
PyOTP Documentation
Release 0.0.1

PyOTP contributors

Oct 17, 2020

Contents

1 Quick overview of using One Time Passwords on your phone 3

2 Installation 5

3 Usage 7
3.1 Time-based OTPs . 7
3.2 Counter-based OTPs . 7
3.3 Generating a Secret Key . 7
3.4 Google Authenticator Compatible . 8
3.5 Working example . 8
3.6 Links . 9

4 API documentation 11

5 Table of Contents 13

i

ii

PyOTP Documentation, Release 0.0.1

PyOTP is a Python library for generating and verifying one-time passwords. It can be used to implement two-factor
(2FA) or multi-factor (MFA) authentication methods in web applications and in other systems that require users to log
in.

Open MFA standards are defined in RFC 4226 (HOTP: An HMAC-Based One-Time Password Algorithm) and in RFC
6238 (TOTP: Time-Based One-Time Password Algorithm). PyOTP implements server-side support for both of these
standards. Client-side support can be enabled by sending authentication codes to users over SMS or email (HOTP) or,
for TOTP, by instructing users to use Google Authenticator, Authy, or another compatible app. Users can set up auth
tokens in their apps easily by using their phone camera to scan otpauth:// QR codes provided by PyOTP.

Implementers should read and follow the HOTP security requirements and TOTP security considerations sections of
the relevant RFCs. At minimum, application implementers should follow this checklist:

• Ensure transport confidentiality by using HTTPS

• Ensure HOTP/TOTP secret confidentiality by storing secrets in a controlled access database

• Deny replay attacks by rejecting one-time passwords that have been used by the client (this requires storing the
most recently authenticated timestamp, OTP, or hash of the OTP in your database, and rejecting the OTP when
a match is seen)

• Throttle brute-force attacks against your application’s login functionality

• When implementing a “greenfield” application, consider supporting FIDO U2F/WebAuthn in addition to
HOTP/TOTP. U2F uses asymmetric cryptography to avoid using a shared secret design, which strengthens
your MFA solution against server-side attacks. Hardware U2F also sequesters the client secret in a dedicated
single-purpose device, which strengthens your clients against client-side attacks. And by automating scoping
of credentials to relying party IDs (application origin/domain names), U2F adds protection against phishing
attacks. One implementation of FIDO U2F/WebAuthn is PyOTP’s sister project, PyWARP.

We also recommend that implementers read the OWASP Authentication Cheat Sheet and NIST SP 800-63-3: Digital
Authentication Guideline for a high level overview of authentication best practices.

Contents 1

https://tools.ietf.org/html/rfc4226
https://tools.ietf.org/html/rfc6238
https://tools.ietf.org/html/rfc6238
https://en.wikipedia.org/wiki/Google_Authenticator
https://www.authy.com/
https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://tools.ietf.org/html/rfc4226#section-7
https://tools.ietf.org/html/rfc6238#section-5
https://en.wikipedia.org/wiki/Universal_2nd_Factor
https://www.w3.org/TR/webauthn/
https://github.com/pyauth/pywarp
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Authentication_Cheat_Sheet.md
https://pages.nist.gov/800-63-3/
https://pages.nist.gov/800-63-3/

PyOTP Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Quick overview of using One Time Passwords on your phone

• OTPs involve a shared secret, stored both on the phone and the server

• OTPs can be generated on a phone without internet connectivity

• OTPs should always be used as a second factor of authentication (if your phone is lost, you account is still
secured with a password)

• Google Authenticator and other OTP client apps allow you to store multiple OTP secrets and provision those
using a QR Code

3

PyOTP Documentation, Release 0.0.1

4 Chapter 1. Quick overview of using One Time Passwords on your phone

CHAPTER 2

Installation

pip install pyotp

5

PyOTP Documentation, Release 0.0.1

6 Chapter 2. Installation

CHAPTER 3

Usage

3.1 Time-based OTPs

totp = pyotp.TOTP('base32secret3232')
totp.now() # => '492039'

OTP verified for current time
totp.verify('492039') # => True
time.sleep(30)
totp.verify('492039') # => False

3.2 Counter-based OTPs

hotp = pyotp.HOTP('base32secret3232')
hotp.at(0) # => '260182'
hotp.at(1) # => '055283'
hotp.at(1401) # => '316439'

OTP verified with a counter
hotp.verify('316439', 1401) # => True
hotp.verify('316439', 1402) # => False

3.3 Generating a Secret Key

A helper function is provided to generate a 16 character base32 secret, compatible with Google Authenticator and
other OTP apps:

pyotp.random_base32()

7

PyOTP Documentation, Release 0.0.1

Some applications want the secret key to be formatted as a hex-encoded string:

pyotp.random_hex() # returns a 32-character hex-encoded secret

3.4 Google Authenticator Compatible

PyOTP works with the Google Authenticator iPhone and Android app, as well as other OTP apps like Authy. PyOTP
includes the ability to generate provisioning URIs for use with the QR Code scanner built into these MFA client apps:

pyotp.totp.TOTP('JBSWY3DPEHPK3PXP').provisioning_uri(name='alice@google.com', issuer_
→˓name='Secure App')

>>> 'otpauth://totp/Secure%20App:alice%40google.com?secret=JBSWY3DPEHPK3PXP&
→˓issuer=Secure%20App'

pyotp.hotp.HOTP('JBSWY3DPEHPK3PXP').provisioning_uri(name="alice@google.com", issuer_
→˓name="Secure App", initial_count=0)

>>> 'otpauth://hotp/Secure%20App:alice%40google.com?secret=JBSWY3DPEHPK3PXP&
→˓issuer=Secure%20App&counter=0'

This URL can then be rendered as a QR Code (for example, using https://github.com/neocotic/qrious) which can then
be scanned and added to the users list of OTP credentials.

Parsing these URLs is also supported:

pyotp.parse_uri('otpauth://totp/Secure%20App:alice%40google.com?
→˓secret=JBSWY3DPEHPK3PXP&issuer=Secure%20App')

>>> <pyotp.totp.TOTP object at 0xFFFFFFFF>

pyotp.parse_uri('otpauth://hotp/Secure%20App:alice%40google.com?
→˓secret=JBSWY3DPEHPK3PXP&issuer=Secure%20App&counter=0'

>>> <pyotp.totp.HOTP object at 0xFFFFFFFF>

3.5 Working example

Scan the following barcode with your phone’s OTP app (e.g. Google Authenticator):

8 Chapter 3. Usage

https://github.com/neocotic/qrious

PyOTP Documentation, Release 0.0.1

Now run the following and compare the output:

import pyotp
totp = pyotp.TOTP("JBSWY3DPEHPK3PXP")
print("Current OTP:", totp.now())

3.6 Links

• Project home page (GitHub)

• Documentation (Read the Docs)

• Package distribution (PyPI)

• Change log

• RFC 4226: HOTP: An HMAC-Based One-Time Password

• RFC 6238: TOTP: Time-Based One-Time Password Algorithm

• ROTP - Original Ruby OTP library by Mark Percival

• OTPHP - PHP port of ROTP by Le Lag

• OWASP Authentication Cheat Sheet

• NIST SP 800-63-3: Digital Authentication Guideline

For new applications:

• WebAuthn

• PyWARP

3.6. Links 9

https://github.com/pyauth/pyotp
https://pyotp.readthedocs.io/en/latest/
https://pypi.python.org/pypi/pyotp
https://github.com/pyauth/pyotp/blob/master/Changes.rst
https://tools.ietf.org/html/rfc4226
https://tools.ietf.org/html/rfc6238
https://github.com/mdp/rotp
https://github.com/mdp
https://github.com/lelag/otphp
https://github.com/lelag
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Authentication_Cheat_Sheet.md
https://pages.nist.gov/800-63-3/
https://www.w3.org/TR/webauthn/
https://github.com/pyauth/pywarp
https://github.com/pyauth/pyotp/actions
https://codecov.io/github/pyauth/pyotp?branch=master

PyOTP Documentation, Release 0.0.1

10 Chapter 3. Usage

https://pypi.python.org/pypi/pyotp
https://pypi.python.org/pypi/pyotp
https://pyotp.readthedocs.io/

CHAPTER 4

API documentation

11

PyOTP Documentation, Release 0.0.1

12 Chapter 4. API documentation

CHAPTER 5

Table of Contents

• genindex

• modindex

• search

13

	Quick overview of using One Time Passwords on your phone
	Installation
	Usage
	Time-based OTPs
	Counter-based OTPs
	Generating a Secret Key
	Google Authenticator Compatible
	Working example
	Links

	API documentation
	Table of Contents

