

Welcome to pynoddy’s documentation!

Contents:

	pynoddy
	What is pynoddy

	What is Noddy?

	Installation

	Installation of the pynoddy package

	Installation of Noddy

	Using a pre-compiled version of Noddy

	Compiling Noddy from source files (recommended installation)

	Placing the executable noddy in the Path

	Noddy executable and GUI for Windows

	Testing the installation

	Testing noddy

	Testing pynoddy

	How to get started

	Tutorial Jupyter notebooks

	The Atlas of Strutural Geophysics

	Documentation

	Technical Notes

	Dependencies

	3-D Visualisation

	References

	pynoddy.noddy module

	Simulation of a Noddy history and visualisation of output
	Compute the model

	Loading Noddy output files

	Plotting sections through the model

	Export model to VTK

	Change Noddy input file and recompute model
	Get basic information on the model

	Change model cube size and recompute model

	Estimating computation time for a high-resolution model

	Simple convergence study

	Geological events in pynoddy: organisation and adpatiation
	Loading events from a Noddy history

	Changing aspects of geological events

	Changing the order of geological events

	Determining the stratigraphic difference between two models

	Creating a model from scratch
	Defining a stratigraphy

	Add a fault event

	Complete Model Set-up

	Read and Visualise Geophysical Potential-Fields
	Read history file from Virtual Explorer

	Visualise calculated geophysical fields

	Change history and compare gravity

	Figure with all results

	Reproducible Experiments with pynoddy
	Defining an experiment

	Loading an example model from the Atlas of Structural Geophysics

	Gippsland Basin Uncertainty Study
	The Gippsland Basin Model

	Generate randomised model realisations

	Exporting results to VTK for visualisation

	Sensitivity Analysis
	Theory: local sensitivity analysis

	Defining the responses

	Setting up the base model

	Define parameter uncertainties

	Calculate total stratigraphic distance

	Function to modify parameters

	Full sensitivity analysis

	Simulation of a Noddy history and analysis of its voxel topology
	Compute the model

	Loading Topology output files

	Fault shapes

	Pynoddy modules, classes and functions
	Basic modules (low-level access)
	Main module

	History file parser: pynoddy.history

	Output file parser: pynoddy.output

	Additional useful classes
	pynoddy.events

	Modules for Kinematic experiments
	Base classes for pynoddy experiments

	MonteCarlo class

	SensitivityAnalysis class

Contents

	pynoddy
	What is pynoddy

	What is Noddy?

	Installation

	Installation of the pynoddy package

	Installation of Noddy

	Using a pre-compiled version of Noddy

	Compiling Noddy from source files (recommended installation)

	Placing the executable noddy in the Path

	Noddy executable and GUI for Windows

	Testing the installation

	Testing noddy

	Testing pynoddy

	How to get started

	Tutorial Jupyter notebooks

	The Atlas of Strutural Geophysics

	Documentation

	Technical Notes

	Dependencies

	3-D Visualisation

	References

pynoddy

What is pynoddy

pynoddy is a python package to write, change, and analyse kinematic
geological modelling simulations. It provides methods to define, load,
modify, and safe kinematic models for simulation with Noddy. In
addition, the package contains an extensive range for postprocessing of
results. One main aspect of pynoddy is that it enables the
encapsulation of full scientific kinematic modelling experiments for
full reproducibility of results.

What is Noddy?

Noddy itself is a kinematic modelling program written by Mark Jessell
[1][2] to simulate the effect of subsequent geological events (folding,
unconformities, faulting, etc.) on a primary sedimentary pile. A typical
example would be:

	Create a sedimentary pile with defined thicknesses for multiple
formations

	Add a folding event (for example simple sinoidal folding, but complex
methods are possible!)

	Add an unconformity and, above it, a new stratigraphy

	Finally, add a sequence of late faults affecting the entire system.

The result could look something like this:

Noddy has been used to generate models for teaching and
interpretation purposes, but also for scientific studies (e.g. [3]).

Installation

Installation of the pynoddy package

A successful installation of pynoddy requires two steps:

	An installation of the python modules in the package pynoddy

	The existance of an executable Noddy(.exe) program

Installation of the first part is straight-forward:

For the best (and most complete) installation, we suggest to clone the
pynoddy repository on:

https://github.com/flohorovicic/pynoddy

To install pynoddy simply run:

python setup.py install

sufficient privileges are required (i.e. run in sudo with MacOSX/
Linux and set permissions on Windows)

The pynoddy packages themselves can also be installed directly from the
Python Package Index (pypi.org) via pip:

pip install pynoddy

A Windows installer is also available on the Pypi page:

https://pypi.python.org/pypi/pynoddy/

Installation of Noddy

Noddy is a command line program, written in C, that performs the
kinematic simulation itself. The program compilation is platform
dependent, and therefore several ways for installation are possible (see
below information for specific platforms).

Using a pre-compiled version of Noddy

The easy way to obtain a executable version of Noddy is simply to
download the appropriate version for your operating system. Currently,
these executables versions are also stored on github (check the
up-to-date online documentation if this should not anymore be the case)
in the directory:

https://github.com/flohorovicic/pynoddy/tree/master/noddyapp

Furthermore, the executables for Windows are also available for download
on the webpage:

http://www.tectonique.net/pynoddy

Download the appropriate app, rename it to noddy or noddy.exe
and place it into a folder that is in your local environment path
variable. If you are not sure if a folder is in the PATH or would
like to add new one, see below for more information.

Compiling Noddy from source files (recommended installation)

The source code for the executable Noddy is located in the
repository directory noddy. In order to perform the installation, a
gcc compiler is required. This compiler should be available on Linux
and MacOSX operating systems. On Windows, one possibility is to install
MinGW. Otherwise, the code requires no specific libraries.

Note for MacOSX users: some header files have to be adapted to avoid
conflicts with local libraries. The required adaptations are executed
when running the script:

> adjust_for_MacOSX.sh

The compilation is then performed (in a Linux, MacOSX, or Windows MinGW
terminal) with the command:

> compile.sh

Compilation usually produces multiple warnings, but should otherwise
proceed successfully.

Placing the executable noddy in the Path

For the most general installation, the executable of Noddy should be
placed in a folder that can be located from any terminal application in
the system. This (usually) means that the folder with the executable has
to be in the PATH environment variable. On Linux and MacOSX, a path
can simply be added by:

> export PATH-"path/to/executable/:\$PATH"

Note that this command should be placed into your .bash_profile file to
ensure that the path is added whenever you start a new Python script.

On windows, adding a folder to the local environment variable
Path is usually done through the System Control Panel (Start -
Settings - Control Panel - System). in Advanced mode, open the
Environment Variables sub-menu, and find the variable Path. Click to
edit the variable, and add the location of your folder to this path.

Noddy executable and GUI for Windows

The original graphical user interface for Noddy and the compiled
executable program for Windows can be obtained from:

http://tinyurl.com/noddy-site

This site also contains the source code, as well as extensive
documentation and tutorial material concerning the original
implementation of the software, as well as more technical details on the
modelling method itself.

Testing the installation

Testing noddy

Simply test the installation by running the generated (or downloaded)
executable in a terminal window (on Windows: cmd):

> noddy

or (depending on your compilation or naming convention):

> noddy.exe

Which should produce the general output:

Arguments <historyfile> <outputfile> <calc_mode>:
BLOCK
GEOPHYSICS
SURFACES
BLOCK_GEOPHYS
BLOCK_SURFACES
TOPOLOGY
ANOM_FROM_BLOCK
ALL

Note: if the executable is correctly placed in a folder which is
recognised by the (Environment) path variable, then you should be able
to run Noddy from any directory. If this is not the case, please
check if it is correctly placed in the path (see above).

Testing pynoddy

The pynoddy package contains a set of tests which can be executed in
the standard Python testing environment. If you cloned or downloaded the
repository, then these tests can directly be performed through the setup
script:

> python setup.py test

Of specific relevance is the test that determines if the noddy(.exe)
executable is correctly accessible from pynoddy. If this is the
case, then the compute_model test should return:

test_compute_model (test.TestHistory) ... ok}

If this test is not ok, then please check carefully the installation of
the noddy(.exe) executable.

If all tests are successful, you are ready to go!

How to get started

Tutorial Jupyter notebooks

The best way to get started with pynoddy is to have a look at the
IPython notebooks in pynoddy/docs/notebooks. The numbered notebooks are
those that are part of the documentation, and a good point to get
started.

The notebooks require an installed Jupyter notebook. More information
here:

https://jupyter.org

The notebook can be installed via pip or conda.

The Atlas of Strutural Geophysics

The Atlas of Structural Geophysics contains a collection of structural
models, together with their expression as geophysical potential fields
(gravity and magnetics), with a focus on guiding the interpretation of
observed features in potential-field maps.

The atlas is currently available on:

http://tectonique.net/asg

The structural models are created with Noddy and the history files can
be downloaded from the atlas. Models from this Atlas can directly be
loaded with pynoddy. See example notebooks and documentation for
more details.

Documentation

An updated version of the documentation is available within the
pynoddy repository (pynoddy/docs).

In addition, an online html version of the documentation is also hosted
on readthedocs:

http://pynoddy.readthedocs.org

Technical Notes

Dependencies

pynoddy depends on several standard Python packages that should be
shipped with any standard distribution (and are easy to install,
otherwise):

	numpy

	matplotlib

	pickle

The uncertainty analysis, quantification, and visualisation methods
based on information theory are implemented in the python package
pygeoinfo. This package is available on github and part of the python
package index. It is automatically installed with the setup script
provided with this package.

In addition, to export model results for full 3-D visualisation with
VTK, the pyevtk package is used, available on bitbucket:

https://bitbucket.org/pauloh/pyevtk/src/9c19e3a54d1e?at-v0.1.0

The package is automatically downloaded and installed when running
python setup.py install.

3-D Visualisation

At this stage, we do not supply methods for 3-D visualisation in python
(although this may change in the future). However, we provide methods to
export results into a VTK format. Exported files can then be viewed with
the highly functional VTK viewers, and several free options are
available, for example:

	Paraview: http://www.paraview.org

	Visit: https://wci.llnl.gov/simulation/computer-codes/visit/

	Mayavi: http://docs.enthought.com/mayavi/mayavi/

License
~~~~~~-

pynoddy is free software (see license file included in the
repository). Please attribute the work when you use it and cite the
publication if you use it in a scientific context - feel free to change
and adapt it otherwise!




References

[1] Mark W. Jessell. Noddy, an interactive map creation package.
Unpublished MSc Thesis, University of London. 1981.

[2] Mark W. Jessell, Rick K. Valenta, Structural geophysics: Integrated
structural and geophysical modelling, In: Declan G. De Paor, Editor(s),
Computer Methods in the Geosciences, Pergamon, 1996, Volume 15, Pages
303-324, ISSN 1874-561X, ISBN 9780080424309,
http://dx.doi.org/10.1016/S1874-561X(96)80027-7.

[3] Armit, R. J., Betts, P. G., Schaefer, B. F., & Ailleres, L. (2012).
Constraints on long-lived Mesoproterozoic and Palaeozoic deformational
events and crustal architecture in the northern Mount Painter Province,
Australia. Gondwana Research, 22(1), 207–226.
http://doi.org/10.1016/j.gr.2011.11.003







          

      

      

    

  

    
      
          
            
  
pynoddy.noddy module

This module contains the Noddy code that is actually used to compute the kinematic models
defined in .his files.

Note that this code must be compiled before pynoddy.compute_model
will function correctly. It should compile easily (plus or minus a few thousand
warnings) using the compile.sh script. Windows users will first need to install the GCC
library (e.g. through MinGW), but otherwise the code requires no non-standard libraries.

Usage

The compiled noddy code can be run directly from the command line to a realisation of a model
defined in a .his file, or called through pynoddy.compute_model.

If the binary is called from the command line it takes the following arguments:

noddy [history_file] [output_name] [calculation_mode]






	Where:

	
	history_file is the filepath (including the extension) of the .his file defining the model

	output_name is the name that will be assigned to the noddy output files





	The mode argument determines the type of output that noddy generates, and can be any one of:

	
	BLOCK - calculates the lithology block model

	GEOPHYSICS - calculates the geophysical expression (magnetics and gravity) of the model

	SURFACES - calculates surfaces representing the lithological contacts

	BLOCK_GEOPHYS - calculates the lithology block model and its geophysical expression

	BLOCK_SURFACES - calculates the lithology block model and lithological surfaces

	TOPOLOGY - calculates the lithology block model and associated topology information

	ANOM_FROM_BLOCK - calculates the geophysical expression of an existing lithology block (output_name.g12)

	ALL - calculates the block, geophysics, topology and surfaces







Python Wrapper

As mentioned earlier, the executable can also be accessed from python via pynoddy.
This is performed by calling the pynoddy.compute_model function, as defined below:

It is worth noting here that by default pynoddy looks for the compiled Noddy executable in the pynoddy.noddy directory. However
this can be changed by updating the pynoddy.noddyPath variable to point to a new executable file (without any extension, .exe
is added automatically to the path on windows machines).





          

      

      

    

  

    
      
          
            
  
Simulation of a Noddy history and visualisation of output

This example shows how the module pynoddy.history can be used to compute
the model, and how simple visualisations can be generated with
pynoddy.output.

from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML(open(css_file, "r").read())















%matplotlib inline





# Basic settings
import sys, os
import subprocess

# Now import pynoddy
import pynoddy
reload(pynoddy)
import pynoddy.output
import pynoddy.history

# determine path of repository to set paths corretly below
repo_path = os.path.realpath('../..')






Compute the model

The simplest way to perform the Noddy simulation through Python is
simply to call the executable. One way that should be fairly platform
independent is to use Python’s own subprocess module:

# Change to sandbox directory to store results
os.chdir(os.path.join(repo_path, 'sandbox'))

# Path to exmaple directory in this repository
example_directory = os.path.join(repo_path,'examples')
# Compute noddy model for history file
history_file = 'simple_two_faults.his'
history = os.path.join(example_directory, history_file)
output_name = 'noddy_out'
# call Noddy

# NOTE: Make sure that the noddy executable is accessible in the system!!
print subprocess.Popen(['noddy.exe', history, output_name, 'BLOCK'],
                       shell=False, stderr=subprocess.PIPE,
                       stdout=subprocess.PIPE).stdout.read()
#





For convenience, the model computation is wrapped into a Python function
in pynoddy:

pynoddy.compute_model(history, output_name)





''





Note: The Noddy call from Python is, to date, calling Noddy through the
subprocess function. In a future implementation, this call could be
substituted with a full wrapper for the C-functions written in Python.
Therefore, using the member function compute_model is not only easier,
but also the more “future-proof” way to compute the Noddy model.




Loading Noddy output files

Noddy simulations produce a variety of different output files, depending
on the type of simulation. The basic output is the geological model.
Additional output files can contain geophysical responses, etc.

Loading the output files is simplified with a class class container that
reads all relevant information and provides simple methods for plotting,
model analysis, and export. To load the output information into a Python
object:

N1 = pynoddy.output.NoddyOutput(output_name)





The object contains the calculated geology blocks and some additional
information on grid spacing, model extent, etc. For example:

print("The model has an extent of %.0f m in x-direction, with %d cells of width %.0f m" %
      (N1.extent_x, N1.nx, N1.delx))





The model has an extent of 12400 m in x-direction, with 124 cells of width 100 m








Plotting sections through the model

The NoddyOutput class has some basic methods for the visualisation of
the generated models. To plot sections through the model:

N1.plot_section('y', figsize = (5,3))





[image: ../_images/1-Simulation_14_0.png]



Export model to VTK

A simple possibility to visualise the modeled results in 3-D is to
export the model to a VTK file and then to visualise it with a VTK
viewer, for example Paraview. To export the model, simply use:

N1.export_to_vtk()





The exported VTK file can be visualised in any VTK viewer, for example
in the (free) viewer Paraview (www.paraview.org). An example
visualisation of the model in 3-D is presented in the figure below.


[image: 3-D Visualisation generated with Paraview]
3-D Visualisation generated with Paraview (top layer transparent)






  
    
    
    Change Noddy input file and recompute model
    
    

    
 
  
  

    
      
          
            
  
Change Noddy input file and recompute model

In this section, we will briefly present possibilities to access the
properties defined in the Noddy history input file and show how simple
adjustments can be performed, for example changing the cube size to
obtain a model with a higher resolution.

Also outlined here is the way that events are stored in the history file
as single objects. For more information on accessing and changing the
events themselves, please be patient until we get to the next section.

from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML(open(css_file, "r").read())















cd ../docs/notebooks/





/Users/flow/git/pynoddy/docs/notebooks





%matplotlib inline





import sys, os
import matplotlib.pyplot as plt
import numpy as np
# adjust some settings for matplotlib
from matplotlib import rcParams
# print rcParams
rcParams['font.size'] = 15
# determine path of repository to set paths corretly below
repo_path = os.path.realpath('../..')
import pynoddy
import pynoddy.history
import pynoddy.output





First step: load the history file into a Python object:

# Change to sandbox directory to store results
os.chdir(os.path.join(repo_path, 'sandbox'))
# Path to exmaple directory in this repository
example_directory = os.path.join(repo_path,'examples')
# Compute noddy model for history file
history_file = 'simple_two_faults.his'
history = os.path.join(example_directory, history_file)
output_name = 'noddy_out'
H1 = pynoddy.history.NoddyHistory(history)





Technical note: the NoddyHistory class can be accessed on the
level of pynoddy (as it is imported in the __init__.py module) with
the shortcut:

H1 = pynoddy.NoddyHistory(history)

I am using the long version pynoddy.history.NoddyHistory here to
ensure that the correct package is loaded with the reload()
function. If you don’t make changes to any of the pynoddy files, this is
not required. So for any practical cases, the shortcuts are absolutely
fine!


Get basic information on the model

The history file contains the entire information on the Noddy model.
Some information can be accessed through the NoddyHistory object (and
more will be added soon!), for example the total number of events:

print("The history contains %d events" % H1.n_events)





The history contains 3 events





Events are implemented as objects, the classes are defined in
H1.events. All events are accessible in a list on the level of the
history object:

H1.events





{1: <pynoddy.events.Stratigraphy at 0x103ac2a50>,
 2: <pynoddy.events.Fault at 0x103ac2a90>,
 3: <pynoddy.events.Fault at 0x103ac2ad0>}





The properties of an event are stored in the event objects themselves.
To date, only a subset of the properties (deemed as relevant for the
purpose of pynoddy so far) are parsed. The .his file contains a lot more
information! If access to this information is required, adjustments in
pynoddy.events have to be made.

For example, the properties of a fault object are:

H1.events[2].properties
# print H1.events[5].properties.keys()





{'Amplitude': 2000.0,
 'Blue': 254.0,
 'Color Name': 'Custom Colour 8',
 'Cyl Index': 0.0,
 'Dip': 60.0,
 'Dip Direction': 90.0,
 'Geometry': 'Translation',
 'Green': 0.0,
 'Movement': 'Hanging Wall',
 'Pitch': 90.0,
 'Profile Pitch': 90.0,
 'Radius': 1000.0,
 'Red': 0.0,
 'Rotation': 30.0,
 'Slip': 1000.0,
 'X': 5500.0,
 'XAxis': 2000.0,
 'Y': 3968.0,
 'YAxis': 2000.0,
 'Z': 0.0,
 'ZAxis': 2000.0}








Change model cube size and recompute model

The Noddy model itself is, once computed, a continuous model in 3-D
space. However, for most visualisations and further calculations (e.g.
geophysics), a discretised version is suitable. The discretisation (or
block size) can be adapted in the history file. The according pynoddy
function is change_cube_size.

A simple example to change the cube size and write a new history file:

# We will first recompute the model and store results in an output file for comparison
NH1 = pynoddy.history.NoddyHistory(history)
pynoddy.compute_model(history, output_name)
NO1 = pynoddy.output.NoddyOutput(output_name)





# Now: change cubsize, write to new file and recompute
NH1.change_cube_size(50)
# Save model to a new history file and recompute (Note: may take a while to compute now)
new_history = "fault_model_changed_cubesize.his"
new_output_name = "noddy_out_changed_cube"
NH1.write_history(new_history)
pynoddy.compute_model(new_history, new_output_name)
NO2 = pynoddy.output.NoddyOutput(new_output_name)





The different cell sizes are also represented in the output files:

print("Model 1 contains a total of %7d cells with a blocksize %.0f m" %
      (NO1.n_total, NO1.delx))
print("Model 2 contains a total of %7d cells with a blocksize %.0f m" %
      (NO2.n_total, NO2.delx))





Model 1 contains a total of  582800 cells with a blocksize 100 m
Model 2 contains a total of 4662400 cells with a blocksize 50 m





We can compare the effect of the different model discretisations in
section plots, created with the plot_section method described before.
Let’s get a bit more fancy here and use the functionality to pass axes
to the plot_section method, and to create one figure as direct
comparison:

# create basic figure layout
fig = plt.figure(figsize = (15,5))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
NO1.plot_section('y', position=0, ax = ax1, colorbar=False, title="Low resolution")
NO2.plot_section('y', position=1, ax = ax2, colorbar=False, title="High resolution")

plt.show()





[image: ../_images/2-Adjust-input_20_0.png]
Note: the following two subsections contain some slighly advanced
examples on how to use the possibility to adjust cell sizes through
scripts directly to autmote processes that are infeasible using the GUI
version of Noddy - as a ‘peek preview’ of the automation for uncertainty
estimation that follows in a later section. Feel free to skip those two
sections if you are only interested in the basic features so far.




Estimating computation time for a high-resolution model

You surely realised (if you ran these examples in an actual interactive
ipython notebook) that the computation of the high-resolution model
takes siginificantly longer than the low-resolution model. In a
practical case, this can be very important.

# We use here simply the time() function to evaulate the simualtion time.
# This is not the best possible way to do it, but probably the simplest.
import time
start_time = time.time()
pynoddy.compute_model(history, output_name)
end_time = time.time()

print("Simulation time for low-resolution model: %5.2f seconds" % (end_time - start_time))

start_time = time.time()
pynoddy.compute_model(new_history, new_output_name)
end_time = time.time()

print("Simulation time for high-resolution model: %5.2f seconds" % (end_time - start_time))





Simulation time for low-resolution model:  0.73 seconds
Simulation time for high-resolution model:  5.78 seconds





For an estimation of required computing time for a given discretisation,
let’s evaulate the time for a couple of steps, plot, and extrapolate:

# perform computation for a range of cube sizes
cube_sizes = np.arange(200,49,-5)
times = []
NH1 = pynoddy.history.NoddyHistory(history)
tmp_history = "tmp_history"
tmp_output = "tmp_output"
for cube_size in cube_sizes:
    NH1.change_cube_size(cube_size)
    NH1.write_history(tmp_history)
    start_time = time.time()
    pynoddy.compute_model(tmp_history, tmp_output)
    end_time = time.time()
    times.append(end_time - start_time)
times = np.array(times)





# create plot
fig = plt.figure(figsize=(18,4))
ax1 = fig.add_subplot(131)
ax2 = fig.add_subplot(132)
ax3 = fig.add_subplot(133)

ax1.plot(cube_sizes, np.array(times), 'ro-')
ax1.set_xlabel('cubesize [m]')
ax1.set_ylabel('time [s]')
ax1.set_title('Computation time')
ax1.set_xlim(ax1.get_xlim()[::-1])

ax2.plot(cube_sizes, times**(1/3.), 'bo-')
ax2.set_xlabel('cubesize [m]')
ax2.set_ylabel('(time [s])**(1/3)')
ax2.set_title('Computation time (cuberoot)')
ax2.set_xlim(ax2.get_xlim()[::-1])

ax3.semilogy(cube_sizes, times, 'go-')
ax3.set_xlabel('cubesize [m]')
ax3.set_ylabel('time [s]')
ax3.set_title('Computation time (y-log)')
ax3.set_xlim(ax3.get_xlim()[::-1])





(200.0, 40.0)





[image: ../_images/2-Adjust-input_26_1.png]
It is actually quite interesting that the computation time does not
scale with cubesize to the power of three (as could be expected, given
that we have a mesh in three dimensions). Or am I missing something?

Anyway, just because we can: let’s assume that the scaling is somehow
exponential and try to fit a model for a time prediction. Given the last
plot, it looks like we could fit a logarithmic model with probably an
additional exponent (as the line is obviously not straight), so
something like:


[image: f(x) = a + \left( b \log_{10}(x) \right)^{-c}]


Let’s try to fit the curve with scipy.optimize.curve_fit:

# perform curve fitting with scipy.optimize
import scipy.optimize
# define function to be fit
def func(x,a,b,c):
    return a + (b*np.log10(x))**(-c)

popt, pcov = scipy.optimize.curve_fit(func, cube_sizes, np.array(times), p0 = [-1, 0.5, 2])
popt





array([ -0.05618538,   0.50990774,  12.45183398])





Interesting, it looks like Noody scales with something like:


[image: f(x) = \left( 0.5 \log_{10}(x) \right)^{-12}]


Note: if you understand more about computational complexity than me,
it might not be that interesting to you at all - if this is the case,
please contact me and tell me why this result could be expected...

a,b,c = popt
cube_range = np.arange(200,20,-1)
times_eval = func(cube_range, a, b, c)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.semilogy(cube_range, times_eval, '-')
ax.semilogy(cube_sizes, times, 'ko')
# reverse x-axis
ax.set_xlim(ax.get_xlim()[::-1])





(200.0, 20.0)





[image: ../_images/2-Adjust-input_30_1.png]
Not too bad... let’s evaluate the time for a cube size of 40 m:

cube_size = 40 # m
time_est = func(cube_size, a, b, c)
print("Estimated time for a cube size of %d m: %.1f seconds" % (cube_size, time_est))





Estimated time for a cube size of 40 m: 12.4 seconds





Now let’s check the actual simulation time:

NH1.change_cube_size(cube_size)
NH1.write_history(tmp_history)
start_time = time.time()
pynoddy.compute_model(tmp_history, tmp_output)
end_time = time.time()
time_comp = end_time - start_time

print("Actual computation time for a cube size of %d m: %.1f seconds" % (cube_size, time_comp))





Actual computation time for a cube size of 40 m: 11.6 seconds





Not too bad, probably in the range of the inherent variability... and if
we check it in the plot:

fig = plt.figure()
ax = fig.add_subplot(111)
ax.semilogy(cube_range, times_eval, '-')
ax.semilogy(cube_sizes, times, 'ko')
ax.semilogy(cube_size, time_comp, 'ro')
# reverse x-axis
ax.set_xlim(ax.get_xlim()[::-1])





(200.0, 20.0)





[image: ../_images/2-Adjust-input_36_1.png]
Anyway, the point of this excercise was not a precise evaluation of
Noddy’s computational complexity, but to provide a simple means of
evaluating computation time for a high resolution model, using the
flexibility of writing simple scripts using pynoddy, and a couple of
additional python modules.

For a realistic case, it should, of course, be sufficient to determine
the time based on a lot less computed points. If you like, test it with
your favourite model and tell me if it proved useful (or not)!




Simple convergence study

So: why would we want to run a high-resolution model, anyway? Well, of
course, it produces nicer pictures - but on a scientific level, that’s
completely irrelevant (haha, not true - so nice if it would be...).

Anyway, if we want to use the model in a scientific study, for example
to evaluate volume of specific units, or to estimate the geological
topology (Mark is working on this topic with some cool ideas - example
to be implemented here, “soon”), we want to know if the resolution of
the model is actually high enough to produce meaningful results.

As a simple example of the evaluation of model resolution, we will here
inlcude a volume convergence study, i.e. we will estimate at which level
of increasing model resolution the estimated block volumes do not change
anymore.

The entire procedure is very similar to the computational time
evaluation above, only that we now also analyse the output and determine
the rock volumes of each defined geological unit:

# perform computation for a range of cube sizes
reload(pynoddy.output)
cube_sizes = np.arange(200,49,-5)
all_volumes = []
N_tmp = pynoddy.history.NoddyHistory(history)
tmp_history = "tmp_history"
tmp_output = "tmp_output"
for cube_size in cube_sizes:
    # adjust cube size
    N_tmp.change_cube_size(cube_size)
    N_tmp.write_history(tmp_history)
    pynoddy.compute_model(tmp_history, tmp_output)
    # open simulated model and determine volumes
    O_tmp = pynoddy.output.NoddyOutput(tmp_output)
    O_tmp.determine_unit_volumes()
    all_volumes.append(O_tmp.unit_volumes)





all_volumes = np.array(all_volumes)
fig = plt.figure(figsize=(16,4))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)

# separate into two plots for better visibility:
for i in range(np.shape(all_volumes)[1]):
    if i < 4:
        ax1.plot(cube_sizes, all_volumes[:,i], 'o-', label='unit %d' %i)
    else:
        ax2.plot(cube_sizes, all_volumes[:,i], 'o-', label='unit %d' %i)

ax1.legend(loc=2)
ax2.legend(loc=2)
# reverse axes
ax1.set_xlim(ax1.get_xlim()[::-1])
ax2.set_xlim(ax2.get_xlim()[::-1])

ax1.set_xlabel("Block size [m]")
ax1.set_ylabel("Total unit volume [m**3]")
ax2.set_xlabel("Block size [m]")
ax2.set_ylabel("Total unit volume [m**3]")





<matplotlib.text.Text at 0x107eb7250>





[image: ../_images/2-Adjust-input_40_1.png]
It looks like the volumes would start to converge from about a block
size of 100 m. The example model is pretty small and simple, probably
not the best example for this study. Try it out with your own, highly
complex, favourite pet model :-)




  
    
    
    Geological events in pynoddy: organisation and adpatiation
    
    

    
 
  
  

    
      
          
            
  
Geological events in pynoddy: organisation and adpatiation

We will here describe how the single geological events of a Noddy
history are organised within pynoddy. We will then evaluate in some more
detail how aspects of events can be adapted and their effect evaluated.

from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML(open(css_file, "r").read())















%matplotlib inline






Loading events from a Noddy history

In the current set-up of pynoddy, we always start with a pre-defined
Noddy history loaded from a file, and then change aspects of the history
and the single events. The first step is therefore to load the history
file and to extract the single geological events. This is done
automatically as default when loading the history file into the History
object:

import sys, os
import matplotlib.pyplot as plt
# adjust some settings for matplotlib
from matplotlib import rcParams
# print rcParams
rcParams['font.size'] = 15
# determine path of repository to set paths corretly below
repo_path = os.path.realpath('../..')

import pynoddy
import pynoddy.history
import pynoddy.events
import pynoddy.output
reload(pynoddy)





<module 'pynoddy' from '/Users/flow/git/pynoddy/pynoddy/__init__.pyc'>





# Change to sandbox directory to store results
os.chdir(os.path.join(repo_path, 'sandbox'))

# Path to exmaple directory in this repository
example_directory = os.path.join(repo_path,'examples')
# Compute noddy model for history file
history = 'simple_two_faults.his'
history_ori = os.path.join(example_directory, history)
output_name = 'noddy_out'
reload(pynoddy.history)
reload(pynoddy.events)
H1 = pynoddy.history.NoddyHistory(history_ori)
# Before we do anything else, let's actually define the cube size here to
# adjust the resolution for all subsequent examples
H1.change_cube_size(100)
# compute model - note: not strictly required, here just to ensure changed cube size
H1.write_history(history)
pynoddy.compute_model(history, output_name)





''





Events are stored in the object dictionary “events” (who would have
thought), where the key corresponds to the position in the timeline:

H1.events





{1: <pynoddy.events.Stratigraphy at 0x10cf2b410>,
 2: <pynoddy.events.Fault at 0x10cf2b450>,
 3: <pynoddy.events.Fault at 0x10cf2b490>}





We can see here that three events are defined in the history. Events are
organised as objects themselves, containing all the relevant properties
and information about the events. For example, the second fault event is
defined as:

H1.events[3].properties





{'Amplitude': 2000.0,
 'Blue': 0.0,
 'Color Name': 'Custom Colour 5',
 'Cyl Index': 0.0,
 'Dip': 60.0,
 'Dip Direction': 270.0,
 'Geometry': 'Translation',
 'Green': 0.0,
 'Movement': 'Hanging Wall',
 'Pitch': 90.0,
 'Profile Pitch': 90.0,
 'Radius': 1000.0,
 'Red': 254.0,
 'Rotation': 30.0,
 'Slip': 1000.0,
 'X': 5500.0,
 'XAxis': 2000.0,
 'Y': 7000.0,
 'YAxis': 2000.0,
 'Z': 5000.0,
 'ZAxis': 2000.0}








Changing aspects of geological events

So what we now want to do, of course, is to change aspects of these
events and to evaluate the effect on the resulting geological model.
Parameters can directly be updated in the properties dictionary:

H1 = pynoddy.history.NoddyHistory(history_ori)
# get the original dip of the fault
dip_ori = H1.events[3].properties['Dip']

# add 10 degrees to dip
add_dip = -10
dip_new = dip_ori + add_dip

# and assign back to properties dictionary:
H1.events[3].properties['Dip'] = dip_new
# H1.events[2].properties['Dip'] = dip_new1





new_history = "dip_changed"
new_output = "dip_changed_out"
H1.write_history(new_history)
pynoddy.compute_model(new_history, new_output)
# load output from both models
NO1 = pynoddy.output.NoddyOutput(output_name)
NO2 = pynoddy.output.NoddyOutput(new_output)
# create basic figure layout
fig = plt.figure(figsize = (15,5))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
NO1.plot_section('y', position=0, ax = ax1, colorbar=False, title="Dip = %.0f" % dip_ori, savefig=True, fig_filename ="tmp.eps")
NO2.plot_section('y', position=1, ax = ax2, colorbar=False, title="Dip = %.0f" % dip_new)
plt.show()





[image: ../_images/3-Events_13_0.png]



Changing the order of geological events

The geological history is parameterised as single events in a timeline.
Changing the order of events can be performed with two basic methods:


	Swapping two events with a simple command

	Adjusting the entire timeline with a complete remapping of events



The first method is probably the most useful to test how a simple change
in the order of events will effect the final geological model. We will
use it here with our example to test how the model would change if the
timing of the faults is swapped.

The method to swap two geological events is defined on the level of the
history object:

H1 = pynoddy.history.NoddyHistory(history_ori)





# The names of the two fault events defined in the history file are:
print H1.events[2].name
print H1.events[3].name





Fault2
Fault1





We now swap the position of two events in the kinematic history. For
this purpose, a high-level function can directly be used:

# Now: swap the events:
H1.swap_events(2,3)





# And let's check if this is correctly relfected in the events order now:
print H1.events[2].name
print H1.events[3].name





Fault1
Fault2





Now let’s create a new history file and evaluate the effect of the
changed order in a cross section view:

new_history = "faults_changed_order.his"
new_output = "faults_out"
H1.write_history(new_history)
pynoddy.compute_model(new_history, new_output)





''





reload(pynoddy.output)
# Load and compare both models
NO1 = pynoddy.output.NoddyOutput(output_name)
NO2 = pynoddy.output.NoddyOutput(new_output)
# create basic figure layout
fig = plt.figure(figsize = (15,5))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
NO1.plot_section('y', ax = ax1, colorbar=False, title="Model 1")
NO2.plot_section('y', ax = ax2, colorbar=False, title="Model 2")

plt.show()





[image: ../_images/3-Events_22_0.png]



Determining the stratigraphic difference between two models

Just as another quick example of a possible application of pynoddy to
evaluate aspects that are not simply possible with, for example, the GUI
version of Noddy itself. In the last example with the changed order of
the faults, we might be interested to determine where in space this
change had an effect. We can test this quite simply using the
NoddyOutput objects.

The geology data is stored in the NoddyOutput.block attribute. To
evaluate the difference between two models, we can therefore simply
compute:

diff = (NO2.block - NO1.block)





And create a simple visualisation of the difference in a slice plot
with:

fig = plt.figure(figsize = (5,3))
ax = fig.add_subplot(111)
ax.imshow(diff[:,10,:].transpose(), interpolation='nearest',
          cmap = "RdBu", origin = 'lower left')





<matplotlib.image.AxesImage at 0x10cf3be10>





[image: ../_images/3-Events_26_1.png]
(Adding a meaningful title and axis labels to the plot is left to the
reader as simple excercise :-) Future versions of pynoddy might provide
an automatic implementation for this step...)

Again, we may want to visualise results in 3-D. We can use the
export_to_vtk-function as before, but now assing the data array to
be exported as the calulcated differnce field:

NO1.export_to_vtk(vtk_filename = "model_diff", data = diff)





A 3-D view of the difference plot is presented below.


[image: 3-D visualisation of stratigraphic id difference]
3-D visualisation of stratigraphic id difference






  
    
    
    Creating a model from scratch
    
    

    
 
  
  

    
      
          
            
  
Creating a model from scratch

We describe here how to generate a simple history file for computation
with Noddy using the functionality of pynoddy. If possible, it is
advisable to generate the history files with the Windows GUI for Noddy
as this method provides, to date, a simpler and more complete interface
to the entire functionality.

For completeness, pynoddy contains the functionality to generate simple
models, for example to automate the model construction process, or to
enable the model construction for users who are not running Windows.
Some simple examlpes are shown in the following.

from matplotlib import rc_params





from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML(open(css_file, "r").read())















import sys, os
import matplotlib.pyplot as plt
# adjust some settings for matplotlib
from matplotlib import rcParams
# print rcParams
rcParams['font.size'] = 15
# determine path of repository to set paths corretly below
repo_path = os.path.realpath('../..')
import pynoddy.history





%matplotlib inline





rcParams.update({'font.size': 20})






Defining a stratigraphy

We start with the definition of a (base) stratigraphy for the model.

# Combined: model generation and output vis to test:
history = "simple_model.his"
output_name = "simple_out"
reload(pynoddy.history)
reload(pynoddy.events)

# create pynoddy object
nm = pynoddy.history.NoddyHistory()
# add stratigraphy
strati_options = {'num_layers' : 8,
                  'layer_names' : ['layer 1', 'layer 2', 'layer 3',
                                   'layer 4', 'layer 5', 'layer 6',
                                   'layer 7', 'layer 8'],
                  'layer_thickness' : [1500, 500, 500, 500, 500, 500, 500, 500]}
nm.add_event('stratigraphy', strati_options )

nm.write_history(history)





# Compute the model
reload(pynoddy)
pynoddy.compute_model(history, output_name)





''





# Plot output
import pynoddy.output
reload(pynoddy.output)
nout = pynoddy.output.NoddyOutput(output_name)
nout.plot_section('y', layer_labels = strati_options['layer_names'][::-1],
                  colorbar = True, title="",
                  savefig = False, fig_filename = "ex01_strati.eps")





[image: ../_images/4-Create-model_9_0.png]



Add a fault event

As a next step, let’s now add the faults to the model.

reload(pynoddy.history)
reload(pynoddy.events)
nm = pynoddy.history.NoddyHistory()
# add stratigraphy
strati_options = {'num_layers' : 8,
                  'layer_names' : ['layer 1', 'layer 2', 'layer 3', 'layer 4', 'layer 5', 'layer 6', 'layer 7', 'layer 8'],
                  'layer_thickness' : [1500, 500, 500, 500, 500, 500, 500, 500]}
nm.add_event('stratigraphy', strati_options )




# The following options define the fault geometry:
fault_options = {'name' : 'Fault_E',
                 'pos' : (6000, 0, 5000),
                 'dip_dir' : 270,
                 'dip' : 60,
                 'slip' : 1000}

nm.add_event('fault', fault_options)





nm.events





{1: <pynoddy.events.Stratigraphy at 0x1073fc590>,
 2: <pynoddy.events.Fault at 0x107565fd0>}





nm.write_history(history)





# Compute the model
pynoddy.compute_model(history, output_name)





''





# Plot output
reload(pynoddy.output)
nout = pynoddy.output.NoddyOutput(output_name)
nout.plot_section('y', layer_labels = strati_options['layer_names'][::-1],
                  colorbar = True, title = "",
                  savefig = False, fig_filename = "ex01_fault_E.eps")





[image: ../_images/4-Create-model_15_0.png]
# The following options define the fault geometry:
fault_options = {'name' : 'Fault_1',
                 'pos' : (5500, 3500, 0),
                 'dip_dir' : 270,
                 'dip' : 60,
                 'slip' : 1000}

nm.add_event('fault', fault_options)





nm.write_history(history)





# Compute the model
pynoddy.compute_model(history, output_name)





''





# Plot output
reload(pynoddy.output)
nout = pynoddy.output.NoddyOutput(output_name)
nout.plot_section('y', layer_labels = strati_options['layer_names'][::-1], colorbar = True)





[image: ../_images/4-Create-model_19_0.png]
nm1 = pynoddy.history.NoddyHistory(history)





nm1.get_extent()





(10000.0, 7000.0, 5000.0)








Complete Model Set-up

And here now, combining all the previous steps, the entire model set-up
with base stratigraphy and two faults:

reload(pynoddy.history)
reload(pynoddy.events)
nm = pynoddy.history.NoddyHistory()
# add stratigraphy
strati_options = {'num_layers' : 8,
                  'layer_names' : ['layer 1', 'layer 2', 'layer 3',
                                   'layer 4', 'layer 5', 'layer 6',
                                   'layer 7', 'layer 8'],
                  'layer_thickness' : [1500, 500, 500, 500, 500,
                                       500, 500, 500]}
nm.add_event('stratigraphy', strati_options )

# The following options define the fault geometry:
fault_options = {'name' : 'Fault_W',
                 'pos' : (4000, 3500, 5000),
                 'dip_dir' : 90,
                 'dip' : 60,
                 'slip' : 1000}

nm.add_event('fault', fault_options)
# The following options define the fault geometry:
fault_options = {'name' : 'Fault_E',
                 'pos' : (6000, 3500, 5000),
                 'dip_dir' : 270,
                 'dip' : 60,
                 'slip' : 1000}

nm.add_event('fault', fault_options)
nm.write_history(history)





# Change cube size
nm1 = pynoddy.history.NoddyHistory(history)
nm1.change_cube_size(50)
nm1.write_history(history)





# Compute the model
pynoddy.compute_model(history, output_name)





''





# Plot output
reload(pynoddy.output)
nout = pynoddy.output.NoddyOutput(output_name)
nout.plot_section('y', layer_labels = strati_options['layer_names'][::-1],
                  colorbar = True, title="",
                  savefig = True, fig_filename = "ex01_faults_combined.eps",
                  cmap = 'YlOrRd') # note: YlOrRd colourmap should be suitable for colorblindness!





[image: ../_images/4-Create-model_26_0.png]



  
    
    
    Read and Visualise Geophysical Potential-Fields
    
    

    
 
  
  

    
      
          
            
  
Read and Visualise Geophysical Potential-Fields

Geophysical potential fields (gravity and magnetics) can be calculated
directly from the generated kinematic model. A wide range of options
also exists to consider effects of geological events on the relevant
rock properties. We will here use pynoddy to simply and quickly test the
effect of changing geological structures on the calculated geophysical
response.

%matplotlib inline





import sys, os
import matplotlib.pyplot as plt
# adjust some settings for matplotlib
from matplotlib import rcParams
# print rcParams
rcParams['font.size'] = 15
# determine path of repository to set paths corretly below
repo_path = os.path.realpath('../..')
import pynoddy





import matplotlib.pyplot as plt
import numpy as np





from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML(open(css_file, "r").read())
















Read history file from Virtual Explorer

Many Noddy models are available on the site of the Virtual Explorer in
the Structural Geophysics Atlas. We will download and use one of these
models here as the base model.

We start with the history file of a “Fold and Thrust Belt” setting
stored on:

http://tectonique.net/asg/ch3/ch3_5/his/fold_thrust.his

The file can directly be downloaded and opened with pynoddy:

import pynoddy.history
reload(pynoddy.history)

his = pynoddy.history.NoddyHistory(url = \
            "http://tectonique.net/asg/ch3/ch3_5/his/fold_thrust.his")

his.determine_model_stratigraphy()





his.change_cube_size(50)





# Save to (local) file to compute and visualise model
history_name = "fold_thrust.his"
his.write_history(history_name)
# his = pynoddy.history.NoddyHistory(history_name)





output = "fold_thrust_out"
pynoddy.compute_model(history_name, output)





''





import pynoddy.output
# load and visualise model
h_out = pynoddy.output.NoddyOutput(output)





# his.determine_model_stratigraphy()
h_out.plot_section('x',
                   layer_labels = his.model_stratigraphy,
                   colorbar_orientation = 'horizontal',
                   colorbar=False,
                   title = '',
#                   savefig=True, fig_filename = 'fold_thrust_NS_section.eps',
                   cmap = 'YlOrRd')





[image: ../_images/5-Geophysical-Potential-Fields_11_0.png]
h_out.plot_section('y', layer_labels = his.model_stratigraphy,
                   colorbar_orientation = 'horizontal', title = '', cmap = 'YlOrRd',
#                   savefig=True, fig_filename = 'fold_thrust_EW_section.eps',
                   ve=1.5)





[image: ../_images/5-Geophysical-Potential-Fields_12_0.png]
h_out.export_to_vtk(vtk_filename = "fold_thrust")








Visualise calculated geophysical fields

The first step is to recompute the model with the generation of the
geophysical responses

pynoddy.compute_model(history_name, output, sim_type = 'GEOPHYSICS')





''





We now get two files for the caluclated fields: ‘.grv’ for gravity, and
‘.mag’ for the magnetic field. We can extract the information of these
files for visualisation and further processing in python:

reload(pynoddy.output)
geophys = pynoddy.output.NoddyGeophysics(output)





fig = plt.figure(figsize = (5,5))
ax = fig.add_subplot(111)
# imshow(geophys.grv_data, cmap = 'jet')
# define contour levels
levels = np.arange(322,344,1)
cf = ax.contourf(geophys.grv_data, levels, cmap = 'gray', vmin = 324, vmax = 342)
cbar = plt.colorbar(cf, orientation = 'horizontal')
# print levels





[image: ../_images/5-Geophysical-Potential-Fields_18_0.png]



Change history and compare gravity

As a next step, we will now change aspects of the geological history
(paramtereised in as parameters of the kinematic events) and calculate
the effect on the gravity. Then, we will compare the changed gravity
field to the original field.

Let’s have a look at the properties of the defined faults in the
original model:

for i in range(4):
    print("\nEvent %d" % (i+2))
    print "Event type:\t" + his.events[i+2].event_type
    print "Fault slip:\t%.1f" % his.events[i+2].properties['Slip']
    print "Fault dip:\t%.1f" % his.events[i+2].properties['Dip']
    print "Dip direction:\t%.1f" % his.events[i+2].properties['Dip Direction']





Event 2
Event type: FAULT
Fault slip: -5000.0
Fault dip:  0.0
Dip direction:      90.0

Event 3
Event type: FAULT
Fault slip: -3000.0
Fault dip:  0.0
Dip direction:      90.0

Event 4
Event type: FAULT
Fault slip: -3000.0
Fault dip:  0.0
Dip direction:      90.0

Event 5
Event type: FAULT
Fault slip: 12000.0
Fault dip:  80.0
Dip direction:      170.0





reload(pynoddy.history)
reload(pynoddy.events)
his2 = pynoddy.history.NoddyHistory("fold_thrust.his")

print his2.events[6].properties





{'Dip': 130.0, 'Cylindricity': 0.0, 'Wavelength': 12000.0, 'Amplitude': 1000.0, 'Pitch': 0.0, 'Y': 0.0, 'X': 0.0, 'Single Fold': 'FALSE', 'Z': 0.0, 'Type': 'Fourier', 'Dip Direction': 110.0}





As a simple test, we are changing the fault slip for all the faults and
simply add 1000 m to all defined slips. In order to not mess up the
original model, we are creating a copy of the history object first:

import copy
his = pynoddy.history.NoddyHistory(history_name)
his.all_events_end += 1
his_changed = copy.deepcopy(his)

# change parameters of kinematic events
slip_change = 2000.
wavelength_change = 2000.
# his_changed.events[3].properties['Slip'] += slip_change
# his_changed.events[5].properties['Slip'] += slip_change
# change fold wavelength
his_changed.events[6].properties['Wavelength'] += wavelength_change
his_changed.events[6].properties['X'] += wavelength_change/2.





We now write the adjusted history back to a new history file and then
calculate the updated gravity field:

his_changed.write_history('fold_thrust_changed.his')





# %%timeit
# recompute block model
pynoddy.compute_model('fold_thrust_changed.his', 'fold_thrust_changed_out')





''





# %%timeit
# recompute geophysical response
pynoddy.compute_model('fold_thrust_changed.his', 'fold_thrust_changed_out',
                      sim_type = 'GEOPHYSICS')





''





# load changed block model
geo_changed = pynoddy.output.NoddyOutput('fold_thrust_changed_out')
# load output and visualise geophysical field
geophys_changed = pynoddy.output.NoddyGeophysics('fold_thrust_changed_out')





fig = plt.figure(figsize = (5,5))
ax = fig.add_subplot(111)
# imshow(geophys_changed.grv_data, cmap = 'jet')
cf = ax.contourf(geophys_changed.grv_data, levels, cmap = 'gray', vmin = 324, vmax = 342)
cbar = plt.colorbar(cf, orientation = 'horizontal')





[image: ../_images/5-Geophysical-Potential-Fields_30_0.png]
fig = plt.figure(figsize = (5,5))
ax = fig.add_subplot(111)
# imshow(geophys.grv_data - geophys_changed.grv_data, cmap = 'jet')
maxval = np.ceil(np.max(np.abs(geophys.grv_data - geophys_changed.grv_data)))
# comp_levels = np.arange(-maxval,1.01 * maxval, 0.05 * maxval)
cf = ax.contourf(geophys.grv_data - geophys_changed.grv_data, 20,
                 cmap = 'spectral')
cbar = plt.colorbar(cf, orientation = 'horizontal')





[image: ../_images/5-Geophysical-Potential-Fields_31_0.png]
# compare sections through model
geo_changed.plot_section('y', colorbar = False)
h_out.plot_section('y', colorbar = False)





[image: ../_images/5-Geophysical-Potential-Fields_32_0.png]
[image: ../_images/5-Geophysical-Potential-Fields_32_1.png]
for i in range(4):
    print("Event %d" % (i+2))
    print his.events[i+2].properties['Slip']
    print his.events[i+2].properties['Dip']
    print his.events[i+2].properties['Dip Direction']





Event 2
-5000.0
0.0
90.0
Event 3
-3000.0
0.0
90.0
Event 4
-3000.0
0.0
90.0
Event 5
12000.0
80.0
170.0





# recompute the geology blocks for comparison:
pynoddy.compute_model('fold_thrust_changed.his', 'fold_thrust_changed_out')





''





geology_changed = pynoddy.output.NoddyOutput('fold_thrust_changed_out')





geology_changed.plot_section('x',
#                    layer_labels = his.model_stratigraphy,
                   colorbar_orientation = 'horizontal',
                   colorbar=False,
                   title = '',
#                   savefig=True, fig_filename = 'fold_thrust_NS_section.eps',
                   cmap = 'YlOrRd')





[image: ../_images/5-Geophysical-Potential-Fields_36_0.png]
geology_changed.plot_section('y',
                             # layer_labels = his.model_stratigraphy,
                   colorbar_orientation = 'horizontal', title = '', cmap = 'YlOrRd',
#                   savefig=True, fig_filename = 'fold_thrust_EW_section.eps',
                   ve=1.5)





[image: ../_images/5-Geophysical-Potential-Fields_37_0.png]
# Calculate block difference and export as VTK for 3-D visualisation:
import copy
diff_model = copy.deepcopy(geology_changed)
diff_model.block -= h_out.block





diff_model.export_to_vtk(vtk_filename = "diff_model_fold_thrust_belt")








Figure with all results

We now create a figure with the gravity field of the original and the
changed model, as well as a difference plot to highlight areas with
significant changes. This example also shows how additional equations
can easily be combined with pynoddy classes.

fig = plt.figure(figsize=(20,8))
ax1 = fig.add_subplot(131)
# original plot
levels = np.arange(322,344,1)
cf1 = ax1.contourf(geophys.grv_data, levels, cmap = 'gray', vmin = 324, vmax = 342)
# cbar1 = ax1.colorbar(cf1, orientation = 'horizontal')
fig.colorbar(cf1, orientation='horizontal')
ax1.set_title('Gravity of original model')

ax2 = fig.add_subplot(132)




cf2 = ax2.contourf(geophys_changed.grv_data, levels, cmap = 'gray', vmin = 324, vmax = 342)
ax2.set_title('Gravity of changed model')
fig.colorbar(cf2, orientation='horizontal')

ax3 = fig.add_subplot(133)


comp_levels = np.arange(-10.,10.1,0.25)
cf3 = ax3.contourf(geophys.grv_data - geophys_changed.grv_data, comp_levels, cmap = 'RdBu_r')
ax3.set_title('Gravity difference')

fig.colorbar(cf3, orientation='horizontal')

plt.savefig("grav_ori_changed_compared.eps")





[image: ../_images/5-Geophysical-Potential-Fields_41_0.png]



  
    
    
    Reproducible Experiments with pynoddy
    
    

    
 
  
  

    
      
          
            
  
Reproducible Experiments with pynoddy

All pynoddy experiments can be defined in a Python script, and if
all settings are appropriate, then this script can be re-run to obtain a
reproduction of the results. However, it is often more convenient to
encapsulate all elements of an experiment within one class. We show here
how this is done in the pynoddy.experiment.Experiment class and how
this class can be used to define simple reproducible experiments with
kinematic models.

from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML(open(css_file, "r").read())















%matplotlib inline





# here the usual imports. If any of the imports fails,
# make sure that pynoddy is installed
# properly, ideally with 'python setup.py develop'
# or 'python setup.py install'
import sys, os
import matplotlib.pyplot as plt
import numpy as np
# adjust some settings for matplotlib
from matplotlib import rcParams
# print rcParams
rcParams['font.size'] = 15
# determine path of repository to set paths corretly below
repo_path = os.path.realpath('../..')
import pynoddy.history
import pynoddy.experiment
reload(pynoddy.experiment)
rcParams.update({'font.size': 15})






Defining an experiment

We are considering the following scenario: we defined a kinematic model
of a prospective geological unit at depth. As we know that the estimates
of the (kinematic) model parameters contain a high degree of
uncertainty, we would like to represent this uncertainty with the model.

Our approach is here to perform a randomised uncertainty propagation
analysis with a Monte Carlo sampling method. Results should be presented
in several figures (2-D slice plots and a VTK representation in 3-D).

To perform this analysis, we need to perform the following steps (see
main paper for more details):


	Define kinematic model parameters and construct the initial (base)
model;

	Assign probability distributions (and possible parameter
correlations) to relevant uncertain input parameters;

	Generate a set of n random realisations, repeating the following
steps:
	Draw a randomised input parameter set from the parameter distribu-
tion;

	Generate a model with this parameter set;

	Analyse the generated model and store results;





	Finally: perform postprocessing, generate figures of results



It would be possible to write a Python script to perform all of these
steps in one go. However, we will here take another path and use the
implementation in a Pynoddy Experiment class. Initially, this requires
more work and a careful definition of the experiment - but, finally, it
will enable a higher level of flexibility, extensibility, and
reproducibility.




Loading an example model from the Atlas of Structural Geophysics

As in the example for geophysical potential-field simulation, we will
use a model from the Atlas of Structural Geophysics as an examlpe model
for this simulation. We use a model for a fold interference structure. A
discretised 3-D version of this model is presented in the figure below.
The model represents a fold interference pattern of “Type 1” according
to the definition of Ramsey (1967).


[image: Fold interference pattern]
Fold interference pattern



Instead of loading the model into a history object, we are now directly
creating an experiment object:

reload(pynoddy.history)
reload(pynoddy.experiment)

from pynoddy.experiment import monte_carlo
model_url = 'http://tectonique.net/asg/ch3/ch3_7/his/typeb.his'
ue = pynoddy.experiment.Experiment(url = model_url)





For simpler visualisation in this notebook, we will analyse the
following steps in a section view of the model.

We consider a section in y-direction through the model:

ue.write_history("typeb_tmp3.his")





ue.write_history("typeb_tmp2.his")





ue.change_cube_size(100)
ue.plot_section('y')





[image: ../_images/6-Reproducible-Experiments_10_0.png]
Before we start to draw random realisations of the model, we should
first store the base state of the model for later reference. This is
simply possibel with the freeze() method which stores the current state
of the model as the “base-state”:

ue.freeze()





We now intialise the random generator. We can directly assign a random
seed to simplify reproducibility (note that this is not essential, as
it would be for the definition in a script function: the random state is
preserved within the model and could be retrieved at a later stage, as
well!):

ue.set_random_seed(12345)





The next step is to define probability distributions to the relevant
event parameters. Let’s first look at the different events:

ue.info(events_only = True)





This model consists of 3 events:
    (1) - STRATIGRAPHY
    (2) - FOLD
    (3) - FOLD





ev2 = ue.events[2]





ev2.properties





{'Amplitude': 1250.0,
 'Cylindricity': 0.0,
 'Dip': 90.0,
 'Dip Direction': 90.0,
 'Pitch': 0.0,
 'Single Fold': 'FALSE',
 'Type': 'Sine',
 'Wavelength': 5000.0,
 'X': 1000.0,
 'Y': 0.0,
 'Z': 0.0}





Next, we define the probability distributions for the uncertain input
parameters:

param_stats = [{'event' : 2,
              'parameter': 'Amplitude',
              'stdev': 100.0,
              'type': 'normal'},
              {'event' : 2,
              'parameter': 'Wavelength',
              'stdev': 500.0,
              'type': 'normal'},
              {'event' : 2,
              'parameter': 'X',
              'stdev': 500.0,
              'type': 'normal'}]

ue.set_parameter_statistics(param_stats)





resolution = 100
ue.change_cube_size(resolution)
tmp = ue.get_section('y')
prob_4 = np.zeros_like(tmp.block[:,:,:])
n_draws = 100


for i in range(n_draws):
    ue.random_draw()
    tmp = ue.get_section('y', resolution = resolution)
    prob_4 += (tmp.block[:,:,:] == 4)

# Normalise
prob_4 = prob_4 / float(n_draws)





fig = plt.figure(figsize = (12,8))
ax = fig.add_subplot(111)
ax.imshow(prob_4.transpose()[:,0,:],
           origin = 'lower left',
           interpolation = 'none')
plt.title("Estimated probability of unit 4")
plt.xlabel("x (E-W)")
plt.ylabel("z")





<matplotlib.text.Text at 0x10ba80250>





[image: ../_images/6-Reproducible-Experiments_22_1.png]
This example shows how the base module for reproducible experiments with
kinematics can be used. For further specification, child classes of
Experiment can be defined, and we show examples of this ty