therefore once every second.

Factory functions

pyownet.protocol.proxy(host=’localhost’, port=4304, flags=0, persistent=False, ver-
bose=False)

Parameters

• host (str) – host to contact

• port (int) – tcp port number to connect with

• flags (int) – protocol flag word to be ORed to each outgoing message (see Flags).

1 The socket timeout interval is set by the internal constant _SCK_TIMEOUT, by default 2 seconds.

6 Chapter 1. Contents

pyownet Documentation, Release 0.11.0.dev2

• persistent (bool) – whether the requested connection is persistent or not.

• verbose (bool) – if true, print on sys.stdout debugging messages related to the
owserver protocol.

Returns proxy object

Raises

• pyownet.protocol.ConnError – if no connection can be established with host
at port.

• pyownet.protocol.ProtocolError – if a connection can be established but
the server does not support the owserver protocol.

Proxy objects are created by this factory function; for persistent=False will be of class _Proxy or
_PersistentProxy for persistent=True

pyownet.protocol.clone(proxy, persistent=True)

Parameters

• proxy – existing proxy object

• persistent (bool) – whether the new proxy object is persistent or not

Returns new proxy object

There are costs involved in creating proxy objects (DNS lookups etc.). Therefore the same proxy object
should be saved and reused in different parts of the program. The main purpose of this functions is to
quickly create a new proxy object with the same properties of the old one, with only the persistence param-
eter changed. Typically this can be useful if one desires to use persistent connections in a multithreaded
environment, as per the example below:

from pyownet import protocol

def worker(shared_proxy):
with protocol.clone(shared_proxy, persistent=True) as newproxy:

rep1 = newproxy.read(some_path)
rep2 = newproxy.read(some_otherpath)
do some work

owproxy = protocol.proxy(persistent=False)
for i in range(NUM_THREADS):

th = threading.Thread(target=worker, args=(owproxy,))
th.start()

Of course, is persistence is not needed, the code could be more simple:

from pyownet import protocol

def worker(shared_proxy):
rep1 = shared_proxy.read(some_path)
rep2 = shared_proxy.read(some_otherpath)
do some work

owproxy = protocol.proxy(persistent=False)
for i in range(NUM_THREADS):

th = threading.Thread(target=worker, args=(owproxy,))
th.start()

Proxy objects

Proxy objects are returned by the factory functions proxy() and clone(): methods of the proxy object send
messages to the proxied server and return it’s response, if any. They exists in two versions: non-persistent _Proxy

1.3. pyownet.protocol — low level interface to owserver protocol 7

pyownet Documentation, Release 0.11.0.dev2

instances and persistent _PersistentProxy instances. The corresponding classes should not be instantiated
directly by the user, but only by the factory functions.

class pyownet.protocol._Proxy
Objects of this class follow the non-persistent protocol: a new socket is created and connected to the
owserver for each method invocation; after the server reply message is received, the socket is shut down.
The implementation is thread-safe: different threads can use the same proxy object for concurrent access to
the owserver.

ping()
Send a ping message to owserver.

Returns None

This is actually a no-op; this method could be used for verifying that a given server is accepting
connections and alive.

present(path, timeout=0)
Check if a node is present at path.

Parameters

• path (str) – OWFS path

• timeout (float) – operation timeout (seconds)

Returns True if an entity is present at path, False otherwise

Return type bool

dir(path=’/’, slash=True, bus=False, timeout=0)
List directory content

Parameters

• path (str) – OWFS path to list

• slash (bool) – True if directories should be marked with a trailing slash

• bus (bool) – True if special directories should be listed

• timeout (float) – operation timeout (seconds)

Returns directory content

Return type list

Return a list of the pathnames of the entities that are direct descendants of the node at path, which has
to be a directory:

>>> owproxy = protocol.proxy()
>>> owproxy.dir()
['/10.000010EF0000/', '/05.000005FA0100/', '/26.000026D90200/', '/01.
→˓000001FE0300/', '/43.000043BC0400/']
>>> owproxy.dir('/10.000010EF0000/')
['/10.000010EF0000/address', '/10.000010EF0000/alias', '/10.000010EF0000/
→˓crc8', '/10.000010EF0000/errata/', '/10.000010EF0000/family', '/10.
→˓000010EF0000/id', '/10.000010EF0000/locator', '/10.000010EF0000/power',
→˓'/10.000010EF0000/r_address', '/10.000010EF0000/r_id', '/10.000010EF0000/
→˓r_locator', '/10.000010EF0000/scratchpad', '/10.000010EF0000/temperature
→˓', '/10.000010EF0000/temphigh', '/10.000010EF0000/templow', '/10.
→˓000010EF0000/type']

If slash=True the pathnames of directories are marked by a trailing slash. If bus=True also
special directories (like '/settings', '/structure', '/uncached') are listed.

read(path, size=MAX_PAYLOAD, offset=0, timeout=0)
Read node at path

Parameters

8 Chapter 1. Contents

pyownet Documentation, Release 0.11.0.dev2

• path (str) – OWFS path

• size (int) – maximum length of data read

• offset (int) – offset at which read data

• timeout (float) – operation timeout (seconds)

Returns binary buffer

Return type bytes

Return the data read from node at path, which has not to be a directory.

>>> owproxy = protocol.proxy()
>>> owproxy.read('/10.000010EF0000/type')
b'DS18S20'

The size parameters can be specified to limit the maximum length of the data buffer
returned; when offset > 0 the first offset bytes are skipped. (In python slice
notation, if data = read(path), then read(path, size, offset) returns
data[offset:offset+size].)

write(path, data, offset=0, timeout=0)
Write data at path.

Parameters

• path (str) – OWFS path

• data (bytes) – binary data to write

• offset (int) – offset at which write data

• timeout (float) – operation timeout (seconds)

Returns None

Writes binary data to node at path; when offset > 0 data is written starting at byte offset
offset in path.

>>> owproxy = protocol.proxy()
>>> owproxy.write('/10.000010EF0000/alias', b'myalias')

sendmess(msgtype, payload, flags=0, size=0, offset=0, timeout=0)
Send message to owserver, and blocking waits for reply.

Parameters

• msgtype (int) – message type code

• payload (bytes) – message payload

• flags (int) – message flags

• int (offset) – message size

• int – message offset

• timeout (float) – operation timeout (seconds)

Returns owserver return code and reply data

Return type (int, bytes) tuple

This is a low level method meant as direct interface to the owserver protocol, useful for generating
messages which are not covered by the other higher level methods of this class.

This method sends a message of type msgtype (see Message types) with a given payload to the
server; flags are ORed with the proxy general flags (specified in the flags parameter of the
proxy() factory function), while size and offset are passed unchanged into the message header.

1.3. pyownet.protocol — low level interface to owserver protocol 9

pyownet Documentation, Release 0.11.0.dev2

The method returns a (retcode, data) tuple, where retcode is the server return code (< 0 in
case of error) and data the binary payload of the reply message.

>>> owproxy = protocol.proxy()
>>> owproxy.sendmess(protocol.MSG_DIRALL, b'/', flags=protocol.FLG_BUS_RET)
(0, b'/10.000010EF0000,/05.000005FA0100,/26.000026D90200,/01.000001FE0300,/
→˓43.000043BC0400,/bus.0,/uncached,/settings,/system,/statistics,/
→˓structure,/simultaneous,/alarm')
>>> owproxy.sendmess(protocol.MSG_DIRALL, b'/nonexistent')
(-1, b'')

class pyownet.protocol._PersistentProxy
Objects of this class follow the persistent protocol, reusing the same socket connection for more than one
method call. When a method is called, it firsts check for an open connection: if none is found a socket is
created and bound to the owserver. All messages are sent to the server with the FLG_PERSISTENCE flag
set; if the server grants persistence, the socket is kept open, otherwise the socket is shut down as for _Proxy
instances. In other terms if persistence is not granted there is an automatic fallback to the non-persistent
protocol.

The use of the persistent protocol is therefore transparent to the user, with an important difference: if
persistence is granted by the server, a socket connection is kept open to the owserver, after the last method
call. It is the responsibility of the user to explicitly close the connection at the end of a session, to avoid
server timeouts.

_PersistentProxy objects have all the methods of _Proxy instances, plus a method for closing a
connection.

close_connection()
if there is an open connection, shuts down the socket; does nothing if no open connection is present.

Note that after the call to close_connection() the object can still be used: in fact a new method call
will open a new socket connection.

To avoid the need of explicitly calling the close_connection() method, _PersistentProxy in-
stances support the context management protocol (i.e. the with statement.) When the with block is entered
a socket connection is opened; the same socket connection is closed at the exit of the block. A typical usage
pattern could be the following:

owproxy = protocol.proxy(persistent=True)

with owproxy:
here socket is bound to owserver
do work which requires to call owproxy methods
res = owproxy.dir()
etc.

here socket is closed
do work that does not require owproxy access

with owproxy:
again a connection is open
res = owproxy.dir()
etc.

In the above example, outside of the with blocks all socket connections to the owserver are guaranteed to
be closed. Moreover the socket connection is opened when entering the block, even before the first call to a
method, which could be useful for error handling.

For non-persistent connections, entering and exiting the with block context is a no-op.

Exceptions

10 Chapter 1. Contents

https://docs.python.org/3/reference/compound_stmts.html#the-with-statement

pyownet Documentation, Release 0.11.0.dev2

Base classes

exception pyownet.protocol.Error
The base class for all exceptions raised by this module.

Concrete exceptions

exception pyownet.protocol.OwnetError
This exception is raised to signal an error return code by the owserver. This exception inherits also from
the builtin OSError and follows its semantics: it sets arguments errno, strerror, and, if available,
filename. Message errors are derived from the owserver introspection, by consulting the /settings/
return_codes/text.ALL node.

exception pyownet.protocol.OwnetTimeout
This exception is raised when there is an owserver operation in progress but a given timeout period has
expired. This is distinct from a low-level socket timeout which is signaled by a ConnError). See Timeouts.

exception pyownet.protocol.ConnError
This exception is raised when a low level socket system call fails. In fact ConnError simply wraps
the Python OSError exception along with all its arguments, from which it inherits. In other terms it is
implemented as

try:
call some socket method/function

except OSError as exc:
raise ConnError(*exc.args)

Typical situations in which this exception occurs are when

•a network connection to the owserver cannot be established,

•a socket timeout occurs at the OS level.

For Python versions prior to 3.5, this exception could also be raised for an interrupted system call, see PEP
4753.

exception pyownet.protocol.ProtocolError
This exception is raised when a successful network connection is established, but the remote server does
not speak the owserver network protocol or some other error occurred during the exchange of owserver
messages.

exception pyownet.protocol.MalformedHeader
A subclass of ProtocolError: raised when it is impossible to decode the reply header received from
the remote owserver.

exception pyownet.protocol.ShortRead
A subclass of ProtocolError: raised when the payload received from the remote owserver is too short.

exception pyownet.protocol.ShortWrite
A subclass of ProtocolError: raised when it is impossible to send the complete payload to the remote
owserver.

Exception hierarchy

The exception class hierarchy for this module is:

pyownet.Error
+-- pyownet.protocol.Error

+-- pyownet.protocol.OwnetError
+-- pyownet.protocol.OwnetTimeout
+-- pyownet.protocol.ConnError

3 See also issue #8.

1.3. pyownet.protocol — low level interface to owserver protocol 11

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#OSError
https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-0475
https://github.com/miccoli/pyownet/issues/8

pyownet Documentation, Release 0.11.0.dev2

+-- pyownet.protocol.ProtocolError
+-- pyownet.protocol.MalformedHeader
+-- pyownet.protocol.ShortRead
+-- pyownet.protocol.ShortWrite

Constants

pyownet.protocol.MAX_PAYLOAD
Defines the maximum number of bytes that this module is willing to read in a single message from the
remote owserver. This limit is enforced to avoid security problems with malformed headers. The limit is
hardcoded to 65536 bytes.2

Message types

These constants can by passed as the msgtype argument to _Proxy.sendmess() method

See also:

owserver message types

pyownet.protocol.MSG_ERROR

pyownet.protocol.MSG_NOP

pyownet.protocol.MSG_READ

pyownet.protocol.MSG_WRITE

pyownet.protocol.MSG_DIR

pyownet.protocol.MSG_PRESENCE

pyownet.protocol.MSG_DIRALL

pyownet.protocol.MSG_GET

pyownet.protocol.MSG_DIRALLSLASH

pyownet.protocol.MSG_GETSLASH

Flags

The module defines a number of constants, to be passed as the flags argument to proxy(). If more flags
should apply, these have to be ORed together: e.g. for reading temperatures in Kelvin and pressures in Pascal, one
should call:

owproxy = protocol.proxy(flags=FLG_TEMP_K | FLG_PRESS_PA)

See also:

OWFS development site: owserver flag word

general flags

pyownet.protocol.FLG_BUS_RET

pyownet.protocol.FLG_PERSISTENCE

pyownet.protocol.FLG_ALIAS

pyownet.protocol.FLG_SAFEMODE

2 Subject to change while package is in alpha phase.

12 Chapter 1. Contents

http://owfs.org/index.php?page=owserver-message-types
http://owfs.org/index.php?page=owserver-flag-word

pyownet Documentation, Release 0.11.0.dev2

pyownet.protocol.FLG_UNCACHED

pyownet.protocol.FLG_OWNET

temperature reading flags

pyownet.protocol.FLG_TEMP_C

pyownet.protocol.FLG_TEMP_F

pyownet.protocol.FLG_TEMP_K

pyownet.protocol.FLG_TEMP_R

pressure reading flags

pyownet.protocol.FLG_PRESS_MBAR

pyownet.protocol.FLG_PRESS_ATM

pyownet.protocol.FLG_PRESS_MMHG

pyownet.protocol.FLG_PRESS_INHG

pyownet.protocol.FLG_PRESS_PSI

pyownet.protocol.FLG_PRESS_PA

sensor name formatting flags

pyownet.protocol.FLG_FORMAT_FDI

pyownet.protocol.FLG_FORMAT_FI

pyownet.protocol.FLG_FORMAT_FDIDC

pyownet.protocol.FLG_FORMAT_FDIC

pyownet.protocol.FLG_FORMAT_FIDC

pyownet.protocol.FLG_FORMAT_FIC

These flags govern the format of the 1-wire 64 bit addresses as reported by OWFS:

flag format
FLG_FORMAT_FDIDC 10.67C6697351FF.8D
FLG_FORMAT_FDIC 10.67C6697351FF8D
FLG_FORMAT_FIDC 1067C6697351FF.8D
FLG_FORMAT_FIC 1067C6697351FF8D
FLG_FORMAT_FDI 10.67C6697351FF
FLG_FORMAT_FI 1067C6697351FF

FICD are format codes defined as below:

format interpretation
F family code (1 byte) as hex string
I device serial number (6 bytes) as hex string
C Dallas Semiconductor 1-Wire CRC (1 byte) as hex string
D a single dot character ‘.’

1.3. pyownet.protocol — low level interface to owserver protocol 13

pyownet Documentation, Release 0.11.0.dev2

14 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• search

15

pyownet Documentation, Release 0.11.0.dev2

16 Chapter 2. Indices and tables

Index

Symbols
_PersistentProxy (class in pyownet.protocol), 10
_Proxy (class in pyownet.protocol), 8

C
clone() (in module pyownet.protocol), 7
close_connection() (py-

ownet.protocol._PersistentProxy method),
10

ConnError, 11

D
dir() (pyownet.protocol._Proxy method), 8

E
Error, 11

F
FLG_ALIAS (in module pyownet.protocol), 12
FLG_BUS_RET (in module pyownet.protocol), 12
FLG_FORMAT_FDI (in module pyownet.protocol), 13
FLG_FORMAT_FDIC (in module pyownet.protocol),

13
FLG_FORMAT_FDIDC (in module py-

ownet.protocol), 13
FLG_FORMAT_FI (in module pyownet.protocol), 13
FLG_FORMAT_FIC (in module pyownet.protocol), 13
FLG_FORMAT_FIDC (in module pyownet.protocol),

13
FLG_OWNET (in module pyownet.protocol), 13
FLG_PERSISTENCE (in module pyownet.protocol),

12
FLG_PRESS_ATM (in module pyownet.protocol), 13
FLG_PRESS_INHG (in module pyownet.protocol), 13
FLG_PRESS_MBAR (in module pyownet.protocol),

13
FLG_PRESS_MMHG (in module pyownet.protocol),

13
FLG_PRESS_PA (in module pyownet.protocol), 13
FLG_PRESS_PSI (in module pyownet.protocol), 13
FLG_SAFEMODE (in module pyownet.protocol), 12
FLG_TEMP_C (in module pyownet.protocol), 13
FLG_TEMP_F (in module pyownet.protocol), 13

FLG_TEMP_K (in module pyownet.protocol), 13
FLG_TEMP_R (in module pyownet.protocol), 13
FLG_UNCACHED (in module pyownet.protocol), 12

M
MalformedHeader, 11
MAX_PAYLOAD (in module pyownet.protocol), 12
MSG_DIR (in module pyownet.protocol), 12
MSG_DIRALL (in module pyownet.protocol), 12
MSG_DIRALLSLASH (in module pyownet.protocol),

12
MSG_ERROR (in module pyownet.protocol), 12
MSG_GET (in module pyownet.protocol), 12
MSG_GETSLASH (in module pyownet.protocol), 12
MSG_NOP (in module pyownet.protocol), 12
MSG_PRESENCE (in module pyownet.protocol), 12
MSG_READ (in module pyownet.protocol), 12
MSG_WRITE (in module pyownet.protocol), 12

O
OwnetError, 11
OwnetTimeout, 11

P
ping() (pyownet.protocol._Proxy method), 8
present() (pyownet.protocol._Proxy method), 8
ProtocolError, 11
proxy() (in module pyownet.protocol), 6
pyownet.protocol (module), 5
Python Enhancement Proposals

PEP 475, 11

R
read() (pyownet.protocol._Proxy method), 8

S
sendmess() (pyownet.protocol._Proxy method), 9
ShortRead, 11
ShortWrite, 11

W
write() (pyownet.protocol._Proxy method), 9

17

	Contents
	Introduction
	Installation
	pyownet.protocol — low level interface to owserver protocol

	Indices and tables

