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PyNLPl, pronounced as ‘pineapple’, is a Python library for Natural Language Processing. It contains various modules
useful for common, and less common, NLP tasks. PyNLPl can be used for basic tasks such as the extraction of n-
grams and frequency lists, and to build simple language model. There are also more complex data types and algorithms.
Moreover, there are parsers for file formats common in NLP (e.g. FoLiA/Giza/Moses/ARPA/Timbl/CQL). There are
also clients to interface with various NLP specific servers. PyNLPl most notably features a very extensive library for
working with FoLiA XML (Format for Linguistic Annotatation).

The library is a divided into several packages and modules. It works on Python 2.7, as well as Python 3.

The following modules are available:

• pynlpl.datatypes - Extra datatypes (priority queues, patterns, tries)

• pynlpl.evaluation - Evaluation & experiment classes (parameter search, wrapped progressive sampling,
class evaluation (precision/recall/f-score/auc), sampler, confusion matrix, multithreaded experiment pool)

• pynlpl.formats.cgn - Module for parsing CGN (Corpus Gesproken Nederlands) part-of-speech tags

• pynlpl.formats.folia - Extensive library for reading and manipulating the documents in FoLiA format
(Format for Linguistic Annotation).

• pynlpl.formats.fql - Extensive library for the FoLiA Query Language (FQL), built on top of pynlpl.
formats.folia. FQL is currently documented here.

• pynlpl.formats.cql - Parser for the Corpus Query Language (CQL), as also used by Corpus Workbench
and Sketch Engine. Contains a convertor to FQL.

• pynlpl.formats.giza - Module for reading GIZA++ word alignment data

• pynlpl.formats.moses - Module for reading Moses phrase-translation tables.

• pynlpl.formats.sonar - Largely obsolete module for pre-releases of the SoNaR corpus, use pynlpl.
formats.folia instead.

• pynlpl.formats.timbl - Module for reading Timbl output (consider using python-timbl instead though)

• pynlpl.lm.lm - Module for simple language model and reader for ARPA language model data as well (used
by SRILM).

• pynlpl.search - Various search algorithms (Breadth-first, depth-first, beam-search, hill climbing, A star,
various variants of each)

• pynlpl.statistics - Frequency lists, Levenshtein, common statistics and information theory functions

• pynlpl.textprocessors - Simple tokeniser, n-gram extraction

Contents:

Contents 1
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CHAPTER 1

Common Functions

pynlpl.common.Enum(*names)

pynlpl.common.b(s)

pynlpl.common.isstring(s)

pynlpl.common.log(msg, **kwargs)
Generic log method. Will prepend timestamp.

Keyword Arguments

• - Name of the system/module (system) –

• - Integer denoting the desired level of indentation (indent) –

• - List of streams to output to (streams) –

• - Stream to output to (stream) –

pynlpl.common.u(s, encoding=’utf-8’, errors=’strict’)

3
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CHAPTER 2

Data Types

This library contains various extra data types, based to a certain extend on MIT-licensed code from Peter Norvig, AI:
A Modern Appproach : http://aima.cs.berkeley.edu/python/utils.html

class pynlpl.datatypes.FIFOQueue(data=[])
A First-In-First-Out Queue

append(item)

extend(items)
Append all elements from items to the queue

pop()
Retrieve the next element in line, this will remove it from the queue

class pynlpl.datatypes.Pattern(data, classdecoder=None)

static fromstring(s, classencoder)

iterbytes(begin=0, end=0)

class pynlpl.datatypes.PatternMap(default=None)

items()

class pynlpl.datatypes.PatternSet

add(pattern)

remove(pattern)

class pynlpl.datatypes.PriorityQueue(data=[], f=<function PriorityQueue.<lambda>>, min-
imize=False, length=0, blockworse=False, blocke-
qual=False, duplicates=True)

A queue in which the maximum (or minumum) element is returned first, as determined by either an external
score function f (by default calling the objects score() method). If minimize=True, the item with minimum f(x)
is returned first; otherwise is the item with maximum f(x) or x.score().

5
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length can be set to an integer > 0. Items will only be added to the queue if they’re better or equal to the worst
scoring item. If set to zero, length is unbounded. blockworse can be set to true if you want to prohibit adding
worse-scoring items to the queue. Only items scoring better than the BEST one are added. blockequal can be
set to false if you also want to prohibit adding equally-scoring items to the queue. (Both parameters default to
False)

append(item)
Adds an item to the priority queue (in the right place), returns True if successfull, False if the item was
blocked (because of a bad score)

pop()
Retrieve the next element in line, this will remove it from the queue

prune(n)
prune all but the first (=best) n items

prunebyscore(score, retainequalscore=False)
Deletes all items below/above a certain score from the queue, depending on whether minimize is True
or False. Note: It is recommended (more efficient) to use blockworse=True / blockequal=True instead!
Preventing the addition of ‘worse’ items.

randomprune(n)
prune down to n items at random, disregarding their score

score(i)
Return the score for item x (cheap lookup), Item 0 is always the best item

stochasticprune(n)
prune down to n items, chance of an item being pruned is reverse proportional to its score

class pynlpl.datatypes.Queue

Queue is an abstract class/interface. There are three types: Python List: A Last In First Out Queue (no
Queue object necessary). FIFOQueue(): A First In First Out Queue. PriorityQueue(lt): Queue where
items are sorted by lt, (default <).

Each type supports the following methods and functions: q.append(item) – add an item to the queue
q.extend(items) – equivalent to: for item in items: q.append(item) q.pop() – return the top item from
the queue len(q) – number of items in q (also q.__len()).

extend(items)
Append all elements from items to the queue

class pynlpl.datatypes.Tree(value=None, children=None)
Simple tree structure. Nodes are themselves trees.

append(item)
Add an item to the Tree

leaf()
Is this a leaf node or not?

class pynlpl.datatypes.Trie(sequence=None)
Simple trie structure. Nodes are themselves tries, values are stored on the edges, not the nodes.

append(sequence)

depth()
Returns the depth of the current node

find(sequence)

items()

6 Chapter 2. Data Types
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leaf()
Is this a leaf node or not?

path()
Returns the path to the current node

root()
Returns True if this is the root of the Trie

sequence()

size()
Size is number of nodes under the trie, including the current node

walk(leavesonly=True, maxdepth=None, _depth=0)
Depth-first search, walking through trie, returning all encounterd nodes (by default only leaves)

7
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CHAPTER 3

Evaluation & Experiments

class pynlpl.evaluation.AbstractExperiment(inputdata=None, **parameters)

defaultparameters()

delete()

done(warn=True)
Is the subprocess done?

duration()

run()

sample(size)
Return a sample of the input data

score()

start()
Start as a detached subprocess, immediately returning execution to caller.

startcommand(command, cwd, stdout, stderr, *arguments, **parameters)

wait()

class pynlpl.evaluation.ClassEvaluation(goals=[], observations=[], missing={},
encoding=’utf-8’)

accuracy(cls=None)

append(goal, observation)

auc(cls=None, macro=False)

compute()

confusionmatrix(casesensitive=True)

fp_rate(cls=None, macro=False)

9
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fscore(cls=None, beta=1, macro=False)

outputmetrics()

precision(cls=None, macro=False)

recall(cls=None, macro=False)

specificity(cls=None, macro=False)

tp_rate(cls=None, macro=False)

class pynlpl.evaluation.ConfusionMatrix(tokens=None, casesensitive=True, dovalida-
tion=True)

Confusion Matrix

class pynlpl.evaluation.ExperimentPool(size)

append(experiment)

poll(haltonerror=True)

run(haltonerror=True)

start(experiment)

class pynlpl.evaluation.OrdinalEvaluation(goals=[], observations=[], missing={},
encoding=’utf-8’)

compute()

mae(cls=None)

rmse(cls=None)

class pynlpl.evaluation.ParamSearch(experimentclass, inputdata, parameterscope, poolsize=1,
constraintfunc=None, delete=True)

A simpler version of ParamSearch without Wrapped Progressive Sampling

exception pynlpl.evaluation.ProcessFailed

class pynlpl.evaluation.WPSParamSearch(experimentclass, inputdata, size, parameterscope,
poolsize=1, sizefunc=None, prunefunc=None, con-
straintfunc=None, delete=True)

ParamSearch with support for Wrapped Progressive Sampling

searchbest()

test(i=None)

pynlpl.evaluation.auc(x, y, reorder=False)
Compute Area Under the Curve (AUC) using the trapezoidal rule

This is a general fuction, given points on a curve. For computing the area under the ROC-curve, see
auc_score().

Parameters

• x (array, shape = [n]) – x coordinates.

• y (array, shape = [n]) – y coordinates.

• reorder (boolean, optional (default=False)) – If True, assume that the
curve is ascending in the case of ties, as for an ROC curve. If the curve is non-ascending,
the result will be wrong.

Returns auc

10 Chapter 3. Evaluation & Experiments
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Return type float

Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
>>> metrics.auc(fpr, tpr)
0.75

See also:

auc_score() Computes the area under the ROC curve

pynlpl.evaluation.filesampler(files, testsetsize=0.1, devsetsize=0, trainsetsize=0, outputdir=”,
encoding=’utf-8’)

Extract a training set, test set and optimally a development set from one file, or multiple interdependent files
(such as a parallel corpus). It is assumed each line contains one instance (such as a word or sentence for
example).

pynlpl.evaluation.mae(absolute_error_values)

pynlpl.evaluation.rmse(squared_error_values)

11
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CHAPTER 4

FoLiA library

This tutorial will introduce the FoLiA Python library, part of PyNLPl. The FoLiA library provides an Application
Programming Interface for the reading, creation and manipulation of FoLiA XML documents. The library works
under Python 2.7 as well as Python 3, which is the recommended version. The samples in this documentation follow
Python 3 conventions.

Prior to reading this document, it is recommended to first read the FoLiA documentation itself and familiarise your-
self with the format and underlying paradigm. The FoLiA documentation can be found on the FoLiA website . It
is especially important to understand the way FoLiA handles sets/classes, declarations, common attributes such as
annotator/annotatortype and the distinction between various kinds of annotation categories such as token annotation
and span annotation.

This Python library is also the foundation of the FoLiA Tools collection, which consists of various command line
utilities to perform common tasks on FoLiA documents. If you’re merely interested in performing a certain common
task, such as a single query or conversion, you might want to check there if it contains is a tool that does what you
want already.

4.1 Reading FoLiA

4.1.1 Loading a document

Any script that uses FoLiA starts with the import:

from pynlpl.formats import folia

At the basis of any FoLiA processing lies the following class:

Document This is the FoLiA Document and holds all its data in
memory.

13
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pynlpl.formats.folia.Document

class pynlpl.formats.folia.Document(*args, **kwargs)
Bases: object

This is the FoLiA Document and holds all its data in memory.

All FoLiA elements have to be associated with a FoLiA document. Besides holding elements, the document
may hold metadata including declarations, and an index of all IDs.

Method Summary

__init__(*args, **kwargs) Start/load a FoLiA document:
add(text) Alias for Document.append()
alias(annotationtype, set[, fallback]) Return the alias for a set (if applicable, returns the

unaltered set otherwise iff fallback is enabled)
append(text) Add a text (or speech) to the document:
count(Class[, set, recursive, ignore]) See AbstractElement.count()
create(Class, *args, **kwargs) Create an element associated with this Document.
date([value]) Get or set the document’s date from/in the metadata.
declare(annotationtype, set, **kwargs) Declare a new annotation type to be used in the doc-

ument.
declared(annotationtype, set) Checks if the annotation type is present (i.e.
defaultannotator(annotationtype[, set]) Obtain the default annotator for the specified annota-

tion type and set.
defaultannotatortype(annotationtype[, set]) Obtain the default annotator type for the specified an-

notation type and set.
defaultdatetime(annotationtype[, set]) Obtain the default datetime for the specified annota-

tion type and set.
defaultset(annotationtype) Obtain the default set for the specified annotation

type.
findwords(*args, **kwargs)
items() Returns a depth-first flat list of all items in the docu-

ment
json() Serialise the document to a dict ready for seriali-

sation to JSON.
jsondeclarations() Return all declarations in a form ready to be seri-

alised to JSON.
language([value]) No arguments: Get the document’s language (ISO-

639-3) from metadata Argument: Set the document’s
language (ISO-639-3) in metadata

license([value]) No arguments: Get the document’s license from
metadata Argument: Set the document’s license in
metadata

load(filename) Load a FoLiA XML file.
paragraphs([index]) Return a generator of all paragraphs found in the

document.
parsemetadata(node) Internal method to parse metadata
parsesubmetadata(node)
parsexml(node[, ParentClass]) Internal method.
parsexmldeclarations(node) Internal method to parse XML declarations

Continued on next page
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Table 2 – continued from previous page
pendingvalidation([warnonly]) Perform any pending validations
publisher([value]) No arguments: Get the document’s publisher from

metadata Argument: Set the document’s publisher in
metadata

save([filename]) Save the document to file.
select(Class[, set, recursive, ignore]) See AbstractElement.select()
sentences([index]) Return a generator of all sentence found in the docu-

ment.
setimdi(node) OBSOLETE
text([cls, retaintokenisation]) Returns the text of the entire document (returns a uni-

code instance)
title([value]) Get or set the document’s title from/in the metadata
unalias(annotationtype, alias) Return the set for an alias (if applicable, raises an

exception otherwise)
words([index]) Return a generator of all active words found in the

document.
xml() Serialise the document to XML.
xmldeclarations() Internal method to generate XML nodes for all dec-

larations
xmlmetadata() Internal method to serialize metadata to XML
xmlstring() Return the XML representation of the document as a

string.
xpath(query) Run Xpath expression and parse the resulting ele-

ments.

Attributes

IDSEPARATOR

Method Details

__init__(*args, **kwargs)
Start/load a FoLiA document:

There are four sources of input for loading a FoLiA document:

1. Create a new document by specifying an ID:

doc = folia.Document(id='test')

2. Load a document from FoLiA or D-Coi XML file:

doc = folia.Document(file='/path/to/doc.xml')

3. Load a document from an XML string:

doc = folia.Document(string='<FoLiA>....</FoLiA>')

4. Load a document by passing a parse xml tree (lxml.etree):

doc = folia.Document(tree=xmltree)

Additionally, there are three modes that can be set with the mode= keyword argument:

4.1. Reading FoLiA 15
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• folia.Mode.MEMORY - The entire FoLiA Document will be loaded into memory. This is the default
mode and the only mode in which documents can be manipulated and saved again.

• folia.Mode.XPATH - The full XML tree will still be loaded into memory, but conversion to FoLiA
classes occurs only when queried. This mode can be used when the full power of XPath is required.

Keyword Arguments

• setdefinition (dict) – A dictionary of set definitions, the key corresponds to the
set name, the value is a SetDefinition instance

• loadsetdefinitions (bool) – download and load set definitions (default: False)

• deepvalidation (bool) – Do deep validation of the document (default: False), im-
plies loadsetdefinitions

• textvalidation (bool) – Do validation of text consistency (default: False)‘‘

• preparsexmlcallback (function) – Callback for a function taking one argument
(node, an lxml node). Will be called whenever an XML element is parsed into FoLiA.
The function should return an instance inherited from folia.AbstractElement, or None to
abort parsing this element (and all its children)

• parsexmlcallback (function) – Callback for a function taking one argument
(element, a FoLiA element). Will be called whenever an XML element is parsed into
FoLiA. The function should return an instance inherited from folia.AbstractElement, or
None to abort adding this element (and all its children)

• debug (bool) – Boolean to enable/disable debug

__init__(*args, **kwargs)
Start/load a FoLiA document:

There are four sources of input for loading a FoLiA document:

1. Create a new document by specifying an ID:

doc = folia.Document(id='test')

2. Load a document from FoLiA or D-Coi XML file:

doc = folia.Document(file='/path/to/doc.xml')

3. Load a document from an XML string:

doc = folia.Document(string='<FoLiA>....</FoLiA>')

4. Load a document by passing a parse xml tree (lxml.etree):

doc = folia.Document(tree=xmltree)

Additionally, there are three modes that can be set with the mode= keyword argument:

• folia.Mode.MEMORY - The entire FoLiA Document will be loaded into memory. This is the default
mode and the only mode in which documents can be manipulated and saved again.

• folia.Mode.XPATH - The full XML tree will still be loaded into memory, but conversion to FoLiA
classes occurs only when queried. This mode can be used when the full power of XPath is required.

Keyword Arguments

16 Chapter 4. FoLiA library
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• setdefinition (dict) – A dictionary of set definitions, the key corresponds to the
set name, the value is a SetDefinition instance

• loadsetdefinitions (bool) – download and load set definitions (default: False)

• deepvalidation (bool) – Do deep validation of the document (default: False), im-
plies loadsetdefinitions

• textvalidation (bool) – Do validation of text consistency (default: False)‘‘

• preparsexmlcallback (function) – Callback for a function taking one argument
(node, an lxml node). Will be called whenever an XML element is parsed into FoLiA.
The function should return an instance inherited from folia.AbstractElement, or None to
abort parsing this element (and all its children)

• parsexmlcallback (function) – Callback for a function taking one argument
(element, a FoLiA element). Will be called whenever an XML element is parsed into
FoLiA. The function should return an instance inherited from folia.AbstractElement, or
None to abort adding this element (and all its children)

• debug (bool) – Boolean to enable/disable debug

add(text)
Alias for Document.append()

alias(annotationtype, set, fallback=False)
Return the alias for a set (if applicable, returns the unaltered set otherwise iff fallback is enabled)

append(text)
Add a text (or speech) to the document:

Example 1:

doc.append(folia.Text)

Example 2:: doc.append( folia.Text(doc, id=’example.text’) )

Example 3:

doc.append(folia.Speech)

count(Class, set=None, recursive=True, ignore=True)
See AbstractElement.count()

create(Class, *args, **kwargs)
Create an element associated with this Document. This method may be obsolete and removed later.

date(value=None)
Get or set the document’s date from/in the metadata.

No arguments: Get the document’s date from metadata Argument: Set the document’s date in metadata

declare(annotationtype, set, **kwargs)
Declare a new annotation type to be used in the document.

Keyword arguments can be used to set defaults for any annotation of this type and set.

Parameters

• annotationtype – The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.
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• set (str) – the set, should formally be a URL pointing to the set definition

Keyword Arguments

• annotator (str) – Sets a default annotator

• annotatortype – Should be either AnnotatorType.MANUAL or
AnnotatorType.AUTO, indicating whether the annotation was performed manu-
ally or by an automated process.

• datetime (datetime.datetime) – Sets the default datetime

• alias (str) – Defines alias that may be used in set attribute of elements instead of the
full set name

Example:

doc.declare(folia.PosAnnotation, 'http://some/path/brown-tag-set', annotator=
→˓"mytagger", annotatortype=folia.AnnotatorType.AUTO)

declared(annotationtype, set)
Checks if the annotation type is present (i.e. declared) in the document.

Parameters

• annotationtype – The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

• set (str) – the set, should formally be a URL pointing to the set definition (aliases are
also supported)

Example:

if doc.declared(folia.PosAnnotation, 'http://some/path/brown-tag-set'):
..

Returns bool

defaultannotator(annotationtype, set=None)
Obtain the default annotator for the specified annotation type and set.

Parameters

• annotationtype – The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

• set (str) – the set, should formally be a URL pointing to the set definition

Returns the set (str)

Raises NoDefaultError if the annotation type does not exist or if there is ambiguity (multi-
ple sets for the same type)

defaultannotatortype(annotationtype, set=None)
Obtain the default annotator type for the specified annotation type and set.

Parameters

• annotationtype – The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.
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• set (str) – the set, should formally be a URL pointing to the set definition

Returns AnnotatorType.AUTO or AnnotatorType.MANUAL

Raises NoDefaultError if the annotation type does not exist or if there is ambiguity (multi-
ple sets for the same type)

defaultdatetime(annotationtype, set=None)
Obtain the default datetime for the specified annotation type and set.

Parameters

• annotationtype – The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

• set (str) – the set, should formally be a URL pointing to the set definition

Returns the set (str)

Raises NoDefaultError if the annotation type does not exist or if there is ambiguity (multi-
ple sets for the same type)

defaultset(annotationtype)
Obtain the default set for the specified annotation type.

Parameters annotationtype – The type of annotation, this is conveyed by passing the
corresponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

Returns the set (str)

Raises NoDefaultError if the annotation type does not exist or if there is ambiguity (multi-
ple sets for the same type)

findwords(*args, **kwargs)

items()
Returns a depth-first flat list of all items in the document

json()
Serialise the document to a dict ready for serialisation to JSON.

Example:

import json
jsondoc = json.dumps(doc.json())

jsondeclarations()
Return all declarations in a form ready to be serialised to JSON.

Returns list of dict

language(value=None)
No arguments: Get the document’s language (ISO-639-3) from metadata Argument: Set the document’s
language (ISO-639-3) in metadata

license(value=None)
No arguments: Get the document’s license from metadata Argument: Set the document’s license in meta-
data

load(filename)
Load a FoLiA XML file.

Argument: filename (str): The file to load
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paragraphs(index=None)
Return a generator of all paragraphs found in the document.

If an index is specified, return the n’th paragraph only (starting at 0)

parsemetadata(node)
Internal method to parse metadata

parsesubmetadata(node)

parsexml(node, ParentClass=None)
Internal method.

This is the main XML parser, will invoke class-specific XML parsers.

parsexmldeclarations(node)
Internal method to parse XML declarations

pendingvalidation(warnonly=None)
Perform any pending validations

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

publisher(value=None)
No arguments: Get the document’s publisher from metadata Argument: Set the document’s publisher in
metadata

save(filename=None)
Save the document to file.

Parameters filename (*) – The filename to save to. If not set (None, default), saves to the
same file as loaded from.

select(Class, set=None, recursive=True, ignore=True)
See AbstractElement.select()

sentences(index=None)
Return a generator of all sentence found in the document. Except for sentences in quotes.

If an index is specified, return the n’th sentence only (starting at 0)

setimdi(node)
OBSOLETE

text(cls=’current’, retaintokenisation=False)
Returns the text of the entire document (returns a unicode instance)

See also:

AbstractElement.text()

title(value=None)
Get or set the document’s title from/in the metadata

No arguments: Get the document’s title from metadata Argument: Set the document’s title in metadata

unalias(annotationtype, alias)
Return the set for an alias (if applicable, raises an exception otherwise)
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words(index=None)
Return a generator of all active words found in the document. Does not descend into annotation layers,
alternatives, originals, suggestions.

If an index is specified, return the n’th word only (starting at 0)

xml()
Serialise the document to XML.

Returns lxml.etree.Element

See also:

Document.xmlstring()

xmldeclarations()
Internal method to generate XML nodes for all declarations

xmlmetadata()
Internal method to serialize metadata to XML

xmlstring()
Return the XML representation of the document as a string.

xpath(query)
Run Xpath expression and parse the resulting elements. Don’t forget to use the FoLiA namesapace in your
expressions, using folia: or the short form f:

To read a document from file, instantiate a document as follows:

doc = folia.Document(file="/path/to/document.xml")

This returned Document instance holds the entire document in memory. Note that for large FoLiA documents this
may consume quite some memory! If you happened to already have the document content in a string, you can load as
follows:

doc = folia.Document(string="<FoLiA ...")

Once you have loaded a document, all data is available for you to read and manipulate as you see fit. We will first
illustrate some simple use cases:

To save a document back to the file it was loaded from, we do:

doc.save()

Or we can specify a specific filename:

doc.save("/tmp/document.xml")

Note: Any content that is in a different XML namespace than the FoLiA namespaces or other supported namespaces
(XML, Xlink), will be ignored upon loading and lost when saving.

4.1.2 Printing text

You may want to simply print all (plain) text contained in the document, which is as easy as:

print(doc)
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Obtaining the text as a string is done by invoking the document’s Document.text() method:

text = doc.text()

Or alternatively as follows:

text = str(doc)

For any subelement of the document, you can obtain its text in the same fashion as well, by calling its
AbstractElement.text() method or by using str(), the only difference is that the former allows for ex-
tensive fine tuning using various extra parameters (See AbstractElement.text()).

Note: In Python 2, both str() as well as unicode() return a unicode instance. You may need to append .
encode('utf-8') for proper output.

4.1.3 Index

A document instance has an index which you can use to grab any of its elements by ID. Querying using the index
proceeds similar to using a python dictionary:

word = doc['example.p.3.s.5.w.1']
print(word)

Note: Python 2 users will have to do print word.text().encode('utf-8') instead, to ensure non-ascii
characters are printed properly.

IDs are unique in the entire document, and preferably even beyond.

4.1.4 Elements

All FoLiA elements are derived from AbstractElement and offer an identical interface. To quickly check whether
you are dealing with a FoLiA element you can therefore always do the following:

isinstance(word, folia.AbstractElement)

This abstract base element is never instantiated directly. The FoLiA paradigm derives several more abstract base
classes which may implement some additional methods or overload some of the original ones:

AbstractElement Abstract base class from which all FoLiA elements are
derived.

AbstractStructureElement Abstract element, all structure elements inherit from this
class.

AllowTokenAnnotation Elements that allow token annotation (including ex-
tended annotation) must inherit from this class

AbstractSpanAnnotation Abstract element, all span annotation elements are de-
rived from this class

AbstractTokenAnnotation Abstract element, all token annotation elements are de-
rived from this class

Continued on next page
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Table 4 – continued from previous page
AbstractAnnotationLayer Annotation layers for Span Annotation are derived from

this abstract base class
AbstractTextMarkup Abstract class for text markup elements, elements that

appear with the TextContent (t) element.

pynlpl.formats.folia.AbstractElement

class pynlpl.formats.folia.AbstractElement(doc, *args, **kwargs)
Bases: object

Abstract base class from which all FoLiA elements are derived.

This class implements many generic methods that are available on all FoLiA elements.

To see if an element is a FoLiA element, as opposed to any other python object, do:

isinstance(x, AbstractElement)

Generic FoLiA attributes can be accessed on all instances derived from this class:

• element.id (str) - The unique identifier of the element

• element.set (str) - The set the element pertains to.

• element.cls (str) - The assigned class, i.e. the actual value of the annotation, defined in the set. Classes
correspond with tagsets in this case of many annotation types. Note that since class is already a reserved
keyword in python, the library consistently uses cls everywhere.

• element.annotator (str) - The name or ID of the annotator who added/modified this element

• element.annotatortype - The type of annotator, can be either folia.AnnotatorType.
MANUAL or folia.AnnotatorType.AUTO

• element.confidence (float) - A confidence value expressing

• element.datetime (datetime.datetime) - The date and time when the element was added/modified.

• element.n (str) - An ordinal label, used for instance in enumerated list contexts, numbered sections,
etc..

The following generic attributes are specific to a speech context:

• element.src (str) - A URL or filename referring the an audio or video file containing the speech.
Access this attribute using the element.speaker_src() method, as it is inheritable from ancestors.

• element.speaker (str) - The name of ID of the speaker. Access this attribute using the element.
speech_speaker() method, as it is inheritable from ancestors.

• element.begintime (4-tuple) - The time in the above source fragment when the phonetic content of
this element starts, this is a (hours, minutes,seconds,milliseconds) tuple.

• element.endtime (4-tuple) - The time in the above source fragment when the phonetic content of this
element ends, this is a (hours, minutes,seconds,milliseconds) tuple.

Not all attributes are allowed, unset or unavailable attributes will always default to None.

Note: This class should never be instantiated directly, as it is abstract!

See also:
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AbstractElement.__init__()

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.

Continued on next page
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Table 5 – continued from previous page
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()
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Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

26 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.
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Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters
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• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –
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Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True
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text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()
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textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.AbstractStructureElement

class pynlpl.formats.folia.AbstractStructureElement(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.
AllowTokenAnnotation, pynlpl.formats.folia.AllowGenerateID

Abstract element, all structure elements inherit from this class. Never instantiated directly.

Method Summary
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__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)

Continued on next page
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Table 6 – continued from previous page
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
Continued on next page
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Table 6 – continued from previous page
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = None
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Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)
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ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists
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append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)
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getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.AllowTokenAnnotation

class pynlpl.formats.folia.AllowTokenAnnotation
Bases: pynlpl.formats.folia.AllowCorrections
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Elements that allow token annotation (including extended annotation) must inherit from this class

Method Summary

alternatives([Class, set]) Generator over alternatives, either all or only of a
specific annotation type, and possibly restrained also
by set.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
__str__ Return str(self).

Method Details

__init__()
Initialize self. See help(type(self)) for accurate signature.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

48 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

__str__()
Return str(self).

pynlpl.formats.folia.AbstractSpanAnnotation

class pynlpl.formats.folia.AbstractSpanAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.
AllowGenerateID, pynlpl.formats.folia.AllowCorrections

Abstract element, all span annotation elements are derived from this class

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)

Continued on next page
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Table 8 – continued from previous page
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.

Continued on next page
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Table 8 – continued from previous page
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.

Continued on next page
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Table 8 – continued from previous page
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

52 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.
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• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.
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hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())
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Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:
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word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)
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remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.
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setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.
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• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.
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Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.AbstractTokenAnnotation

class pynlpl.formats.folia.AbstractTokenAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.
AllowGenerateID

Abstract element, all token annotation elements are derived from this class

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.

Continued on next page
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Table 9 – continued from previous page
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.

Continued on next page
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Table 9 – continued from previous page
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 1

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False
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XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()
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context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int
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getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:
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import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
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which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.
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classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.
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Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.
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• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output
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xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.AbstractAnnotationLayer

class pynlpl.formats.folia.AbstractAnnotationLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.
AllowGenerateID, pynlpl.formats.folia.AllowCorrections

Annotation layers for Span Annotation are derived from this abstract base class

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
Continued on next page
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Table 10 – continued from previous page
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
Continued on next page
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Table 10 – continued from previous page
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)
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PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.
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Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.
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Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.
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hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())
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Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:
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word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

80 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.
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setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:
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word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:
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for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.AbstractTextMarkup

class pynlpl.formats.folia.AbstractTextMarkup(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

Abstract class for text markup elements, elements that appear with the TextContent (t) element.

Markup elements pertain primarily to styling, but also have other roles.

Iterating over the element of a TextContent element will first and foremost produce strings, but also uncover
these markup elements when present.

Method Summary

__init__(doc, *args, **kwargs) See AbstractElement.__init__(), text is
passed as a string in *args.

accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

Continued on next page
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Table 11 – continued from previous page
findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Sets the text content of the markup element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
Continued on next page
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Table 11 – continued from previous page
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = True

TEXTDELIMITER = ''

XLINK = True

XMLTAG = None
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Method Details

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.
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Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.
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hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters
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• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:
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phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –
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See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Sets the text content of the markup element.

Parameters text (str) –

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.
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The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.1.5 Obtaining list of elements

The aforementioned index is useful only if you know the ID of the element. This if often not the case, and you will
want to iterate through the hierarchy of elements through different means.

If you want to iterate over all of the child elements of a certain element, regardless of what type they are, you can
simply do so as follows:
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for subelement in element:
if isinstance(subelement, folia.Sentence):

print("this is a sentence")
else:

print("this is something else")

If applied recursively this allows you to traverse the entire element tree, there are however specialised methods avail-
able that do this for you.

4.1.6 Select method

There is a generic method AbstractElement.select() available on all elements to select child elements of
any desired class. This method is by default applied recursively for most element types:

sentence = doc['example.p.3.s.5.w.1']
words = sentence.select(folia.Word)
for word in words:

print(word)

The AbstractElement.select() method has a sibling AbstractElement.count(), invoked with the
same arguments, which simply counts how many items it finds, without actually returning them:

word = sentence.count(folia.Word)

Note: The select() method and similar high-level methods derived from it, are generators. This implies that the
results of the selection are returned one by one in the iteration, as opposed to all stored in memory. This also implies
that you can only iterate over it once, we can not do another iteration over the words variable in the above example,
unless we reinvoke the select() method to get a new generator. Likewise, we can not do len(words), but have
to use the count() method instead.

If you want to have all results in memory in a list, you can simply do the following:

words = list(sentence.select(folia.Word))

The select method is by default recursive, set the third argument to False to make it non-recursive. The second
argument can be used for restricting matches to a specific set, a tuple of classes. The recursion will not go into any
non-authoritative elements such as alternatives, originals of corrections.

4.1.7 Selection Shortcuts

There are various shortcut methods for select().

For example, you can iterate over all words in the document using Document.words(), or all words under any
structural element using AbstractStructureElement.words():

for word in doc.words():
print(word)

That however gives you one big iteration of words without boundaries. You may more likely want to seek words within
sentences, provided the document distinguishes sentences. So we first iterate over all sentences using Document.
sentences() and then over the words therein using AbstractStructureElement.words():
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for sentence in doc.sentences():
for word in sentence.words():

print(word)

Or including paragraphs, assuming the document has them:

for paragraph in doc.paragraphs():
for sentence in paragraph.sentences():

for word in sentence.words():
print(word)

Warning: Do be aware that such constructions make presumptions about the structure of the FoLiA document
that may not always apply!

All of these shortcut methods also take an index parameter to quickly select a specific item in the sequence:

word = sentence.words(3) #retrieves the fourth word

4.1.8 Navigating a document

The AbstractElement.select() method is your main tool for descending downwards in the document tree.
There are occassions, however, when you want go upwards or sideways. The AbstractElement.next() and
AbstractElement.previous() methods can be used for sideway navigation, they return the next or previous
element, respectively:

nextelement = element.next()
previouselement = element.previous()

You can explicitly filter by passing an element type:

nextword = word.next(folia.Word)

By default, the search is constrained not to cross certain boundaries, such as sentences and paragraphs. You can do so
explicitly as well by passing a list of constraints:

nextword = word.next(folia.Word, [folia.Sentence])

If you do not want any constraints, pass None:

nextword = word.next(folia.Word, None)

These methods will return None if no next/previous element was found (of the specified type).

Each element has a parent attribute that links it to its parent:

sentence = word.parent

Only for the top-level element (Text or Speech), the parent is None. There is also the method
AbstractElement.ancestors() to iterate over all ancestors, ordered from most immediate to most distant
ancestor:

for ancestor in element.ancestors():
print(type(ancestor))
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If you are looking for ancestors of a specific type, you can pass it as an argument:

for ancestor in element.ancestors(folia.Division):
print(type(ancestor))

If only a single ancestor is desired, use the AbstractElement.ancestor()method instead, unlike the generator
version AbstractElement.ancestors(), it will raise a NoSuchAnnotation exception if the ancestor was
not found:

paragraph = word.ancestor(folia.Paragraph)

4.1.9 Structure Annotation Types

The FoLiA library discerns various Python classes for structure annotation, all are subclasses of
AbstractStructureElement, which in turn is a subclass of AbstractElement. We list the classes
for structure anntoation along with the FoLiA XML tag. Sets and classes can be associated with most of these
elements to make them more specific, these are never prescribed by FoLiA. The list of classes is as follows:

Cell A cell in a Row in a Table
Definition Element used in Entry for the portion that provides a

definition for the entry.
Division Structure element representing some kind of division.
Entry Represents an entry in a glossary/lexicon/dictionary.
Event Structural element representing events, often used in

new media contexts for things such as tweets,chat mes-
sages and forum posts.

Example Element that provides an example.
Figure Element for the representation of a graphical figure.
Gap Gap element, represents skipped portions of the text.
Head Head element; a structure element that acts as the

header/title of a Division.
Linebreak Line break element, signals a line break.
List Element for enumeration/itemisation.
ListItem Single element in a List.
Note Element used for notes, such as footnotes or warnings

or notice blocks.
Paragraph Paragraph element.
Part Generic structure element used to mark a part inside an-

other block.
Quote Quote: a structure element.
Reference A structural element that denotes a reference, internal or

external.
Row A row in a Table
Sentence Sentence element.
Table A table consisting of Row elements that in turn consist

of Cell elements
Term A term, often used in contect of Entry
TableHead Encapsulated the header of a table, contains Cell ele-

ments
Text A full text.
Whitespace Whitespace element, signals a vertical whitespace

Continued on next page
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Table 12 – continued from previous page
Word Word (aka token) element.

pynlpl.formats.folia.Cell

class pynlpl.formats.folia.Cell(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

A cell in a Row in a Table

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)

Continued on next page
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Table 13 – continued from previous page
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.

Continued on next page
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Table 13 – continued from previous page
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Cell'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False
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SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = ' | '

XLINK = False

XMLTAG = 'cell'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

4.1. Reading FoLiA 101



PyNLPl Documentation, Release 1.2.8

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..
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See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list
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findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.
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• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.
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Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if

106 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters
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• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found
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speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
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you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()
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pynlpl.formats.folia.Definition

class pynlpl.formats.folia.Definition(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

Element used in Entry for the portion that provides a definition for the entry.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
Continued on next page
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Table 14 – continued from previous page
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.

Continued on next page
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Table 14 – continued from previous page
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = 39

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Definition'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

4.1. Reading FoLiA 113



PyNLPl Documentation, Release 1.2.8

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'def'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!
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Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises
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• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused
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classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
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want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –
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• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)
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Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

120 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Division

class pynlpl.formats.folia.Division(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement
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Structure element representing some kind of division. Divisions may be nested at will, and may include almost
all kinds of other structure elements.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
Continued on next page
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Table 15 – continued from previous page
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
head()
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
Continued on next page
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Table 15 – continued from previous page
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Division'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>)

ANNOTATIONTYPE = 2

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Division'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n\n'
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XLINK = False

XMLTAG = 'div'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:
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paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()
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• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.
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generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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head()

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

132 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Entry

class pynlpl.formats.folia.Entry(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement
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Represents an entry in a glossary/lexicon/dictionary.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?

Continued on next page
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Table 16 – continued from previous page
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
Continued on next page
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Table 16 – continued from previous page
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Definition'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Term'>)

ANNOTATIONTYPE = 37

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Entry'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'entry'

4.1. Reading FoLiA 139



PyNLPl Documentation, Release 1.2.8

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)
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ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists
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append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)
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getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Event

class pynlpl.formats.folia.Event(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement
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Structural element representing events, often used in new media contexts for things such as tweets,chat messages
and forum posts.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
Continued on next page
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Table 17 – continued from previous page
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
Continued on next page
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Table 17 – continued from previous page
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.ActorFeature'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.BegindatetimeFeature'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Division'>, <class 'pynlpl.formats.folia.EnddatetimeFeature'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = 21

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Event'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'
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XLINK = False

XMLTAG = 'event'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:
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paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()
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• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.
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generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

156 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Example

class pynlpl.formats.folia.Example(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement
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Element that provides an example. Used for instance in the context of Entry

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?

Continued on next page
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Table 18 – continued from previous page
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
Continued on next page
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Table 18 – continued from previous page
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = 40

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Example'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'ex'
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Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)
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ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists
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append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)
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getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Figure

class pynlpl.formats.folia.Figure(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement
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Element for the representation of a graphical figure. Structure element.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
caption()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
Continued on next page
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Table 19 – continued from previous page
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
Continued on next page
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Table 19 – continued from previous page
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Caption'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = 5

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Figure'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'
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XLINK = False

XMLTAG = 'figure'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:
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paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()
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• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

caption()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused
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classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
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want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –
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• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)
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Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Gap

class pynlpl.formats.folia.Gap(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement
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Gap element, represents skipped portions of the text.

Usually contains Content and possibly also a Description element

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
content()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
Continued on next page
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Table 20 – continued from previous page
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.

Continued on next page
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Table 20 – continued from previous page
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Content'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

ANNOTATIONTYPE = 24

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Gap'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 5, 8, 6, 7, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'gap'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.
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Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

content()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.
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count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
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CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.
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originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters
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• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope
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select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
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corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()
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pynlpl.formats.folia.Head

class pynlpl.formats.folia.Head(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

Head element; a structure element that acts as the header/title of a Division.

There may be only one per division. Often contains sentences (Sentence) or Words (Word).

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
Continued on next page

200 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

Table 21 – continued from previous page
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.

Continued on next page
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Table 21 – continued from previous page
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Head'

OCCURRENCES = 1

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True
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SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'head'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.
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Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()
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Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused
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classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
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want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –
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• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)
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Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Linebreak

class pynlpl.formats.folia.Linebreak(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement, pynlpl.formats.folia.
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AbstractTextMarkup

Line break element, signals a line break.

This element acts both as a structure element as well as a text markup element.

Method Summary

__init__(doc, *args, **kwargs) See AbstractElement.__init__(), text is
passed as a string in *args.

accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
Continued on next page
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Table 22 – continued from previous page
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Sets the text content of the markup element.

Continued on next page
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Table 22 – continued from previous page
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

ANNOTATIONTYPE = 7

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Linebreak'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = True

4.1. Reading FoLiA 215



PyNLPl Documentation, Release 1.2.8

TEXTDELIMITER = ''

XLINK = True

XMLTAG = 'br'

Method Details

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!
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Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises
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• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused
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classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
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want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)
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The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()
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postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.
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• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Sets the text content of the markup element.

Parameters text (str) –

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=None, normalize_spaces=False)

Get the text associated with this element (of the specified class)
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The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.
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Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.List

class pynlpl.formats.folia.List(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

Element for enumeration/itemisation. Structure element. Contains ListItem elements.

Method Summary
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__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)

Continued on next page
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Table 23 – continued from previous page
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
Continued on next page
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Table 23 – continued from previous page
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Caption'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.ListItem'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = 4

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'List'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'list'
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Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)
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ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists
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append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)
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getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.ListItem

class pynlpl.formats.folia.ListItem(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement
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Single element in a List. Structure element. Contained within List element.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?

Continued on next page
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Table 24 – continued from previous page
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
Continued on next page
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Table 24 – continued from previous page
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Label'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'List Item'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n'

XLINK = False

XMLTAG = 'item'
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Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)
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ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists
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append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)
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getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Note

class pynlpl.formats.folia.Note(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement
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Element used for notes, such as footnotes or warnings or notice blocks.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?

Continued on next page
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Table 25 – continued from previous page
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
Continued on next page
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Table 25 – continued from previous page
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = 25

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Note'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'note'

254 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)
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ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists
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append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)
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getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Paragraph

class pynlpl.formats.folia.Paragraph(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement
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Paragraph element. A structure element. Represents a paragraph and holds all its sentences (and possibly other
structure Whitespace and Quotes).

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
Continued on next page
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Table 26 – continued from previous page
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
Continued on next page
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Table 26 – continued from previous page
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = 3

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Paragraph'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'
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XLINK = False

XMLTAG = 'p'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:
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paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()
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• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.
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generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Part

class pynlpl.formats.folia.Part(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement
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Generic structure element used to mark a part inside another block.

Do not use this for morphology, use Morpheme instead.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
Continued on next page
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Table 27 – continued from previous page
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
Continued on next page
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Table 27 – continued from previous page
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = 35

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Part'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None
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XLINK = False

XMLTAG = 'part'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:
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paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()
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• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.
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generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Quote

class pynlpl.formats.folia.Quote(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement
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Quote: a structure element. For quotes/citations. May hold Word, Sentence or Paragraph data.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?

Continued on next page
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Table 28 – continued from previous page
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
Continued on next page
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Table 28 – continued from previous page
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Division'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Quote'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'quote'
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Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)
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ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists
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append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)
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getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

300 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

302 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Reference

class pynlpl.formats.folia.Reference(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement
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A structural element that denotes a reference, internal or external. Examples are references to footnotes, bibli-
ographies, hyperlinks.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
Continued on next page
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Table 29 – continued from previous page
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
Continued on next page
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Table 29 – continued from previous page
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Reference'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None
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XLINK = False

XMLTAG = 'ref'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:
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paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()
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• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.
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generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Row

class pynlpl.formats.folia.Row(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement
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A row in a Table

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?

Continued on next page
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Table 30 – continued from previous page
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
Continued on next page
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Table 30 – continued from previous page
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Cell'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Table Row'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n'

XLINK = False

XMLTAG = 'row'
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Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)
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ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists
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append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

322 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Sentence

class pynlpl.formats.folia.Sentence(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement
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Sentence element. A structure element. Represents a sentence and holds all its words (Word), and possibly
other structure such as LineBreak, Whitespace and Quote

Method Summary

__init__(doc, *args, **kwargs) Example.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
corrections() Are there corrections in this sentence?
correctwords(originalwords, newwords,
**kwargs)

Generic correction method for words.

count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-
stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
deleteword(word, **kwargs) TODO: Write documentation
description() Obtain the description associated with the element.
division() Obtain the division this sentence is a part of (None

otherwise).
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)

Continued on next page
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Table 31 – continued from previous page
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
insertword(newword, prevword, **kwargs) Inserts a word as a correction after an existing word.
insertwordleft(newword, nextword,
**kwargs)

Inserts a word as a correction before an existing
word.

items([founditems]) Returns a depth-first flat list of all items below this
element (not limited to AbstractElement)

json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a
Python dictionary suitable for serialisation to JSON.

layers([annotationtype, set]) Returns a list of annotation layers found directly un-
der this element, does not include alternative layers

leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
mergewords(newword, *originalwords,
**kwargs)

TODO: Write documentation

next([Class, scope, reverse]) Returns the next element, if it is of the specified type
and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraph() Obtain the paragraph this sentence is a part of (None

otherwise).
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
Continued on next page
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Table 31 – continued from previous page
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
splitword(originalword, *newwords, **kwargs) TODO: Write documentation
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = 8

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Sentence'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0
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OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = ' '

XLINK = False

XMLTAG = 's'

Method Details

__init__(doc, *args, **kwargs)
Example:

sentence = paragraph.append( folia.Sentence)

sentence.append( folia.Word, 'This')
sentence.append( folia.Word, 'is')
sentence.append( folia.Word, 'a')
sentence.append( folia.Word, 'test', space=False)
sentence.append( folia.Word, '.')

Example:

sentence = folia.Sentence( doc, folia.Word(doc, 'This'), folia.Word(doc, 'is
→˓'), folia.Word(doc, 'a'), folia.Word(doc, 'test', space=False), folia.
→˓Word(doc, '.') )
paragraph.append(sentence)

See also:

AbstractElement.__init__()

__init__(doc, *args, **kwargs)
Example:

sentence = paragraph.append( folia.Sentence)

sentence.append( folia.Word, 'This')
sentence.append( folia.Word, 'is')
sentence.append( folia.Word, 'a')
sentence.append( folia.Word, 'test', space=False)
sentence.append( folia.Word, '.')

Example:
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sentence = folia.Sentence( doc, folia.Word(doc, 'This'), folia.Word(doc, 'is
→˓'), folia.Word(doc, 'a'), folia.Word(doc, 'test', space=False), folia.
→˓Word(doc, '.') )
paragraph.append(sentence)

See also:

AbstractElement.__init__()

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)
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ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists
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append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

corrections()
Are there corrections in this sentence?

Returns bool

correctwords(originalwords, newwords, **kwargs)
Generic correction method for words. You most likely want to use the helper functions Sentence.
splitword() , Sentence.mergewords(), deleteword(), insertword() instead

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

deleteword(word, **kwargs)
TODO: Write documentation

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

division()
Obtain the division this sentence is a part of (None otherwise). Shortcut for AbstractElement.
ancestor()

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:
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sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.
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Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

insertword(newword, prevword, **kwargs)
Inserts a word as a correction after an existing word.

This method automatically computes the index of insertion and calls AbstractElement.insert()

Parameters

• newword (Word) – The new word to insert

• prevword (Word) – The word to insert after

Keyword Arguments suggest (bool) – Do a suggestion for correction rather than the default
authoritive correction

See also:

AbstractElement.insert() and AbstractElement.getindex() If you do not want to do
corrections

insertwordleft(newword, nextword, **kwargs)
Inserts a word as a correction before an existing word.

Reverse of Sentence.insertword().

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope
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mergewords(newword, *originalwords, **kwargs)
TODO: Write documentation

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraph()
Obtain the paragraph this sentence is a part of (None otherwise). Shortcut for AbstractElement.
ancestor()

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.
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• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all
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• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..
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sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

splitword(originalword, *newwords, **kwargs)
TODO: Write documentation

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Table

class pynlpl.formats.folia.Table(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

A table consisting of Row elements that in turn consist of Cell elements

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
Continued on next page

344 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

Table 32 – continued from previous page
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
Continued on next page
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Table 32 – continued from previous page
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
Continued on next page
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Table 32 – continued from previous page
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Row'>, <class 'pynlpl.formats.folia.TableHead'>)

ANNOTATIONTYPE = 33

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Table'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'table'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)
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add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.
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Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.
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• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.
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hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:
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import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.
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• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters
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• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:
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for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Term

class pynlpl.formats.folia.Term(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

A term, often used in contect of Entry

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
Continued on next page
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Table 33 – continued from previous page
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
Continued on next page
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Table 33 – continued from previous page
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
Continued on next page
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Table 33 – continued from previous page
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = 38

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Term'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'term'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)
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add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.
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Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.
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• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.
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hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:
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import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.
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• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters
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• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:
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for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.TableHead

class pynlpl.formats.folia.TableHead(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

Encapsulated the header of a table, contains Cell elements

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
Continued on next page
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Table 34 – continued from previous page
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
Continued on next page
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Table 34 – continued from previous page
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
Continued on next page
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Table 34 – continued from previous page
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Row'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Table Header'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'tablehead'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)
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add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.
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Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.
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• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.
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hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:
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import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.
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• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters
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• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:
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for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Text

class pynlpl.formats.folia.Text(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

A full text. This is a high-level element (not to be confused with TextContent!). This element may contain
Division,:class:Paragraph, class:Sentence, etc..

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
Continued on next page
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Table 35 – continued from previous page
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
Continued on next page
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Table 35 – continued from previous page
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
Continued on next page
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Table 35 – continued from previous page
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Division'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.External'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Text Body'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n\n'

XLINK = False

XMLTAG = 'text'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.
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__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)
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annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.
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Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements
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gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)
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json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.
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Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)
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Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Whitespace

class pynlpl.formats.folia.Whitespace(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

Whitespace element, signals a vertical whitespace

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)

Continued on next page
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Table 36 – continued from previous page
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
Continued on next page
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Table 36 – continued from previous page
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.

Continued on next page
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Table 36 – continued from previous page
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

ANNOTATIONTYPE = 6

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Whitespace'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = ''

XLINK = False

XMLTAG = 'whitespace'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.
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__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)
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annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.
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Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements
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gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)
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json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=None, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.
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Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)
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Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Word

class pynlpl.formats.folia.Word(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement, pynlpl.formats.folia.
AllowCorrections

Word (aka token) element. Holds a word/token and all its related token annotations.

Method Summary

__init__(doc, *args, **kwargs) Constructor for words.
accepts(Class[, raiseexceptions, parentinstance])

Continued on next page
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Table 37 – continued from previous page
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
division() Obtain the deepest division this word is a part of,

otherwise return None
domain([set]) Shortcut: returns the FoLiA class of the domain an-

notation (will return only one if there are multiple!)
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspans(type[, set]) Yields span annotation elements of the specified type

that include this word.
generate_id(cls)
getcorrection([set, cls])
getcorrections([set, cls])
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Returns the text delimiter
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
Continued on next page
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Table 37 – continued from previous page
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
lemma([set]) Shortcut: returns the FoLiA class of the lemma an-

notation (will return only one if there are multiple!)
morpheme(index[, set]) Returns a specific morpheme, the n’th morpheme

(given the particular set if specified).
morphemes([set]) Generator yielding all morphemes (in a particular set

if specified).
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraph() Obtain the paragraph this word is a part of, otherwise

return None
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
phoneme(index[, set]) Returns a specific phoneme, the n’th morpheme

(given the particular set if specified).
phonemes([set]) Generator yielding all phonemes (in a particular set

if specified).
pos([set]) Shortcut: returns the FoLiA class of the PoS annota-

tion (will return only one if there are multiple!)
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
Continued on next page
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Table 37 – continued from previous page
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sense([set]) Shortcut: returns the FoLiA class of the sense anno-

tation (will return only one if there are multiple!)
sentence() Obtain the sentence this word is a part of, otherwise

return None
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
split(*newwords, **kwargs)
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = 1

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Word/Token'
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OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = ' '

XLINK = False

XMLTAG = 'w'

Method Details

__init__(doc, *args, **kwargs)
Constructor for words.

See AbstractElement.__init__ for all inherited keyword arguments and parameters.

Keyword arguments:

• space (bool): Indicates whether this token is followed by a space (defaults to True)

Example:

sentence.append( folia.Word, 'This')
sentence.append( folia.Word, 'is')
sentence.append( folia.Word, 'a')
sentence.append( folia.Word, 'test', space=False)
sentence.append( folia.Word, '.')

See also:

AbstractElement.__init__

__init__(doc, *args, **kwargs)
Constructor for words.

See AbstractElement.__init__ for all inherited keyword arguments and parameters.

Keyword arguments:

• space (bool): Indicates whether this token is followed by a space (defaults to True)

Example:
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sentence.append( folia.Word, 'This')
sentence.append( folia.Word, 'is')
sentence.append( folia.Word, 'a')
sentence.append( folia.Word, 'test', space=False)
sentence.append( folia.Word, '.')

See also:

AbstractElement.__init__

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)
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ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists
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append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

division()
Obtain the deepest division this word is a part of, otherwise return None

domain(set=None)
Shortcut: returns the FoLiA class of the domain annotation (will return only one if there are multiple!)

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused
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classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspans(type, set=None)
Yields span annotation elements of the specified type that include this word.

Parameters

• type – The annotation type, can be passed as using any of the AnnotationType
member, or by passing the relevant AbstractSpanAnnotation or
AbstractAnnotationLayer class.

• set (str or None) – Constrain by set

Example:

for chunk in word.findspans(folia.Chunk):
print(" Chunk class=", chunk.cls, " words=")
for word2 in chunk.wrefs(): #print all words in the chunk (of which the

→˓word is a part)
print(word2, end="")

print()

Yields Matching span annotation instances (derived from AbstractSpanAnnotation)

generate_id(cls)

getcorrection(set=None, cls=None)

getcorrections(set=None, cls=None)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Returns the text delimiter

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.
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• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

lemma(set=None)
Shortcut: returns the FoLiA class of the lemma annotation (will return only one if there are multiple!)

morpheme(index, set=None)
Returns a specific morpheme, the n’th morpheme (given the particular set if specified).
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morphemes(set=None)
Generator yielding all morphemes (in a particular set if specified). For retrieving one specific morpheme
by index, use morpheme() instead

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraph()
Obtain the paragraph this word is a part of, otherwise return None

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.
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• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

phoneme(index, set=None)
Returns a specific phoneme, the n’th morpheme (given the particular set if specified).

phonemes(set=None)
Generator yielding all phonemes (in a particular set if specified). For retrieving one specific morpheme by
index, use morpheme() instead

pos(set=None)
Shortcut: returns the FoLiA class of the PoS annotation (will return only one if there are multiple!)

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

sense(set=None)
Shortcut: returns the FoLiA class of the sense annotation (will return only one if there are multiple!)

sentence()
Obtain the sentence this word is a part of, otherwise return None

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

split(*newwords, **kwargs)

stricttext(cls=’current’)
Alias for text() with strict=True
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text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()
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textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

The FoLiA documentation explains the exact semantics and use of these in detail. Make sure to consult it to familiarize
yourself with how the elements should be used.

FoLiA and this library enforce explicit rules about what elements are allowed in what others. Exceptions will be raised
when this is about to be violated.
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4.1.10 Common attributes

The FoLiA paradigm features sets and classes as primary means to represent the actual value (class) of an annotation.
A set often corresponds to a tagset, such as a set of part-of-speech tags, and a class is one selected value in such a set.

The paradigm furthermore introduces other common attributes to set on annotation elements, such as an identifier,
information on the annotator, and more. A full list is provided below:

• element.id (str) - The unique identifier of the element

• element.set (str) - The set the element pertains to.

• element.cls (str) - The assigned class, i.e. the actual value of the annotation, defined in the set. Classes
correspond with tagsets in this case of many annotation types. Note that since class is already a reserved keyword
in python, the library consistently uses cls everywhere.

• element.annotator (str) - The name or ID of the annotator who added/modified this element

• element.annotatortype - The type of annotator, can be either folia.AnnotatorType.MANUAL or
folia.AnnotatorType.AUTO

• element.confidence (float) - A confidence value expressing

• element.datetime (datetime.datetime) - The date and time when the element was added/modified.

• element.n (str) - An ordinal label, used for instance in enumerated list contexts, numbered sections, etc..

The following attributes are specific to a speech context:

• element.src (str) - A URL or filename referring the an audio or video file containing the speech. Access
this attribute using the element.speaker_src() method, as it is inheritable from ancestors.

• element.speaker (str) - The name of ID of the speaker. Access this attribute using the element.
speech_speaker() method, as it is inheritable from ancestors.

• element.begintime (4-tuple) - The time in the above source fragment when the phonetic content of this
element starts, this is a (hours, minutes,seconds,milliseconds) tuple.

• element.endtime (4-tuple) - The time in the above source fragment when the phonetic content of this
element ends, this is a (hours, minutes,seconds,milliseconds) tuple.

Attributes that are not available for certain elements, or not set, default to None.

4.1.11 Annotations

As FoLiA is a format for linguistic annotation, accessing annotation is one of the primary functions
of this library. This can be done using the methods AllowTokenAnnotation.annotations() or
AllowTokenAnnotation.annotation() that are available on many FoLiA elements. These methods are
similar to the AbstractElement.select() method except they will raise a NoSuchAnnotation exception
when no such annotation is found. The difference between annotation() and annotations() is that the for-
mer will grab only one and raise an exception if there are more between which it can’t disambiguate, whereas the
second is a generator, but will still raise an exception if none is found:

for word in doc.words():
try:

pos = word.annotation(folia.PosAnnotation, 'http://somewhere/CGN')
lemma = word.annotation(folia.LemmaAnnotation)
print("Word: ", word)
print("ID: ", word.id)
print("PoS-tag: " , pos.cls)
print("PoS Annotator: ", pos.annotator)

(continues on next page)
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(continued from previous page)

print("Lemma-tag: " , lemma.cls)
except folia.NoSuchAnnotation:

print("No PoS or Lemma annotation")

Note that the second argument of AllowTokenAnnotation.annotation(), AllowTokenAnnotation.
annotations() or AbstractElement.select() can be used to restrict your selection to a certain set. In the
above example we restrict ourselves to Part-of-Speech tags in the CGN set.

Token Annotation Types

The following token annotation elements are available in FoLiA, they are embedded under a structural element (not
necessarily a token, despite the name).

DomainAnnotation Domain annotation: an extended token annotation ele-
ment

PosAnnotation Part-of-Speech annotation: a token annotation element
LangAnnotation Language annotation: an extended token annotation el-

ement
LemmaAnnotation Lemma annotation: a token annotation element
SenseAnnotation Sense annotation: a token annotation element
SubjectivityAnnotation Subjectivity annotation/Sentiment analysis: a token an-

notation element

pynlpl.formats.folia.DomainAnnotation

class pynlpl.formats.folia.DomainAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractExtendedTokenAnnotation

Domain annotation: an extended token annotation element

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
Continued on next page
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Table 39 – continued from previous page
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
Continued on next page
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Table 39 – continued from previous page
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 11

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Domain'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False
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REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'domain'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:
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paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list
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findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.PosAnnotation

class pynlpl.formats.folia.PosAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTokenAnnotation

Part-of-Speech annotation: a token annotation element

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page
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Table 40 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page
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Table 40 – continued from previous page
relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.HeadFeature'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 9

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Part-of-Speech'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 1

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False
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PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'pos'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!
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Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list
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findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

446 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.LangAnnotation

class pynlpl.formats.folia.LangAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractExtendedTokenAnnotation

Language annotation: an extended token annotation element

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page
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Table 41 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page
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Table 41 – continued from previous page
relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 31

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Language'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 1

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False
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PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'lang'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!
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Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list
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findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

4.1. Reading FoLiA 455



PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.LemmaAnnotation

class pynlpl.formats.folia.LemmaAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTokenAnnotation

Lemma annotation: a token annotation element

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page
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Table 42 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page
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Table 42 – continued from previous page
relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 10

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Lemma'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 1

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False
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PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'lemma'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!
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Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list
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findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SenseAnnotation

class pynlpl.formats.folia.SenseAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTokenAnnotation

Sense annotation: a token annotation element

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page
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Table 43 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page
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Table 43 – continued from previous page
relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.SynsetFeature'>)

ANNOTATIONTYPE = 12

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Semantic Sense'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

472 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'sense'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!
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Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list
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findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

476 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SubjectivityAnnotation

class pynlpl.formats.folia.SubjectivityAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTokenAnnotation

Subjectivity annotation/Sentiment analysis: a token annotation element

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page
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Table 44 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page
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Table 44 – continued from previous page
relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 19

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Subjectivity/Sentiment'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 1

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False
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PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'subjectivity'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!
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Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list
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findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

Text and phonetic annotation

The actual text of an element, or a phonetic textual representation, are also considered annotations themselves.

TextContent Text content element (t), holds text to be associated
with whatever element the text content element is a child
of.

PhonContent Phonetic content element (ph), holds a phonetic rep-
resentation to be associated with whatever element the
phonetic content element is a child of.

pynlpl.formats.folia.TextContent

class pynlpl.formats.folia.TextContent(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

Text content element (t), holds text to be associated with whatever element the text content element is a child
of.

Text content elements on structure elements like Paragraph and Sentence are by definition untokenised.
Only on Word` level and deeper they are by definition tokenised.

Text content elements can specify offset that refer to text at a higher parent level. Use the following keyword
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arguments:

• ref=: The instance to point to, this points to the element holding the text content element, not the text
content element itself.

• offset=: The offset where this text is found, offsets start at 0

Method Summary

__init__(doc, *args, **kwargs) Example.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

finddefaultreference() Find the default reference for text offsets: The par-
ent of the current textcontent’s parent (counting only
Structure Elements and Subtoken Annotation Ele-
ments)

findreplaceables(parent, set, **kwargs) (Method for internal usage, see AbstractElement)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
getreference([validate]) Returns and validates the Text Content’s reference.
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)

Continued on next page
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Table 46 – continued from previous page
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) (Method for internal usage, see AbstractElement)
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([normalize_spaces]) Obtain the text (unicode instance)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()

Continued on next page
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Table 46 – continued from previous page
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

ANNOTATIONTYPE = 0

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Text'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (1, 2, 3, 5, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = True

TEXTDELIMITER = None

XLINK = True

XMLTAG = 't'

Method Details

__init__(doc, *args, **kwargs)
Example:

text = folia.TextContent(doc, 'test')
text = folia.TextContent(doc, 'test',cls='original')

__init__(doc, *args, **kwargs)
Example:
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text = folia.TextContent(doc, 'test')
text = folia.TextContent(doc, 'test',cls='original')

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

496 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

finddefaultreference()
Find the default reference for text offsets: The parent of the current textcontent’s parent (counting only
Structure Elements and Subtoken Annotation Elements)

Note: This returns not a TextContent element, but its parent. Whether the textcontent actually exists is
checked later/elsewhere

classmethod findreplaceables(parent, set, **kwargs)
(Method for internal usage, see AbstractElement)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

getreference(validate=True)
Returns and validates the Text Content’s reference. Raises UnresolvableTextContent when invalid
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gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope
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next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
(Method for internal usage, see AbstractElement)

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()
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phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.
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resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.
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speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(normalize_spaces=False)
Obtain the text (unicode instance)

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()
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xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.PhonContent

class pynlpl.formats.folia.PhonContent(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

Phonetic content element (ph), holds a phonetic representation to be associated with whatever element the
phonetic content element is a child of.

Phonetic content elements behave much like text content elements.

Phonetic content elements can specify offset that refer to phonetic content at a higher parent level. Use the
following keyword arguments:

• ref=: The instance to point to, this points to the element holding the text content element, not the text
content element itself.

• offset=: The offset where this text is found, offsets start at 0

Method Summary

__init__(doc, *args, **kwargs) Example.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)

Continued on next page
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Table 47 – continued from previous page
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

finddefaultreference() Find the default reference for text offsets: The par-
ent of the current textcontent’s parent (counting only
Structure Elements and Subtoken Annotation Ele-
ments)

findreplaceables(parent, set, **kwargs) (Method for internal usage, see AbstractElement)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
getreference([validate]) Return and validate the Phonetic Content’s reference.
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) (Method for internal usage, see AbstractElement)
phon() Obtain the actual phonetic representation (uni-

code/str instance)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page
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Table 47 – continued from previous page
relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setphon(phon) Set the representation for the phonetic content (uni-

code instance), called whenever phon= is passed as a
keyword argument to an element constructor

settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>)

ANNOTATIONTYPE = 18

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Phonetic Content'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0
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OPTIONAL_ATTRIBS = (1, 2, 3, 5, 11)

PHONCONTAINER = True

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'ph'

Method Details

__init__(doc, *args, **kwargs)
Example:

phon = folia.PhonContent(doc, 'hl')
phon = folia.PhonContent(doc, 'hl', cls="original")

__init__(doc, *args, **kwargs)
Example:

phon = folia.PhonContent(doc, 'hl')
phon = folia.PhonContent(doc, 'hl', cls="original")

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()
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addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.
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Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

finddefaultreference()
Find the default reference for text offsets: The parent of the current textcontent’s parent (counting only
Structure Elements and Subtoken Annotation Elements)

Note: This returns not a TextContent element, but its parent. Whether the textcontent actually exists is
checked later/elsewhere

classmethod findreplaceables(parent, set, **kwargs)
(Method for internal usage, see AbstractElement)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

getreference(validate=True)
Return and validate the Phonetic Content’s reference. Raises UnresolvableTextContent when invalid

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.
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Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
(Method for internal usage, see AbstractElement)

phon()
Obtain the actual phonetic representation (unicode/str instance)
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phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.
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resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setphon(phon)
Set the representation for the phonetic content (unicode instance), called whenever phon= is passed as a
keyword argument to an element constructor

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text
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• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.
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textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:
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for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

Text is retrieved as string using AbstractElement.text(), or as element using Phonetic content is retrieved as
string using AbstractElement.text(), or as element using AbstractElement.textcontent().

Note: These are the only elements for which FoLiA prescribes a default set and a default class (current). This will
only be relevant if you work with multiple text layers (current text vs OCRed text for instance) or with corrections of
orthography or phonetics.

Span Annotation

FoLiA distinguishes token annotation and span annotation, token annotation is embedded in-line within a structural
element, and the annotation therefore pertains to that structural element, whereas span annotation is stored in a stand-
off annotation layer outside the element and refers back to it. Span annotation elements typically span over multiple
structural elements, they are all subclasses of AbstractSpanAnnotation.

We will discuss three ways of accessing span annotation. As stated, span annotation is contained within an annotation
layer (a subclass of AbstractAnnotationLayer) of a certain structure element, often a sentence. In the first
way of accessing span annotation, we do everything explicitly: We first obtain the layer, then iterate over the span
annotation elements within that layer, and finally iterate over the words to which the span applies. Assume we have a
sentence and we want to print all the named entities in it, assuming the entities layer is embedded at sentence level
as is conventional:

for layer in sentence.select(folia.EntitiesLayer):
for entity in layer.select(folia.Entity):

print(" Entity class=", entity.cls, " words=")
for word in entity.wrefs():

print(word, end="") #print without newline
print() #print newline

The AbstractSpanAnnotation.wrefs() method, available on all span annotation elements, will return a list
of all words (as well as morphemes and phonemes) over which a span annotation element spans.

This first way is rather verbose. The second way of accessing span annotation takes another approach, using the
Word.findspans() method available on Word instances. Here we start from a word and seek span annotations
in which that word occurs. Assume we have a word and want to find chunks it occurs in:

for chunk in word.findspans(folia.Chunk):
print(" Chunk class=", chunk.cls, " words=")
for word2 in chunk.wrefs(): #print all words in the chunk (of which the word is a

→˓part)
print(word2, end="")

print()

The Word.findspans()method can be called with either the class of a Span Annotation Element, such as Chunk,
or with the class of the layer, such as ChunkingLayer.
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The third way allows us to look for span elements given an annotation layer and words. In other words, it checks if one
or more words form a span. This is an exact match and not a sub-part match as in the previously described method.
To do this, we use use the AbstractAnnotationLayer.findspan method, available on all annotation layers:

for span in annotationlayer.findspan(word1,word2):
print("Class: ", span.cls)
print("Text: ", span.text()) #same for every span here

Span Annotation Types

This section lists the available Span annotation elements, the layer that contains them is explicitly mentioned as well.

Some of the span annotation elements are complex and take span role elements as children, these are normal span an-
notation elements that occur on a within another span annotation (of a particular type) and can not be used standalone.

FoLiA distinguishes the following span annotation elements:

Chunk Chunk element, span annotation element to be used in
ChunkingLayer

CoreferenceChain Coreference chain.
Dependency Span annotation element to encode dependency rela-

tions
Entity Entity element, for entities such as named entities,

multi-word expressions, temporal entities.
Observation Observation.
Predicate Predicate, used within SemanticRolesLayer,

takes SemanticRole annotations as children, but has
its own annotation type and separate declaration

Sentiment Sentiment.
Statement Statement.
SyntacticUnit Syntactic Unit, span annotation element to be used in

SyntaxLayer
SemanticRole Semantic Role
TimeSegment A time segment

pynlpl.formats.folia.Chunk

class pynlpl.formats.folia.Chunk(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Chunk element, span annotation element to be used in ChunkingLayer

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
Continued on next page
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Table 49 – continued from previous page
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.

Continued on next page
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Table 49 – continued from previous page
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.

Continued on next page
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Table 49 – continued from previous page
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 14

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Chunk'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'chunk'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

518 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters
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• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.
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hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())
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Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:
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word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)
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remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.
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setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.
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• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.
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Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.CoreferenceChain

class pynlpl.formats.folia.CoreferenceChain(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Coreference chain. Holds CoreferenceLink instances.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
Continued on next page
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Table 50 – continued from previous page
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

Continued on next page
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Table 50 – continued from previous page
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.CoreferenceLink'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 28

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Coreference Chain'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True
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REQUIRED_ATTRIBS = None

REQUIRED_DATA = (<class 'pynlpl.formats.folia.CoreferenceLink'>,)

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'coreferencechain'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)
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ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

4.1. Reading FoLiA 531



PyNLPl Documentation, Release 1.2.8

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)
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By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.
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Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
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you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters
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• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found
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speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
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you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Dependency

class pynlpl.formats.folia.Dependency(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

538 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

Span annotation element to encode dependency relations

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
dependent() Returns the dependent of the dependency relation.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)

Continued on next page
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Table 51 – continued from previous page
head() Returns the head of the dependency relation.
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.

Continued on next page
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Table 51 – continued from previous page
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.DependencyDependent'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 22

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Dependency'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = (<class 'pynlpl.formats.folia.DependencyDependent'>, <class 'pynlpl.formats.folia.Headspan'>)

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'dependency'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.
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__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

542 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

dependent()
Returns the dependent of the dependency relation. Instance of DependencyDependent

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused
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classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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head()
Returns the head of the dependency relation. Instance of Headspan

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.
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Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.
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This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.
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• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.
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Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)
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Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Entity

class pynlpl.formats.folia.Entity(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Entity element, for entities such as named entities, multi-word expressions, temporal entities. This is a span
annotation element to be used in EntitiesLayer

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
Continued on next page
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Table 52 – continued from previous page
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
Continued on next page
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Table 52 – continued from previous page
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

552 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 15

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Entity'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'entity'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?
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Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

554 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)
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By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope
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next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)
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Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments
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• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme
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settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()
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Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:
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for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Observation

class pynlpl.formats.folia.Observation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Observation.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.

Continued on next page
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Table 53 – continued from previous page
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.

Continued on next page
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Table 53 – continued from previous page
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 43

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Observation'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False
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SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'observation'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.
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Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.
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If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.
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Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

568 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)
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Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Predicate

class pynlpl.formats.folia.Predicate(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Predicate, used within SemanticRolesLayer, takes SemanticRole annotations as children, but has its
own annotation type and separate declaration
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Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
Continued on next page
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Table 54 – continued from previous page
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
Continued on next page

4.1. Reading FoLiA 575



PyNLPl Documentation, Release 1.2.8

Table 54 – continued from previous page
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.SemanticRole'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 42

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Predicate'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'predicate'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)
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add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()
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context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

578 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)
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json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.
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• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters
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• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:
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for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Sentiment

class pynlpl.formats.folia.Sentiment(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Sentiment. Takes span roles Headspan, Source and Target as children

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page
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Table 55 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
Continued on next page
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Table 55 – continued from previous page
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PolarityFeature'>, <class 'pynlpl.formats.folia.Source'>, <class 'pynlpl.formats.folia.StrengthFeature'>, <class 'pynlpl.formats.folia.Target'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 44
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AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Sentiment'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'sentiment'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError
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addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash
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correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters
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• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters
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• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:
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phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element
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• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.
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Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.
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textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...
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__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Statement

class pynlpl.formats.folia.Statement(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Statement. Takes span roles Headspan, Source and Relation as children

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)

Continued on next page
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Table 56 – continued from previous page
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.

Continued on next page
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Table 56 – continued from previous page
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Relation'>, <class 'pynlpl.formats.folia.Source'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 45

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Statement'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False
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TEXTDELIMITER = None

XLINK = False

XMLTAG = 'statement'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)
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annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:
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sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SyntacticUnit

class pynlpl.formats.folia.SyntacticUnit(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Syntactic Unit, span annotation element to be used in SyntaxLayer
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Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
Continued on next page
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Table 57 – continued from previous page
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
Continued on next page
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Table 57 – continued from previous page
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.SyntacticUnit'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 13

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Syntactic Unit'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'su'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)
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add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()
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context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int
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getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)
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json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.
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• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters
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• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:
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for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SemanticRole

class pynlpl.formats.folia.SemanticRole(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Semantic Role

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page
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Table 58 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
Continued on next page
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Table 58 – continued from previous page
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 29
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AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Semantic Role'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'semrole'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError
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addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash
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correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters
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• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters
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• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:
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phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element
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• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.
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Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.
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textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...
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__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.TimeSegment

class pynlpl.formats.folia.TimeSegment(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

A time segment

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)

Continued on next page
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Table 59 – continued from previous page
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.

Continued on next page
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Table 59 – continued from previous page
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.ActorFeature'>, <class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.BegindatetimeFeature'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.EnddatetimeFeature'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 23

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Time Segment'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False
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TEXTDELIMITER = None

XLINK = False

XMLTAG = 'timesegment'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)
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annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:
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sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

642 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

These are placed in the following annotation layers:

ChunkingLayer Chunking Layer: Annotation layer for Chunk span an-
notation elements

CoreferenceLayer Syntax Layer: Annotation layer for SyntacticUnit
span annotation elements

DependenciesLayer Dependencies Layer: Annotation layer for
Dependency span annotation elements.

EntitiesLayer Entities Layer: Annotation layer for Entity span an-
notation elements.

Continued on next page

4.1. Reading FoLiA 643



PyNLPl Documentation, Release 1.2.8

Table 60 – continued from previous page
ObservationLayer Observation Layer: Annotation layer for

Observation span annotation elements.
SentimentLayer Sentiment Layer: Annotation layer for Sentiment

span annotation elements, used for sentiment analysis.
StatementLayer Statement Layer: Annotation layer for Statement

span annotation elements, used for attribution annota-
tion.

SyntaxLayer Syntax Layer: Annotation layer for SyntacticUnit
span annotation elements

SemanticRolesLayer Syntax Layer: Annotation layer for SemanticRole
span annotation elements

TimingLayer Timing layer: Annotation layer for TimeSegment
span annotation elements.

pynlpl.formats.folia.ChunkingLayer

class pynlpl.formats.folia.ChunkingLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Chunking Layer: Annotation layer for Chunk span annotation elements

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
Continued on next page
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Table 61 – continued from previous page
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

Continued on next page
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Table 61 – continued from previous page
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Chunk'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

ANNOTATIONTYPE = 14

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None
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REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'chunking'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements
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ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.
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Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.
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Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.
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Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.
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See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments
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• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters
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• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.
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textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()
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pynlpl.formats.folia.CoreferenceLayer

class pynlpl.formats.folia.CoreferenceLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Syntax Layer: Annotation layer for SyntacticUnit span annotation elements

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
Continued on next page
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Table 62 – continued from previous page
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True

Continued on next page
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Table 62 – continued from previous page
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.CoreferenceChain'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

ANNOTATIONTYPE = 28

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'coreferences'
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Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.
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Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.
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feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
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CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

662 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters
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• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope
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select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

4.1. Reading FoLiA 665



PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the

666 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.DependenciesLayer

class pynlpl.formats.folia.DependenciesLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Dependencies Layer: Annotation layer for Dependency span annotation elements. For dependency entities.
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Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
Continued on next page
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Table 63 – continued from previous page
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
Continued on next page
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Table 63 – continued from previous page
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Dependency'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

ANNOTATIONTYPE = 22

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'dependencies'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)
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classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters
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• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused
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classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.
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• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True
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text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()
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textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.EntitiesLayer

class pynlpl.formats.folia.EntitiesLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Entities Layer: Annotation layer for Entity span annotation elements. For named entities.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
Continued on next page
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Table 64 – continued from previous page
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
Continued on next page
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Table 64 – continued from previous page
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.

Continued on next page
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Table 64 – continued from previous page
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Entity'>, <class 'pynlpl.formats.folia.ForeignData'>)

ANNOTATIONTYPE = 15

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'entities'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters
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• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.
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append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.
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findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.
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Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters
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• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.ObservationLayer

class pynlpl.formats.folia.ObservationLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Observation Layer: Annotation layer for Observation span annotation elements.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

Continued on next page
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Table 65 – continued from previous page
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
Continued on next page
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Table 65 – continued from previous page
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Observation'>)

ANNOTATIONTYPE = 43

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0
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OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'observations'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.
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alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element
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copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.
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hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())
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Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:
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word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)
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remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.
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setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:
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word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:
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for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SentimentLayer

class pynlpl.formats.folia.SentimentLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Sentiment Layer: Annotation layer for Sentiment span annotation elements, used for sentiment analysis.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.

Continued on next page
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Table 66 – continued from previous page
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.

Continued on next page
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Table 66 – continued from previous page
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Sentiment'>)

ANNOTATIONTYPE = 44

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None
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TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'sentiments'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!
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Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError
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description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

708 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all
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• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).
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Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)
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rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.
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The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.StatementLayer

class pynlpl.formats.folia.StatementLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Statement Layer: Annotation layer for Statement span annotation elements, used for attribution annotation.
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Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
Continued on next page
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Table 67 – continued from previous page
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
Continued on next page
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Table 67 – continued from previous page
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Statement'>)

ANNOTATIONTYPE = 45

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'statements'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

4.1. Reading FoLiA 717



PyNLPl Documentation, Release 1.2.8

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters
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• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused
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classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.
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• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

4.1. Reading FoLiA 721



PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True
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text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()
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textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SyntaxLayer

class pynlpl.formats.folia.SyntaxLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Syntax Layer: Annotation layer for SyntacticUnit span annotation elements

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
Continued on next page
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Table 68 – continued from previous page
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
Continued on next page
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Table 68 – continued from previous page
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.

Continued on next page
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Table 68 – continued from previous page
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.SyntacticUnit'>)

ANNOTATIONTYPE = 13

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'syntax'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters
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• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.
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append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.
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findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.
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Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters
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• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SemanticRolesLayer

class pynlpl.formats.folia.SemanticRolesLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Syntax Layer: Annotation layer for SemanticRole span annotation elements

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

Continued on next page
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Table 69 – continued from previous page
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
Continued on next page
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Table 69 – continued from previous page
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Predicate'>, <class 'pynlpl.formats.folia.SemanticRole'>)

ANNOTATIONTYPE = 29

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0
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OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'semroles'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.
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alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element
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copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.
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hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())
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Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:
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word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)
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remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.
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setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:
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word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:
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for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.TimingLayer

class pynlpl.formats.folia.TimingLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Timing layer: Annotation layer for TimeSegment span annotation elements.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.

Continued on next page
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Table 70 – continued from previous page
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.

Continued on next page
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Table 70 – continued from previous page
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.TimeSegment'>)

ANNOTATIONTYPE = 23

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None
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TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'timing'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!
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Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

754 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.
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• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all
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• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).
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Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)
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rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.
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The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

Some span annotation elements take span roles, depending on their type:

CoreferenceLink Coreference link.
DependencyDependent Span role element that marks the dependent in a depen-

dency relation.
Continued on next page
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Table 71 – continued from previous page
Headspan The headspan role is used to mark the head of a span

annotation.

pynlpl.formats.folia.CoreferenceLink

class pynlpl.formats.folia.CoreferenceLink(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanRole

Coreference link. Used in CoreferenceChain

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
Continued on next page
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Table 72 – continued from previous page
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
Continued on next page
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Table 72 – continued from previous page
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.LevelFeature'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.ModalityFeature'>, <class 'pynlpl.formats.folia.TimeFeature'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 28

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Coreference Link'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 4, 5)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False
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XMLTAG = 'coreferencelink'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found
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annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list
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findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
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want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)
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The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()
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postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

770 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found
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stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element
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See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.DependencyDependent

class pynlpl.formats.folia.DependencyDependent(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanRole

Span role element that marks the dependent in a dependency relation. Used in Dependency .

Headspan in turn is used to mark the head of a dependency relation.
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Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
Continued on next page

774 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

Table 73 – continued from previous page
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
Continued on next page
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Table 73 – continued from previous page
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Dependent'

OCCURRENCES = 1

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 4, 5)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'dep'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

776 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()
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context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int
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getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)
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json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.
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• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters
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• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:
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for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Headspan

class pynlpl.formats.folia.Headspan(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanRole

The headspan role is used to mark the head of a span annotation.

It can be used in various contexts, for instance to mark the head of a Dependency . It is allowed by most span
annotations.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
Continued on next page
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Table 74 – continued from previous page
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
Continued on next page
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Table 74 – continued from previous page
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)
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ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Head'

OCCURRENCES = 1

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 4, 5)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'hd'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError
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addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash
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correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters
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• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

4.1. Reading FoLiA 791



PyNLPl Documentation, Release 1.2.8

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:
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phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element
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• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.
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Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

4.1. Reading FoLiA 795



PyNLPl Documentation, Release 1.2.8

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...
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__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.2 Editing FoLiA

4.2.1 Creating a new document

Creating a new FoliA document, rather than loading an existing one from file, is done by explicitly providing the ID
for the new document in the Document constructor:

doc = folia.Document(id='example')

4.2.2 Declarations

Whenever you add a new type of annotation, or a different set, to a FoLiA document, you have to first declare it. This
is done using the Document.declare() method. It takes as arguments the annotation type, the set, and you can
optionally pass keyword arguments to annotator= and annotatortype= to set defaults.

An example for Part-of-Speech annotation:

doc.declare(folia.PosAnnotation, 'http://somewhere/brown-tag-set')

An example with a default annotator:

doc.declare(folia.PosAnnotation, 'http://somewhere/brown-tag-set', annotator='proycon
→˓', annotatortype=folia.AnnotatorType.MANUAL)

Any additional sets for Part-of-Speech would have to be explicitly declared as well. To check if a particular annotation
type and set is declared, use the Document.declared() method.

4.2.3 Adding structure

Assuming we begin with an empty document, we should first add a Text element. Then we can add paragraphs,
sentences, or other structural elements. The AbstractElement.add() method adds new children to an element:

text = doc.add(folia.Text)
paragraph = text.add(folia.Paragraph)
sentence = paragraph.add(folia.Sentence)
sentence.add(folia.Word, 'This')
sentence.add(folia.Word, 'is')
sentence.add(folia.Word, 'a')
sentence.add(folia.Word, 'test')
sentence.add(folia.Word, '.')

Note: The AbstractElement.add() method is actually a wrapper around AbstractElement.append(),
which takes the exact same arguments. It performs extra checks and works for both span annotation as well as token
annotation. Using append() will be faster though.
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4.2.4 Adding annotations

Adding annotations, or any elements for that matter, is done using the AbstractElement.add() method on the
intended parent element. We assume that the annotations we add have already been properly declared, otherwise an
exception will be raised as soon as add() is called. Let’s build on the previous example:

#First we grab the fourth word, 'test', from the sentence
word = sentence.words(3)

#Add Part-of-Speech tag
word.add(folia.PosAnnotation, set='brown-tagset',cls='n')

#Add lemma
lemma.add(folia.LemmaAnnotation, cls='test')

Note that in the above examples, the add() method takes a class as first argument, and subsequently takes keyword
arguments that will be passed to the classes’ constructor.

A second way of using AbstractElement.add() is by simply passing a fully instantiated child element, thus
constructing it prior to adding. The following is equivalent to the above example, as the previous method is merely a
shortcut for convenience:

#First we grab the fourth word, 'test', from the sentence
word = sentence.words(3)

#Add Part-of-Speech tag
word.add( folia.PosAnnotation(doc, set='brown-tagset',cls='n') )

#Add lemma
lemma.add( folia.LemmaAnnotation(doc , cls='test') )

The AbstractElement.add() method always returns that which was added, allowing it to be chained.

In the above example we first explicitly instantiate a PosAnnotation and a LemmaAnnotation. Instantiation of
any FoLiA element (always Python class subclassed off AbstractElement) follows the following pattern:

Class(document, *children, **kwargs)

Note: See AbstractElement.__init__() for all details on construction

Note that the document has to be passed explicitly as first argument to the constructor.

The common attributes are set using equally named keyword arguments:

• id=

• cls=

• set=

• annotator=

• annotatortype=

• confidence=

• src=

• speaker=
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• begintime=

• endtime=

Not all attributes are allowed for all elements, and certain attributes are required for certain elements. ValueError
exceptions will be raised when these constraints are not met.

Instead of setting id. you can also set the keyword argument generate_id_in and pass it another element, an
ID will be automatically generated, based on the ID of the element passed. When you use the first method of adding
elements, instantiation with generate_id_in will take place automatically behind the scenes when applicable and
when id is not explicitly set.

Any extra non-keyword arguments should be FoLiA elements and will be appended as the contents of the element,
i.e. the children or subelements. Instead of using non-keyword arguments, you can also use the keyword argument
content and pass a list. This is a shortcut made merely for convenience, as Python obliges all non-keyword argu-
ments to come before the keyword-arguments, which if often aesthetically unpleasing for our purposes. Example of
this use case will be shown in the next section.

4.2.5 Adding span annotation

Adding span annotation is easy with the FoLiA library. As you know, span annotation uses a stand-off annotation
embedded in annotation layers. These layers are in turn embedded in structural elements such as sentences. However,
the AbstractElement.add() method abstracts over this. Consider the following example of a named entity:

doc.declare(folia.Entity, "https://raw.githubusercontent.com/proycon/folia/master/
→˓setdefinitions/namedentities.foliaset.xml")

sentence = text.add(folia.Sentence)
sentence.add(folia.Word, 'I',id='example.s.1.w.1')
sentence.add(folia.Word, 'saw',id='example.s.1.w.2')
sentence.add(folia.Word, 'the',id='example.s.1.w.3')
word = sentence.add(folia.Word, 'Dalai',id='example.s.1.w.4')
word2 =sentence.add(folia.Word, 'Lama',id='example.s.1.w.5')
sentence.add(folia.Word, '.', id='example.s.1.w.6')

word.add(folia.Entity, word, word2, cls="per")

To make references to the words, we simply pass the word instances and use the document’s index to obtain them.
Note also that passing a list using the keyword argument contents is wholly equivalent to passing the non-keyword
arguments separately:

word.add(folia.Entity, cls="per", contents=[word,word2])

In the next example we do things more explicitly. We first create a sentence and then add a syntax parse, consisting of
nested elements:

doc.declare(folia.SyntaxLayer, 'some-syntax-set')

sentence = text.add(folia.Sentence)
sentence.add(folia.Word, 'The',id='example.s.1.w.1')
sentence.add(folia.Word, 'boy',id='example.s.1.w.2')
sentence.add(folia.Word, 'pets',id='example.s.1.w.3')
sentence.add(folia.Word, 'the',id='example.s.1.w.4')
sentence.add(folia.Word, 'cat',id='example.s.1.w.5')
sentence.add(folia.Word, '.', id='example.s.1.w.6')

#Adding Syntax Layer

(continues on next page)
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(continued from previous page)

layer = sentence.add(folia.SyntaxLayer)

#Adding Syntactic Units
layer.add(

folia.SyntacticUnit(self.doc, cls='s', contents=[
folia.SyntacticUnit(self.doc, cls='np', contents=[

folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.1'], cls='det'),
folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.2'], cls='n'),

]),
folia.SyntacticUnit(self.doc, cls='vp', contents=[

folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.3'], cls='v')
folia.SyntacticUnit(self.doc, cls='np', contents=[

folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.4'], cls=
→˓'det'),

folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.5'], cls='n
→˓'),

]),
]),

folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.6'], cls='fin')
])

)

Note: The lower-level AbstractElement.append() method would have had the same effect in the above
syntax tree sample.

4.2.6 Deleting annotations

Any element can be deleted by calling the AbstractElement.remove() method on its parent. Suppose we want
to delete word:

word.parent.remove(word)

4.2.7 Copying annotations

A deep copy can be made of any element by calling its AbstractElement.copy() method:

word2 = word.copy()

The copy will be without parent and document. If you intend to associate a copy with a new document, then copy as
follows instead:

word2 = word.copy(newdoc)

If you intend to attach the copy somewhere in the same document, you may want to add a suffix for any identifiers in
its scope, since duplicate identifiers are not allowed and would raise an exception. This can be specified as the second
argument:

word2 = word.copy(doc, ".copy")
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4.3 Searching in a FoLiA document

If you have loaded a FoLiA document into memory, you may want to search for a particular annotations.
You can of course loop over all structural and annotation elements using AbstractElement.select(),
AllowTokenAnnotation.annotation() and AllowTokenAnnotation.annotations(). Addition-
ally, Word.findspans() and AbstractAnnotationLayer.findspan() are useful methods of finding
span annotations covering particular words, whereas AbstractSpanAnnotation.wrefs() does the reverse
and finds the words for a given span annotation element. In addition to these main methods of navigation and selec-
tion, there is higher-level function available for searching, this uses the FoLiA Query Language (FQL) or the Corpus
Query Language (CQL).

These two languages are part of separate libraries that need to be imported:

from pynlpl.formats import fql, cql

4.3.1 Corpus Query Language (CQL)

CQL is the easier-language of the two and most suitable for corpus searching. It is, however, less flexible than FQL,
which is designed specifically for FoLiA and can not just query, but also manipulate FoLiA documents in great detail.

CQL was developed for the IMS Corpus Workbench, at Stuttgart Univeristy, and is implemented in Sketch Engine,
who provide good CQL documentation.

CQL has to be converted to FQL first, which is then executed on the given document. This is a simple example
querying for the word “house”:

doc = folia.Document(file="/path/to/some/document.folia.xml")
query = fql.Query(cql.cql2fql('"house"'))
for word in query(doc):

print(word) #these will be folia.Word instances (all matching house)

Multiple words can be queried:

query = fql.Query(cql.cql2fql('"the" "big" "house"'))
for word1,word2,word3 in query(doc):

print(word1, word2,word3)

Queries may contain wildcard expressions to match multiple text patterns. Gaps can be specified using []. The
following will match any three word combination starting with the and ending with something that starts with house.
It will thus match things like “the big house” or “the small household”:

query = fql.Query(cql.cql2fql('"the" [] "house.*"'))
for word1,word2,word3 in query(doc):

...

We can make the gap optional with a question mark, it can be lenghtened with + or * , like regular expressions:

query = fql.Query(cql.cql2fql('"the" []? "house.*"'))
for match in query(doc):

print("We matched ", len(match), " words")

Querying is not limited to text, but all of FoLiA’s annotations can be used. To force our gap consist of one or more
adjectives, we do:
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query = fql.Query(cql.cql2fql('"the" [ pos = "a" ]+ "house.*"'))
for match in query(doc):

...

The original CQL attribute here is tag rather than pos, this can be used too. In addition, all FoLiA element types can
be used! Just use their FoLiA tagname.

Consult the CQL documentation for more. Do note that CQL is very word/token centered, for searching other types
of elements, use FQL instead.

4.3.2 FoLiA Query Language (FQL)

FQL is documented here, a full overview is beyond the scope of this documentation. We will just introduce some basic
selection queries so you can develop an initial impression of the language’s abilities.

All FQL processing is done via the following class, as already seen in the previous section:

Query This class represents an FQL query.

pynlpl.formats.fql.Query

class pynlpl.formats.fql.Query(q, context=<pynlpl.formats.fql.Context object>)
Bases: object

This class represents an FQL query.

Selecting a word with a particular text is done as follows, doc is an instance of pynlpl.formats.folia.
Document:

query = fql.Query('SELECT w WHERE text = "house"')
for word in query(doc):

print(word) #this will be an instance of folia.Word

Regular expression matching can be done using the MATCHES operator:

query = fql.Query('SELECT w WHERE text MATCHES "^house.*$"')
for word in query(doc):

print(word)

The classes of other annotation types can be easily queried as follows:

query = fql.Query('SELECT w WHERE :pos = "v"' AND :lemma = "be"')
for word in query(doc):

print(word)

You can constrain your queries to a particular target selection using the FOR keyword:

query = fql.Query('SELECT w WHERE text MATCHES "^house.*$" FOR s WHERE text
→˓CONTAINS "sell"')
for word in query(doc):

print(word)

This construction also allows you to select the actual annotations. To select all people (a named entity) for words
that are not John:
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query = fql.Query('SELECT entity WHERE class = "person" FOR w WHERE text != "John"
→˓')
for entity in query(doc):

print(entity) #this will be an instance of folia.Entity

FOR statement may be chained, and Explicit IDs can be passed using the ID keyword:

query = fql.Query('SELECT entity WHERE class = "person" FOR w WHERE text != "John
→˓" FOR div ID "section.21"')
for entity in query(doc):

print(entity)

Sets are specified using the OF keyword, it can be omitted if there is only one for the annotation type, but will
be required otherwise:

query = fql.Query('SELECT su OF "http://some/syntax/set" WHERE class = "np"')
for su in query(doc):

print(su) #this will be an instance of folia.SyntacticUnit

We have just covered just the SELECT keyword, FQL has other keywords for manipulating documents, such
as EDIT, ADD, APPEND and PREPEND.

Note: Consult the FQL documentation at https://github.com/proycon/foliadocserve/blob/master/README.rst
for further documentation on the language.

Method Summary

__init__(q[, context]) Initialize self.
parse(q[, i])

Method Details

__init__(q, context=<pynlpl.formats.fql.Context object>)
Initialize self. See help(type(self)) for accurate signature.

__init__(q, context=<pynlpl.formats.fql.Context object>)
Initialize self. See help(type(self)) for accurate signature.

parse(q, i=0)

Selecting a word with a particular text is done as follows:

query = fql.Query('SELECT w WHERE text = "house"')
for word in query(doc):

print(word) #this will be an instance of folia.Word

Regular expression matching can be done using the MATCHES operator:

query = fql.Query('SELECT w WHERE text MATCHES "^house.*$"')
for word in query(doc):

print(word)

The classes of other annotation types can be easily queried as follows:
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query = fql.Query('SELECT w WHERE :pos = "v"' AND :lemma = "be"')
for word in query(doc):

print(word)

You can constrain your queries to a particular target selection using the FOR keyword:

query = fql.Query('SELECT w WHERE text MATCHES "^house.*$" FOR s WHERE text CONTAINS
→˓"sell"')
for word in query(doc):

print(word)

This construction also allows you to select the actual annotations. To select all people (a named entity) for words that
are not John:

query = fql.Query('SELECT entity WHERE class = "person" FOR w WHERE text != "John"')
for entity in query(doc):

print(entity) #this will be an instance of folia.Entity

FOR statement may be chained, and Explicit IDs can be passed using the ID keyword:

query = fql.Query('SELECT entity WHERE class = "person" FOR w WHERE text != "John"
→˓FOR div ID "section.21"')
for entity in query(doc):

print(entity)

Sets are specified using the OF keyword, it can be omitted if there is only one for the annotation type, but will be
required otherwise:

query = fql.Query('SELECT su OF "http://some/syntax/set" WHERE class = "np"')
for su in query(doc):

print(su) #this will be an instance of folia.SyntacticUnit

We have just covered the SELECT keyword, FQL has other keywords for manipulating documents, such as EDIT,
ADD, APPEND and PREPEND.

Note: Consult the FQL documentation at https://github.com/proycon/foliadocserve/blob/master/README.rst for
further documentation on the language.

4.3.3 Streaming Reader

Throughout this tutorial you have seen the Document class as a means of reading FoLiA documents. This class
always loads the entire document in memory, which can be a considerable resource demand. The following class
provides an alternative to loading FoLiA documents:

Reader Streaming FoLiA reader.

pynlpl.formats.folia.Reader

class pynlpl.formats.folia.Reader(filename, target, *args, **kwargs)
Bases: object

Streaming FoLiA reader.
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The reader allows you to read a FoLiA Document without holding the whole tree structure in memory. The
document will be read and the elements you seek returned as they are found. If you are querying a corpus of
large FoLiA documents for a specific structure, then it is strongly recommend to use the Reader rather than the
standard Document!

Method Summary

__init__(filename, target, *args, **kwargs) Read a FoLiA document in a streaming fashion.
findwords(*args, **kwargs)
initdoc()

Method Details

__init__(filename, target, *args, **kwargs)
Read a FoLiA document in a streaming fashion. You select a specific target element and all occurrences
of this element, including all contents (so all elements within), will be returned.

Parameters

• filename (*) – The filename of the document to read

• target (*) – The FoLiA element(s) you want to read (with everything contained in
its scope). Passed as a class. For example: folia.Sentence, or a tuple of multiple
element classes. Can also be set to None to return all elements, but that would load the
full tree structure into memory.

__init__(filename, target, *args, **kwargs)
Read a FoLiA document in a streaming fashion. You select a specific target element and all occurrences
of this element, including all contents (so all elements within), will be returned.

Parameters

• filename (*) – The filename of the document to read

• target (*) – The FoLiA element(s) you want to read (with everything contained in
its scope). Passed as a class. For example: folia.Sentence, or a tuple of multiple
element classes. Can also be set to None to return all elements, but that would load the
full tree structure into memory.

findwords(*args, **kwargs)

initdoc()

It does not load the entire document in memory but merely returns the elements you are interested in. This results in
far less memory usage and also provides a speed-up.

A reader is constructed as follows, the second argument is the class of the element you want:

reader = folia.Reader("my.folia.xml", folia.Word)
for word in reader:

print(word.id)
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4.4 Higher-Order Annotations

4.4.1 Text Markup

FoLiA has a number of text markup elements, these appear within the TextContent (t) element, iterating over the
element of a TextContent element will first and foremost produce strings, but also uncover these markup elements
when present. The following markup types exists:

TextMarkupGap Markup element to mark gaps in text content
(TextContent)

TextMarkupString Markup element to mark arbitrary substrings in text con-
tent (TextContent)

TextMarkupStyle Markup element to style text content (TextContent),
e.g.

TextMarkupCorrection Markup element to mark corrections in text content
(TextContent).

TextMarkupError Markup element to mark gaps in text content
(TextContent)

pynlpl.formats.folia.TextMarkupGap

class pynlpl.formats.folia.TextMarkupGap(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to mark gaps in text content (TextContent)

Only consider this element for gaps in spans of untokenised text. The use of structural element Gap is preferred.

Method Summary

__init__(doc, *args, **kwargs) See AbstractElement.__init__(), text is
passed as a string in *args.

accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
Continued on next page
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Table 80 – continued from previous page
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.

Continued on next page
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Table 80 – continued from previous page
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Sets the text content of the markup element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

ANNOTATIONTYPE = 24

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None
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TEXTCONTAINER = True

TEXTDELIMITER = ''

XLINK = True

XMLTAG = 't-gap'

Method Details

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!
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Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int
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getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()
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leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:
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word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element
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replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.
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setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Sets the text content of the markup element.

Parameters text (str) –

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)
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Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.
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__str__()
Alias for text()

pynlpl.formats.folia.TextMarkupString

class pynlpl.formats.folia.TextMarkupString(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to mark arbitrary substrings in text content (TextContent)

Method Summary

__init__(doc, *args, **kwargs) See AbstractElement.__init__(), text is
passed as a string in *args.

accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)

Continued on next page
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Table 81 – continued from previous page
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Sets the text content of the markup element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
Continued on next page
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Table 81 – continued from previous page
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

ANNOTATIONTYPE = 32

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = True

TEXTDELIMITER = ''

XLINK = True

XMLTAG = 't-str'

Method Details

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

4.4. Higher-Order Annotations 819



PyNLPl Documentation, Release 1.2.8

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element
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copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.
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originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters
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• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope
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select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Sets the text content of the markup element.

Parameters text (str) –

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.
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The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)
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Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.TextMarkupStyle

class pynlpl.formats.folia.TextMarkupStyle(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to style text content (TextContent), e.g. make text bold, italics, underlined, coloured, etc..

Method Summary

__init__(doc, *args, **kwargs) See AbstractElement.__init__(), text is
passed as a string in *args.

Continued on next page
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Table 82 – continued from previous page
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
Continued on next page
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Table 82 – continued from previous page
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Sets the text content of the markup element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

ANNOTATIONTYPE = 34

AUTH = True
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AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = True

TEXTDELIMITER = ''

XLINK = True

XMLTAG = 't-style'

Method Details

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()
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addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.
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Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.
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• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.
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• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Sets the text content of the markup element.

Parameters text (str) –

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.
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• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()
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xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.TextMarkupCorrection

class pynlpl.formats.folia.TextMarkupCorrection(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to mark corrections in text content (TextContent).

Only consider this element for corrections on untokenised text. The use of Correction is preferred.

Method Summary

__init__(doc, *args, **kwargs) See AbstractElement.__init__(), text is
passed as a string in *args.

accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
Continued on next page
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Table 83 – continued from previous page
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.

Continued on next page
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Table 83 – continued from previous page
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Sets the text content of the markup element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

ANNOTATIONTYPE = 16

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None
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TEXTCONTAINER = True

TEXTDELIMITER = ''

XLINK = True

XMLTAG = 't-correction'

Method Details

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!
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Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int
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getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()
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leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:
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word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element
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replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.
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setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Sets the text content of the markup element.

Parameters text (str) –

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)
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Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.
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__str__()
Alias for text()

pynlpl.formats.folia.TextMarkupError

class pynlpl.formats.folia.TextMarkupError(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to mark gaps in text content (TextContent)

Only consider this element for gaps in spans of untokenised text. The use of structural element
ErrorDetection is preferred.

Method Summary

__init__(doc, *args, **kwargs) See AbstractElement.__init__(), text is
passed as a string in *args.

accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.

Continued on next page
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Table 84 – continued from previous page
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Sets the text content of the markup element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.

Continued on next page
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Table 84 – continued from previous page
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

ANNOTATIONTYPE = 17

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = True

TEXTDELIMITER = ''

XLINK = True

XMLTAG = 't-error'

Method Details

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)
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add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element
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copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.
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originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters
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• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

856 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Sets the text content of the markup element.

Parameters text (str) –

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.
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The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)
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Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.4.2 Features

Features allow a second-order annotation by adding the ability to assign properties and values to any of the existing
annotation elements. They follow the set/class paradigm by adding the notion of a subset and class relative to this
subset. The AbstractElement.feat() method provides a shortcut that can be used on any annotation element
to obtain the class of the feature, given a subset. To illustrate the concept, take a look at part of speech annotation with
some features:

pos = word.annotation(folia.PosAnnotation)
if pos.cls = "n":

if pos.feat('number') == 'plural':
print("We have a plural noun!")

elif pos.feat('number') == 'singular':
print("We have a singular noun!")

4.4. Higher-Order Annotations 859



PyNLPl Documentation, Release 1.2.8

The AbstractElement.feat() method will return an exception when the feature does not exist. Note that the
actual subset and class values are defined by the set and not FoLiA itself! They are therefore fictitious in the above
example.

The Python class for features is Feature, in the following example we add a feature:

pos.add(folia.Feature, subset="gender", cls="f")

Although FoLiA does not define any sets nor subsets. Some annotation types do come with some associated subsets,
their use is never mandatory. The advantage is that these associated subsets can be directly used as an XML attribute
in the FoLiA document. The FoLiA library provides extra classes, all subclassed off Feature for these:

Feature Feature elements can be used to associate subsets and
subclasses with almost any annotation element

SynsetFeature Synset feature, to be used within Sense
ActorFeature Actor feature, to be used within Event
BegindatetimeFeature Begindatetime feature, to be used within Event
EnddatetimeFeature Enddatetime feature, to be used within Event

pynlpl.formats.folia.Feature

class pynlpl.formats.folia.Feature(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

Feature elements can be used to associate subsets and subclasses with almost any annotation element

Method Summary

__init__(doc, *args, **kwargs) Constructor.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
Continued on next page
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Table 86 – continued from previous page
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
Continued on next page
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Table 86 – continued from previous page
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml() Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Feature'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False
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TEXTDELIMITER = None

XLINK = False

XMLTAG = 'feat'

Method Details

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:
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paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list
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findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml()
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SynsetFeature

class pynlpl.formats.folia.SynsetFeature(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.Feature

Synset feature, to be used within Sense

Method Summary

__init__(doc, *args, **kwargs) Constructor.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page
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Table 87 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page
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Table 87 – continued from previous page
relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml() Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Feature'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False
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PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = 'synset'

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()
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addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.
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Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.
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• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.
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phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element
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See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.
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• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True
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text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()
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textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml()
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.ActorFeature

class pynlpl.formats.folia.ActorFeature(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.Feature

Actor feature, to be used within Event

Method Summary
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__init__(doc, *args, **kwargs) Constructor.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
Continued on next page
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Table 88 – continued from previous page
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml() Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)
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ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Feature'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = 'actor'

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.
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Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

886 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.
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Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.
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A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.
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Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

4.4. Higher-Order Annotations 891



PyNLPl Documentation, Release 1.2.8

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)
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Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml()
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.BegindatetimeFeature

class pynlpl.formats.folia.BegindatetimeFeature(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.Feature

Begindatetime feature, to be used within Event
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Method Summary

__init__(doc, *args, **kwargs) Constructor.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

Continued on next page

894 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

Table 89 – continued from previous page
originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml() Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)
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ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Feature'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = 'begindatetime'

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.
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Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.
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Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.
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Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.
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A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.
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Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.
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The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)
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Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml()
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.EnddatetimeFeature

class pynlpl.formats.folia.EnddatetimeFeature(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.Feature

Enddatetime feature, to be used within Event
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Method Summary

__init__(doc, *args, **kwargs) Constructor.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

Continued on next page
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Table 90 – continued from previous page
originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml() Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)
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ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Feature'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = 'enddatetime'

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.
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Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.
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Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.
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Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.
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A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.
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Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.
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The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)
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Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml()
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.4.3 Alternatives

A key feature of FoLiA is its ability to make explicit alternative annotations, for token annotations, the Alternative
(alt) class is used to this end. Alternative annotations are embedded in this structure. This implies the annotation
is not authoritative, but is merely an alternative to the actual annotation (if any). Alternatives may typically occur in
larger numbers, representing a distribution each with a confidence value (not mandatory). Each alternative is wrapped
in its own Alternative element, as multiple elements inside a single alternative are considered dependent and part
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of the same alternative. Combining multiple annotation in one alternative makes sense for mixed annotation types,
where for instance a pos tag alternative is tied to a particular lemma:

alt = word.add(folia.Alternative)
alt.add(folia.PosAnnotation, set='brown-tagset',cls='n',confidence=0.5)
alt = word.add(folia.Alternative) #note that we reassign the variable!
alt.add(folia.PosAnnotation, set='brown-tagset',cls='a',confidence=0.3)
alt = word.add(folia.Alternative)
alt.add(folia.PosAnnotation, set='brown-tagset',cls='v',confidence=0.2)

Span annotation elements have a different mechanism for alternatives, for those the entire annotation layer is embedded
in a AlternativeLayers element. This element should be repeated for every type, unless the layers it describeds
are dependent on it eachother:

alt = sentence.add(folia.AlternativeLayers)
layer = alt.add(folia.Entities)
entity = layer.add(folia.Entity, word1,word2,cls="person", confidence=0.3)

Because the alternative annotations are non-authoritative, normal selection methods such as select() and
annotations() will never yield them, unless explicitly told to do so. For this reason, there is an
alternatives() method on structure elements, for the first category of alternatives.

In summary, a list of the two relevant classes for alternatives:

Alternative Element grouping alternative token annotation(s).
AlternativeLayers Element grouping alternative subtoken annotation(s).

pynlpl.formats.folia.Alternative

class pynlpl.formats.folia.Alternative(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.
AllowTokenAnnotation, pynlpl.formats.folia.AllowGenerateID

Element grouping alternative token annotation(s).

Multiple alternative elements may occur, each denoting a different alternative. Elements grouped inside an
alternative block are considered dependent.

A key feature of FoLiA is its ability to make explicit alternative annotations, for token annotations, this class
is used to this end. Alternative annotations are embedded in this structure. This implies the annotation is not
authoritative, but is merely an alternative to the actual annotation (if any). Alternatives may typically occur in
larger numbers, representing a distribution each with a confidence value (not mandatory). Each alternative is
wrapped in its an instance of this class, as multiple elements inside a single alternative are considered dependent
and part of the same alternative. Combining multiple annotation in one alternative makes sense for mixed
annotation types, where for instance a pos tag alternative is tied to a particular lemma.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
Continued on next page
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Table 92 – continued from previous page
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
Continued on next page
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Table 92 – continued from previous page
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
Continued on next page
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Table 92 – continued from previous page
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.MorphologyLayer'>, <class 'pynlpl.formats.folia.PhonologyLayer'>)

ANNOTATIONTYPE = None

AUTH = False

AUTO_GENERATE_ID = False

LABEL = 'Alternative'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'alt'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters
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• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)
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Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.
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correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.
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Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.
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Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.
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See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments
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• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters
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• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.
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textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:
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for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.AlternativeLayers

class pynlpl.formats.folia.AlternativeLayers(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

Element grouping alternative subtoken annotation(s). Multiple altlayers elements may occur, each denoting a
different alternative. Elements grouped inside an alternative block are considered dependent.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
Continued on next page
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Table 93 – continued from previous page
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
Continued on next page
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Table 93 – continued from previous page
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

ANNOTATIONTYPE = None

AUTH = False

AUTO_GENERATE_ID = False

LABEL = 'Alternative Layers'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'altlayers'
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Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.
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Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.
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hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict
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leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:
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word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)
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remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.
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setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

938 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str
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__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.4.4 Corrections

Corrections are one of the most complex annotation types in FoLiA. Corrections can be applied not just over text, but
over any type of structure annotation, token annotation or span annotation. Corrections explicitly preserve the original,
and recursively so if corrections are done over other corrections.

Despite their complexity, the library treats correction transparently. Whenever you query for a particular element, and
it is part of a correction, you get the corrected version rather than the original. The original is always non-authoritative
and normal selection methods will ignore it.

If you want to deal with correction, you have to explicitly handle the Correction element. If an element is part of
a correction, its AbstractElement.incorrection() method will give the correction element, if not, it will
return None:

pos = word.annotation(folia.PosAnnotation)
correction = pos.incorrection()
if correction:

if correction.hasoriginal():
originalpos = correction.original(0) #assuming it's the only element as is

→˓customary
#originalpos will be an instance of folia.PosAnnotation
print("The original pos was", originalpos.cls)

Corrections themselves carry a class too, indicating the type of correction (defined by the set used and not by FoLiA).

Besides Correction.original(), corrections distinguish three other types, Correction.new()
(the corrected version), Correction.current() (the current uncorrected version) and Correction.
suggestions() (a suggestion for correction), the former two and latter two usually form pairs, current() and
new() can never be used together. Of suggestions(index) there may be multiple, hence the index argument.
These return, respectively, instances of Original, folia.New, folia.Current and folia.Suggestion.

Adding a correction can be done explicitly:

wrongpos = word.annotation(folia.PosAnnotation)
word.add(folia.Correction, folia.New(doc, folia.PosAnnotation(doc, cls="n")) , folia.
→˓Original(doc, wrongpos), cls="misclassified")

Let’s settle for a suggestion rather than an actual correction:

wrongpos = word.annotation(folia.PosAnnotation)
word.add(folia.Correction, folia.Suggestion(doc, folia.PosAnnotation(doc, cls="n")),
→˓cls="misclassified")
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In some instances, when correcting text or structural elements, New may be empty, which would correspond to an
deletion. Similarly, Original may be empty, corresponding to an insertion.

The use of Current is reserved for use with structure elements, such as words, in combination with suggestions. The
structure elements then have to be embedded in Current. This situation arises for instance when making suggestions
for a merge or split.

Here is a list of all relevant classes for corrections:

Correction Corrections are one of the most complex annotation
types in FoLiA.

Current Used in the context of Correction to encapsulate the
currently authoritative annotations.

ErrorDetection The ErrorDetection element is used to signal the pres-
ence of errors in a structural element.

New
Original Used in the context of Correction to encapsulate the

original annotations prior to correction.
Suggestion Suggestions are used in the context of Correction,

but rather than provide an authoritative correction, it in-
stead offers a suggestion for correction.

pynlpl.formats.folia.Correction

class pynlpl.formats.folia.Correction(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.
AllowGenerateID

Corrections are one of the most complex annotation types in FoLiA. Corrections can be applied not just over text,
but over any type of structure annotation, token annotation or span annotation. Corrections explicitly preserve
the original, and recursively so if corrections are done over other corrections.

Despite their complexity, the library treats correction transparently. Whenever you query for a particular ele-
ment, and it is part of a correction, you get the corrected version rather than the original. The original is always
non-authoritative and normal selection methods will ignore it.

This class takes four classes as children, that in turn encapsulate the actual annotations:

• New - Encapsulates the newly corrected annotation(s)

• Original - Encapsulated the old original annotation(s)

• Current - Encapsulates the current authoritative annotation(s)

• Suggestions - Encapsulates the annotation(s) that are a non-authoritative suggestion for correction

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
Continued on next page
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Table 95 – continued from previous page
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

current([index]) Get the current authoritative annotation (used with
suggestions in a structural context)

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) See AbstractElement.

gettextdelimiter()
hascurrent([allowempty]) Does the correction record the current authoritative

annotation (needed only in a structural context when
suggestions are proposed)

hasnew([allowempty]) Does the correction define new corrected annota-
tions?

hasoriginal([allowempty]) Does the correction record the old annotations prior
to correction?

hasphon([cls, strict, correctionhandling]) See AbstractElement.hasphon()
hassuggestions([allowempty]) Does the correction propose suggestions for correc-

tion?
hastext([cls, strict, correctionhandling]) See AbstractElement.hastext()
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
Continued on next page
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Table 95 – continued from previous page
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
new([index]) Get the new corrected annotation.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

original([index]) Get the old annotation prior to correction.
originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) See AbstractElement.phon()
phoncontent([cls, correctionhandling]) See AbstractElement.phoncontent()
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
suggestions([index]) Get suggestions for correction.
text([cls, retaintokenisation, . . . ]) See AbstractElement.text()
textcontent([cls, correctionhandling]) See AbstractElement.textcontent()
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.

Continued on next page
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Table 95 – continued from previous page
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Current'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ErrorDetection'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.New'>, <class 'pynlpl.formats.folia.Original'>, <class 'pynlpl.formats.folia.Suggestion'>)

ANNOTATIONTYPE = 16

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Correction'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'correction'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.
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Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
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count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

current(index=None)
Get the current authoritative annotation (used with suggestions in a structural context)

This returns only one annotation if multiple exist, use index to select another in the sequence.

Returns an annotation element (AbstractElement)

Raises NoSuchAnnotation

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
See AbstractElement.gettextdelimiter()

hascurrent(allowempty=False)
Does the correction record the current authoritative annotation (needed only in a structural context when
suggestions are proposed)

hasnew(allowempty=False)
Does the correction define new corrected annotations?
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hasoriginal(allowempty=False)
Does the correction record the old annotations prior to correction?

hasphon(cls=’current’, strict=True, correctionhandling=1)
See AbstractElement.hasphon()

hassuggestions(allowempty=False)
Does the correction propose suggestions for correction?

hastext(cls=’current’, strict=True, correctionhandling=1)
See AbstractElement.hastext()

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

new(index=None)
Get the new corrected annotation.

This returns only one annotation if multiple exist, use index to select another in the sequence.

Returns an annotation element (AbstractElement)

Raises NoSuchAnnotation

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

original(index=None)
Get the old annotation prior to correction.

This returns only one annotation if multiple exist, use index to select another in the sequence.
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Returns an annotation element (AbstractElement)

Raises NoSuchAnnotation

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
See AbstractElement.phon()

phoncontent(cls=’current’, correctionhandling=1)
See AbstractElement.phoncontent()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –
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See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text
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• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

suggestions(index=None)
Get suggestions for correction.

Yields Suggestion element that encapsulate the suggested annotations (if index is None,
default)

Returns a Suggestion element that encapsulate the suggested annotations (if index is set)

Raises IndexError

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

See AbstractElement.text()

textcontent(cls=’current’, correctionhandling=1)
See AbstractElement.textcontent()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element
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See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Current

class pynlpl.formats.folia.Current(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractCorrectionChild

Used in the context of Correction to encapsulate the currently authoritative annotations.

Needed only when suggestions for correction are proposed (Suggestion) for structural elements.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
Continued on next page
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Table 96 – continued from previous page
correct(**kwargs)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
Continued on next page
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Table 96 – continued from previous page
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractSpanAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 1

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False
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SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'current'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.
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Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.
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generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)
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json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.
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• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters
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• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:
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for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.
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• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER
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xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.ErrorDetection

class pynlpl.formats.folia.ErrorDetection(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractExtendedTokenAnnotation

The ErrorDetection element is used to signal the presence of errors in a structural element.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()

Continued on next page
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Table 97 – continued from previous page
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
Continued on next page
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Table 97 – continued from previous page
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 17

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Error Detection'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False
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REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'errordetection'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:
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paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list
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findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.New

class pynlpl.formats.folia.New(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractCorrectionChild

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
Continued on next page
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Table 98 – continued from previous page
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page
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Table 98 – continued from previous page
relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractSpanAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 1

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True
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PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'new'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:
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paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list
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findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Original

class pynlpl.formats.folia.Original(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractCorrectionChild

Used in the context of Correction to encapsulate the original annotations prior to correction.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page
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Table 99 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page
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Table 99 – continued from previous page
relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractSpanAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = None

AUTH = False

AUTO_GENERATE_ID = False

OCCURRENCES = 1

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True
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PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'original'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:
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paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

988 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Suggestion

class pynlpl.formats.folia.Suggestion(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractCorrectionChild

Suggestions are used in the context of Correction, but rather than provide an authoritative correction, it
instead offers a suggestion for correction.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page
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Table 100 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page
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Table 100 – continued from previous page
relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractSpanAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = None

AUTH = False

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4)

PHONCONTAINER = False

PRIMARYELEMENT = True
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PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'suggestion'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:
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paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list
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findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.
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Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.4.5 Alignments

Alignments are used to make reference to external documents. It concerns references as annotation rather than refer-
ences which are explicitly part of the text, such as hyperlinks and Reference.

The following elements are relevant for alignments:

Alignment The Alignment element is a form of higher-order anno-
tation taht is used to point to an external resource.

AlignReference The AlignReference element is used to point to specific
elements inside the aligned source.

pynlpl.formats.folia.Alignment

class pynlpl.formats.folia.Alignment(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

The Alignment element is a form of higher-order annotation taht is used to point to an external resource.

It concerns references as annotation rather than references which are explicitly part of the text, such as hyperlinks
and Reference.

Inside the Alignment element, the AlignReference element may be used to point to specific elements
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(multiple denotes a span).

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.

Continued on next page
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Table 102 – continued from previous page
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve([documents])
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
Continued on next page
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Table 102 – continued from previous page
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 26

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Alignment'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = True

XMLTAG = 'alignment'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters
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• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int
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deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool
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hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL
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classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve(documents=None)

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope
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select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.
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Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
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corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()
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pynlpl.formats.folia.AlignReference

class pynlpl.formats.folia.AlignReference(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

The AlignReference element is used to point to specific elements inside the aligned source.

It is used with Alignment which is responsible for pointing to the external resource.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

Continued on next page
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Table 103 – continued from previous page
insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve([alignmentcontext, documents])
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
Continued on next page
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Table 103 – continued from previous page
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'aref'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)
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classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element
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copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters
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• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:
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phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –
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See AbstractElement.append() for more information and all parameters.

resolve(alignmentcontext=None, documents={})

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text
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• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.
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textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:
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for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.4.6 Descriptions, Metrics

FoLiA allows arbitrary descriptions to be assigned with any element. It also allows assigning metrics to any annotation,
which consist of a key/value pair that often express a quantivative or qualitative measure. This is accomplished,
respectively, with the following element classes:

Description Description is an element that can be used to associate a
description with almost any other FoLiA element

Metric Metric elements provide a key/value pair to allow the
annotation of any kind of metric with any kind of anno-
tation element.

pynlpl.formats.folia.Description

class pynlpl.formats.folia.Description(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

Description is an element that can be used to associate a description with almost any other FoLiA element

Method Summary

__init__(doc, *args, **kwargs) Required keyword arguments: * value=: The text
content for the description (str or unicode)

accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.

Continued on next page
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Table 105 – continued from previous page
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
Continued on next page
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Table 105 – continued from previous page
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Description'

OCCURRENCES = 1

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None
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SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'desc'

Method Details

__init__(doc, *args, **kwargs)
Required keyword arguments: * value=: The text content for the description (str or unicode)

__init__(doc, *args, **kwargs)
Required keyword arguments: * value=: The text content for the description (str or unicode)

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)
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ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused
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classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)
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items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.
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• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters
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• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:
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for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.
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• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER
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xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Metric

class pynlpl.formats.folia.Metric(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

Metric elements provide a key/value pair to allow the annotation of any kind of metric with any kind of annota-
tion element.

It is used for example for statistical measures to be added to elements as annotation.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
Continued on next page
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Table 106 – continued from previous page
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . . ]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . . ]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
Continued on next page
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Table 106 – continued from previous page
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . . ]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.ValueFeature'>)

ANNOTATIONTYPE = 30

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Metric'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False
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REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'metric'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:
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paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list
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findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool
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incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.
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previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

1048 Chapter 4. FoLiA library



PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative] ):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.
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• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True
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updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.5 Metadata

FoLiA can be used with a variety of more advanced metadata schemes (e.g. Dublin Core, CMDI). If this is too much,
you can use its own simple native metadata facility, a simple key value store . After instantiation of a Document, the
metadata can be accessed through the metadata attribute, which behaves like a Python dictionary:

doc = folia.Document(file="/path/to/document.xml")
doc.metadata['language'] = "en"
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CHAPTER 5

Formats

5.1 Corpus Gesproken Nederlands

exception pynlpl.formats.cgn.InvalidFeatureException

exception pynlpl.formats.cgn.InvalidTagException

pynlpl.formats.cgn.parse_cgn_postag(rawtag, raisefeatureexceptions=False)

5.2 FoLiA

See folia : folia.html

5.3 GIZA++

class pynlpl.formats.giza.GizaModel(filename, encoding=’utf-8’)

class pynlpl.formats.giza.GizaSentenceAlignment(sourceline, targetline, index)

getalignedtarget(index)
Returns target range only if source index aligns to a single consecutive range of target tokens.

intersect(other)

class pynlpl.formats.giza.IntersectionAlignment(source2target, target2source, encod-
ing=False)

reset()

class pynlpl.formats.giza.MultiWordAlignment(filename, encoding=False)
Source to Target alignment: reads source-target.A3.final files, in which each source word may be aligned to
multiple target words (adapted from code by Sander Canisius)
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reset()

targetword(index, targetwords, alignment)
Return the aligned targeword for a specified index in the source words. Multiple words are concatenated
together with a space in between

targetwords(index, targetwords, alignment)
Return the aligned targetwords for a specified index in the source words

class pynlpl.formats.giza.WordAlignment(filename, encoding=False)
Target to Source alignment: reads target-source.A3.final files, in which each source word is aligned to one target
word

reset()

targetword(index, targetwords, alignment)
Return the aligned targetword for a specified index in the source words

pynlpl.formats.giza.parseAlignment(tokens)

5.4 Moses

class pynlpl.formats.moses.PhraseTable(filename, quiet=False, reverse=False, delim-
iter=’|||’, score_column=3, max_sourcen=0,
sourceencoder=None, targetencoder=None, score-
filter=None)

class pynlpl.formats.moses.PhraseTableClient(host=’localhost’, port=65432)

5.5 SoNaR

class pynlpl.formats.sonar.Corpus(corpusdir, extension=’pos’, restrict_to_collection=”,
conditionf=<function Corpus.<lambda>>, ignoreer-
rors=False)

class pynlpl.formats.sonar.CorpusDocument(filename, encoding=’iso-8859-15’)
This class represent one document/text of the Corpus (read-only)

paragraphs(with_id=False)
Extracts paragraphs, returns list of plain-text(!) paragraphs

sentences()
Iterate over all sentences (sentence_id, sentence) in the document, sentence is a list of 4-tuples
(word,id,pos,lemma)

words()

class pynlpl.formats.sonar.CorpusDocumentX(filename, tree=None, index=True)
This class represent one document/text of the Corpus, loaded into memory at once and retaining the full structure

paragraphs(node=None)
iterate over paragraphs

save(filename=None, encoding=’iso-8859-15’)

sentences(node=None)
iterate over sentences
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validate(formats_dir=’../formats/’)
checks if the document is valid

words(node=None)
iterate over words

xpath(expression)
Executes an xpath expression using the correct namespaces

class pynlpl.formats.sonar.CorpusFiles(corpusdir, extension=’pos’, re-
strict_to_collection=”, conditionf=<function
Corpus.<lambda>>, ignoreerrors=False)

class pynlpl.formats.sonar.CorpusX(corpusdir, extension=’pos’, restrict_to_collection=”,
conditionf=<function Corpus.<lambda>>, ignoreer-
rors=False)

pynlpl.formats.sonar.ns(namespace)
Resolves the namespace identifier to a full URL

5.6 Taggerdata

class pynlpl.formats.taggerdata.Taggerdata(filename, encoding=’utf-8’, mode=’r’)

align(referencewords, datatuple)
align the reference sentence with the tagged data

close()

next()

reset()

write(sentence)

5.7 TiMBL

class pynlpl.formats.timbl.TimblOutput(stream, delimiter=’ ’, ignorecolumns=[], ignoreval-
ues=[])

A class for reading Timbl classifier output, supports the +v+db option and ignores comments starting with #

parseDistribution(instance, start, end=None)
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CHAPTER 6

Language Models

class pynlpl.lm.lm.ARPALanguageModel(filename, encoding=’utf-8’, encoder=None,
base_e=True, dounknown=True, debug=False,
mode=’simple’)

Full back-off language model, loaded from file in ARPA format.

This class does not build the model but allows you to use a pre-computed one. You can use the tool ngram-count
from for instance SRILM to actually build the model.

class NgramsProbs(data, mode=’simple’, delim=’ ’)
Store Ngrams with their probabilities and backoffs.

This class is used in order to abstract the physical storage layout, and enable memory/speed tradeoffs.

backoff(ngram)
Return backoff value of a given ngram tuple

prob(ngram)
Return probability of given ngram tuple

score(data, history=None)

scoreword(word, history=None)

class pynlpl.lm.lm.SimpleLanguageModel(n=2, casesensitive=True, beginmarker=’<begin>’,
endmarker=’<end>’)

This is a simple unsmoothed language model. This class can both hold and compute the model.

append(sentence)

load(filename)

save(filename)

scoresentence(sentence)

class pynlpl.lm.srilm.SRILM(filename, n)

logscore(ngram)
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scoresentence(sentence, unknownwordprob=-12)

exception pynlpl.lm.srilm.SRILMException
Base Exception for SRILM.

class pynlpl.lm.client.LMClient(host=’localhost’, port=12346, n=0)

scoresentence(sentence)
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CHAPTER 7

Search Algorithms

This module contains various search algorithms.

class pynlpl.search.AbstractSearch(**kwargs)

prune(state)
Pruning method is called AFTER expansion of each node

reset()

searchall()
Returns a list of all solutions

searchbest()
Returns the single best result (if multiple have the same score, the first match is returned)

searchfirst()
Returns the very first result (regardless of it being the best or not!)

searchlast(n=10)
Return the last n results (or possibly less if not found). Note that the last results are not necessarily the best
ones! Depending on the search type.

searchtop(n=10)
Return the top n best resulta (or possibly less if not enough is found)

traversal()
Returns all visited states (only when keeptraversal=True), note that this is not equal to the path, but contains
all states that were checked!

traversalsize()
Returns the number of nodes visited (also when keeptravel=False). Note that this is not equal to the path,
but contains all states that were checked!

visited(state)

class pynlpl.search.AbstractSearchState(parent=None, cost=0)
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depth()

expand()
Generates successor states, implement your custom operators in the derived method.

path()

pathcost()

score()
Should return a heuristic value. This needs to be set if you plan to used an informed search algorithm.

test(goalstates=None)
Checks whether this state is a valid goal state, returns a boolean. If no goalstate is defined, then all states
will test positively, this is what you usually want for optimisation problems.

class pynlpl.search.BeamSearch(states, beamsize, **kwargs)
Local beam search algorithm

class pynlpl.search.BeamedBestFirstSearch(states, beamsize, **kwargs)
Best first search with a beamsize (non-optimal!)

prune(state)
Pruning method is called AFTER expansion of each node

class pynlpl.search.BestFirstSearch(state, **kwargs)

class pynlpl.search.BreadthFirstSearch(state, **kwargs)

class pynlpl.search.DepthFirstSearch(state, **kwargs)

class pynlpl.search.EarlyEagerBeamSearch(state, beamsize, **kwargs)
A beam search that prunes early (after each state expansion) and eagerly (weeding out worse successors)

prune(state)
Pruning method is called AFTER expansion of each node

class pynlpl.search.HillClimbingSearch(state, **kwargs)
(identical to beamsearch with beam 1, but implemented differently)

class pynlpl.search.IterativeDeepening(state, **kwargs)

traversal()
Returns all visited states (only when keeptraversal=True), note that this is not equal to the path, but contains
all states that were checked!

traversalsize()
Returns the number of nodes visited (also when keeptravel=False). Note that this is not equal to the path,
but contains all states that were checked!

class pynlpl.search.StochasticBeamSearch(states, beamsize, **kwargs)

prune(state)
Pruning method is called AFTER expansion of each node

pynlpl.search.binary_search(a, x, lo=0, hi=None)
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CHAPTER 8

Statistics and Information Theory

This module contains classes and functions for statistics and information theory. It is imported as follows:

import pynlpl.statistics

8.1 Generic functions

Amongst others, the following generic statistical functions are available:

* ``mean(list)`` - Computes the mean of a given list of numbers

• median(list) - Computes the median of a given list of numbers

• stddev(list) - Computes the standard deviation of a given list of numbers

• normalize(list) - Normalizes a list of numbers so that the sum is 1.0 .

8.2 Frequency Lists and Distributions

One of the most basic and widespread tasks in NLP is the creation of a frequency list. Counting is established by
simply appending lists to the frequencylist:

freqlist = pynlpl.statistics.FrequencyList()
freqlist.append(['to','be','or','not','to','be'])

Take care not to append lists rather than strings unless you mean to create a frequency list over its characters rather
than words. You may want to use the pynlpl.textprocessors.crudetokeniser first:

freqlist.append(pynlpl.textprocessors.crude_tokeniser("to be or not to be"))

The count can also be incremented explicitly explicitly for a single item:
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freqlist.count(‘shakespeare’)

The FrequencyList offers dictionary-like access. For example, the following statement will be true for the frequency
list just created:

freqlist['be'] == 2

Normalised counts (pseudo-probabilities) can be obtained using the p() method:

freqlist.p('be')

Normalised counts can also be obtained by instantiation a Distribution instance using the frequency list:

dist = pynlpl.statistics.Distribution(freqlist)

This too offers a dictionary-like interface, where values are by definition normalised. The advantage of a Distribution
class is that it offers information-theoretic methods such as entropy(), maxentropy(), perplexity() and
poslog().

A frequency list can be saved to file using the save(filename) method, and loaded back from file using the
load(filename) method. The output() method is a generator yielding strings for each line of output, in
ranked order.

8.3 API Reference

This is a Python library containing classes for Statistic and Information Theoretical computations. It also contains
some code from Peter Norvig, AI: A Modern Appproach : http://aima.cs.berkeley.edu/python/utils.html

class pynlpl.statistics.Distribution(data, base=2)
A distribution can be created over a FrequencyList or a plain dictionary with numeric values. It will be normal-
ized automatically. This implemtation uses dictionaries/hashing

entropy(base=2)
Compute the entropy of the distribution

information(type)
Computes the information content of the specified type: -log_e(p(X))

items()
Returns an unranked list of (type, prob) pairs. Use this only if you are not interested in the order.

keys()

maxentropy(base=2)
Compute the maximum entropy of the distribution: log_e(N)

mode()
Returns the type that occurs the most frequently in the probability distribution

output(delimiter=’\t’, freqlist=None)
Generator yielding formatted strings expressing the time and probabily for each item in the distribution

perplexity(base=2)

poslog(type)
alias for information content

values()
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class pynlpl.statistics.FrequencyList(tokens=None, casesensitive=True, dovalida-
tion=True)

A frequency list (implemented using dictionaries)

append(tokens)
Add a list of tokens to the frequencylist. This method will count them for you.

count(type, amount=1)
Count a certain type. The counter will increase by the amount specified (defaults to one)

dict()

items()
Returns an unranked list of (type, count) pairs. Use this only if you are not interested in the order.

load(filename)
Load a frequency list from file (in the format produced by the save method)

mode()
Returns the type that occurs the most frequently in the frequency list

output(delimiter=’\t’, addnormalised=False)
Print a representation of the frequency list

p(type)
Returns the probability (relative frequency) of the token

save(filename, addnormalised=False)
Save a frequency list to file, can be loaded later using the load method

sum()
Returns the total amount of tokens

tokens()
Returns the total amount of tokens

typetokenratio()
Computes the type/token ratio

values()

class pynlpl.statistics.HiddenMarkovModel(startstate, endstate=None)

print_dptable(V)

setemission(state, distribution)

viterbi(observations, doprint=False)

class pynlpl.statistics.MarkovChain(startstate, endstate=None)

accessible(fromstate, tostate)
Is state tonode directly accessible (in one step) from state fromnode? (i.e. is there an edge between the
nodes). If so, return the probability, else zero

communicates(fromstate, tostate, maxlength=999999)
See if a node communicates (directly or indirectly) with another. Returns the probability of the shortest
path (probably, but not necessarily the highest probability)

p(sequence, subsequence=True)
Returns the probability of the given sequence or subsequence (if subsequence=True, default).

reducible()
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settransitions(state, distribution)

size()

pynlpl.statistics.dotproduct(X, Y)
Return the sum of the element-wise product of vectors x and y. >>> dotproduct([1, 2, 3], [1000, 100, 10]) 1230

pynlpl.statistics.histogram(values, mode=0, bin_function=None)
Return a list of (value, count) pairs, summarizing the input values. Sorted by increasing value, or if mode=1, by
decreasing count. If bin_function is given, map it over values first.

pynlpl.statistics.levenshtein(s1, s2, maxdistance=9999)
Computes the levenshtein distance between two strings. Adapted from: http://en.wikibooks.org/wiki/
Algorithm_Implementation/Strings/Levenshtein_distance#Python

pynlpl.statistics.log2(x)
Base 2 logarithm. >>> log2(1024) 10.0

pynlpl.statistics.mean(values)
Return the arithmetic average of the values.

pynlpl.statistics.median(values)
Return the middle value, when the values are sorted. If there are an odd number of elements, try to average the
middle two. If they can’t be averaged (e.g. they are strings), choose one at random. >>> median([10, 100, 11])
11 >>> median([1, 2, 3, 4]) 2.5

pynlpl.statistics.mode(values)
Return the most common value in the list of values. >>> mode([1, 2, 3, 2]) 2

pynlpl.statistics.normalize(numbers, total=1.0)
Multiply each number by a constant such that the sum is 1.0 (or total). >>> normalize([1,2,1]) [0.25, 0.5, 0.25]

pynlpl.statistics.product(seq)
Return the product of a sequence of numerical values. >>> product([1,2,6]) 12

pynlpl.statistics.stddev(values, meanval=None)
The standard deviation of a set of values. Pass in the mean if you already know it.

pynlpl.statistics.vector_add(a, b)
Component-wise addition of two vectors. >>> vector_add((0, 1), (8, 9)) (8, 10)
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CHAPTER 9

Text Processors

This module contains classes and functions for text processing. It is imported as follows:

import pynlpl.textprocessors

9.1 Tokenisation

A very crude tokeniser is available in the form of the function pynlpl.textprocessors.
crude_tokeniser(string). This will split punctuation characters from words and returns a list of tokens. It
however has no regard for abbreviations and end-of-sentence detection, which is functionality a more sophisticated
tokeniser can provide:

tokens = pynlpl.textprocessors.crude_tokeniser("to be, or not to be.")

This will result in:

tokens == [‘to’,’be’,’,’,’or’,’not’,’to’,’be’,’.’]

9.2 N-gram extraction

The extraction of n-grams is an elemental operation in Natural Language Processing. PyNLPl offers the Windower
class to accomplish this task:

tokens = pynlpl.textprocessors.crude_tokeniser("to be or not to be")
for trigram in Windower(tokens,3):

print trigram

The input to the Windower should be a list of words and a value for n. In addition, the windower can output extra
symbols at the beginning of the input sequence and at the end of it. By default, this behaviour is enabled and the
input symbol is <begin>, whereas the output symbol is <end>. If this behaviour is unwanted you can suppress it
by instantiating the Windower as follows:

1065



PyNLPl Documentation, Release 1.2.8

Windower(tokens,3, None, None)

The Windower is implemented as a Python generator and at each iteration yields a tuple of length n.

class pynlpl.textprocessors.MultiWindower(tokens, min_n=1, max_n=9, begin-
marker=None, endmarker=None)

Extract n-grams of various configurations from a sequence

class pynlpl.textprocessors.ReflowText(stream, filternontext=True)
Attempts to re-flow a text that has arbitrary line endings in it. Also undoes hyphenisation

class pynlpl.textprocessors.Tokenizer(stream, splitsentences=True,
onesentenceperline=False,
regexps=(re.compile(’^(?:(?:https?):(?:(?://)|(?:\\\\))|www\.)(?:[\w\d:#@%/;$()~_?\+-
=\\\.&](?:#!)?)*’), re.compile(’^[A-Za-z0-9\.\+_-
]+@[A-Za-z0-9\._-]+(?:\.[a-zA-Z]+)+’)))

A tokenizer and sentence splitter, which acts on a file/stream-like object and when iterating over the object it
yields a lists of tokens (in case the sentence splitter is active (default)), or a token (if the sentence splitter is
deactivated).

class pynlpl.textprocessors.Windower(tokens, n=1, beginmarker=’<begin>’, end-
marker=’<end>’)

Moves a sliding window over a list of tokens, upon iteration in yields all n-grams of specified size in a tuple.

Example without markers:

>>> for ngram in Windower("This is a test .",3, None, None):
... print(" ".join(ngram))
This is a
is a test
a test .

Example with default markers:

>>> for ngram in Windower("This is a test .",3):
... print(" ".join(ngram))
<begin> <begin> This
<begin> This is
This is a
is a test
a test .
test . <end>
. <end> <end>

pynlpl.textprocessors.calculate_overlap(haystack, needle, allowpartial=True)
Calculate the overlap between two sequences. Yields (overlap, placement) tuples (multiple because there may
be multiple overlaps!). The former is the part of the sequence that overlaps, and the latter is -1 if the overlap is
on the left side, 0 if it is a subset, 1 if it overlaps on the right side, 2 if its an identical match

pynlpl.textprocessors.crude_tokenizer(text)
Replaced by tokenize(). Alias

pynlpl.textprocessors.find_keyword_in_context(tokens, keyword, contextsize=1)
Find a keyword in a particular sequence of tokens, and return the local context. Contextsize is the number of
words to the left and right. The keyword may have multiple word, in which case it should to passed as a tuple
or list

pynlpl.textprocessors.is_end_of_sentence(tokens, i)
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pynlpl.textprocessors.split_sentences(tokens)
Split sentences (based on tokenised data), returns sentences as a list of lists of tokens, each sentence is a list of
tokens

pynlpl.textprocessors.strip_accents(s, encoding=’utf-8’)
Strip characters with diacritics and return a flat ascii representation

pynlpl.textprocessors.swap(tokens, maxdist=2)
Perform a swap operation on a sequence of tokens, exhaustively swapping all tokens up to the maximum speci-
fied distance. This is a subset of all permutations.

pynlpl.textprocessors.tokenise(text, regexps=(re.compile(’^(?:(?:https?):(?:(?://)|(?:\\\\\\\\))|www\\.)(?:[\\w\\d:#@%/;$()~_?\\+-
=\\\\\\.&](?:#!)?)*’), re.compile(’^[A-Za-z0-9\\.\\+_-]+@[A-Za-
z0-9\\._-]+(?:\\.[a-zA-Z]+)+’)))

Alias for the British

pynlpl.textprocessors.tokenize(text, regexps=(re.compile(’^(?:(?:https?):(?:(?://)|(?:\\\\\\\\))|www\\.)(?:[\\w\\d:#@%/;$()~_?\\+-
=\\\\\\.&](?:#!)?)*’), re.compile(’^[A-Za-z0-9\\.\\+_-]+@[A-Za-
z0-9\\._-]+(?:\\.[a-zA-Z]+)+’)))

Tokenizes a string and returns a list of tokens

Parameters

• text (string) – The text to tokenise

• regexps (Tuple/list of regular expressions to use in
tokenisation) – Regular expressions to use as tokeniser rules in tokenisation
(default=_pynlpl.textprocessors.TOKENIZERRULES_)

Return type Returns a list of tokens

Examples:

>>> for token in tokenize("This is a test."):
... print(token)
This
is
a
test
.
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CHAPTER 10

Indices and tables

• genindex

• modindex

• search
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tribute), 587

ACCEPTED_DATA (pynlpl.formats.folia.SentimentLayer
attribute), 705

ACCEPTED_DATA (pynlpl.formats.folia.Statement at-
tribute), 599

ACCEPTED_DATA (pynlpl.formats.folia.StatementLayer
attribute), 717

ACCEPTED_DATA (pynlpl.formats.folia.SubjectivityAnnotation
attribute), 483

ACCEPTED_DATA (pynlpl.formats.folia.Suggestion at-
tribute), 997

ACCEPTED_DATA (pynlpl.formats.folia.SynsetFeature
attribute), 873

ACCEPTED_DATA (pynlpl.formats.folia.SyntacticUnit
attribute), 611

ACCEPTED_DATA (pynlpl.formats.folia.SyntaxLayer
attribute), 729

ACCEPTED_DATA (pynlpl.formats.folia.Table at-
tribute), 347

ACCEPTED_DATA (pynlpl.formats.folia.TableHead at-
tribute), 373

ACCEPTED_DATA (pynlpl.formats.folia.Term at-
tribute), 360

ACCEPTED_DATA (pynlpl.formats.folia.Text attribute),
386

ACCEPTED_DATA (pynlpl.formats.folia.TextContent
attribute), 495

ACCEPTED_DATA (pynlpl.formats.folia.TextMarkupCorrection
attribute), 840

ACCEPTED_DATA (pynlpl.formats.folia.TextMarkupError
attribute), 851

ACCEPTED_DATA (pynlpl.formats.folia.TextMarkupGap
attribute), 808

ACCEPTED_DATA (pynlpl.formats.folia.TextMarkupString
attribute), 819

ACCEPTED_DATA (pynlpl.formats.folia.TextMarkupStyle
attribute), 829

ACCEPTED_DATA (pynlpl.formats.folia.TimeSegment
attribute), 634

ACCEPTED_DATA (pynlpl.formats.folia.TimingLayer
attribute), 752

ACCEPTED_DATA (pynlpl.formats.folia.Whitespace at-
tribute), 399

ACCEPTED_DATA (pynlpl.formats.folia.Word at-
tribute), 412

accepts() (pynlpl.formats.folia.AbstractAnnotationLayer
class method), 75

accepts() (pynlpl.formats.folia.AbstractElement class
method), 26

accepts() (pynlpl.formats.folia.AbstractSpanAnnotation
class method), 52

accepts() (pynlpl.formats.folia.AbstractStructureElement
class method), 38

accepts() (pynlpl.formats.folia.AbstractTextMarkup class
method), 87

accepts() (pynlpl.formats.folia.AbstractTokenAnnotation
class method), 64

accepts() (pynlpl.formats.folia.ActorFeature class
method), 885
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accepts() (pynlpl.formats.folia.Alignment class method),
1009

accepts() (pynlpl.formats.folia.AlignReference class
method), 1020

accepts() (pynlpl.formats.folia.Alternative class method),
919

accepts() (pynlpl.formats.folia.AlternativeLayers class
method), 932

accepts() (pynlpl.formats.folia.BegindatetimeFeature
class method), 896

accepts() (pynlpl.formats.folia.Cell class method), 101
accepts() (pynlpl.formats.folia.Chunk class method), 518
accepts() (pynlpl.formats.folia.ChunkingLayer class

method), 647
accepts() (pynlpl.formats.folia.CoreferenceChain class

method), 530
accepts() (pynlpl.formats.folia.CoreferenceLayer class

method), 659
accepts() (pynlpl.formats.folia.CoreferenceLink class

method), 765
accepts() (pynlpl.formats.folia.Correction class method),

944
accepts() (pynlpl.formats.folia.Current class method), 954
accepts() (pynlpl.formats.folia.Definition class method),

114
accepts() (pynlpl.formats.folia.DependenciesLayer class

method), 670
accepts() (pynlpl.formats.folia.Dependency class

method), 542
accepts() (pynlpl.formats.folia.DependencyDependent

class method), 776
accepts() (pynlpl.formats.folia.Description class method),

1032
accepts() (pynlpl.formats.folia.Division class method),

127
accepts() (pynlpl.formats.folia.DomainAnnotation class

method), 429
accepts() (pynlpl.formats.folia.EnddatetimeFeature class

method), 907
accepts() (pynlpl.formats.folia.EntitiesLayer class

method), 682
accepts() (pynlpl.formats.folia.Entity class method), 553
accepts() (pynlpl.formats.folia.Entry class method), 140
accepts() (pynlpl.formats.folia.ErrorDetection class

method), 965
accepts() (pynlpl.formats.folia.Event class method), 153
accepts() (pynlpl.formats.folia.Example class method),

166
accepts() (pynlpl.formats.folia.Feature class method), 863
accepts() (pynlpl.formats.folia.Figure class method), 179
accepts() (pynlpl.formats.folia.Gap class method), 191
accepts() (pynlpl.formats.folia.Head class method), 203
accepts() (pynlpl.formats.folia.Headspan class method),

788

accepts() (pynlpl.formats.folia.LangAnnotation class
method), 451

accepts() (pynlpl.formats.folia.LemmaAnnotation class
method), 462

accepts() (pynlpl.formats.folia.Linebreak class method),
216

accepts() (pynlpl.formats.folia.List class method), 229
accepts() (pynlpl.formats.folia.ListItem class method),

242
accepts() (pynlpl.formats.folia.Metric class method),

1043
accepts() (pynlpl.formats.folia.New class method), 976
accepts() (pynlpl.formats.folia.Note class method), 255
accepts() (pynlpl.formats.folia.Observation class

method), 565
accepts() (pynlpl.formats.folia.ObservationLayer class

method), 694
accepts() (pynlpl.formats.folia.Original class method),

987
accepts() (pynlpl.formats.folia.Paragraph class method),

268
accepts() (pynlpl.formats.folia.Part class method), 281
accepts() (pynlpl.formats.folia.PhonContent class

method), 506
accepts() (pynlpl.formats.folia.PosAnnotation class

method), 440
accepts() (pynlpl.formats.folia.Predicate class method),

576
accepts() (pynlpl.formats.folia.Quote class method), 294
accepts() (pynlpl.formats.folia.Reference class method),

307
accepts() (pynlpl.formats.folia.Row class method), 320
accepts() (pynlpl.formats.folia.SemanticRole class

method), 623
accepts() (pynlpl.formats.folia.SemanticRolesLayer class

method), 741
accepts() (pynlpl.formats.folia.SenseAnnotation class

method), 473
accepts() (pynlpl.formats.folia.Sentence class method),

334
accepts() (pynlpl.formats.folia.Sentiment class method),

588
accepts() (pynlpl.formats.folia.SentimentLayer class

method), 706
accepts() (pynlpl.formats.folia.Statement class method),

600
accepts() (pynlpl.formats.folia.StatementLayer class

method), 717
accepts() (pynlpl.formats.folia.SubjectivityAnnotation

class method), 484
accepts() (pynlpl.formats.folia.Suggestion class method),

998
accepts() (pynlpl.formats.folia.SynsetFeature class

method), 874
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accepts() (pynlpl.formats.folia.SyntacticUnit class
method), 611

accepts() (pynlpl.formats.folia.SyntaxLayer class
method), 729

accepts() (pynlpl.formats.folia.Table class method), 347
accepts() (pynlpl.formats.folia.TableHead class method),

373
accepts() (pynlpl.formats.folia.Term class method), 360
accepts() (pynlpl.formats.folia.Text class method), 387
accepts() (pynlpl.formats.folia.TextContent class

method), 496
accepts() (pynlpl.formats.folia.TextMarkupCorrection

class method), 841
accepts() (pynlpl.formats.folia.TextMarkupError class

method), 851
accepts() (pynlpl.formats.folia.TextMarkupGap class

method), 809
accepts() (pynlpl.formats.folia.TextMarkupString class

method), 819
accepts() (pynlpl.formats.folia.TextMarkupStyle class

method), 830
accepts() (pynlpl.formats.folia.TimeSegment class

method), 635
accepts() (pynlpl.formats.folia.TimingLayer class

method), 753
accepts() (pynlpl.formats.folia.Whitespace class method),

400
accepts() (pynlpl.formats.folia.Word class method), 414
accessible() (pynlpl.statistics.MarkovChain method),

1063
accuracy() (pynlpl.evaluation.ClassEvaluation method), 9
ActorFeature (class in pynlpl.formats.folia), 882
add() (pynlpl.datatypes.PatternSet method), 5
add() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 75
add() (pynlpl.formats.folia.AbstractElement method), 26
add() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 52
add() (pynlpl.formats.folia.AbstractStructureElement

method), 38
add() (pynlpl.formats.folia.AbstractTextMarkup method),

87
add() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 64
add() (pynlpl.formats.folia.ActorFeature method), 885
add() (pynlpl.formats.folia.Alignment method), 1009
add() (pynlpl.formats.folia.AlignReference method),

1020
add() (pynlpl.formats.folia.Alternative method), 919
add() (pynlpl.formats.folia.AlternativeLayers method),

932
add() (pynlpl.formats.folia.BegindatetimeFeature

method), 896
add() (pynlpl.formats.folia.Cell method), 101

add() (pynlpl.formats.folia.Chunk method), 518
add() (pynlpl.formats.folia.ChunkingLayer method), 647
add() (pynlpl.formats.folia.CoreferenceChain method),

530
add() (pynlpl.formats.folia.CoreferenceLayer method),

659
add() (pynlpl.formats.folia.CoreferenceLink method),

765
add() (pynlpl.formats.folia.Correction method), 944
add() (pynlpl.formats.folia.Current method), 954
add() (pynlpl.formats.folia.Definition method), 114
add() (pynlpl.formats.folia.DependenciesLayer method),

670
add() (pynlpl.formats.folia.Dependency method), 542
add() (pynlpl.formats.folia.DependencyDependent

method), 776
add() (pynlpl.formats.folia.Description method), 1032
add() (pynlpl.formats.folia.Division method), 127
add() (pynlpl.formats.folia.Document method), 17
add() (pynlpl.formats.folia.DomainAnnotation method),

429
add() (pynlpl.formats.folia.EnddatetimeFeature method),

907
add() (pynlpl.formats.folia.EntitiesLayer method), 682
add() (pynlpl.formats.folia.Entity method), 553
add() (pynlpl.formats.folia.Entry method), 140
add() (pynlpl.formats.folia.ErrorDetection method), 965
add() (pynlpl.formats.folia.Event method), 153
add() (pynlpl.formats.folia.Example method), 166
add() (pynlpl.formats.folia.Feature method), 863
add() (pynlpl.formats.folia.Figure method), 179
add() (pynlpl.formats.folia.Gap method), 191
add() (pynlpl.formats.folia.Head method), 203
add() (pynlpl.formats.folia.Headspan method), 788
add() (pynlpl.formats.folia.LangAnnotation method), 451
add() (pynlpl.formats.folia.LemmaAnnotation method),

462
add() (pynlpl.formats.folia.Linebreak method), 216
add() (pynlpl.formats.folia.List method), 229
add() (pynlpl.formats.folia.ListItem method), 242
add() (pynlpl.formats.folia.Metric method), 1043
add() (pynlpl.formats.folia.New method), 976
add() (pynlpl.formats.folia.Note method), 255
add() (pynlpl.formats.folia.Observation method), 565
add() (pynlpl.formats.folia.ObservationLayer method),

694
add() (pynlpl.formats.folia.Original method), 987
add() (pynlpl.formats.folia.Paragraph method), 268
add() (pynlpl.formats.folia.Part method), 281
add() (pynlpl.formats.folia.PhonContent method), 506
add() (pynlpl.formats.folia.PosAnnotation method), 440
add() (pynlpl.formats.folia.Predicate method), 576
add() (pynlpl.formats.folia.Quote method), 294
add() (pynlpl.formats.folia.Reference method), 307
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add() (pynlpl.formats.folia.Row method), 320
add() (pynlpl.formats.folia.SemanticRole method), 623
add() (pynlpl.formats.folia.SemanticRolesLayer method),

741
add() (pynlpl.formats.folia.SenseAnnotation method),

473
add() (pynlpl.formats.folia.Sentence method), 334
add() (pynlpl.formats.folia.Sentiment method), 588
add() (pynlpl.formats.folia.SentimentLayer method), 706
add() (pynlpl.formats.folia.Statement method), 600
add() (pynlpl.formats.folia.StatementLayer method), 717
add() (pynlpl.formats.folia.SubjectivityAnnotation

method), 484
add() (pynlpl.formats.folia.Suggestion method), 998
add() (pynlpl.formats.folia.SynsetFeature method), 874
add() (pynlpl.formats.folia.SyntacticUnit method), 611
add() (pynlpl.formats.folia.SyntaxLayer method), 729
add() (pynlpl.formats.folia.Table method), 347
add() (pynlpl.formats.folia.TableHead method), 373
add() (pynlpl.formats.folia.Term method), 360
add() (pynlpl.formats.folia.Text method), 387
add() (pynlpl.formats.folia.TextContent method), 496
add() (pynlpl.formats.folia.TextMarkupCorrection

method), 841
add() (pynlpl.formats.folia.TextMarkupError method),

851
add() (pynlpl.formats.folia.TextMarkupGap method), 809
add() (pynlpl.formats.folia.TextMarkupString method),

819
add() (pynlpl.formats.folia.TextMarkupStyle method),
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add() (pynlpl.formats.folia.TimeSegment method), 635
add() (pynlpl.formats.folia.TimingLayer method), 753
add() (pynlpl.formats.folia.Whitespace method), 400
add() (pynlpl.formats.folia.Word method), 414
addable() (pynlpl.formats.folia.AbstractAnnotationLayer

class method), 75
addable() (pynlpl.formats.folia.AbstractElement class

method), 26
addable() (pynlpl.formats.folia.AbstractSpanAnnotation

class method), 52
addable() (pynlpl.formats.folia.AbstractStructureElement

class method), 38
addable() (pynlpl.formats.folia.AbstractTextMarkup class

method), 87
addable() (pynlpl.formats.folia.AbstractTokenAnnotation

class method), 64
addable() (pynlpl.formats.folia.ActorFeature class

method), 885
addable() (pynlpl.formats.folia.Alignment class method),

1009
addable() (pynlpl.formats.folia.AlignReference class

method), 1020
addable() (pynlpl.formats.folia.Alternative class method),

919
addable() (pynlpl.formats.folia.AlternativeLayers class

method), 932
addable() (pynlpl.formats.folia.BegindatetimeFeature

class method), 896
addable() (pynlpl.formats.folia.Cell class method), 101
addable() (pynlpl.formats.folia.Chunk class method), 518
addable() (pynlpl.formats.folia.ChunkingLayer class

method), 647
addable() (pynlpl.formats.folia.CoreferenceChain class

method), 530
addable() (pynlpl.formats.folia.CoreferenceLayer class

method), 659
addable() (pynlpl.formats.folia.CoreferenceLink class

method), 765
addable() (pynlpl.formats.folia.Correction class method),

944
addable() (pynlpl.formats.folia.Current class method),

954
addable() (pynlpl.formats.folia.Definition class method),

114
addable() (pynlpl.formats.folia.DependenciesLayer class

method), 670
addable() (pynlpl.formats.folia.Dependency class

method), 542
addable() (pynlpl.formats.folia.DependencyDependent

class method), 777
addable() (pynlpl.formats.folia.Description class

method), 1032
addable() (pynlpl.formats.folia.Division class method),

127
addable() (pynlpl.formats.folia.DomainAnnotation class

method), 429
addable() (pynlpl.formats.folia.EnddatetimeFeature class

method), 907
addable() (pynlpl.formats.folia.EntitiesLayer class

method), 682
addable() (pynlpl.formats.folia.Entity class method), 553
addable() (pynlpl.formats.folia.Entry class method), 140
addable() (pynlpl.formats.folia.ErrorDetection class

method), 965
addable() (pynlpl.formats.folia.Event class method), 153
addable() (pynlpl.formats.folia.Example class method),

166
addable() (pynlpl.formats.folia.Feature class method),

863
addable() (pynlpl.formats.folia.Figure class method), 179
addable() (pynlpl.formats.folia.Gap class method), 191
addable() (pynlpl.formats.folia.Head class method), 203
addable() (pynlpl.formats.folia.Headspan class method),

788
addable() (pynlpl.formats.folia.LangAnnotation class

method), 451
addable() (pynlpl.formats.folia.LemmaAnnotation class
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method), 462
addable() (pynlpl.formats.folia.Linebreak class method),

216
addable() (pynlpl.formats.folia.List class method), 229
addable() (pynlpl.formats.folia.ListItem class method),

242
addable() (pynlpl.formats.folia.Metric class method),

1043
addable() (pynlpl.formats.folia.New class method), 976
addable() (pynlpl.formats.folia.Note class method), 255
addable() (pynlpl.formats.folia.Observation class

method), 565
addable() (pynlpl.formats.folia.ObservationLayer class

method), 694
addable() (pynlpl.formats.folia.Original class method),

987
addable() (pynlpl.formats.folia.Paragraph class method),

268
addable() (pynlpl.formats.folia.Part class method), 281
addable() (pynlpl.formats.folia.PhonContent class

method), 506
addable() (pynlpl.formats.folia.PosAnnotation class

method), 440
addable() (pynlpl.formats.folia.Predicate class method),

577
addable() (pynlpl.formats.folia.Quote class method), 294
addable() (pynlpl.formats.folia.Reference class method),

307
addable() (pynlpl.formats.folia.Row class method), 320
addable() (pynlpl.formats.folia.SemanticRole class

method), 623
addable() (pynlpl.formats.folia.SemanticRolesLayer class

method), 741
addable() (pynlpl.formats.folia.SenseAnnotation class

method), 473
addable() (pynlpl.formats.folia.Sentence class method),

334
addable() (pynlpl.formats.folia.Sentiment class method),

588
addable() (pynlpl.formats.folia.SentimentLayer class

method), 706
addable() (pynlpl.formats.folia.Statement class method),

600
addable() (pynlpl.formats.folia.StatementLayer class

method), 717
addable() (pynlpl.formats.folia.SubjectivityAnnotation

class method), 484
addable() (pynlpl.formats.folia.Suggestion class method),

998
addable() (pynlpl.formats.folia.SynsetFeature class

method), 874
addable() (pynlpl.formats.folia.SyntacticUnit class

method), 612
addable() (pynlpl.formats.folia.SyntaxLayer class

method), 729
addable() (pynlpl.formats.folia.Table class method), 348
addable() (pynlpl.formats.folia.TableHead class method),

374
addable() (pynlpl.formats.folia.Term class method), 361
addable() (pynlpl.formats.folia.Text class method), 387
addable() (pynlpl.formats.folia.TextContent class

method), 496
addable() (pynlpl.formats.folia.TextMarkupCorrection

class method), 841
addable() (pynlpl.formats.folia.TextMarkupError class

method), 852
addable() (pynlpl.formats.folia.TextMarkupGap class

method), 809
addable() (pynlpl.formats.folia.TextMarkupString class

method), 819
addable() (pynlpl.formats.folia.TextMarkupStyle class

method), 830
addable() (pynlpl.formats.folia.TimeSegment class

method), 635
addable() (pynlpl.formats.folia.TimingLayer class

method), 753
addable() (pynlpl.formats.folia.Whitespace class

method), 400
addable() (pynlpl.formats.folia.Word class method), 414
addidsuffix() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 75
addidsuffix() (pynlpl.formats.folia.AbstractElement

method), 27
addidsuffix() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 53
addidsuffix() (pynlpl.formats.folia.AbstractStructureElement

method), 38
addidsuffix() (pynlpl.formats.folia.AbstractTextMarkup

method), 87
addidsuffix() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 64
addidsuffix() (pynlpl.formats.folia.ActorFeature method),

886
addidsuffix() (pynlpl.formats.folia.Alignment method),

1010
addidsuffix() (pynlpl.formats.folia.AlignReference

method), 1021
addidsuffix() (pynlpl.formats.folia.Alternative method),

920
addidsuffix() (pynlpl.formats.folia.AlternativeLayers

method), 932
addidsuffix() (pynlpl.formats.folia.BegindatetimeFeature

method), 897
addidsuffix() (pynlpl.formats.folia.Cell method), 101
addidsuffix() (pynlpl.formats.folia.Chunk method), 519
addidsuffix() (pynlpl.formats.folia.ChunkingLayer

method), 647
addidsuffix() (pynlpl.formats.folia.CoreferenceChain
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method), 530
addidsuffix() (pynlpl.formats.folia.CoreferenceLayer

method), 659
addidsuffix() (pynlpl.formats.folia.CoreferenceLink

method), 765
addidsuffix() (pynlpl.formats.folia.Correction method),
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addidsuffix() (pynlpl.formats.folia.Current method), 954
addidsuffix() (pynlpl.formats.folia.Definition method),

114
addidsuffix() (pynlpl.formats.folia.DependenciesLayer

method), 671
addidsuffix() (pynlpl.formats.folia.Dependency method),

542
addidsuffix() (pynlpl.formats.folia.DependencyDependent

method), 777
addidsuffix() (pynlpl.formats.folia.Description method),
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addidsuffix() (pynlpl.formats.folia.Division method), 127
addidsuffix() (pynlpl.formats.folia.DomainAnnotation

method), 429
addidsuffix() (pynlpl.formats.folia.EnddatetimeFeature

method), 908
addidsuffix() (pynlpl.formats.folia.EntitiesLayer

method), 683
addidsuffix() (pynlpl.formats.folia.Entity method), 554
addidsuffix() (pynlpl.formats.folia.Entry method), 140
addidsuffix() (pynlpl.formats.folia.ErrorDetection

method), 965
addidsuffix() (pynlpl.formats.folia.Event method), 153
addidsuffix() (pynlpl.formats.folia.Example method), 166
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addidsuffix() (pynlpl.formats.folia.Figure method), 179
addidsuffix() (pynlpl.formats.folia.Gap method), 192
addidsuffix() (pynlpl.formats.folia.Head method), 203
addidsuffix() (pynlpl.formats.folia.Headspan method),

788
addidsuffix() (pynlpl.formats.folia.LangAnnotation

method), 451
addidsuffix() (pynlpl.formats.folia.LemmaAnnotation

method), 462
addidsuffix() (pynlpl.formats.folia.Linebreak method),

216
addidsuffix() (pynlpl.formats.folia.List method), 229
addidsuffix() (pynlpl.formats.folia.ListItem method), 242
addidsuffix() (pynlpl.formats.folia.Metric method), 1043
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annotation() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 76
annotation() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 53

annotation() (pynlpl.formats.folia.AbstractStructureElement
method), 39

annotation() (pynlpl.formats.folia.AllowTokenAnnotation
method), 48

annotation() (pynlpl.formats.folia.Alternative method),
920

annotation() (pynlpl.formats.folia.Cell method), 102
annotation() (pynlpl.formats.folia.Chunk method), 519
annotation() (pynlpl.formats.folia.ChunkingLayer

method), 648
annotation() (pynlpl.formats.folia.CoreferenceChain

method), 531
annotation() (pynlpl.formats.folia.CoreferenceLayer

method), 660
annotation() (pynlpl.formats.folia.CoreferenceLink

method), 765
annotation() (pynlpl.formats.folia.Definition method),

115
annotation() (pynlpl.formats.folia.DependenciesLayer

method), 671
annotation() (pynlpl.formats.folia.Dependency method),

542
annotation() (pynlpl.formats.folia.DependencyDependent

method), 777
annotation() (pynlpl.formats.folia.Division method), 128
annotation() (pynlpl.formats.folia.EntitiesLayer method),

683
annotation() (pynlpl.formats.folia.Entity method), 554
annotation() (pynlpl.formats.folia.Entry method), 141
annotation() (pynlpl.formats.folia.Event method), 154
annotation() (pynlpl.formats.folia.Example method), 167
annotation() (pynlpl.formats.folia.Figure method), 180
annotation() (pynlpl.formats.folia.Head method), 204
annotation() (pynlpl.formats.folia.Headspan method),

789
annotation() (pynlpl.formats.folia.Linebreak method),

217
annotation() (pynlpl.formats.folia.List method), 230
annotation() (pynlpl.formats.folia.ListItem method), 243
annotation() (pynlpl.formats.folia.Note method), 256
annotation() (pynlpl.formats.folia.Observation method),

566
annotation() (pynlpl.formats.folia.ObservationLayer

method), 695
annotation() (pynlpl.formats.folia.Paragraph method),

269
annotation() (pynlpl.formats.folia.Part method), 282
annotation() (pynlpl.formats.folia.Predicate method), 577
annotation() (pynlpl.formats.folia.Quote method), 295
annotation() (pynlpl.formats.folia.Reference method),

308
annotation() (pynlpl.formats.folia.Row method), 321
annotation() (pynlpl.formats.folia.SemanticRole method),

624
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annotation() (pynlpl.formats.folia.SemanticRolesLayer
method), 742

annotation() (pynlpl.formats.folia.Sentence method), 335
annotation() (pynlpl.formats.folia.Sentiment method),

589
annotation() (pynlpl.formats.folia.SentimentLayer

method), 707
annotation() (pynlpl.formats.folia.Statement method),

600
annotation() (pynlpl.formats.folia.StatementLayer

method), 718
annotation() (pynlpl.formats.folia.SyntacticUnit method),

612
annotation() (pynlpl.formats.folia.SyntaxLayer method),

730
annotation() (pynlpl.formats.folia.Table method), 348
annotation() (pynlpl.formats.folia.TableHead method),

374
annotation() (pynlpl.formats.folia.Term method), 361
annotation() (pynlpl.formats.folia.Text method), 387
annotation() (pynlpl.formats.folia.TimeSegment method),

635
annotation() (pynlpl.formats.folia.TimingLayer method),

754
annotation() (pynlpl.formats.folia.Whitespace method),

400
annotation() (pynlpl.formats.folia.Word method), 415
annotations() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 76
annotations() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 53
annotations() (pynlpl.formats.folia.AbstractStructureElement

method), 39
annotations() (pynlpl.formats.folia.AllowTokenAnnotation

method), 49
annotations() (pynlpl.formats.folia.Alternative method),

921
annotations() (pynlpl.formats.folia.Cell method), 102
annotations() (pynlpl.formats.folia.Chunk method), 519
annotations() (pynlpl.formats.folia.ChunkingLayer

method), 648
annotations() (pynlpl.formats.folia.CoreferenceChain

method), 531
annotations() (pynlpl.formats.folia.CoreferenceLayer

method), 660
annotations() (pynlpl.formats.folia.CoreferenceLink

method), 765
annotations() (pynlpl.formats.folia.Definition method),

115
annotations() (pynlpl.formats.folia.DependenciesLayer

method), 671
annotations() (pynlpl.formats.folia.Dependency method),

542
annotations() (pynlpl.formats.folia.DependencyDependent

method), 777
annotations() (pynlpl.formats.folia.Division method), 128
annotations() (pynlpl.formats.folia.EntitiesLayer

method), 683
annotations() (pynlpl.formats.folia.Entity method), 554
annotations() (pynlpl.formats.folia.Entry method), 141
annotations() (pynlpl.formats.folia.Event method), 154
annotations() (pynlpl.formats.folia.Example method),

167
annotations() (pynlpl.formats.folia.Figure method), 180
annotations() (pynlpl.formats.folia.Head method), 204
annotations() (pynlpl.formats.folia.Headspan method),

789
annotations() (pynlpl.formats.folia.Linebreak method),

217
annotations() (pynlpl.formats.folia.List method), 230
annotations() (pynlpl.formats.folia.ListItem method), 243
annotations() (pynlpl.formats.folia.Note method), 256
annotations() (pynlpl.formats.folia.Observation method),

566
annotations() (pynlpl.formats.folia.ObservationLayer

method), 695
annotations() (pynlpl.formats.folia.Paragraph method),

269
annotations() (pynlpl.formats.folia.Part method), 282
annotations() (pynlpl.formats.folia.Predicate method),

577
annotations() (pynlpl.formats.folia.Quote method), 295
annotations() (pynlpl.formats.folia.Reference method),

308
annotations() (pynlpl.formats.folia.Row method), 321
annotations() (pynlpl.formats.folia.SemanticRole

method), 624
annotations() (pynlpl.formats.folia.SemanticRolesLayer

method), 742
annotations() (pynlpl.formats.folia.Sentence method),

335
annotations() (pynlpl.formats.folia.Sentiment method),

589
annotations() (pynlpl.formats.folia.SentimentLayer

method), 707
annotations() (pynlpl.formats.folia.Statement method),

601
annotations() (pynlpl.formats.folia.StatementLayer

method), 718
annotations() (pynlpl.formats.folia.SyntacticUnit

method), 612
annotations() (pynlpl.formats.folia.SyntaxLayer method),

730
annotations() (pynlpl.formats.folia.Table method), 349
annotations() (pynlpl.formats.folia.TableHead method),

375
annotations() (pynlpl.formats.folia.Term method), 362
annotations() (pynlpl.formats.folia.Text method), 388
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annotations() (pynlpl.formats.folia.TimeSegment
method), 636

annotations() (pynlpl.formats.folia.TimingLayer
method), 754

annotations() (pynlpl.formats.folia.Whitespace method),
401

annotations() (pynlpl.formats.folia.Word method), 415
ANNOTATIONTYPE (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 74
ANNOTATIONTYPE (pynlpl.formats.folia.AbstractElement

attribute), 26
ANNOTATIONTYPE (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
ANNOTATIONTYPE (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
ANNOTATIONTYPE (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
ANNOTATIONTYPE (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
ANNOTATIONTYPE (pynlpl.formats.folia.ActorFeature

attribute), 884
ANNOTATIONTYPE (pynlpl.formats.folia.Alignment

attribute), 1009
ANNOTATIONTYPE (pynlpl.formats.folia.AlignReference

attribute), 1020
ANNOTATIONTYPE (pynlpl.formats.folia.Alternative

attribute), 919
ANNOTATIONTYPE (pynlpl.formats.folia.AlternativeLayers

attribute), 931
ANNOTATIONTYPE (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
ANNOTATIONTYPE (pynlpl.formats.folia.Cell at-

tribute), 100
ANNOTATIONTYPE (pynlpl.formats.folia.Chunk

attribute), 518
ANNOTATIONTYPE (pynlpl.formats.folia.ChunkingLayer

attribute), 646
ANNOTATIONTYPE (pynlpl.formats.folia.CoreferenceChain

attribute), 529
ANNOTATIONTYPE (pynlpl.formats.folia.CoreferenceLayer

attribute), 658
ANNOTATIONTYPE (pynlpl.formats.folia.CoreferenceLink

attribute), 764
ANNOTATIONTYPE (pynlpl.formats.folia.Correction

attribute), 944
ANNOTATIONTYPE (pynlpl.formats.folia.Current at-

tribute), 953
ANNOTATIONTYPE (pynlpl.formats.folia.Definition at-

tribute), 113
ANNOTATIONTYPE (pynlpl.formats.folia.DependenciesLayer

attribute), 670
ANNOTATIONTYPE (pynlpl.formats.folia.Dependency

attribute), 541
ANNOTATIONTYPE (pynlpl.formats.folia.DependencyDependent

attribute), 776
ANNOTATIONTYPE (pynlpl.formats.folia.Description

attribute), 1031
ANNOTATIONTYPE (pynlpl.formats.folia.Division at-

tribute), 126
ANNOTATIONTYPE (pynlpl.formats.folia.DomainAnnotation

attribute), 428
ANNOTATIONTYPE (pynlpl.formats.folia.EnddatetimeFeature

attribute), 907
ANNOTATIONTYPE (pynlpl.formats.folia.EntitiesLayer

attribute), 682
ANNOTATIONTYPE (pynlpl.formats.folia.Entity

attribute), 553
ANNOTATIONTYPE (pynlpl.formats.folia.Entry at-

tribute), 139
ANNOTATIONTYPE (pynlpl.formats.folia.ErrorDetection

attribute), 964
ANNOTATIONTYPE (pynlpl.formats.folia.Event at-

tribute), 152
ANNOTATIONTYPE (pynlpl.formats.folia.Example at-

tribute), 165
ANNOTATIONTYPE (pynlpl.formats.folia.Feature at-

tribute), 862
ANNOTATIONTYPE (pynlpl.formats.folia.Figure

attribute), 178
ANNOTATIONTYPE (pynlpl.formats.folia.Gap at-

tribute), 191
ANNOTATIONTYPE (pynlpl.formats.folia.Head at-

tribute), 202
ANNOTATIONTYPE (pynlpl.formats.folia.Headspan at-

tribute), 788
ANNOTATIONTYPE (pynlpl.formats.folia.LangAnnotation

attribute), 450
ANNOTATIONTYPE (pynlpl.formats.folia.LemmaAnnotation

attribute), 461
ANNOTATIONTYPE (pynlpl.formats.folia.Linebreak at-

tribute), 215
ANNOTATIONTYPE (pynlpl.formats.folia.List at-

tribute), 228
ANNOTATIONTYPE (pynlpl.formats.folia.ListItem at-

tribute), 241
ANNOTATIONTYPE (pynlpl.formats.folia.Metric

attribute), 1042
ANNOTATIONTYPE (pynlpl.formats.folia.New at-

tribute), 975
ANNOTATIONTYPE (pynlpl.formats.folia.Note at-

tribute), 254
ANNOTATIONTYPE (pynlpl.formats.folia.Observation

attribute), 564
ANNOTATIONTYPE (pynlpl.formats.folia.ObservationLayer

attribute), 693
ANNOTATIONTYPE (pynlpl.formats.folia.Original at-

tribute), 986
ANNOTATIONTYPE (pynlpl.formats.folia.Paragraph at-
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tribute), 267
ANNOTATIONTYPE (pynlpl.formats.folia.Part at-

tribute), 280
ANNOTATIONTYPE (pynlpl.formats.folia.PhonContent

attribute), 505
ANNOTATIONTYPE (pynlpl.formats.folia.PosAnnotation

attribute), 439
ANNOTATIONTYPE (pynlpl.formats.folia.Predicate at-

tribute), 576
ANNOTATIONTYPE (pynlpl.formats.folia.Quote

attribute), 293
ANNOTATIONTYPE (pynlpl.formats.folia.Reference at-

tribute), 306
ANNOTATIONTYPE (pynlpl.formats.folia.Row at-

tribute), 319
ANNOTATIONTYPE (pynlpl.formats.folia.SemanticRole

attribute), 622
ANNOTATIONTYPE (pynlpl.formats.folia.SemanticRolesLayer

attribute), 740
ANNOTATIONTYPE (pynlpl.formats.folia.SenseAnnotation

attribute), 472
ANNOTATIONTYPE (pynlpl.formats.folia.Sentence at-

tribute), 332
ANNOTATIONTYPE (pynlpl.formats.folia.Sentiment at-

tribute), 587
ANNOTATIONTYPE (pynlpl.formats.folia.SentimentLayer

attribute), 705
ANNOTATIONTYPE (pynlpl.formats.folia.Statement at-

tribute), 599
ANNOTATIONTYPE (pynlpl.formats.folia.StatementLayer

attribute), 717
ANNOTATIONTYPE (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 483
ANNOTATIONTYPE (pynlpl.formats.folia.Suggestion

attribute), 997
ANNOTATIONTYPE (pynlpl.formats.folia.SynsetFeature

attribute), 873
ANNOTATIONTYPE (pynlpl.formats.folia.SyntacticUnit

attribute), 611
ANNOTATIONTYPE (pynlpl.formats.folia.SyntaxLayer

attribute), 729
ANNOTATIONTYPE (pynlpl.formats.folia.Table at-

tribute), 347
ANNOTATIONTYPE (pynlpl.formats.folia.TableHead

attribute), 373
ANNOTATIONTYPE (pynlpl.formats.folia.Term at-

tribute), 360
ANNOTATIONTYPE (pynlpl.formats.folia.Text at-

tribute), 386
ANNOTATIONTYPE (pynlpl.formats.folia.TextContent

attribute), 495
ANNOTATIONTYPE (pynlpl.formats.folia.TextMarkupCorrection

attribute), 840
ANNOTATIONTYPE (pynlpl.formats.folia.TextMarkupError

attribute), 851
ANNOTATIONTYPE (pynlpl.formats.folia.TextMarkupGap

attribute), 808
ANNOTATIONTYPE (pynlpl.formats.folia.TextMarkupString

attribute), 819
ANNOTATIONTYPE (pynlpl.formats.folia.TextMarkupStyle

attribute), 829
ANNOTATIONTYPE (pynlpl.formats.folia.TimeSegment

attribute), 634
ANNOTATIONTYPE (pynlpl.formats.folia.TimingLayer

attribute), 752
ANNOTATIONTYPE (pynlpl.formats.folia.Whitespace

attribute), 399
ANNOTATIONTYPE (pynlpl.formats.folia.Word at-

tribute), 412
append() (pynlpl.datatypes.FIFOQueue method), 5
append() (pynlpl.datatypes.PriorityQueue method), 6
append() (pynlpl.datatypes.Tree method), 6
append() (pynlpl.datatypes.Trie method), 6
append() (pynlpl.evaluation.ClassEvaluation method), 9
append() (pynlpl.evaluation.ExperimentPool method), 10
append() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 76
append() (pynlpl.formats.folia.AbstractElement method),

27
append() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 53
append() (pynlpl.formats.folia.AbstractStructureElement

method), 39
append() (pynlpl.formats.folia.AbstractTextMarkup

method), 87
append() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 64
append() (pynlpl.formats.folia.ActorFeature method),

886
append() (pynlpl.formats.folia.Alignment method), 1010
append() (pynlpl.formats.folia.AlignReference method),

1021
append() (pynlpl.formats.folia.Alternative method), 921
append() (pynlpl.formats.folia.AlternativeLayers

method), 932
append() (pynlpl.formats.folia.BegindatetimeFeature

method), 897
append() (pynlpl.formats.folia.Cell method), 103
append() (pynlpl.formats.folia.Chunk method), 519
append() (pynlpl.formats.folia.ChunkingLayer method),

648
append() (pynlpl.formats.folia.CoreferenceChain

method), 531
append() (pynlpl.formats.folia.CoreferenceLayer

method), 660
append() (pynlpl.formats.folia.CoreferenceLink method),

766
append() (pynlpl.formats.folia.Correction method), 945
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append() (pynlpl.formats.folia.Current method), 955
append() (pynlpl.formats.folia.Definition method), 116
append() (pynlpl.formats.folia.DependenciesLayer

method), 672
append() (pynlpl.formats.folia.Dependency method), 543
append() (pynlpl.formats.folia.DependencyDependent

method), 777
append() (pynlpl.formats.folia.Description method), 1033
append() (pynlpl.formats.folia.Division method), 129
append() (pynlpl.formats.folia.Document method), 17
append() (pynlpl.formats.folia.DomainAnnotation

method), 430
append() (pynlpl.formats.folia.EnddatetimeFeature

method), 908
append() (pynlpl.formats.folia.EntitiesLayer method),

683
append() (pynlpl.formats.folia.Entity method), 554
append() (pynlpl.formats.folia.Entry method), 141
append() (pynlpl.formats.folia.ErrorDetection method),

966
append() (pynlpl.formats.folia.Event method), 155
append() (pynlpl.formats.folia.Example method), 167
append() (pynlpl.formats.folia.Feature method), 864
append() (pynlpl.formats.folia.Figure method), 181
append() (pynlpl.formats.folia.Gap method), 192
append() (pynlpl.formats.folia.Head method), 205
append() (pynlpl.formats.folia.Headspan method), 789
append() (pynlpl.formats.folia.LangAnnotation method),

452
append() (pynlpl.formats.folia.LemmaAnnotation

method), 463
append() (pynlpl.formats.folia.Linebreak method), 218
append() (pynlpl.formats.folia.List method), 230
append() (pynlpl.formats.folia.ListItem method), 243
append() (pynlpl.formats.folia.Metric method), 1044
append() (pynlpl.formats.folia.New method), 977
append() (pynlpl.formats.folia.Note method), 256
append() (pynlpl.formats.folia.Observation method), 566
append() (pynlpl.formats.folia.ObservationLayer

method), 695
append() (pynlpl.formats.folia.Original method), 988
append() (pynlpl.formats.folia.Paragraph method), 270
append() (pynlpl.formats.folia.Part method), 283
append() (pynlpl.formats.folia.PhonContent method), 507
append() (pynlpl.formats.folia.PosAnnotation method),

441
append() (pynlpl.formats.folia.Predicate method), 577
append() (pynlpl.formats.folia.Quote method), 295
append() (pynlpl.formats.folia.Reference method), 309
append() (pynlpl.formats.folia.Row method), 321
append() (pynlpl.formats.folia.SemanticRole method),

624
append() (pynlpl.formats.folia.SemanticRolesLayer

method), 742

append() (pynlpl.formats.folia.SenseAnnotation method),
474

append() (pynlpl.formats.folia.Sentence method), 335
append() (pynlpl.formats.folia.Sentiment method), 589
append() (pynlpl.formats.folia.SentimentLayer method),

707
append() (pynlpl.formats.folia.Statement method), 601
append() (pynlpl.formats.folia.StatementLayer method),

719
append() (pynlpl.formats.folia.SubjectivityAnnotation

method), 485
append() (pynlpl.formats.folia.Suggestion method), 999
append() (pynlpl.formats.folia.SynsetFeature method),

875
append() (pynlpl.formats.folia.SyntacticUnit method),

612
append() (pynlpl.formats.folia.SyntaxLayer method), 730
append() (pynlpl.formats.folia.Table method), 349
append() (pynlpl.formats.folia.TableHead method), 375
append() (pynlpl.formats.folia.Term method), 362
append() (pynlpl.formats.folia.Text method), 388
append() (pynlpl.formats.folia.TextContent method), 496
append() (pynlpl.formats.folia.TextMarkupCorrection

method), 842
append() (pynlpl.formats.folia.TextMarkupError

method), 852
append() (pynlpl.formats.folia.TextMarkupGap method),

810
append() (pynlpl.formats.folia.TextMarkupString

method), 820
append() (pynlpl.formats.folia.TextMarkupStyle

method), 831
append() (pynlpl.formats.folia.TimeSegment method),

636
append() (pynlpl.formats.folia.TimingLayer method), 754
append() (pynlpl.formats.folia.Whitespace method), 401
append() (pynlpl.formats.folia.Word method), 415
append() (pynlpl.lm.lm.SimpleLanguageModel method),

1057
append() (pynlpl.statistics.FrequencyList method), 1063
ARPALanguageModel (class in pynlpl.lm.lm), 1057
ARPALanguageModel.NgramsProbs (class in

pynlpl.lm.lm), 1057
auc() (in module pynlpl.evaluation), 10
auc() (pynlpl.evaluation.ClassEvaluation method), 9
AUTH (pynlpl.formats.folia.AbstractAnnotationLayer at-

tribute), 74
AUTH (pynlpl.formats.folia.AbstractElement attribute),

26
AUTH (pynlpl.formats.folia.AbstractSpanAnnotation at-

tribute), 52
AUTH (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
AUTH (pynlpl.formats.folia.AbstractTextMarkup at-
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tribute), 86
AUTH (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
AUTH (pynlpl.formats.folia.ActorFeature attribute), 885
AUTH (pynlpl.formats.folia.Alignment attribute), 1009
AUTH (pynlpl.formats.folia.AlignReference attribute),

1020
AUTH (pynlpl.formats.folia.Alternative attribute), 919
AUTH (pynlpl.formats.folia.AlternativeLayers attribute),

931
AUTH (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
AUTH (pynlpl.formats.folia.Cell attribute), 100
AUTH (pynlpl.formats.folia.Chunk attribute), 518
AUTH (pynlpl.formats.folia.ChunkingLayer attribute),

646
AUTH (pynlpl.formats.folia.CoreferenceChain attribute),

529
AUTH (pynlpl.formats.folia.CoreferenceLayer attribute),

658
AUTH (pynlpl.formats.folia.CoreferenceLink attribute),

764
AUTH (pynlpl.formats.folia.Correction attribute), 944
AUTH (pynlpl.formats.folia.Current attribute), 953
AUTH (pynlpl.formats.folia.Definition attribute), 113
AUTH (pynlpl.formats.folia.DependenciesLayer at-

tribute), 670
AUTH (pynlpl.formats.folia.Dependency attribute), 541
AUTH (pynlpl.formats.folia.DependencyDependent at-

tribute), 776
AUTH (pynlpl.formats.folia.Description attribute), 1031
AUTH (pynlpl.formats.folia.Division attribute), 126
AUTH (pynlpl.formats.folia.DomainAnnotation at-

tribute), 428
AUTH (pynlpl.formats.folia.EnddatetimeFeature at-

tribute), 907
AUTH (pynlpl.formats.folia.EntitiesLayer attribute), 682
AUTH (pynlpl.formats.folia.Entity attribute), 553
AUTH (pynlpl.formats.folia.Entry attribute), 139
AUTH (pynlpl.formats.folia.ErrorDetection attribute),

964
AUTH (pynlpl.formats.folia.Event attribute), 152
AUTH (pynlpl.formats.folia.Example attribute), 165
AUTH (pynlpl.formats.folia.Feature attribute), 862
AUTH (pynlpl.formats.folia.Figure attribute), 178
AUTH (pynlpl.formats.folia.Gap attribute), 191
AUTH (pynlpl.formats.folia.Head attribute), 202
AUTH (pynlpl.formats.folia.Headspan attribute), 788
AUTH (pynlpl.formats.folia.LangAnnotation attribute),

450
AUTH (pynlpl.formats.folia.LemmaAnnotation at-

tribute), 461
AUTH (pynlpl.formats.folia.Linebreak attribute), 215
AUTH (pynlpl.formats.folia.List attribute), 228

AUTH (pynlpl.formats.folia.ListItem attribute), 241
AUTH (pynlpl.formats.folia.Metric attribute), 1042
AUTH (pynlpl.formats.folia.New attribute), 975
AUTH (pynlpl.formats.folia.Note attribute), 254
AUTH (pynlpl.formats.folia.Observation attribute), 564
AUTH (pynlpl.formats.folia.ObservationLayer attribute),

693
AUTH (pynlpl.formats.folia.Original attribute), 986
AUTH (pynlpl.formats.folia.Paragraph attribute), 267
AUTH (pynlpl.formats.folia.Part attribute), 280
AUTH (pynlpl.formats.folia.PhonContent attribute), 505
AUTH (pynlpl.formats.folia.PosAnnotation attribute),
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AUTH (pynlpl.formats.folia.Predicate attribute), 576
AUTH (pynlpl.formats.folia.Quote attribute), 293
AUTH (pynlpl.formats.folia.Reference attribute), 306
AUTH (pynlpl.formats.folia.Row attribute), 319
AUTH (pynlpl.formats.folia.SemanticRole attribute), 622
AUTH (pynlpl.formats.folia.SemanticRolesLayer at-

tribute), 740
AUTH (pynlpl.formats.folia.SenseAnnotation attribute),

472
AUTH (pynlpl.formats.folia.Sentence attribute), 332
AUTH (pynlpl.formats.folia.Sentiment attribute), 587
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copychildren() (pynlpl.formats.folia.LemmaAnnotation

method), 463
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copychildren() (pynlpl.formats.folia.Quote method), 296
copychildren() (pynlpl.formats.folia.Reference method),
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copychildren() (pynlpl.formats.folia.Row method), 322
copychildren() (pynlpl.formats.folia.SemanticRole

method), 624
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method), 743
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method), 474
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copychildren() (pynlpl.formats.folia.Sentiment method),
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copychildren() (pynlpl.formats.folia.SentimentLayer

method), 707
copychildren() (pynlpl.formats.folia.Statement method),
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copychildren() (pynlpl.formats.folia.StatementLayer

method), 719
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method), 485
copychildren() (pynlpl.formats.folia.Suggestion method),
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method), 875
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method), 613
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copychildren() (pynlpl.formats.folia.Text method), 389
copychildren() (pynlpl.formats.folia.TextContent

method), 497
copychildren() (pynlpl.formats.folia.TextMarkupCorrection

method), 842
copychildren() (pynlpl.formats.folia.TextMarkupError
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method), 810
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method), 820
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method), 831
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method), 636
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method), 754
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method), 402
copychildren() (pynlpl.formats.folia.Word method), 416

CoreferenceChain (class in pynlpl.formats.folia), 527
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method), 54
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method), 40
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correct() (pynlpl.formats.folia.Chunk method), 520
correct() (pynlpl.formats.folia.ChunkingLayer method),
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method), 660
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count() (pynlpl.formats.folia.Current method), 955
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count() (pynlpl.formats.folia.New method), 977
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Current (class in pynlpl.formats.folia), 951
current() (pynlpl.formats.folia.Correction method), 946

D
date() (pynlpl.formats.folia.Document method), 17
declare() (pynlpl.formats.folia.Document method), 17
declared() (pynlpl.formats.folia.Document method), 18

deepvalidation() (pynlpl.formats.folia.AbstractAnnotationLayer
method), 77

deepvalidation() (pynlpl.formats.folia.AbstractElement
method), 27

deepvalidation() (pynlpl.formats.folia.AbstractSpanAnnotation
method), 54

deepvalidation() (pynlpl.formats.folia.AbstractStructureElement
method), 40

deepvalidation() (pynlpl.formats.folia.AbstractTextMarkup
method), 88

deepvalidation() (pynlpl.formats.folia.AbstractTokenAnnotation
method), 65

deepvalidation() (pynlpl.formats.folia.ActorFeature
method), 887

deepvalidation() (pynlpl.formats.folia.Alignment
method), 1010

deepvalidation() (pynlpl.formats.folia.AlignReference
method), 1022

deepvalidation() (pynlpl.formats.folia.Alternative
method), 922

deepvalidation() (pynlpl.formats.folia.AlternativeLayers
method), 933

deepvalidation() (pynlpl.formats.folia.BegindatetimeFeature
method), 898

deepvalidation() (pynlpl.formats.folia.Cell method), 103
deepvalidation() (pynlpl.formats.folia.Chunk method),
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method), 649
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method), 531
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method), 660
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method), 116
deepvalidation() (pynlpl.formats.folia.DependenciesLayer
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method), 543
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method), 430
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deepvalidation() (pynlpl.formats.folia.Entry method), 142
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delete() (pynlpl.evaluation.AbstractExperiment method),

9
deleteword() (pynlpl.formats.folia.Sentence method), 336
DependenciesLayer (class in pynlpl.formats.folia), 667
Dependency (class in pynlpl.formats.folia), 538
DependencyDependent (class in pynlpl.formats.folia),

773
dependent() (pynlpl.formats.folia.Dependency method),

543
depth() (pynlpl.datatypes.Trie method), 6
depth() (pynlpl.search.AbstractSearchState method),

1059
DepthFirstSearch (class in pynlpl.search), 1060
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method), 833
incorrection() (pynlpl.formats.folia.TimeSegment

method), 638
incorrection() (pynlpl.formats.folia.TimingLayer

method), 756
incorrection() (pynlpl.formats.folia.Whitespace method),

403
incorrection() (pynlpl.formats.folia.Word method), 418
information() (pynlpl.statistics.Distribution method),

1062
initdoc() (pynlpl.formats.folia.Reader method), 805
insert() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 78
insert() (pynlpl.formats.folia.AbstractElement method),

29
insert() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 55
insert() (pynlpl.formats.folia.AbstractStructureElement

method), 42
insert() (pynlpl.formats.folia.AbstractTextMarkup

method), 89
insert() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 66
insert() (pynlpl.formats.folia.ActorFeature method), 888
insert() (pynlpl.formats.folia.Alignment method), 1012
insert() (pynlpl.formats.folia.AlignReference method),

1023
insert() (pynlpl.formats.folia.Alternative method), 923
insert() (pynlpl.formats.folia.AlternativeLayers method),

1120 Index



PyNLPl Documentation, Release 1.2.8

934
insert() (pynlpl.formats.folia.BegindatetimeFeature

method), 899
insert() (pynlpl.formats.folia.Cell method), 105
insert() (pynlpl.formats.folia.Chunk method), 521
insert() (pynlpl.formats.folia.ChunkingLayer method),

650
insert() (pynlpl.formats.folia.CoreferenceChain method),

533
insert() (pynlpl.formats.folia.CoreferenceLayer method),

662
insert() (pynlpl.formats.folia.CoreferenceLink method),

768
insert() (pynlpl.formats.folia.Correction method), 947
insert() (pynlpl.formats.folia.Current method), 956
insert() (pynlpl.formats.folia.Definition method), 118
insert() (pynlpl.formats.folia.DependenciesLayer

method), 674
insert() (pynlpl.formats.folia.Dependency method), 545
insert() (pynlpl.formats.folia.DependencyDependent

method), 779
insert() (pynlpl.formats.folia.Description method), 1034
insert() (pynlpl.formats.folia.Division method), 131
insert() (pynlpl.formats.folia.DomainAnnotation

method), 432
insert() (pynlpl.formats.folia.EnddatetimeFeature

method), 910
insert() (pynlpl.formats.folia.EntitiesLayer method), 686
insert() (pynlpl.formats.folia.Entity method), 556
insert() (pynlpl.formats.folia.Entry method), 144
insert() (pynlpl.formats.folia.ErrorDetection method),

968
insert() (pynlpl.formats.folia.Event method), 157
insert() (pynlpl.formats.folia.Example method), 170
insert() (pynlpl.formats.folia.Feature method), 866
insert() (pynlpl.formats.folia.Figure method), 183
insert() (pynlpl.formats.folia.Gap method), 194
insert() (pynlpl.formats.folia.Head method), 207
insert() (pynlpl.formats.folia.Headspan method), 791
insert() (pynlpl.formats.folia.LangAnnotation method),

454
insert() (pynlpl.formats.folia.LemmaAnnotation method),

465
insert() (pynlpl.formats.folia.Linebreak method), 220
insert() (pynlpl.formats.folia.List method), 233
insert() (pynlpl.formats.folia.ListItem method), 246
insert() (pynlpl.formats.folia.Metric method), 1046
insert() (pynlpl.formats.folia.New method), 979
insert() (pynlpl.formats.folia.Note method), 259
insert() (pynlpl.formats.folia.Observation method), 568
insert() (pynlpl.formats.folia.ObservationLayer method),

697
insert() (pynlpl.formats.folia.Original method), 990
insert() (pynlpl.formats.folia.Paragraph method), 272

insert() (pynlpl.formats.folia.Part method), 285
insert() (pynlpl.formats.folia.PhonContent method), 509
insert() (pynlpl.formats.folia.PosAnnotation method),

443
insert() (pynlpl.formats.folia.Predicate method), 579
insert() (pynlpl.formats.folia.Quote method), 298
insert() (pynlpl.formats.folia.Reference method), 311
insert() (pynlpl.formats.folia.Row method), 324
insert() (pynlpl.formats.folia.SemanticRole method), 626
insert() (pynlpl.formats.folia.SemanticRolesLayer

method), 744
insert() (pynlpl.formats.folia.SenseAnnotation method),

476
insert() (pynlpl.formats.folia.Sentence method), 338
insert() (pynlpl.formats.folia.Sentiment method), 591
insert() (pynlpl.formats.folia.SentimentLayer method),

709
insert() (pynlpl.formats.folia.Statement method), 603
insert() (pynlpl.formats.folia.StatementLayer method),

721
insert() (pynlpl.formats.folia.SubjectivityAnnotation

method), 487
insert() (pynlpl.formats.folia.Suggestion method), 1001
insert() (pynlpl.formats.folia.SynsetFeature method), 877
insert() (pynlpl.formats.folia.SyntacticUnit method), 614
insert() (pynlpl.formats.folia.SyntaxLayer method), 733
insert() (pynlpl.formats.folia.Table method), 351
insert() (pynlpl.formats.folia.TableHead method), 377
insert() (pynlpl.formats.folia.Term method), 364
insert() (pynlpl.formats.folia.Text method), 390
insert() (pynlpl.formats.folia.TextContent method), 498
insert() (pynlpl.formats.folia.TextMarkupCorrection

method), 843
insert() (pynlpl.formats.folia.TextMarkupError method),

854
insert() (pynlpl.formats.folia.TextMarkupGap method),

811
insert() (pynlpl.formats.folia.TextMarkupString method),

822
insert() (pynlpl.formats.folia.TextMarkupStyle method),

833
insert() (pynlpl.formats.folia.TimeSegment method), 638
insert() (pynlpl.formats.folia.TimingLayer method), 756
insert() (pynlpl.formats.folia.Whitespace method), 403
insert() (pynlpl.formats.folia.Word method), 418
insertword() (pynlpl.formats.folia.Sentence method), 338
insertwordleft() (pynlpl.formats.folia.Sentence method),

338
intersect() (pynlpl.formats.giza.GizaSentenceAlignment

method), 1053
IntersectionAlignment (class in pynlpl.formats.giza),

1053
InvalidFeatureException, 1053
InvalidTagException, 1053
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is_end_of_sentence() (in module pynlpl.textprocessors),
1066

isstring() (in module pynlpl.common), 3
items() (pynlpl.datatypes.PatternMap method), 5
items() (pynlpl.datatypes.Trie method), 6
items() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 78
items() (pynlpl.formats.folia.AbstractElement method),

29
items() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 55
items() (pynlpl.formats.folia.AbstractStructureElement

method), 42
items() (pynlpl.formats.folia.AbstractTextMarkup

method), 89
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method), 66
items() (pynlpl.formats.folia.ActorFeature method), 888
items() (pynlpl.formats.folia.Alignment method), 1012
items() (pynlpl.formats.folia.AlignReference method),

1023
items() (pynlpl.formats.folia.Alternative method), 923
items() (pynlpl.formats.folia.AlternativeLayers method),

934
items() (pynlpl.formats.folia.BegindatetimeFeature

method), 899
items() (pynlpl.formats.folia.Cell method), 105
items() (pynlpl.formats.folia.Chunk method), 521
items() (pynlpl.formats.folia.ChunkingLayer method),

650
items() (pynlpl.formats.folia.CoreferenceChain method),

533
items() (pynlpl.formats.folia.CoreferenceLayer method),

662
items() (pynlpl.formats.folia.CoreferenceLink method),

768
items() (pynlpl.formats.folia.Correction method), 947
items() (pynlpl.formats.folia.Current method), 956
items() (pynlpl.formats.folia.Definition method), 118
items() (pynlpl.formats.folia.DependenciesLayer

method), 674
items() (pynlpl.formats.folia.Dependency method), 545
items() (pynlpl.formats.folia.DependencyDependent

method), 779
items() (pynlpl.formats.folia.Description method), 1034
items() (pynlpl.formats.folia.Division method), 131
items() (pynlpl.formats.folia.Document method), 19
items() (pynlpl.formats.folia.DomainAnnotation

method), 432
items() (pynlpl.formats.folia.EnddatetimeFeature

method), 910
items() (pynlpl.formats.folia.EntitiesLayer method), 686
items() (pynlpl.formats.folia.Entity method), 556
items() (pynlpl.formats.folia.Entry method), 144

items() (pynlpl.formats.folia.ErrorDetection method),
968

items() (pynlpl.formats.folia.Event method), 157
items() (pynlpl.formats.folia.Example method), 170
items() (pynlpl.formats.folia.Feature method), 866
items() (pynlpl.formats.folia.Figure method), 183
items() (pynlpl.formats.folia.Gap method), 194
items() (pynlpl.formats.folia.Head method), 207
items() (pynlpl.formats.folia.Headspan method), 791
items() (pynlpl.formats.folia.LangAnnotation method),

454
items() (pynlpl.formats.folia.LemmaAnnotation method),

465
items() (pynlpl.formats.folia.Linebreak method), 220
items() (pynlpl.formats.folia.List method), 233
items() (pynlpl.formats.folia.ListItem method), 246
items() (pynlpl.formats.folia.Metric method), 1046
items() (pynlpl.formats.folia.New method), 979
items() (pynlpl.formats.folia.Note method), 259
items() (pynlpl.formats.folia.Observation method), 568
items() (pynlpl.formats.folia.ObservationLayer method),

697
items() (pynlpl.formats.folia.Original method), 990
items() (pynlpl.formats.folia.Paragraph method), 272
items() (pynlpl.formats.folia.Part method), 285
items() (pynlpl.formats.folia.PhonContent method), 509
items() (pynlpl.formats.folia.PosAnnotation method), 443
items() (pynlpl.formats.folia.Predicate method), 579
items() (pynlpl.formats.folia.Quote method), 298
items() (pynlpl.formats.folia.Reference method), 311
items() (pynlpl.formats.folia.Row method), 324
items() (pynlpl.formats.folia.SemanticRole method), 626
items() (pynlpl.formats.folia.SemanticRolesLayer

method), 744
items() (pynlpl.formats.folia.SenseAnnotation method),

476
items() (pynlpl.formats.folia.Sentence method), 338
items() (pynlpl.formats.folia.Sentiment method), 591
items() (pynlpl.formats.folia.SentimentLayer method),

709
items() (pynlpl.formats.folia.Statement method), 603
items() (pynlpl.formats.folia.StatementLayer method),

721
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method), 487
items() (pynlpl.formats.folia.Suggestion method), 1001
items() (pynlpl.formats.folia.SynsetFeature method), 877
items() (pynlpl.formats.folia.SyntacticUnit method), 614
items() (pynlpl.formats.folia.SyntaxLayer method), 733
items() (pynlpl.formats.folia.Table method), 351
items() (pynlpl.formats.folia.TableHead method), 377
items() (pynlpl.formats.folia.Term method), 364
items() (pynlpl.formats.folia.Text method), 390
items() (pynlpl.formats.folia.TextContent method), 498
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items() (pynlpl.formats.folia.TextMarkupCorrection
method), 843

items() (pynlpl.formats.folia.TextMarkupError method),
854

items() (pynlpl.formats.folia.TextMarkupGap method),
811

items() (pynlpl.formats.folia.TextMarkupString method),
822

items() (pynlpl.formats.folia.TextMarkupStyle method),
833

items() (pynlpl.formats.folia.TimeSegment method), 638
items() (pynlpl.formats.folia.TimingLayer method), 756
items() (pynlpl.formats.folia.Whitespace method), 403
items() (pynlpl.formats.folia.Word method), 418
items() (pynlpl.statistics.Distribution method), 1062
items() (pynlpl.statistics.FrequencyList method), 1063
IterativeDeepening (class in pynlpl.search), 1060
iterbytes() (pynlpl.datatypes.Pattern method), 5

J
json() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 78
json() (pynlpl.formats.folia.AbstractElement method), 29
json() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 55
json() (pynlpl.formats.folia.AbstractStructureElement

method), 42
json() (pynlpl.formats.folia.AbstractTextMarkup

method), 89
json() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 66
json() (pynlpl.formats.folia.ActorFeature method), 888
json() (pynlpl.formats.folia.Alignment method), 1012
json() (pynlpl.formats.folia.AlignReference method),

1023
json() (pynlpl.formats.folia.Alternative method), 923
json() (pynlpl.formats.folia.AlternativeLayers method),

934
json() (pynlpl.formats.folia.BegindatetimeFeature

method), 899
json() (pynlpl.formats.folia.Cell method), 105
json() (pynlpl.formats.folia.Chunk method), 521
json() (pynlpl.formats.folia.ChunkingLayer method), 650
json() (pynlpl.formats.folia.CoreferenceChain method),

533
json() (pynlpl.formats.folia.CoreferenceLayer method),

662
json() (pynlpl.formats.folia.CoreferenceLink method),

768
json() (pynlpl.formats.folia.Correction method), 947
json() (pynlpl.formats.folia.Current method), 956
json() (pynlpl.formats.folia.Definition method), 118
json() (pynlpl.formats.folia.DependenciesLayer method),

674

json() (pynlpl.formats.folia.Dependency method), 545
json() (pynlpl.formats.folia.DependencyDependent

method), 779
json() (pynlpl.formats.folia.Description method), 1035
json() (pynlpl.formats.folia.Division method), 131
json() (pynlpl.formats.folia.Document method), 19
json() (pynlpl.formats.folia.DomainAnnotation method),

432
json() (pynlpl.formats.folia.EnddatetimeFeature method),
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json() (pynlpl.formats.folia.EntitiesLayer method), 686
json() (pynlpl.formats.folia.Entity method), 556
json() (pynlpl.formats.folia.Entry method), 144
json() (pynlpl.formats.folia.ErrorDetection method), 968
json() (pynlpl.formats.folia.Event method), 157
json() (pynlpl.formats.folia.Example method), 170
json() (pynlpl.formats.folia.Feature method), 866
json() (pynlpl.formats.folia.Figure method), 183
json() (pynlpl.formats.folia.Gap method), 194
json() (pynlpl.formats.folia.Head method), 207
json() (pynlpl.formats.folia.Headspan method), 791
json() (pynlpl.formats.folia.LangAnnotation method),

454
json() (pynlpl.formats.folia.LemmaAnnotation method),

465
json() (pynlpl.formats.folia.Linebreak method), 220
json() (pynlpl.formats.folia.List method), 233
json() (pynlpl.formats.folia.ListItem method), 246
json() (pynlpl.formats.folia.Metric method), 1046
json() (pynlpl.formats.folia.New method), 979
json() (pynlpl.formats.folia.Note method), 259
json() (pynlpl.formats.folia.Observation method), 568
json() (pynlpl.formats.folia.ObservationLayer method),

697
json() (pynlpl.formats.folia.Original method), 990
json() (pynlpl.formats.folia.Paragraph method), 272
json() (pynlpl.formats.folia.Part method), 285
json() (pynlpl.formats.folia.PhonContent method), 509
json() (pynlpl.formats.folia.PosAnnotation method), 443
json() (pynlpl.formats.folia.Predicate method), 579
json() (pynlpl.formats.folia.Quote method), 298
json() (pynlpl.formats.folia.Reference method), 311
json() (pynlpl.formats.folia.Row method), 324
json() (pynlpl.formats.folia.SemanticRole method), 626
json() (pynlpl.formats.folia.SemanticRolesLayer

method), 744
json() (pynlpl.formats.folia.SenseAnnotation method),

476
json() (pynlpl.formats.folia.Sentence method), 338
json() (pynlpl.formats.folia.Sentiment method), 591
json() (pynlpl.formats.folia.SentimentLayer method), 709
json() (pynlpl.formats.folia.Statement method), 603
json() (pynlpl.formats.folia.StatementLayer method), 721
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json() (pynlpl.formats.folia.SubjectivityAnnotation
method), 487

json() (pynlpl.formats.folia.Suggestion method), 1001
json() (pynlpl.formats.folia.SynsetFeature method), 877
json() (pynlpl.formats.folia.SyntacticUnit method), 614
json() (pynlpl.formats.folia.SyntaxLayer method), 733
json() (pynlpl.formats.folia.Table method), 351
json() (pynlpl.formats.folia.TableHead method), 377
json() (pynlpl.formats.folia.Term method), 364
json() (pynlpl.formats.folia.Text method), 390
json() (pynlpl.formats.folia.TextContent method), 498
json() (pynlpl.formats.folia.TextMarkupCorrection

method), 843
json() (pynlpl.formats.folia.TextMarkupError method),

854
json() (pynlpl.formats.folia.TextMarkupGap method),

811
json() (pynlpl.formats.folia.TextMarkupString method),

822
json() (pynlpl.formats.folia.TextMarkupStyle method),

833
json() (pynlpl.formats.folia.TimeSegment method), 638
json() (pynlpl.formats.folia.TimingLayer method), 756
json() (pynlpl.formats.folia.Whitespace method), 403
json() (pynlpl.formats.folia.Word method), 418
jsondeclarations() (pynlpl.formats.folia.Document

method), 19

K
keys() (pynlpl.statistics.Distribution method), 1062

L
LABEL (pynlpl.formats.folia.ActorFeature attribute),

885
LABEL (pynlpl.formats.folia.Alignment attribute), 1009
LABEL (pynlpl.formats.folia.Alternative attribute), 919
LABEL (pynlpl.formats.folia.AlternativeLayers at-

tribute), 931
LABEL (pynlpl.formats.folia.BegindatetimeFeature at-

tribute), 896
LABEL (pynlpl.formats.folia.Cell attribute), 100
LABEL (pynlpl.formats.folia.Chunk attribute), 518
LABEL (pynlpl.formats.folia.CoreferenceChain at-

tribute), 529
LABEL (pynlpl.formats.folia.CoreferenceLink attribute),

764
LABEL (pynlpl.formats.folia.Correction attribute), 944
LABEL (pynlpl.formats.folia.Definition attribute), 113
LABEL (pynlpl.formats.folia.Dependency attribute), 541
LABEL (pynlpl.formats.folia.DependencyDependent at-

tribute), 776
LABEL (pynlpl.formats.folia.Description attribute), 1031
LABEL (pynlpl.formats.folia.Division attribute), 126

LABEL (pynlpl.formats.folia.DomainAnnotation at-
tribute), 428

LABEL (pynlpl.formats.folia.EnddatetimeFeature at-
tribute), 907

LABEL (pynlpl.formats.folia.Entity attribute), 553
LABEL (pynlpl.formats.folia.Entry attribute), 139
LABEL (pynlpl.formats.folia.ErrorDetection attribute),

964
LABEL (pynlpl.formats.folia.Event attribute), 152
LABEL (pynlpl.formats.folia.Example attribute), 165
LABEL (pynlpl.formats.folia.Feature attribute), 862
LABEL (pynlpl.formats.folia.Figure attribute), 178
LABEL (pynlpl.formats.folia.Gap attribute), 191
LABEL (pynlpl.formats.folia.Head attribute), 202
LABEL (pynlpl.formats.folia.Headspan attribute), 788
LABEL (pynlpl.formats.folia.LangAnnotation attribute),

450
LABEL (pynlpl.formats.folia.LemmaAnnotation at-

tribute), 461
LABEL (pynlpl.formats.folia.Linebreak attribute), 215
LABEL (pynlpl.formats.folia.List attribute), 228
LABEL (pynlpl.formats.folia.ListItem attribute), 241
LABEL (pynlpl.formats.folia.Metric attribute), 1042
LABEL (pynlpl.formats.folia.Note attribute), 254
LABEL (pynlpl.formats.folia.Observation attribute), 564
LABEL (pynlpl.formats.folia.Paragraph attribute), 267
LABEL (pynlpl.formats.folia.Part attribute), 280
LABEL (pynlpl.formats.folia.PhonContent attribute), 505
LABEL (pynlpl.formats.folia.PosAnnotation attribute),

439
LABEL (pynlpl.formats.folia.Predicate attribute), 576
LABEL (pynlpl.formats.folia.Quote attribute), 293
LABEL (pynlpl.formats.folia.Reference attribute), 306
LABEL (pynlpl.formats.folia.Row attribute), 319
LABEL (pynlpl.formats.folia.SemanticRole attribute),

623
LABEL (pynlpl.formats.folia.SenseAnnotation attribute),

472
LABEL (pynlpl.formats.folia.Sentence attribute), 332
LABEL (pynlpl.formats.folia.Sentiment attribute), 588
LABEL (pynlpl.formats.folia.Statement attribute), 599
LABEL (pynlpl.formats.folia.SubjectivityAnnotation at-

tribute), 483
LABEL (pynlpl.formats.folia.SynsetFeature attribute),

873
LABEL (pynlpl.formats.folia.SyntacticUnit attribute),

611
LABEL (pynlpl.formats.folia.Table attribute), 347
LABEL (pynlpl.formats.folia.TableHead attribute), 373
LABEL (pynlpl.formats.folia.Term attribute), 360
LABEL (pynlpl.formats.folia.Text attribute), 386
LABEL (pynlpl.formats.folia.TextContent attribute), 495
LABEL (pynlpl.formats.folia.TimeSegment attribute),

634

1124 Index



PyNLPl Documentation, Release 1.2.8

LABEL (pynlpl.formats.folia.Whitespace attribute), 399
LABEL (pynlpl.formats.folia.Word attribute), 412
LangAnnotation (class in pynlpl.formats.folia), 448
language() (pynlpl.formats.folia.Document method), 19
layers() (pynlpl.formats.folia.AbstractStructureElement

method), 42
layers() (pynlpl.formats.folia.Cell method), 105
layers() (pynlpl.formats.folia.Definition method), 118
layers() (pynlpl.formats.folia.Division method), 131
layers() (pynlpl.formats.folia.Entry method), 144
layers() (pynlpl.formats.folia.Event method), 157
layers() (pynlpl.formats.folia.Example method), 170
layers() (pynlpl.formats.folia.Figure method), 183
layers() (pynlpl.formats.folia.Head method), 207
layers() (pynlpl.formats.folia.Linebreak method), 220
layers() (pynlpl.formats.folia.List method), 233
layers() (pynlpl.formats.folia.ListItem method), 246
layers() (pynlpl.formats.folia.Note method), 259
layers() (pynlpl.formats.folia.Paragraph method), 272
layers() (pynlpl.formats.folia.Part method), 285
layers() (pynlpl.formats.folia.Quote method), 298
layers() (pynlpl.formats.folia.Reference method), 311
layers() (pynlpl.formats.folia.Row method), 324
layers() (pynlpl.formats.folia.Sentence method), 338
layers() (pynlpl.formats.folia.Table method), 352
layers() (pynlpl.formats.folia.TableHead method), 378
layers() (pynlpl.formats.folia.Term method), 365
layers() (pynlpl.formats.folia.Text method), 391
layers() (pynlpl.formats.folia.Whitespace method), 404
layers() (pynlpl.formats.folia.Word method), 418
leaf() (pynlpl.datatypes.Tree method), 6
leaf() (pynlpl.datatypes.Trie method), 6
leftcontext() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 79
leftcontext() (pynlpl.formats.folia.AbstractElement

method), 29
leftcontext() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 56
leftcontext() (pynlpl.formats.folia.AbstractStructureElement

method), 42
leftcontext() (pynlpl.formats.folia.AbstractTextMarkup

method), 89
leftcontext() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 67
leftcontext() (pynlpl.formats.folia.ActorFeature method),

888
leftcontext() (pynlpl.formats.folia.Alignment method),

1012
leftcontext() (pynlpl.formats.folia.AlignReference

method), 1023
leftcontext() (pynlpl.formats.folia.Alternative method),

923
leftcontext() (pynlpl.formats.folia.AlternativeLayers

method), 934

leftcontext() (pynlpl.formats.folia.BegindatetimeFeature
method), 899

leftcontext() (pynlpl.formats.folia.Cell method), 105
leftcontext() (pynlpl.formats.folia.Chunk method), 522
leftcontext() (pynlpl.formats.folia.ChunkingLayer

method), 650
leftcontext() (pynlpl.formats.folia.CoreferenceChain

method), 533
leftcontext() (pynlpl.formats.folia.CoreferenceLayer

method), 662
leftcontext() (pynlpl.formats.folia.CoreferenceLink

method), 768
leftcontext() (pynlpl.formats.folia.Correction method),

947
leftcontext() (pynlpl.formats.folia.Current method), 957
leftcontext() (pynlpl.formats.folia.Definition method),

118
leftcontext() (pynlpl.formats.folia.DependenciesLayer

method), 674
leftcontext() (pynlpl.formats.folia.Dependency method),

545
leftcontext() (pynlpl.formats.folia.DependencyDependent

method), 780
leftcontext() (pynlpl.formats.folia.Description method),

1035
leftcontext() (pynlpl.formats.folia.Division method), 131
leftcontext() (pynlpl.formats.folia.DomainAnnotation

method), 432
leftcontext() (pynlpl.formats.folia.EnddatetimeFeature

method), 910
leftcontext() (pynlpl.formats.folia.EntitiesLayer method),

686
leftcontext() (pynlpl.formats.folia.Entity method), 556
leftcontext() (pynlpl.formats.folia.Entry method), 144
leftcontext() (pynlpl.formats.folia.ErrorDetection

method), 968
leftcontext() (pynlpl.formats.folia.Event method), 157
leftcontext() (pynlpl.formats.folia.Example method), 170
leftcontext() (pynlpl.formats.folia.Feature method), 866
leftcontext() (pynlpl.formats.folia.Figure method), 183
leftcontext() (pynlpl.formats.folia.Gap method), 194
leftcontext() (pynlpl.formats.folia.Head method), 207
leftcontext() (pynlpl.formats.folia.Headspan method),

791
leftcontext() (pynlpl.formats.folia.LangAnnotation

method), 454
leftcontext() (pynlpl.formats.folia.LemmaAnnotation

method), 465
leftcontext() (pynlpl.formats.folia.Linebreak method),

220
leftcontext() (pynlpl.formats.folia.List method), 233
leftcontext() (pynlpl.formats.folia.ListItem method), 246
leftcontext() (pynlpl.formats.folia.Metric method), 1046
leftcontext() (pynlpl.formats.folia.New method), 979
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leftcontext() (pynlpl.formats.folia.Note method), 259
leftcontext() (pynlpl.formats.folia.Observation method),

568
leftcontext() (pynlpl.formats.folia.ObservationLayer

method), 698
leftcontext() (pynlpl.formats.folia.Original method), 990
leftcontext() (pynlpl.formats.folia.Paragraph method),

272
leftcontext() (pynlpl.formats.folia.Part method), 285
leftcontext() (pynlpl.formats.folia.PhonContent method),

509
leftcontext() (pynlpl.formats.folia.PosAnnotation

method), 443
leftcontext() (pynlpl.formats.folia.Predicate method), 580
leftcontext() (pynlpl.formats.folia.Quote method), 298
leftcontext() (pynlpl.formats.folia.Reference method),

311
leftcontext() (pynlpl.formats.folia.Row method), 324
leftcontext() (pynlpl.formats.folia.SemanticRole

method), 626
leftcontext() (pynlpl.formats.folia.SemanticRolesLayer

method), 745
leftcontext() (pynlpl.formats.folia.SenseAnnotation

method), 476
leftcontext() (pynlpl.formats.folia.Sentence method), 338
leftcontext() (pynlpl.formats.folia.Sentiment method),

591
leftcontext() (pynlpl.formats.folia.SentimentLayer

method), 709
leftcontext() (pynlpl.formats.folia.Statement method),

603
leftcontext() (pynlpl.formats.folia.StatementLayer

method), 721
leftcontext() (pynlpl.formats.folia.SubjectivityAnnotation

method), 487
leftcontext() (pynlpl.formats.folia.Suggestion method),

1001
leftcontext() (pynlpl.formats.folia.SynsetFeature

method), 877
leftcontext() (pynlpl.formats.folia.SyntacticUnit method),

615
leftcontext() (pynlpl.formats.folia.SyntaxLayer method),

733
leftcontext() (pynlpl.formats.folia.Table method), 352
leftcontext() (pynlpl.formats.folia.TableHead method),

378
leftcontext() (pynlpl.formats.folia.Term method), 365
leftcontext() (pynlpl.formats.folia.Text method), 391
leftcontext() (pynlpl.formats.folia.TextContent method),

498
leftcontext() (pynlpl.formats.folia.TextMarkupCorrection

method), 843
leftcontext() (pynlpl.formats.folia.TextMarkupError

method), 854

leftcontext() (pynlpl.formats.folia.TextMarkupGap
method), 811

leftcontext() (pynlpl.formats.folia.TextMarkupString
method), 822

leftcontext() (pynlpl.formats.folia.TextMarkupStyle
method), 833

leftcontext() (pynlpl.formats.folia.TimeSegment method),
638

leftcontext() (pynlpl.formats.folia.TimingLayer method),
756

leftcontext() (pynlpl.formats.folia.Whitespace method),
404

leftcontext() (pynlpl.formats.folia.Word method), 418
lemma() (pynlpl.formats.folia.Word method), 418
LemmaAnnotation (class in pynlpl.formats.folia), 459
levenshtein() (in module pynlpl.statistics), 1064
license() (pynlpl.formats.folia.Document method), 19
Linebreak (class in pynlpl.formats.folia), 212
List (class in pynlpl.formats.folia), 225
ListItem (class in pynlpl.formats.folia), 238
LMClient (class in pynlpl.lm.client), 1058
load() (pynlpl.formats.folia.Document method), 19
load() (pynlpl.lm.lm.SimpleLanguageModel method),

1057
load() (pynlpl.statistics.FrequencyList method), 1063
log() (in module pynlpl.common), 3
log2() (in module pynlpl.statistics), 1064
logscore() (pynlpl.lm.srilm.SRILM method), 1057

M
mae() (in module pynlpl.evaluation), 11
mae() (pynlpl.evaluation.OrdinalEvaluation method), 10
MarkovChain (class in pynlpl.statistics), 1063
maxentropy() (pynlpl.statistics.Distribution method),

1062
mean() (in module pynlpl.statistics), 1064
median() (in module pynlpl.statistics), 1064
mergewords() (pynlpl.formats.folia.Sentence method),

338
Metric (class in pynlpl.formats.folia), 1040
mode() (in module pynlpl.statistics), 1064
mode() (pynlpl.statistics.Distribution method), 1062
mode() (pynlpl.statistics.FrequencyList method), 1063
morpheme() (pynlpl.formats.folia.Word method), 418
morphemes() (pynlpl.formats.folia.Word method), 418
MultiWindower (class in pynlpl.textprocessors), 1066
MultiWordAlignment (class in pynlpl.formats.giza), 1053

N
New (class in pynlpl.formats.folia), 973
new() (pynlpl.formats.folia.Correction method), 947
next() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 79
next() (pynlpl.formats.folia.AbstractElement method), 29
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next() (pynlpl.formats.folia.AbstractSpanAnnotation
method), 56

next() (pynlpl.formats.folia.AbstractStructureElement
method), 42

next() (pynlpl.formats.folia.AbstractTextMarkup
method), 89

next() (pynlpl.formats.folia.AbstractTokenAnnotation
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next() (pynlpl.formats.folia.ActorFeature method), 888
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next() (pynlpl.formats.folia.Current method), 957
next() (pynlpl.formats.folia.Definition method), 118
next() (pynlpl.formats.folia.DependenciesLayer method),

674
next() (pynlpl.formats.folia.Dependency method), 545
next() (pynlpl.formats.folia.DependencyDependent

method), 780
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next() (pynlpl.formats.folia.Division method), 131
next() (pynlpl.formats.folia.DomainAnnotation method),
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next() (pynlpl.formats.folia.EnddatetimeFeature method),

910
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next() (pynlpl.formats.folia.LemmaAnnotation method),

465
next() (pynlpl.formats.folia.Linebreak method), 220
next() (pynlpl.formats.folia.List method), 233
next() (pynlpl.formats.folia.ListItem method), 246
next() (pynlpl.formats.folia.Metric method), 1046
next() (pynlpl.formats.folia.New method), 979
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method), 745
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next() (pynlpl.formats.folia.Sentence method), 339
next() (pynlpl.formats.folia.Sentiment method), 591
next() (pynlpl.formats.folia.SentimentLayer method), 709
next() (pynlpl.formats.folia.Statement method), 603
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next() (pynlpl.formats.folia.SyntacticUnit method), 615
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next() (pynlpl.formats.folia.Table method), 352
next() (pynlpl.formats.folia.TableHead method), 378
next() (pynlpl.formats.folia.Term method), 365
next() (pynlpl.formats.folia.Text method), 391
next() (pynlpl.formats.folia.TextContent method), 498
next() (pynlpl.formats.folia.TextMarkupCorrection

method), 844
next() (pynlpl.formats.folia.TextMarkupError method),
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next() (pynlpl.formats.folia.TextMarkupGap method),
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next() (pynlpl.formats.folia.TextMarkupString method),

822
next() (pynlpl.formats.folia.TextMarkupStyle method),
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next() (pynlpl.formats.folia.TimeSegment method), 638
next() (pynlpl.formats.folia.TimingLayer method), 756
next() (pynlpl.formats.folia.Whitespace method), 404
next() (pynlpl.formats.folia.Word method), 419

Index 1127



PyNLPl Documentation, Release 1.2.8

next() (pynlpl.formats.taggerdata.Taggerdata method),
1055

normalize() (in module pynlpl.statistics), 1064
Note (class in pynlpl.formats.folia), 251
ns() (in module pynlpl.formats.sonar), 1055

O
Observation (class in pynlpl.formats.folia), 562
ObservationLayer (class in pynlpl.formats.folia), 691
OCCURRENCES (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 74
OCCURRENCES (pynlpl.formats.folia.AbstractElement

attribute), 26
OCCURRENCES (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
OCCURRENCES (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
OCCURRENCES (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
OCCURRENCES (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
OCCURRENCES (pynlpl.formats.folia.ActorFeature at-

tribute), 885
OCCURRENCES (pynlpl.formats.folia.Alignment

attribute), 1009
OCCURRENCES (pynlpl.formats.folia.AlignReference

attribute), 1020
OCCURRENCES (pynlpl.formats.folia.Alternative at-
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OCCURRENCES (pynlpl.formats.folia.AlternativeLayers

attribute), 931
OCCURRENCES (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
OCCURRENCES (pynlpl.formats.folia.Cell attribute),
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OCCURRENCES (pynlpl.formats.folia.Chunk attribute),
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OCCURRENCES (pynlpl.formats.folia.ChunkingLayer

attribute), 646
OCCURRENCES (pynlpl.formats.folia.CoreferenceChain

attribute), 529
OCCURRENCES (pynlpl.formats.folia.CoreferenceLayer

attribute), 658
OCCURRENCES (pynlpl.formats.folia.CoreferenceLink

attribute), 764
OCCURRENCES (pynlpl.formats.folia.Correction

attribute), 944
OCCURRENCES (pynlpl.formats.folia.Current at-

tribute), 953
OCCURRENCES (pynlpl.formats.folia.Definition
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OCCURRENCES (pynlpl.formats.folia.DependenciesLayer

attribute), 670

OCCURRENCES (pynlpl.formats.folia.Dependency at-
tribute), 541

OCCURRENCES (pynlpl.formats.folia.DependencyDependent
attribute), 776

OCCURRENCES (pynlpl.formats.folia.Description at-
tribute), 1031

OCCURRENCES (pynlpl.formats.folia.Division at-
tribute), 126

OCCURRENCES (pynlpl.formats.folia.DomainAnnotation
attribute), 428

OCCURRENCES (pynlpl.formats.folia.EnddatetimeFeature
attribute), 907

OCCURRENCES (pynlpl.formats.folia.EntitiesLayer at-
tribute), 682

OCCURRENCES (pynlpl.formats.folia.Entity attribute),
553

OCCURRENCES (pynlpl.formats.folia.Entry attribute),
139

OCCURRENCES (pynlpl.formats.folia.ErrorDetection
attribute), 964

OCCURRENCES (pynlpl.formats.folia.Event attribute),
152

OCCURRENCES (pynlpl.formats.folia.Example at-
tribute), 165

OCCURRENCES (pynlpl.formats.folia.Feature at-
tribute), 862

OCCURRENCES (pynlpl.formats.folia.Figure attribute),
178

OCCURRENCES (pynlpl.formats.folia.Gap attribute),
191

OCCURRENCES (pynlpl.formats.folia.Head attribute),
202

OCCURRENCES (pynlpl.formats.folia.Headspan at-
tribute), 788

OCCURRENCES (pynlpl.formats.folia.LangAnnotation
attribute), 450

OCCURRENCES (pynlpl.formats.folia.LemmaAnnotation
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OCCURRENCES (pynlpl.formats.folia.Linebreak
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OCCURRENCES (pynlpl.formats.folia.List attribute),
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OCCURRENCES (pynlpl.formats.folia.ListItem at-
tribute), 241

OCCURRENCES (pynlpl.formats.folia.Metric attribute),
1042

OCCURRENCES (pynlpl.formats.folia.New attribute),
975

OCCURRENCES (pynlpl.formats.folia.Note attribute),
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OCCURRENCES (pynlpl.formats.folia.Observation at-
tribute), 564

OCCURRENCES (pynlpl.formats.folia.ObservationLayer
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OCCURRENCES (pynlpl.formats.folia.Original at-
tribute), 986

OCCURRENCES (pynlpl.formats.folia.Paragraph
attribute), 267

OCCURRENCES (pynlpl.formats.folia.Part attribute),
280

OCCURRENCES (pynlpl.formats.folia.PhonContent at-
tribute), 505

OCCURRENCES (pynlpl.formats.folia.PosAnnotation
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tribute), 623
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attribute), 705
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OCCURRENCES (pynlpl.formats.folia.Suggestion at-
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OCCURRENCES (pynlpl.formats.folia.SynsetFeature at-
tribute), 873

OCCURRENCES (pynlpl.formats.folia.SyntacticUnit at-
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OCCURRENCES_PER_SET
(pynlpl.formats.folia.Figure attribute), 178

OCCURRENCES_PER_SET (pynlpl.formats.folia.Gap
attribute), 191

OCCURRENCES_PER_SET (pynlpl.formats.folia.Head
attribute), 202

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Headspan attribute),
788

OCCURRENCES_PER_SET
(pynlpl.formats.folia.LangAnnotation at-
tribute), 450

OCCURRENCES_PER_SET
(pynlpl.formats.folia.LemmaAnnotation at-
tribute), 461

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Linebreak attribute),
215

OCCURRENCES_PER_SET (pynlpl.formats.folia.List
attribute), 228

OCCURRENCES_PER_SET
(pynlpl.formats.folia.ListItem attribute),
241

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Metric attribute), 1042

OCCURRENCES_PER_SET (pynlpl.formats.folia.New
attribute), 975

OCCURRENCES_PER_SET (pynlpl.formats.folia.Note
attribute), 254

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Observation attribute),
564

OCCURRENCES_PER_SET
(pynlpl.formats.folia.ObservationLayer at-
tribute), 694

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Original attribute),
986

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Paragraph attribute),
267

OCCURRENCES_PER_SET (pynlpl.formats.folia.Part
attribute), 280

OCCURRENCES_PER_SET
(pynlpl.formats.folia.PhonContent attribute),
505
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OCCURRENCES_PER_SET
(pynlpl.formats.folia.PosAnnotation attribute),
439

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Predicate attribute),
576

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Quote attribute), 293

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Reference attribute),
306

OCCURRENCES_PER_SET (pynlpl.formats.folia.Row
attribute), 319

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SemanticRole attribute),
623

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SemanticRolesLayer
attribute), 741

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SenseAnnotation at-
tribute), 472

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Sentence attribute),
332

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Sentiment attribute),
588

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SentimentLayer at-
tribute), 705

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Statement attribute),
599

OCCURRENCES_PER_SET
(pynlpl.formats.folia.StatementLayer attribute),
717

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SubjectivityAnnotation
attribute), 483

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Suggestion attribute),
997

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SynsetFeature attribute),
873

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SyntacticUnit attribute),
611

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SyntaxLayer attribute),
729

OCCURRENCES_PER_SET (pynlpl.formats.folia.Table
attribute), 347

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TableHead attribute),
373

OCCURRENCES_PER_SET (pynlpl.formats.folia.Term
attribute), 360

OCCURRENCES_PER_SET (pynlpl.formats.folia.Text
attribute), 386

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TextContent attribute),
495

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TextMarkupCorrection
attribute), 840

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TextMarkupError at-
tribute), 851

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TextMarkupGap at-
tribute), 808

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TextMarkupString at-
tribute), 819

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TextMarkupStyle at-
tribute), 830

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TimeSegment attribute),
634

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TimingLayer attribute),
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OCCURRENCES_PER_SET
(pynlpl.formats.folia.Whitespace attribute),
399

OCCURRENCES_PER_SET (pynlpl.formats.folia.Word
attribute), 413

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AbstractAnnotationLayer
attribute), 74

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AbstractElement
attribute), 26

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AbstractSpanAnnotation
attribute), 52

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AbstractStructureElement
attribute), 37

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AbstractTextMarkup
attribute), 86

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AbstractTokenAnnotation
attribute), 63

OPTIONAL_ATTRIBS (pynlpl.formats.folia.ActorFeature
attribute), 885

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Alignment
attribute), 1009

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AlignReference
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OPTIONAL_ATTRIBS (pynlpl.formats.folia.Alternative
attribute), 919

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AlternativeLayers
attribute), 931

OPTIONAL_ATTRIBS (pynlpl.formats.folia.BegindatetimeFeature
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OPTIONAL_ATTRIBS (pynlpl.formats.folia.Cell at-
tribute), 100
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attribute), 428

OPTIONAL_ATTRIBS (pynlpl.formats.folia.EnddatetimeFeature
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OPTIONAL_ATTRIBS (pynlpl.formats.folia.EntitiesLayer
attribute), 682

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Entity at-
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OPTIONAL_ATTRIBS (pynlpl.formats.folia.Entry at-
tribute), 139

OPTIONAL_ATTRIBS (pynlpl.formats.folia.ErrorDetection
attribute), 964

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Event at-
tribute), 152

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Example
attribute), 165

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Feature at-
tribute), 862

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Figure at-
tribute), 178

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Gap at-
tribute), 191

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Head at-
tribute), 202

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Headspan
attribute), 788

OPTIONAL_ATTRIBS (pynlpl.formats.folia.LangAnnotation
attribute), 450

OPTIONAL_ATTRIBS (pynlpl.formats.folia.LemmaAnnotation
attribute), 461

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Linebreak
attribute), 215

OPTIONAL_ATTRIBS (pynlpl.formats.folia.List at-
tribute), 228

OPTIONAL_ATTRIBS (pynlpl.formats.folia.ListItem at-
tribute), 241

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Metric at-
tribute), 1042

OPTIONAL_ATTRIBS (pynlpl.formats.folia.New
attribute), 975

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Note
attribute), 254

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Observation
attribute), 564

OPTIONAL_ATTRIBS (pynlpl.formats.folia.ObservationLayer
attribute), 694

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Original at-
tribute), 986

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Paragraph
attribute), 267

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Part at-
tribute), 280

OPTIONAL_ATTRIBS (pynlpl.formats.folia.PhonContent
attribute), 506

OPTIONAL_ATTRIBS (pynlpl.formats.folia.PosAnnotation
attribute), 439

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Predicate
attribute), 576

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Quote at-
tribute), 293

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Reference
attribute), 306

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Row
attribute), 319

OPTIONAL_ATTRIBS (pynlpl.formats.folia.SemanticRole
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OPTIONAL_ATTRIBS (pynlpl.formats.folia.SemanticRolesLayer
attribute), 741

OPTIONAL_ATTRIBS (pynlpl.formats.folia.SenseAnnotation
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OPTIONAL_ATTRIBS (pynlpl.formats.folia.Sentence
attribute), 332

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Sentiment
attribute), 588
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OPTIONAL_ATTRIBS (pynlpl.formats.folia.SentimentLayer
attribute), 705

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Statement
attribute), 599

OPTIONAL_ATTRIBS (pynlpl.formats.folia.StatementLayer
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OPTIONAL_ATTRIBS (pynlpl.formats.folia.SyntaxLayer
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tribute), 347

OPTIONAL_ATTRIBS (pynlpl.formats.folia.TableHead
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OPTIONAL_ATTRIBS (pynlpl.formats.folia.Term at-
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OPTIONAL_ATTRIBS (pynlpl.formats.folia.Text at-
tribute), 386

OPTIONAL_ATTRIBS (pynlpl.formats.folia.TextContent
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OPTIONAL_ATTRIBS (pynlpl.formats.folia.TextMarkupGap
attribute), 808

OPTIONAL_ATTRIBS (pynlpl.formats.folia.TextMarkupString
attribute), 819

OPTIONAL_ATTRIBS (pynlpl.formats.folia.TextMarkupStyle
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OPTIONAL_ATTRIBS (pynlpl.formats.folia.TimeSegment
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OPTIONAL_ATTRIBS (pynlpl.formats.folia.Whitespace
attribute), 399

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Word at-
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OrdinalEvaluation (class in pynlpl.evaluation), 10
Original (class in pynlpl.formats.folia), 984
original() (pynlpl.formats.folia.Correction method), 947
originaltext() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 79
originaltext() (pynlpl.formats.folia.AbstractElement

method), 29
originaltext() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 56
originaltext() (pynlpl.formats.folia.AbstractStructureElement

method), 42
originaltext() (pynlpl.formats.folia.AbstractTextMarkup

method), 90
originaltext() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 67
originaltext() (pynlpl.formats.folia.ActorFeature

method), 888
originaltext() (pynlpl.formats.folia.Alignment method),

1012
originaltext() (pynlpl.formats.folia.AlignReference

method), 1024
originaltext() (pynlpl.formats.folia.Alternative method),

924
originaltext() (pynlpl.formats.folia.AlternativeLayers

method), 935
originaltext() (pynlpl.formats.folia.BegindatetimeFeature

method), 899
originaltext() (pynlpl.formats.folia.Cell method), 105
originaltext() (pynlpl.formats.folia.Chunk method), 522
originaltext() (pynlpl.formats.folia.ChunkingLayer

method), 651
originaltext() (pynlpl.formats.folia.CoreferenceChain

method), 533
originaltext() (pynlpl.formats.folia.CoreferenceLayer

method), 662
originaltext() (pynlpl.formats.folia.CoreferenceLink

method), 768
originaltext() (pynlpl.formats.folia.Correction method),

948
originaltext() (pynlpl.formats.folia.Current method), 957
originaltext() (pynlpl.formats.folia.Definition method),

118
originaltext() (pynlpl.formats.folia.DependenciesLayer

method), 674
originaltext() (pynlpl.formats.folia.Dependency method),

545
originaltext() (pynlpl.formats.folia.DependencyDependent

method), 780
originaltext() (pynlpl.formats.folia.Description method),

1035
originaltext() (pynlpl.formats.folia.Division method), 131
originaltext() (pynlpl.formats.folia.DomainAnnotation

method), 432
originaltext() (pynlpl.formats.folia.EnddatetimeFeature

method), 910
originaltext() (pynlpl.formats.folia.EntitiesLayer

method), 686
originaltext() (pynlpl.formats.folia.Entity method), 557
originaltext() (pynlpl.formats.folia.Entry method), 144
originaltext() (pynlpl.formats.folia.ErrorDetection

method), 968
originaltext() (pynlpl.formats.folia.Event method), 157
originaltext() (pynlpl.formats.folia.Example method),

170
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originaltext() (pynlpl.formats.folia.Feature method), 866
originaltext() (pynlpl.formats.folia.Figure method), 183
originaltext() (pynlpl.formats.folia.Gap method), 194
originaltext() (pynlpl.formats.folia.Head method), 207
originaltext() (pynlpl.formats.folia.Headspan method),
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220
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originaltext() (pynlpl.formats.folia.Metric method), 1046
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originaltext() (pynlpl.formats.folia.Note method), 259
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272
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509
originaltext() (pynlpl.formats.folia.PosAnnotation

method), 443
originaltext() (pynlpl.formats.folia.Predicate method),

580
originaltext() (pynlpl.formats.folia.Quote method), 298
originaltext() (pynlpl.formats.folia.Reference method),

311
originaltext() (pynlpl.formats.folia.Row method), 324
originaltext() (pynlpl.formats.folia.SemanticRole

method), 627
originaltext() (pynlpl.formats.folia.SemanticRolesLayer

method), 745
originaltext() (pynlpl.formats.folia.SenseAnnotation

method), 476
originaltext() (pynlpl.formats.folia.Sentence method),

339
originaltext() (pynlpl.formats.folia.Sentiment method),

592
originaltext() (pynlpl.formats.folia.SentimentLayer

method), 710
originaltext() (pynlpl.formats.folia.Statement method),
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method), 721
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method), 877
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method), 615
originaltext() (pynlpl.formats.folia.SyntaxLayer method),
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originaltext() (pynlpl.formats.folia.Table method), 352
originaltext() (pynlpl.formats.folia.TableHead method),

378
originaltext() (pynlpl.formats.folia.Term method), 365
originaltext() (pynlpl.formats.folia.Text method), 391
originaltext() (pynlpl.formats.folia.TextContent method),
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originaltext() (pynlpl.formats.folia.TextMarkupCorrection

method), 844
originaltext() (pynlpl.formats.folia.TextMarkupError

method), 854
originaltext() (pynlpl.formats.folia.TextMarkupGap

method), 812
originaltext() (pynlpl.formats.folia.TextMarkupString

method), 822
originaltext() (pynlpl.formats.folia.TextMarkupStyle

method), 833
originaltext() (pynlpl.formats.folia.TimeSegment

method), 638
originaltext() (pynlpl.formats.folia.TimingLayer method),

757
originaltext() (pynlpl.formats.folia.Whitespace method),

404
originaltext() (pynlpl.formats.folia.Word method), 419
output() (pynlpl.statistics.Distribution method), 1062
output() (pynlpl.statistics.FrequencyList method), 1063
outputmetrics() (pynlpl.evaluation.ClassEvaluation

method), 10

P
p() (pynlpl.statistics.FrequencyList method), 1063
p() (pynlpl.statistics.MarkovChain method), 1063
Paragraph (class in pynlpl.formats.folia), 264
paragraph() (pynlpl.formats.folia.Sentence method), 339
paragraph() (pynlpl.formats.folia.Word method), 419
paragraphs() (pynlpl.formats.folia.AbstractStructureElement

method), 42
paragraphs() (pynlpl.formats.folia.Cell method), 105
paragraphs() (pynlpl.formats.folia.Definition method),

118
paragraphs() (pynlpl.formats.folia.Division method), 131
paragraphs() (pynlpl.formats.folia.Document method), 19
paragraphs() (pynlpl.formats.folia.Entry method), 144
paragraphs() (pynlpl.formats.folia.Event method), 157
paragraphs() (pynlpl.formats.folia.Example method), 170
paragraphs() (pynlpl.formats.folia.Figure method), 183
paragraphs() (pynlpl.formats.folia.Head method), 207
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paragraphs() (pynlpl.formats.folia.Linebreak method),
220

paragraphs() (pynlpl.formats.folia.List method), 233
paragraphs() (pynlpl.formats.folia.ListItem method), 246
paragraphs() (pynlpl.formats.folia.Note method), 259
paragraphs() (pynlpl.formats.folia.Paragraph method),

272
paragraphs() (pynlpl.formats.folia.Part method), 285
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311
paragraphs() (pynlpl.formats.folia.Row method), 324
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404
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method), 1054
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method), 1054
ParamSearch (class in pynlpl.evaluation), 10
parse() (pynlpl.formats.fql.Query method), 803
parse_cgn_postag() (in module pynlpl.formats.cgn), 1053
parseAlignment() (in module pynlpl.formats.giza), 1054
parseDistribution() (pynlpl.formats.timbl.TimblOutput

method), 1055
parsemetadata() (pynlpl.formats.folia.Document

method), 20
parsesubmetadata() (pynlpl.formats.folia.Document

method), 20
parsexml() (pynlpl.formats.folia.AbstractAnnotationLayer

class method), 79
parsexml() (pynlpl.formats.folia.AbstractElement class

method), 29
parsexml() (pynlpl.formats.folia.AbstractSpanAnnotation

class method), 56
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parsexml() (pynlpl.formats.folia.Cell class method), 105
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522
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method), 651
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method), 533
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method), 663
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method), 768
parsexml() (pynlpl.formats.folia.Correction class

method), 948
parsexml() (pynlpl.formats.folia.Current class method),
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class method), 674
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method), 545
parsexml() (pynlpl.formats.folia.DependencyDependent

class method), 780
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method), 1035
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parsexml() (pynlpl.formats.folia.Document method), 20
parsexml() (pynlpl.formats.folia.DomainAnnotation class

method), 432
parsexml() (pynlpl.formats.folia.EnddatetimeFeature

class method), 911
parsexml() (pynlpl.formats.folia.EntitiesLayer class

method), 686
parsexml() (pynlpl.formats.folia.Entity class method),
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parsexml() (pynlpl.formats.folia.Entry class method), 144
parsexml() (pynlpl.formats.folia.ErrorDetection class

method), 968
parsexml() (pynlpl.formats.folia.Event class method), 157
parsexml() (pynlpl.formats.folia.Example class method),
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parsexml() (pynlpl.formats.folia.Feature class method),
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parsexml() (pynlpl.formats.folia.Figure class method),
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parsexml() (pynlpl.formats.folia.Gap class method), 195
parsexml() (pynlpl.formats.folia.Head class method), 207
parsexml() (pynlpl.formats.folia.Headspan class method),
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792
parsexml() (pynlpl.formats.folia.LangAnnotation class

method), 454
parsexml() (pynlpl.formats.folia.LemmaAnnotation class

method), 465
parsexml() (pynlpl.formats.folia.Linebreak class method),

220
parsexml() (pynlpl.formats.folia.List class method), 233
parsexml() (pynlpl.formats.folia.ListItem class method),

246
parsexml() (pynlpl.formats.folia.Metric class method),

1046
parsexml() (pynlpl.formats.folia.New class method), 979
parsexml() (pynlpl.formats.folia.Note class method), 259
parsexml() (pynlpl.formats.folia.Observation class

method), 568
parsexml() (pynlpl.formats.folia.ObservationLayer class

method), 698
parsexml() (pynlpl.formats.folia.Original class method),

990
parsexml() (pynlpl.formats.folia.Paragraph class method),

272
parsexml() (pynlpl.formats.folia.Part class method), 285
parsexml() (pynlpl.formats.folia.PhonContent class

method), 509
parsexml() (pynlpl.formats.folia.PosAnnotation class

method), 443
parsexml() (pynlpl.formats.folia.Predicate class method),

580
parsexml() (pynlpl.formats.folia.Quote class method),

298
parsexml() (pynlpl.formats.folia.Reference class method),

311
parsexml() (pynlpl.formats.folia.Row class method), 324
parsexml() (pynlpl.formats.folia.SemanticRole class

method), 627
parsexml() (pynlpl.formats.folia.SemanticRolesLayer

class method), 745
parsexml() (pynlpl.formats.folia.SenseAnnotation class

method), 476
parsexml() (pynlpl.formats.folia.Sentence class method),

339
parsexml() (pynlpl.formats.folia.Sentiment class method),

592
parsexml() (pynlpl.formats.folia.SentimentLayer class

method), 710
parsexml() (pynlpl.formats.folia.Statement class method),

603
parsexml() (pynlpl.formats.folia.StatementLayer class

method), 721
parsexml() (pynlpl.formats.folia.SubjectivityAnnotation

class method), 487
parsexml() (pynlpl.formats.folia.Suggestion class

method), 1001

parsexml() (pynlpl.formats.folia.SynsetFeature class
method), 877

parsexml() (pynlpl.formats.folia.SyntacticUnit class
method), 615

parsexml() (pynlpl.formats.folia.SyntaxLayer class
method), 733

parsexml() (pynlpl.formats.folia.Table class method), 352
parsexml() (pynlpl.formats.folia.TableHead class

method), 378
parsexml() (pynlpl.formats.folia.Term class method), 365
parsexml() (pynlpl.formats.folia.Text class method), 391
parsexml() (pynlpl.formats.folia.TextContent class

method), 499
parsexml() (pynlpl.formats.folia.TextMarkupCorrection

class method), 844
parsexml() (pynlpl.formats.folia.TextMarkupError class

method), 855
parsexml() (pynlpl.formats.folia.TextMarkupGap class

method), 812
parsexml() (pynlpl.formats.folia.TextMarkupString class

method), 823
parsexml() (pynlpl.formats.folia.TextMarkupStyle class

method), 833
parsexml() (pynlpl.formats.folia.TimeSegment class

method), 638
parsexml() (pynlpl.formats.folia.TimingLayer class

method), 757
parsexml() (pynlpl.formats.folia.Whitespace class

method), 404
parsexml() (pynlpl.formats.folia.Word class method), 419
parsexmldeclarations() (pynlpl.formats.folia.Document

method), 20
Part (class in pynlpl.formats.folia), 277
path() (pynlpl.datatypes.Trie method), 7
path() (pynlpl.search.AbstractSearchState method), 1060
pathcost() (pynlpl.search.AbstractSearchState method),

1060
Pattern (class in pynlpl.datatypes), 5
PatternMap (class in pynlpl.datatypes), 5
PatternSet (class in pynlpl.datatypes), 5
pendingvalidation() (pynlpl.formats.folia.Document

method), 20
perplexity() (pynlpl.statistics.Distribution method), 1062
phon() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 79
phon() (pynlpl.formats.folia.AbstractElement method),

30
phon() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 56
phon() (pynlpl.formats.folia.AbstractStructureElement

method), 42
phon() (pynlpl.formats.folia.AbstractTextMarkup

method), 90
phon() (pynlpl.formats.folia.AbstractTokenAnnotation
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method), 67
phon() (pynlpl.formats.folia.ActorFeature method), 889
phon() (pynlpl.formats.folia.Alignment method), 1013
phon() (pynlpl.formats.folia.AlignReference method),

1024
phon() (pynlpl.formats.folia.Alternative method), 924
phon() (pynlpl.formats.folia.AlternativeLayers method),

935
phon() (pynlpl.formats.folia.BegindatetimeFeature

method), 900
phon() (pynlpl.formats.folia.Cell method), 106
phon() (pynlpl.formats.folia.Chunk method), 522
phon() (pynlpl.formats.folia.ChunkingLayer method),

651
phon() (pynlpl.formats.folia.CoreferenceChain method),

534
phon() (pynlpl.formats.folia.CoreferenceLayer method),

663
phon() (pynlpl.formats.folia.CoreferenceLink method),

768
phon() (pynlpl.formats.folia.Correction method), 948
phon() (pynlpl.formats.folia.Current method), 957
phon() (pynlpl.formats.folia.Definition method), 119
phon() (pynlpl.formats.folia.DependenciesLayer

method), 674
phon() (pynlpl.formats.folia.Dependency method), 545
phon() (pynlpl.formats.folia.DependencyDependent

method), 780
phon() (pynlpl.formats.folia.Description method), 1035
phon() (pynlpl.formats.folia.Division method), 131
phon() (pynlpl.formats.folia.DomainAnnotation method),

432
phon() (pynlpl.formats.folia.EnddatetimeFeature

method), 911
phon() (pynlpl.formats.folia.EntitiesLayer method), 686
phon() (pynlpl.formats.folia.Entity method), 557
phon() (pynlpl.formats.folia.Entry method), 144
phon() (pynlpl.formats.folia.ErrorDetection method), 968
phon() (pynlpl.formats.folia.Event method), 157
phon() (pynlpl.formats.folia.Example method), 170
phon() (pynlpl.formats.folia.Feature method), 866
phon() (pynlpl.formats.folia.Figure method), 184
phon() (pynlpl.formats.folia.Gap method), 195
phon() (pynlpl.formats.folia.Head method), 208
phon() (pynlpl.formats.folia.Headspan method), 792
phon() (pynlpl.formats.folia.LangAnnotation method),

454
phon() (pynlpl.formats.folia.LemmaAnnotation method),

465
phon() (pynlpl.formats.folia.Linebreak method), 220
phon() (pynlpl.formats.folia.List method), 233
phon() (pynlpl.formats.folia.ListItem method), 246
phon() (pynlpl.formats.folia.Metric method), 1046
phon() (pynlpl.formats.folia.New method), 979

phon() (pynlpl.formats.folia.Note method), 259
phon() (pynlpl.formats.folia.Observation method), 569
phon() (pynlpl.formats.folia.ObservationLayer method),

698
phon() (pynlpl.formats.folia.Original method), 990
phon() (pynlpl.formats.folia.Paragraph method), 272
phon() (pynlpl.formats.folia.Part method), 285
phon() (pynlpl.formats.folia.PhonContent method), 509
phon() (pynlpl.formats.folia.PosAnnotation method), 443
phon() (pynlpl.formats.folia.Predicate method), 580
phon() (pynlpl.formats.folia.Quote method), 298
phon() (pynlpl.formats.folia.Reference method), 311
phon() (pynlpl.formats.folia.Row method), 324
phon() (pynlpl.formats.folia.SemanticRole method), 627
phon() (pynlpl.formats.folia.SemanticRolesLayer

method), 745
phon() (pynlpl.formats.folia.SenseAnnotation method),

476
phon() (pynlpl.formats.folia.Sentence method), 339
phon() (pynlpl.formats.folia.Sentiment method), 592
phon() (pynlpl.formats.folia.SentimentLayer method),

710
phon() (pynlpl.formats.folia.Statement method), 603
phon() (pynlpl.formats.folia.StatementLayer method),

721
phon() (pynlpl.formats.folia.SubjectivityAnnotation

method), 487
phon() (pynlpl.formats.folia.Suggestion method), 1001
phon() (pynlpl.formats.folia.SynsetFeature method), 877
phon() (pynlpl.formats.folia.SyntacticUnit method), 615
phon() (pynlpl.formats.folia.SyntaxLayer method), 733
phon() (pynlpl.formats.folia.Table method), 352
phon() (pynlpl.formats.folia.TableHead method), 378
phon() (pynlpl.formats.folia.Term method), 365
phon() (pynlpl.formats.folia.Text method), 391
phon() (pynlpl.formats.folia.TextContent method), 499
phon() (pynlpl.formats.folia.TextMarkupCorrection

method), 844
phon() (pynlpl.formats.folia.TextMarkupError method),

855
phon() (pynlpl.formats.folia.TextMarkupGap method),

812
phon() (pynlpl.formats.folia.TextMarkupString method),

823
phon() (pynlpl.formats.folia.TextMarkupStyle method),

833
phon() (pynlpl.formats.folia.TimeSegment method), 638
phon() (pynlpl.formats.folia.TimingLayer method), 757
phon() (pynlpl.formats.folia.Whitespace method), 404
phon() (pynlpl.formats.folia.Word method), 419
PHONCONTAINER (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 74
PHONCONTAINER (pynlpl.formats.folia.AbstractElement

attribute), 26
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PHONCONTAINER (pynlpl.formats.folia.AbstractSpanAnnotation
attribute), 52

PHONCONTAINER (pynlpl.formats.folia.AbstractStructureElement
attribute), 37

PHONCONTAINER (pynlpl.formats.folia.AbstractTextMarkup
attribute), 86

PHONCONTAINER (pynlpl.formats.folia.AbstractTokenAnnotation
attribute), 63

PHONCONTAINER (pynlpl.formats.folia.ActorFeature
attribute), 885

PHONCONTAINER (pynlpl.formats.folia.Alignment at-
tribute), 1009

PHONCONTAINER (pynlpl.formats.folia.AlignReference
attribute), 1020

PHONCONTAINER (pynlpl.formats.folia.Alternative at-
tribute), 919

PHONCONTAINER (pynlpl.formats.folia.AlternativeLayers
attribute), 931

PHONCONTAINER (pynlpl.formats.folia.BegindatetimeFeature
attribute), 896

PHONCONTAINER (pynlpl.formats.folia.Cell attribute),
100

PHONCONTAINER (pynlpl.formats.folia.Chunk at-
tribute), 518

PHONCONTAINER (pynlpl.formats.folia.ChunkingLayer
attribute), 646

PHONCONTAINER (pynlpl.formats.folia.CoreferenceChain
attribute), 529

PHONCONTAINER (pynlpl.formats.folia.CoreferenceLayer
attribute), 658

PHONCONTAINER (pynlpl.formats.folia.CoreferenceLink
attribute), 764

PHONCONTAINER (pynlpl.formats.folia.Correction at-
tribute), 944

PHONCONTAINER (pynlpl.formats.folia.Current
attribute), 953

PHONCONTAINER (pynlpl.formats.folia.Definition at-
tribute), 113

PHONCONTAINER (pynlpl.formats.folia.DependenciesLayer
attribute), 670

PHONCONTAINER (pynlpl.formats.folia.Dependency
attribute), 541

PHONCONTAINER (pynlpl.formats.folia.DependencyDependent
attribute), 776

PHONCONTAINER (pynlpl.formats.folia.Description
attribute), 1031

PHONCONTAINER (pynlpl.formats.folia.Division at-
tribute), 126

PHONCONTAINER (pynlpl.formats.folia.DomainAnnotation
attribute), 428

PHONCONTAINER (pynlpl.formats.folia.EnddatetimeFeature
attribute), 907

PHONCONTAINER (pynlpl.formats.folia.EntitiesLayer
attribute), 682

PHONCONTAINER (pynlpl.formats.folia.Entity at-
tribute), 553

PHONCONTAINER (pynlpl.formats.folia.Entry at-
tribute), 139

PHONCONTAINER (pynlpl.formats.folia.ErrorDetection
attribute), 964

PHONCONTAINER (pynlpl.formats.folia.Event at-
tribute), 152

PHONCONTAINER (pynlpl.formats.folia.Example at-
tribute), 165

PHONCONTAINER (pynlpl.formats.folia.Feature
attribute), 862

PHONCONTAINER (pynlpl.formats.folia.Figure at-
tribute), 178

PHONCONTAINER (pynlpl.formats.folia.Gap attribute),
191

PHONCONTAINER (pynlpl.formats.folia.Head at-
tribute), 202

PHONCONTAINER (pynlpl.formats.folia.Headspan at-
tribute), 788

PHONCONTAINER (pynlpl.formats.folia.LangAnnotation
attribute), 450

PHONCONTAINER (pynlpl.formats.folia.LemmaAnnotation
attribute), 461

PHONCONTAINER (pynlpl.formats.folia.Linebreak at-
tribute), 215

PHONCONTAINER (pynlpl.formats.folia.List attribute),
228

PHONCONTAINER (pynlpl.formats.folia.ListItem at-
tribute), 241

PHONCONTAINER (pynlpl.formats.folia.Metric at-
tribute), 1042

PHONCONTAINER (pynlpl.formats.folia.New at-
tribute), 975

PHONCONTAINER (pynlpl.formats.folia.Note at-
tribute), 254

PHONCONTAINER (pynlpl.formats.folia.Observation
attribute), 564

PHONCONTAINER (pynlpl.formats.folia.ObservationLayer
attribute), 694

PHONCONTAINER (pynlpl.formats.folia.Original at-
tribute), 986

PHONCONTAINER (pynlpl.formats.folia.Paragraph at-
tribute), 267

PHONCONTAINER (pynlpl.formats.folia.Part attribute),
280

PHONCONTAINER (pynlpl.formats.folia.PhonContent
attribute), 506

PHONCONTAINER (pynlpl.formats.folia.PosAnnotation
attribute), 439

PHONCONTAINER (pynlpl.formats.folia.Predicate at-
tribute), 576

PHONCONTAINER (pynlpl.formats.folia.Quote at-
tribute), 293
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PHONCONTAINER (pynlpl.formats.folia.Reference at-
tribute), 306

PHONCONTAINER (pynlpl.formats.folia.Row at-
tribute), 319

PHONCONTAINER (pynlpl.formats.folia.SemanticRole
attribute), 623

PHONCONTAINER (pynlpl.formats.folia.SemanticRolesLayer
attribute), 741

PHONCONTAINER (pynlpl.formats.folia.SenseAnnotation
attribute), 472

PHONCONTAINER (pynlpl.formats.folia.Sentence at-
tribute), 333

PHONCONTAINER (pynlpl.formats.folia.Sentiment at-
tribute), 588

PHONCONTAINER (pynlpl.formats.folia.SentimentLayer
attribute), 705

PHONCONTAINER (pynlpl.formats.folia.Statement at-
tribute), 599

PHONCONTAINER (pynlpl.formats.folia.StatementLayer
attribute), 717

PHONCONTAINER (pynlpl.formats.folia.SubjectivityAnnotation
attribute), 483

PHONCONTAINER (pynlpl.formats.folia.Suggestion at-
tribute), 997

PHONCONTAINER (pynlpl.formats.folia.SynsetFeature
attribute), 873

PHONCONTAINER (pynlpl.formats.folia.SyntacticUnit
attribute), 611

PHONCONTAINER (pynlpl.formats.folia.SyntaxLayer
attribute), 729

PHONCONTAINER (pynlpl.formats.folia.Table at-
tribute), 347

PHONCONTAINER (pynlpl.formats.folia.TableHead at-
tribute), 373

PHONCONTAINER (pynlpl.formats.folia.Term at-
tribute), 360

PHONCONTAINER (pynlpl.formats.folia.Text attribute),
386

PHONCONTAINER (pynlpl.formats.folia.TextContent
attribute), 495

PHONCONTAINER (pynlpl.formats.folia.TextMarkupCorrection
attribute), 840

PHONCONTAINER (pynlpl.formats.folia.TextMarkupError
attribute), 851

PHONCONTAINER (pynlpl.formats.folia.TextMarkupGap
attribute), 808

PHONCONTAINER (pynlpl.formats.folia.TextMarkupString
attribute), 819

PHONCONTAINER (pynlpl.formats.folia.TextMarkupStyle
attribute), 830

PHONCONTAINER (pynlpl.formats.folia.TimeSegment
attribute), 634

PHONCONTAINER (pynlpl.formats.folia.TimingLayer
attribute), 752

PHONCONTAINER (pynlpl.formats.folia.Whitespace
attribute), 399

PHONCONTAINER (pynlpl.formats.folia.Word at-
tribute), 413

PhonContent (class in pynlpl.formats.folia), 503
phoncontent() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 80
phoncontent() (pynlpl.formats.folia.AbstractElement

method), 30
phoncontent() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 57
phoncontent() (pynlpl.formats.folia.AbstractStructureElement

method), 43
phoncontent() (pynlpl.formats.folia.AbstractTextMarkup

method), 91
phoncontent() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 68
phoncontent() (pynlpl.formats.folia.ActorFeature

method), 889
phoncontent() (pynlpl.formats.folia.Alignment method),

1013
phoncontent() (pynlpl.formats.folia.AlignReference

method), 1025
phoncontent() (pynlpl.formats.folia.Alternative method),

925
phoncontent() (pynlpl.formats.folia.AlternativeLayers

method), 936
phoncontent() (pynlpl.formats.folia.BegindatetimeFeature

method), 900
phoncontent() (pynlpl.formats.folia.Cell method), 106
phoncontent() (pynlpl.formats.folia.Chunk method), 523
phoncontent() (pynlpl.formats.folia.ChunkingLayer

method), 652
phoncontent() (pynlpl.formats.folia.CoreferenceChain

method), 534
phoncontent() (pynlpl.formats.folia.CoreferenceLayer

method), 663
phoncontent() (pynlpl.formats.folia.CoreferenceLink

method), 769
phoncontent() (pynlpl.formats.folia.Correction method),

948
phoncontent() (pynlpl.formats.folia.Current method), 958
phoncontent() (pynlpl.formats.folia.Definition method),

119
phoncontent() (pynlpl.formats.folia.DependenciesLayer

method), 675
phoncontent() (pynlpl.formats.folia.Dependency

method), 546
phoncontent() (pynlpl.formats.folia.DependencyDependent

method), 781
phoncontent() (pynlpl.formats.folia.Description method),

1036
phoncontent() (pynlpl.formats.folia.Division method),

132
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phoncontent() (pynlpl.formats.folia.DomainAnnotation
method), 433

phoncontent() (pynlpl.formats.folia.EnddatetimeFeature
method), 911

phoncontent() (pynlpl.formats.folia.EntitiesLayer
method), 687

phoncontent() (pynlpl.formats.folia.Entity method), 558
phoncontent() (pynlpl.formats.folia.Entry method), 145
phoncontent() (pynlpl.formats.folia.ErrorDetection

method), 969
phoncontent() (pynlpl.formats.folia.Event method), 158
phoncontent() (pynlpl.formats.folia.Example method),

171
phoncontent() (pynlpl.formats.folia.Feature method), 867
phoncontent() (pynlpl.formats.folia.Figure method), 184
phoncontent() (pynlpl.formats.folia.Gap method), 195
phoncontent() (pynlpl.formats.folia.Head method), 208
phoncontent() (pynlpl.formats.folia.Headspan method),

793
phoncontent() (pynlpl.formats.folia.LangAnnotation

method), 455
phoncontent() (pynlpl.formats.folia.LemmaAnnotation

method), 466
phoncontent() (pynlpl.formats.folia.Linebreak method),

221
phoncontent() (pynlpl.formats.folia.List method), 234
phoncontent() (pynlpl.formats.folia.ListItem method),

247
phoncontent() (pynlpl.formats.folia.Metric method), 1047
phoncontent() (pynlpl.formats.folia.New method), 980
phoncontent() (pynlpl.formats.folia.Note method), 260
phoncontent() (pynlpl.formats.folia.Observation method),

569
phoncontent() (pynlpl.formats.folia.ObservationLayer

method), 699
phoncontent() (pynlpl.formats.folia.Original method),

991
phoncontent() (pynlpl.formats.folia.Paragraph method),

273
phoncontent() (pynlpl.formats.folia.Part method), 286
phoncontent() (pynlpl.formats.folia.PhonContent

method), 509
phoncontent() (pynlpl.formats.folia.PosAnnotation

method), 444
phoncontent() (pynlpl.formats.folia.Predicate method),

581
phoncontent() (pynlpl.formats.folia.Quote method), 299
phoncontent() (pynlpl.formats.folia.Reference method),

312
phoncontent() (pynlpl.formats.folia.Row method), 325
phoncontent() (pynlpl.formats.folia.SemanticRole

method), 628
phoncontent() (pynlpl.formats.folia.SemanticRolesLayer

method), 746

phoncontent() (pynlpl.formats.folia.SenseAnnotation
method), 477

phoncontent() (pynlpl.formats.folia.Sentence method),
340

phoncontent() (pynlpl.formats.folia.Sentiment method),
593

phoncontent() (pynlpl.formats.folia.SentimentLayer
method), 710

phoncontent() (pynlpl.formats.folia.Statement method),
604

phoncontent() (pynlpl.formats.folia.StatementLayer
method), 722

phoncontent() (pynlpl.formats.folia.SubjectivityAnnotation
method), 488

phoncontent() (pynlpl.formats.folia.Suggestion method),
1002

phoncontent() (pynlpl.formats.folia.SynsetFeature
method), 878

phoncontent() (pynlpl.formats.folia.SyntacticUnit
method), 616

phoncontent() (pynlpl.formats.folia.SyntaxLayer
method), 734

phoncontent() (pynlpl.formats.folia.Table method), 353
phoncontent() (pynlpl.formats.folia.TableHead method),

379
phoncontent() (pynlpl.formats.folia.Term method), 366
phoncontent() (pynlpl.formats.folia.Text method), 392
phoncontent() (pynlpl.formats.folia.TextContent

method), 499
phoncontent() (pynlpl.formats.folia.TextMarkupCorrection

method), 845
phoncontent() (pynlpl.formats.folia.TextMarkupError

method), 855
phoncontent() (pynlpl.formats.folia.TextMarkupGap

method), 813
phoncontent() (pynlpl.formats.folia.TextMarkupString

method), 823
phoncontent() (pynlpl.formats.folia.TextMarkupStyle

method), 834
phoncontent() (pynlpl.formats.folia.TimeSegment

method), 639
phoncontent() (pynlpl.formats.folia.TimingLayer

method), 757
phoncontent() (pynlpl.formats.folia.Whitespace method),

405
phoncontent() (pynlpl.formats.folia.Word method), 420
phoneme() (pynlpl.formats.folia.Word method), 420
phonemes() (pynlpl.formats.folia.Word method), 420
PhraseTable (class in pynlpl.formats.moses), 1054
PhraseTableClient (class in pynlpl.formats.moses), 1054
poll() (pynlpl.evaluation.ExperimentPool method), 10
pop() (pynlpl.datatypes.FIFOQueue method), 5
pop() (pynlpl.datatypes.PriorityQueue method), 6
pos() (pynlpl.formats.folia.Word method), 420
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PosAnnotation (class in pynlpl.formats.folia), 437
poslog() (pynlpl.statistics.Distribution method), 1062
postappend() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 80
postappend() (pynlpl.formats.folia.AbstractElement

method), 31
postappend() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 57
postappend() (pynlpl.formats.folia.AbstractStructureElement

method), 44
postappend() (pynlpl.formats.folia.AbstractTextMarkup

method), 91
postappend() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 68
postappend() (pynlpl.formats.folia.ActorFeature method),

890
postappend() (pynlpl.formats.folia.Alignment method),

1014
postappend() (pynlpl.formats.folia.AlignReference

method), 1025
postappend() (pynlpl.formats.folia.Alternative method),

925
postappend() (pynlpl.formats.folia.AlternativeLayers

method), 936
postappend() (pynlpl.formats.folia.BegindatetimeFeature

method), 901
postappend() (pynlpl.formats.folia.Cell method), 107
postappend() (pynlpl.formats.folia.Chunk method), 523
postappend() (pynlpl.formats.folia.ChunkingLayer

method), 652
postappend() (pynlpl.formats.folia.CoreferenceChain

method), 535
postappend() (pynlpl.formats.folia.CoreferenceLayer

method), 664
postappend() (pynlpl.formats.folia.CoreferenceLink

method), 769
postappend() (pynlpl.formats.folia.Correction method),

948
postappend() (pynlpl.formats.folia.Current method), 958
postappend() (pynlpl.formats.folia.Definition method),

120
postappend() (pynlpl.formats.folia.DependenciesLayer

method), 676
postappend() (pynlpl.formats.folia.Dependency method),

546
postappend() (pynlpl.formats.folia.DependencyDependent

method), 781
postappend() (pynlpl.formats.folia.Description method),

1036
postappend() (pynlpl.formats.folia.Division method), 133
postappend() (pynlpl.formats.folia.DomainAnnotation

method), 433
postappend() (pynlpl.formats.folia.EnddatetimeFeature

method), 912

postappend() (pynlpl.formats.folia.EntitiesLayer
method), 687

postappend() (pynlpl.formats.folia.Entity method), 558
postappend() (pynlpl.formats.folia.Entry method), 146
postappend() (pynlpl.formats.folia.ErrorDetection

method), 969
postappend() (pynlpl.formats.folia.Event method), 159
postappend() (pynlpl.formats.folia.Example method), 172
postappend() (pynlpl.formats.folia.Feature method), 867
postappend() (pynlpl.formats.folia.Figure method), 185
postappend() (pynlpl.formats.folia.Gap method), 196
postappend() (pynlpl.formats.folia.Head method), 209
postappend() (pynlpl.formats.folia.Headspan method),

793
postappend() (pynlpl.formats.folia.LangAnnotation

method), 455
postappend() (pynlpl.formats.folia.LemmaAnnotation

method), 466
postappend() (pynlpl.formats.folia.Linebreak method),

221
postappend() (pynlpl.formats.folia.List method), 235
postappend() (pynlpl.formats.folia.ListItem method), 248
postappend() (pynlpl.formats.folia.Metric method), 1047
postappend() (pynlpl.formats.folia.New method), 980
postappend() (pynlpl.formats.folia.Note method), 261
postappend() (pynlpl.formats.folia.Observation method),

570
postappend() (pynlpl.formats.folia.ObservationLayer

method), 699
postappend() (pynlpl.formats.folia.Original method), 991
postappend() (pynlpl.formats.folia.Paragraph method),

274
postappend() (pynlpl.formats.folia.Part method), 287
postappend() (pynlpl.formats.folia.PhonContent method),

510
postappend() (pynlpl.formats.folia.PosAnnotation

method), 444
postappend() (pynlpl.formats.folia.Predicate method),

581
postappend() (pynlpl.formats.folia.Quote method), 300
postappend() (pynlpl.formats.folia.Reference method),

313
postappend() (pynlpl.formats.folia.Row method), 326
postappend() (pynlpl.formats.folia.SemanticRole

method), 628
postappend() (pynlpl.formats.folia.SemanticRolesLayer

method), 746
postappend() (pynlpl.formats.folia.SenseAnnotation

method), 477
postappend() (pynlpl.formats.folia.Sentence method),

340
postappend() (pynlpl.formats.folia.Sentiment method),

593
postappend() (pynlpl.formats.folia.SentimentLayer
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method), 711
postappend() (pynlpl.formats.folia.Statement method),

605
postappend() (pynlpl.formats.folia.StatementLayer

method), 723
postappend() (pynlpl.formats.folia.SubjectivityAnnotation

method), 488
postappend() (pynlpl.formats.folia.Suggestion method),

1002
postappend() (pynlpl.formats.folia.SynsetFeature

method), 879
postappend() (pynlpl.formats.folia.SyntacticUnit

method), 616
postappend() (pynlpl.formats.folia.SyntaxLayer method),

734
postappend() (pynlpl.formats.folia.Table method), 353
postappend() (pynlpl.formats.folia.TableHead method),

379
postappend() (pynlpl.formats.folia.Term method), 366
postappend() (pynlpl.formats.folia.Text method), 392
postappend() (pynlpl.formats.folia.TextContent method),

500
postappend() (pynlpl.formats.folia.TextMarkupCorrection

method), 845
postappend() (pynlpl.formats.folia.TextMarkupError

method), 856
postappend() (pynlpl.formats.folia.TextMarkupGap

method), 813
postappend() (pynlpl.formats.folia.TextMarkupString

method), 824
postappend() (pynlpl.formats.folia.TextMarkupStyle

method), 834
postappend() (pynlpl.formats.folia.TimeSegment

method), 640
postappend() (pynlpl.formats.folia.TimingLayer method),

758
postappend() (pynlpl.formats.folia.Whitespace method),

405
postappend() (pynlpl.formats.folia.Word method), 420
precision() (pynlpl.evaluation.ClassEvaluation method),

10
Predicate (class in pynlpl.formats.folia), 573
previous() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 80
previous() (pynlpl.formats.folia.AbstractElement

method), 31
previous() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 57
previous() (pynlpl.formats.folia.AbstractStructureElement

method), 44
previous() (pynlpl.formats.folia.AbstractTextMarkup

method), 91
previous() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 68

previous() (pynlpl.formats.folia.ActorFeature method),
890

previous() (pynlpl.formats.folia.Alignment method),
1014

previous() (pynlpl.formats.folia.AlignReference method),
1025

previous() (pynlpl.formats.folia.Alternative method), 925
previous() (pynlpl.formats.folia.AlternativeLayers

method), 936
previous() (pynlpl.formats.folia.BegindatetimeFeature

method), 901
previous() (pynlpl.formats.folia.Cell method), 107
previous() (pynlpl.formats.folia.Chunk method), 523
previous() (pynlpl.formats.folia.ChunkingLayer method),

652
previous() (pynlpl.formats.folia.CoreferenceChain

method), 535
previous() (pynlpl.formats.folia.CoreferenceLayer

method), 664
previous() (pynlpl.formats.folia.CoreferenceLink

method), 770
previous() (pynlpl.formats.folia.Correction method), 948
previous() (pynlpl.formats.folia.Current method), 958
previous() (pynlpl.formats.folia.Definition method), 120
previous() (pynlpl.formats.folia.DependenciesLayer

method), 676
previous() (pynlpl.formats.folia.Dependency method),

547
previous() (pynlpl.formats.folia.DependencyDependent

method), 781
previous() (pynlpl.formats.folia.Description method),

1036
previous() (pynlpl.formats.folia.Division method), 133
previous() (pynlpl.formats.folia.DomainAnnotation

method), 433
previous() (pynlpl.formats.folia.EnddatetimeFeature

method), 912
previous() (pynlpl.formats.folia.EntitiesLayer method),

687
previous() (pynlpl.formats.folia.Entity method), 558
previous() (pynlpl.formats.folia.Entry method), 146
previous() (pynlpl.formats.folia.ErrorDetection method),

969
previous() (pynlpl.formats.folia.Event method), 159
previous() (pynlpl.formats.folia.Example method), 172
previous() (pynlpl.formats.folia.Feature method), 867
previous() (pynlpl.formats.folia.Figure method), 185
previous() (pynlpl.formats.folia.Gap method), 196
previous() (pynlpl.formats.folia.Head method), 209
previous() (pynlpl.formats.folia.Headspan method), 793
previous() (pynlpl.formats.folia.LangAnnotation

method), 455
previous() (pynlpl.formats.folia.LemmaAnnotation

method), 466
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previous() (pynlpl.formats.folia.Linebreak method), 222
previous() (pynlpl.formats.folia.List method), 235
previous() (pynlpl.formats.folia.ListItem method), 248
previous() (pynlpl.formats.folia.Metric method), 1047
previous() (pynlpl.formats.folia.New method), 980
previous() (pynlpl.formats.folia.Note method), 261
previous() (pynlpl.formats.folia.Observation method),

570
previous() (pynlpl.formats.folia.ObservationLayer

method), 699
previous() (pynlpl.formats.folia.Original method), 991
previous() (pynlpl.formats.folia.Paragraph method), 274
previous() (pynlpl.formats.folia.Part method), 287
previous() (pynlpl.formats.folia.PhonContent method),

510
previous() (pynlpl.formats.folia.PosAnnotation method),

444
previous() (pynlpl.formats.folia.Predicate method), 581
previous() (pynlpl.formats.folia.Quote method), 300
previous() (pynlpl.formats.folia.Reference method), 313
previous() (pynlpl.formats.folia.Row method), 326
previous() (pynlpl.formats.folia.SemanticRole method),

628
previous() (pynlpl.formats.folia.SemanticRolesLayer

method), 746
previous() (pynlpl.formats.folia.SenseAnnotation

method), 477
previous() (pynlpl.formats.folia.Sentence method), 340
previous() (pynlpl.formats.folia.Sentiment method), 593
previous() (pynlpl.formats.folia.SentimentLayer method),

711
previous() (pynlpl.formats.folia.Statement method), 605
previous() (pynlpl.formats.folia.StatementLayer method),

723
previous() (pynlpl.formats.folia.SubjectivityAnnotation

method), 488
previous() (pynlpl.formats.folia.Suggestion method),

1002
previous() (pynlpl.formats.folia.SynsetFeature method),

879
previous() (pynlpl.formats.folia.SyntacticUnit method),

616
previous() (pynlpl.formats.folia.SyntaxLayer method),

734
previous() (pynlpl.formats.folia.Table method), 353
previous() (pynlpl.formats.folia.TableHead method), 379
previous() (pynlpl.formats.folia.Term method), 366
previous() (pynlpl.formats.folia.Text method), 392
previous() (pynlpl.formats.folia.TextContent method),

500
previous() (pynlpl.formats.folia.TextMarkupCorrection

method), 845
previous() (pynlpl.formats.folia.TextMarkupError

method), 856

previous() (pynlpl.formats.folia.TextMarkupGap
method), 813

previous() (pynlpl.formats.folia.TextMarkupString
method), 824

previous() (pynlpl.formats.folia.TextMarkupStyle
method), 834

previous() (pynlpl.formats.folia.TimeSegment method),
640

previous() (pynlpl.formats.folia.TimingLayer method),
758

previous() (pynlpl.formats.folia.Whitespace method), 405
previous() (pynlpl.formats.folia.Word method), 420
PRIMARYELEMENT (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
PRIMARYELEMENT (pynlpl.formats.folia.AbstractElement

attribute), 26
PRIMARYELEMENT (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
PRIMARYELEMENT (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
PRIMARYELEMENT (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
PRIMARYELEMENT (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
PRIMARYELEMENT (pynlpl.formats.folia.ActorFeature

attribute), 885
PRIMARYELEMENT (pynlpl.formats.folia.Alignment

attribute), 1009
PRIMARYELEMENT (pynlpl.formats.folia.AlignReference

attribute), 1020
PRIMARYELEMENT (pynlpl.formats.folia.Alternative

attribute), 919
PRIMARYELEMENT (pynlpl.formats.folia.AlternativeLayers

attribute), 931
PRIMARYELEMENT (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
PRIMARYELEMENT (pynlpl.formats.folia.Cell at-

tribute), 100
PRIMARYELEMENT (pynlpl.formats.folia.Chunk at-

tribute), 518
PRIMARYELEMENT (pynlpl.formats.folia.ChunkingLayer

attribute), 646
PRIMARYELEMENT (pynlpl.formats.folia.CoreferenceChain

attribute), 529
PRIMARYELEMENT (pynlpl.formats.folia.CoreferenceLayer

attribute), 658
PRIMARYELEMENT (pynlpl.formats.folia.CoreferenceLink

attribute), 764
PRIMARYELEMENT (pynlpl.formats.folia.Correction

attribute), 944
PRIMARYELEMENT (pynlpl.formats.folia.Current at-

tribute), 953
PRIMARYELEMENT (pynlpl.formats.folia.Definition

attribute), 113
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PRIMARYELEMENT (pynlpl.formats.folia.DependenciesLayer
attribute), 670

PRIMARYELEMENT (pynlpl.formats.folia.Dependency
attribute), 541

PRIMARYELEMENT (pynlpl.formats.folia.DependencyDependent
attribute), 776

PRIMARYELEMENT (pynlpl.formats.folia.Description
attribute), 1031

PRIMARYELEMENT (pynlpl.formats.folia.Division at-
tribute), 126

PRIMARYELEMENT (pynlpl.formats.folia.DomainAnnotation
attribute), 428

PRIMARYELEMENT (pynlpl.formats.folia.EnddatetimeFeature
attribute), 907

PRIMARYELEMENT (pynlpl.formats.folia.EntitiesLayer
attribute), 682

PRIMARYELEMENT (pynlpl.formats.folia.Entity
attribute), 553

PRIMARYELEMENT (pynlpl.formats.folia.Entry
attribute), 139

PRIMARYELEMENT (pynlpl.formats.folia.ErrorDetection
attribute), 964

PRIMARYELEMENT (pynlpl.formats.folia.Event
attribute), 152

PRIMARYELEMENT (pynlpl.formats.folia.Example at-
tribute), 165

PRIMARYELEMENT (pynlpl.formats.folia.Feature at-
tribute), 862

PRIMARYELEMENT (pynlpl.formats.folia.Figure at-
tribute), 178

PRIMARYELEMENT (pynlpl.formats.folia.Gap at-
tribute), 191

PRIMARYELEMENT (pynlpl.formats.folia.Head at-
tribute), 202

PRIMARYELEMENT (pynlpl.formats.folia.Headspan
attribute), 788

PRIMARYELEMENT (pynlpl.formats.folia.LangAnnotation
attribute), 450

PRIMARYELEMENT (pynlpl.formats.folia.LemmaAnnotation
attribute), 461

PRIMARYELEMENT (pynlpl.formats.folia.Linebreak
attribute), 215

PRIMARYELEMENT (pynlpl.formats.folia.List at-
tribute), 228

PRIMARYELEMENT (pynlpl.formats.folia.ListItem at-
tribute), 241

PRIMARYELEMENT (pynlpl.formats.folia.Metric at-
tribute), 1042

PRIMARYELEMENT (pynlpl.formats.folia.New at-
tribute), 975

PRIMARYELEMENT (pynlpl.formats.folia.Note at-
tribute), 254

PRIMARYELEMENT (pynlpl.formats.folia.Observation
attribute), 564

PRIMARYELEMENT (pynlpl.formats.folia.ObservationLayer
attribute), 694

PRIMARYELEMENT (pynlpl.formats.folia.Original at-
tribute), 986

PRIMARYELEMENT (pynlpl.formats.folia.Paragraph
attribute), 267

PRIMARYELEMENT (pynlpl.formats.folia.Part at-
tribute), 280

PRIMARYELEMENT (pynlpl.formats.folia.PhonContent
attribute), 506

PRIMARYELEMENT (pynlpl.formats.folia.PosAnnotation
attribute), 439

PRIMARYELEMENT (pynlpl.formats.folia.Predicate at-
tribute), 576

PRIMARYELEMENT (pynlpl.formats.folia.Quote
attribute), 293

PRIMARYELEMENT (pynlpl.formats.folia.Reference
attribute), 306

PRIMARYELEMENT (pynlpl.formats.folia.Row at-
tribute), 319

PRIMARYELEMENT (pynlpl.formats.folia.SemanticRole
attribute), 623

PRIMARYELEMENT (pynlpl.formats.folia.SemanticRolesLayer
attribute), 741

PRIMARYELEMENT (pynlpl.formats.folia.SenseAnnotation
attribute), 472

PRIMARYELEMENT (pynlpl.formats.folia.Sentence at-
tribute), 333

PRIMARYELEMENT (pynlpl.formats.folia.Sentiment
attribute), 588

PRIMARYELEMENT (pynlpl.formats.folia.SentimentLayer
attribute), 705

PRIMARYELEMENT (pynlpl.formats.folia.Statement
attribute), 599

PRIMARYELEMENT (pynlpl.formats.folia.StatementLayer
attribute), 717

PRIMARYELEMENT (pynlpl.formats.folia.SubjectivityAnnotation
attribute), 483

PRIMARYELEMENT (pynlpl.formats.folia.Suggestion
attribute), 997

PRIMARYELEMENT (pynlpl.formats.folia.SynsetFeature
attribute), 873

PRIMARYELEMENT (pynlpl.formats.folia.SyntacticUnit
attribute), 611

PRIMARYELEMENT (pynlpl.formats.folia.SyntaxLayer
attribute), 729

PRIMARYELEMENT (pynlpl.formats.folia.Table
attribute), 347

PRIMARYELEMENT (pynlpl.formats.folia.TableHead
attribute), 373

PRIMARYELEMENT (pynlpl.formats.folia.Term at-
tribute), 360

PRIMARYELEMENT (pynlpl.formats.folia.Text at-
tribute), 386
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PRIMARYELEMENT (pynlpl.formats.folia.TextContent
attribute), 495

PRIMARYELEMENT (pynlpl.formats.folia.TextMarkupCorrection
attribute), 840

PRIMARYELEMENT (pynlpl.formats.folia.TextMarkupError
attribute), 851

PRIMARYELEMENT (pynlpl.formats.folia.TextMarkupGap
attribute), 808

PRIMARYELEMENT (pynlpl.formats.folia.TextMarkupString
attribute), 819

PRIMARYELEMENT (pynlpl.formats.folia.TextMarkupStyle
attribute), 830

PRIMARYELEMENT (pynlpl.formats.folia.TimeSegment
attribute), 634

PRIMARYELEMENT (pynlpl.formats.folia.TimingLayer
attribute), 752

PRIMARYELEMENT (pynlpl.formats.folia.Whitespace
attribute), 399

PRIMARYELEMENT (pynlpl.formats.folia.Word
attribute), 413

print_dptable() (pynlpl.statistics.HiddenMarkovModel
method), 1063

PRINTABLE (pynlpl.formats.folia.AbstractAnnotationLayer
attribute), 75

PRINTABLE (pynlpl.formats.folia.AbstractElement at-
tribute), 26

PRINTABLE (pynlpl.formats.folia.AbstractSpanAnnotation
attribute), 52

PRINTABLE (pynlpl.formats.folia.AbstractStructureElement
attribute), 37

PRINTABLE (pynlpl.formats.folia.AbstractTextMarkup
attribute), 86

PRINTABLE (pynlpl.formats.folia.AbstractTokenAnnotation
attribute), 63

PRINTABLE (pynlpl.formats.folia.ActorFeature at-
tribute), 885

PRINTABLE (pynlpl.formats.folia.Alignment attribute),
1009

PRINTABLE (pynlpl.formats.folia.AlignReference at-
tribute), 1020

PRINTABLE (pynlpl.formats.folia.Alternative attribute),
919

PRINTABLE (pynlpl.formats.folia.AlternativeLayers at-
tribute), 931

PRINTABLE (pynlpl.formats.folia.BegindatetimeFeature
attribute), 896

PRINTABLE (pynlpl.formats.folia.Cell attribute), 100
PRINTABLE (pynlpl.formats.folia.Chunk attribute), 518
PRINTABLE (pynlpl.formats.folia.ChunkingLayer at-

tribute), 646
PRINTABLE (pynlpl.formats.folia.CoreferenceChain at-

tribute), 529
PRINTABLE (pynlpl.formats.folia.CoreferenceLayer at-

tribute), 658

PRINTABLE (pynlpl.formats.folia.CoreferenceLink at-
tribute), 764

PRINTABLE (pynlpl.formats.folia.Correction attribute),
944

PRINTABLE (pynlpl.formats.folia.Current attribute), 953
PRINTABLE (pynlpl.formats.folia.Definition attribute),

113
PRINTABLE (pynlpl.formats.folia.DependenciesLayer

attribute), 670
PRINTABLE (pynlpl.formats.folia.Dependency at-

tribute), 541
PRINTABLE (pynlpl.formats.folia.DependencyDependent

attribute), 776
PRINTABLE (pynlpl.formats.folia.Description attribute),

1031
PRINTABLE (pynlpl.formats.folia.Division attribute),

126
PRINTABLE (pynlpl.formats.folia.DomainAnnotation

attribute), 428
PRINTABLE (pynlpl.formats.folia.EnddatetimeFeature

attribute), 907
PRINTABLE (pynlpl.formats.folia.EntitiesLayer at-

tribute), 682
PRINTABLE (pynlpl.formats.folia.Entity attribute), 553
PRINTABLE (pynlpl.formats.folia.Entry attribute), 139
PRINTABLE (pynlpl.formats.folia.ErrorDetection

attribute), 964
PRINTABLE (pynlpl.formats.folia.Event attribute), 152
PRINTABLE (pynlpl.formats.folia.Example attribute),

165
PRINTABLE (pynlpl.formats.folia.Feature attribute), 862
PRINTABLE (pynlpl.formats.folia.Figure attribute), 178
PRINTABLE (pynlpl.formats.folia.Gap attribute), 191
PRINTABLE (pynlpl.formats.folia.Head attribute), 202
PRINTABLE (pynlpl.formats.folia.Headspan attribute),

788
PRINTABLE (pynlpl.formats.folia.LangAnnotation at-

tribute), 451
PRINTABLE (pynlpl.formats.folia.LemmaAnnotation at-

tribute), 462
PRINTABLE (pynlpl.formats.folia.Linebreak attribute),

215
PRINTABLE (pynlpl.formats.folia.List attribute), 228
PRINTABLE (pynlpl.formats.folia.ListItem attribute),

241
PRINTABLE (pynlpl.formats.folia.Metric attribute),

1042
PRINTABLE (pynlpl.formats.folia.New attribute), 975
PRINTABLE (pynlpl.formats.folia.Note attribute), 254
PRINTABLE (pynlpl.formats.folia.Observation at-

tribute), 564
PRINTABLE (pynlpl.formats.folia.ObservationLayer at-

tribute), 694
PRINTABLE (pynlpl.formats.folia.Original attribute),
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986
PRINTABLE (pynlpl.formats.folia.Paragraph attribute),

267
PRINTABLE (pynlpl.formats.folia.Part attribute), 280
PRINTABLE (pynlpl.formats.folia.PhonContent at-

tribute), 506
PRINTABLE (pynlpl.formats.folia.PosAnnotation

attribute), 440
PRINTABLE (pynlpl.formats.folia.Predicate attribute),

576
PRINTABLE (pynlpl.formats.folia.Quote attribute), 293
PRINTABLE (pynlpl.formats.folia.Reference attribute),

306
PRINTABLE (pynlpl.formats.folia.Row attribute), 319
PRINTABLE (pynlpl.formats.folia.SemanticRole at-

tribute), 623
PRINTABLE (pynlpl.formats.folia.SemanticRolesLayer

attribute), 741
PRINTABLE (pynlpl.formats.folia.SenseAnnotation at-

tribute), 473
PRINTABLE (pynlpl.formats.folia.Sentence attribute),

333
PRINTABLE (pynlpl.formats.folia.Sentiment attribute),

588
PRINTABLE (pynlpl.formats.folia.SentimentLayer at-

tribute), 705
PRINTABLE (pynlpl.formats.folia.Statement attribute),

599
PRINTABLE (pynlpl.formats.folia.StatementLayer at-

tribute), 717
PRINTABLE (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 484
PRINTABLE (pynlpl.formats.folia.Suggestion attribute),

997
PRINTABLE (pynlpl.formats.folia.SynsetFeature at-

tribute), 874
PRINTABLE (pynlpl.formats.folia.SyntacticUnit at-

tribute), 611
PRINTABLE (pynlpl.formats.folia.SyntaxLayer at-

tribute), 729
PRINTABLE (pynlpl.formats.folia.Table attribute), 347
PRINTABLE (pynlpl.formats.folia.TableHead attribute),

373
PRINTABLE (pynlpl.formats.folia.Term attribute), 360
PRINTABLE (pynlpl.formats.folia.Text attribute), 386
PRINTABLE (pynlpl.formats.folia.TextContent at-

tribute), 495
PRINTABLE (pynlpl.formats.folia.TextMarkupCorrection

attribute), 840
PRINTABLE (pynlpl.formats.folia.TextMarkupError at-

tribute), 851
PRINTABLE (pynlpl.formats.folia.TextMarkupGap at-

tribute), 808
PRINTABLE (pynlpl.formats.folia.TextMarkupString at-

tribute), 819
PRINTABLE (pynlpl.formats.folia.TextMarkupStyle at-

tribute), 830
PRINTABLE (pynlpl.formats.folia.TimeSegment at-

tribute), 634
PRINTABLE (pynlpl.formats.folia.TimingLayer at-

tribute), 752
PRINTABLE (pynlpl.formats.folia.Whitespace attribute),

399
PRINTABLE (pynlpl.formats.folia.Word attribute), 413
PriorityQueue (class in pynlpl.datatypes), 5
prob() (pynlpl.lm.lm.ARPALanguageModel.NgramsProbs

method), 1057
ProcessFailed, 10
product() (in module pynlpl.statistics), 1064
prune() (pynlpl.datatypes.PriorityQueue method), 6
prune() (pynlpl.search.AbstractSearch method), 1059
prune() (pynlpl.search.BeamedBestFirstSearch method),

1060
prune() (pynlpl.search.EarlyEagerBeamSearch method),

1060
prune() (pynlpl.search.StochasticBeamSearch method),

1060
prunebyscore() (pynlpl.datatypes.PriorityQueue method),

6
publisher() (pynlpl.formats.folia.Document method), 20
pynlpl.common (module), 3
pynlpl.datatypes (module), 5
pynlpl.evaluation (module), 9
pynlpl.formats.cgn (module), 1053
pynlpl.formats.folia (module), 11
pynlpl.formats.giza (module), 1053
pynlpl.formats.moses (module), 1054
pynlpl.formats.sonar (module), 1054
pynlpl.formats.taggerdata (module), 1055
pynlpl.formats.timbl (module), 1055
pynlpl.lm.client (module), 1058
pynlpl.lm.lm (module), 1057
pynlpl.lm.srilm (module), 1057
pynlpl.search (module), 1059
pynlpl.statistics (module), 1062
pynlpl.textprocessors (module), 1066

Q
Query (class in pynlpl.formats.fql), 802
Queue (class in pynlpl.datatypes), 6
Quote (class in pynlpl.formats.folia), 290

R
randomprune() (pynlpl.datatypes.PriorityQueue method),

6
Reader (class in pynlpl.formats.folia), 804
recall() (pynlpl.evaluation.ClassEvaluation method), 10
reducible() (pynlpl.statistics.MarkovChain method), 1063
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Reference (class in pynlpl.formats.folia), 303
ReflowText (class in pynlpl.textprocessors), 1066
relaxng() (pynlpl.formats.folia.AbstractAnnotationLayer

class method), 80
relaxng() (pynlpl.formats.folia.AbstractElement class

method), 31
relaxng() (pynlpl.formats.folia.AbstractSpanAnnotation

class method), 57
relaxng() (pynlpl.formats.folia.AbstractStructureElement

class method), 44
relaxng() (pynlpl.formats.folia.AbstractTextMarkup class

method), 91
relaxng() (pynlpl.formats.folia.AbstractTokenAnnotation

class method), 68
relaxng() (pynlpl.formats.folia.ActorFeature class

method), 890
relaxng() (pynlpl.formats.folia.Alignment class method),

1014
relaxng() (pynlpl.formats.folia.AlignReference class

method), 1025
relaxng() (pynlpl.formats.folia.Alternative class method),

925
relaxng() (pynlpl.formats.folia.AlternativeLayers class

method), 936
relaxng() (pynlpl.formats.folia.BegindatetimeFeature

class method), 901
relaxng() (pynlpl.formats.folia.Cell class method), 107
relaxng() (pynlpl.formats.folia.Chunk class method), 523
relaxng() (pynlpl.formats.folia.ChunkingLayer class

method), 652
relaxng() (pynlpl.formats.folia.CoreferenceChain class

method), 535
relaxng() (pynlpl.formats.folia.CoreferenceLayer class

method), 664
relaxng() (pynlpl.formats.folia.CoreferenceLink class

method), 770
relaxng() (pynlpl.formats.folia.Correction class method),

948
relaxng() (pynlpl.formats.folia.Current class method),

959
relaxng() (pynlpl.formats.folia.Definition class method),

120
relaxng() (pynlpl.formats.folia.DependenciesLayer class

method), 676
relaxng() (pynlpl.formats.folia.Dependency class

method), 547
relaxng() (pynlpl.formats.folia.DependencyDependent

class method), 782
relaxng() (pynlpl.formats.folia.Description class method),

1037
relaxng() (pynlpl.formats.folia.Division class method),

133
relaxng() (pynlpl.formats.folia.DomainAnnotation class

method), 434

relaxng() (pynlpl.formats.folia.EnddatetimeFeature class
method), 912

relaxng() (pynlpl.formats.folia.EntitiesLayer class
method), 688

relaxng() (pynlpl.formats.folia.Entity class method), 558
relaxng() (pynlpl.formats.folia.Entry class method), 146
relaxng() (pynlpl.formats.folia.ErrorDetection class

method), 970
relaxng() (pynlpl.formats.folia.Event class method), 159
relaxng() (pynlpl.formats.folia.Example class method),

172
relaxng() (pynlpl.formats.folia.Feature class method), 868
relaxng() (pynlpl.formats.folia.Figure class method), 185
relaxng() (pynlpl.formats.folia.Gap class method), 196
relaxng() (pynlpl.formats.folia.Head class method), 209
relaxng() (pynlpl.formats.folia.Headspan class method),

793
relaxng() (pynlpl.formats.folia.LangAnnotation class

method), 456
relaxng() (pynlpl.formats.folia.LemmaAnnotation class

method), 467
relaxng() (pynlpl.formats.folia.Linebreak class method),

222
relaxng() (pynlpl.formats.folia.List class method), 235
relaxng() (pynlpl.formats.folia.ListItem class method),

248
relaxng() (pynlpl.formats.folia.Metric class method),

1048
relaxng() (pynlpl.formats.folia.New class method), 981
relaxng() (pynlpl.formats.folia.Note class method), 261
relaxng() (pynlpl.formats.folia.Observation class

method), 570
relaxng() (pynlpl.formats.folia.ObservationLayer class

method), 699
relaxng() (pynlpl.formats.folia.Original class method),

992
relaxng() (pynlpl.formats.folia.Paragraph class method),

274
relaxng() (pynlpl.formats.folia.Part class method), 287
relaxng() (pynlpl.formats.folia.PhonContent class

method), 510
relaxng() (pynlpl.formats.folia.PosAnnotation class

method), 445
relaxng() (pynlpl.formats.folia.Predicate class method),

582
relaxng() (pynlpl.formats.folia.Quote class method), 300
relaxng() (pynlpl.formats.folia.Reference class method),

313
relaxng() (pynlpl.formats.folia.Row class method), 326
relaxng() (pynlpl.formats.folia.SemanticRole class

method), 628
relaxng() (pynlpl.formats.folia.SemanticRolesLayer class

method), 746
relaxng() (pynlpl.formats.folia.SenseAnnotation class
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method), 478
relaxng() (pynlpl.formats.folia.Sentence class method),

341
relaxng() (pynlpl.formats.folia.Sentiment class method),

593
relaxng() (pynlpl.formats.folia.SentimentLayer class

method), 711
relaxng() (pynlpl.formats.folia.Statement class method),

605
relaxng() (pynlpl.formats.folia.StatementLayer class

method), 723
relaxng() (pynlpl.formats.folia.SubjectivityAnnotation

class method), 489
relaxng() (pynlpl.formats.folia.Suggestion class method),

1003
relaxng() (pynlpl.formats.folia.SynsetFeature class

method), 879
relaxng() (pynlpl.formats.folia.SyntacticUnit class

method), 617
relaxng() (pynlpl.formats.folia.SyntaxLayer class

method), 735
relaxng() (pynlpl.formats.folia.Table class method), 354
relaxng() (pynlpl.formats.folia.TableHead class method),

380
relaxng() (pynlpl.formats.folia.Term class method), 367
relaxng() (pynlpl.formats.folia.Text class method), 393
relaxng() (pynlpl.formats.folia.TextContent class

method), 500
relaxng() (pynlpl.formats.folia.TextMarkupCorrection

class method), 845
relaxng() (pynlpl.formats.folia.TextMarkupError class

method), 856
relaxng() (pynlpl.formats.folia.TextMarkupGap class

method), 813
relaxng() (pynlpl.formats.folia.TextMarkupString class

method), 824
relaxng() (pynlpl.formats.folia.TextMarkupStyle class

method), 835
relaxng() (pynlpl.formats.folia.TimeSegment class

method), 640
relaxng() (pynlpl.formats.folia.TimingLayer class

method), 758
relaxng() (pynlpl.formats.folia.Whitespace class method),

406
relaxng() (pynlpl.formats.folia.Word class method), 421
remove() (pynlpl.datatypes.PatternSet method), 5
remove() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 80
remove() (pynlpl.formats.folia.AbstractElement method),

31
remove() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 57
remove() (pynlpl.formats.folia.AbstractStructureElement

method), 44

remove() (pynlpl.formats.folia.AbstractTextMarkup
method), 91

remove() (pynlpl.formats.folia.AbstractTokenAnnotation
method), 69

remove() (pynlpl.formats.folia.ActorFeature method),
890

remove() (pynlpl.formats.folia.Alignment method), 1014
remove() (pynlpl.formats.folia.AlignReference method),

1025
remove() (pynlpl.formats.folia.Alternative method), 925
remove() (pynlpl.formats.folia.AlternativeLayers

method), 936
remove() (pynlpl.formats.folia.BegindatetimeFeature

method), 901
remove() (pynlpl.formats.folia.Cell method), 107
remove() (pynlpl.formats.folia.Chunk method), 523
remove() (pynlpl.formats.folia.ChunkingLayer method),

652
remove() (pynlpl.formats.folia.CoreferenceChain

method), 535
remove() (pynlpl.formats.folia.CoreferenceLayer

method), 664
remove() (pynlpl.formats.folia.CoreferenceLink method),

770
remove() (pynlpl.formats.folia.Correction method), 948
remove() (pynlpl.formats.folia.Current method), 959
remove() (pynlpl.formats.folia.Definition method), 120
remove() (pynlpl.formats.folia.DependenciesLayer

method), 676
remove() (pynlpl.formats.folia.Dependency method), 547
remove() (pynlpl.formats.folia.DependencyDependent

method), 782
remove() (pynlpl.formats.folia.Description method), 1037
remove() (pynlpl.formats.folia.Division method), 133
remove() (pynlpl.formats.folia.DomainAnnotation

method), 434
remove() (pynlpl.formats.folia.EnddatetimeFeature

method), 912
remove() (pynlpl.formats.folia.EntitiesLayer method),

688
remove() (pynlpl.formats.folia.Entity method), 558
remove() (pynlpl.formats.folia.Entry method), 146
remove() (pynlpl.formats.folia.ErrorDetection method),

970
remove() (pynlpl.formats.folia.Event method), 159
remove() (pynlpl.formats.folia.Example method), 172
remove() (pynlpl.formats.folia.Feature method), 868
remove() (pynlpl.formats.folia.Figure method), 185
remove() (pynlpl.formats.folia.Gap method), 196
remove() (pynlpl.formats.folia.Head method), 209
remove() (pynlpl.formats.folia.Headspan method), 793
remove() (pynlpl.formats.folia.LangAnnotation method),

456
remove() (pynlpl.formats.folia.LemmaAnnotation
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method), 467
remove() (pynlpl.formats.folia.Linebreak method), 222
remove() (pynlpl.formats.folia.List method), 235
remove() (pynlpl.formats.folia.ListItem method), 248
remove() (pynlpl.formats.folia.Metric method), 1048
remove() (pynlpl.formats.folia.New method), 981
remove() (pynlpl.formats.folia.Note method), 261
remove() (pynlpl.formats.folia.Observation method), 570
remove() (pynlpl.formats.folia.ObservationLayer

method), 699
remove() (pynlpl.formats.folia.Original method), 992
remove() (pynlpl.formats.folia.Paragraph method), 274
remove() (pynlpl.formats.folia.Part method), 287
remove() (pynlpl.formats.folia.PhonContent method),

510
remove() (pynlpl.formats.folia.PosAnnotation method),

445
remove() (pynlpl.formats.folia.Predicate method), 582
remove() (pynlpl.formats.folia.Quote method), 300
remove() (pynlpl.formats.folia.Reference method), 313
remove() (pynlpl.formats.folia.Row method), 326
remove() (pynlpl.formats.folia.SemanticRole method),

628
remove() (pynlpl.formats.folia.SemanticRolesLayer

method), 746
remove() (pynlpl.formats.folia.SenseAnnotation method),

478
remove() (pynlpl.formats.folia.Sentence method), 341
remove() (pynlpl.formats.folia.Sentiment method), 593
remove() (pynlpl.formats.folia.SentimentLayer method),

711
remove() (pynlpl.formats.folia.Statement method), 605
remove() (pynlpl.formats.folia.StatementLayer method),

723
remove() (pynlpl.formats.folia.SubjectivityAnnotation

method), 489
remove() (pynlpl.formats.folia.Suggestion method), 1003
remove() (pynlpl.formats.folia.SynsetFeature method),

879
remove() (pynlpl.formats.folia.SyntacticUnit method),

617
remove() (pynlpl.formats.folia.SyntaxLayer method), 735
remove() (pynlpl.formats.folia.Table method), 354
remove() (pynlpl.formats.folia.TableHead method), 380
remove() (pynlpl.formats.folia.Term method), 367
remove() (pynlpl.formats.folia.Text method), 393
remove() (pynlpl.formats.folia.TextContent method), 500
remove() (pynlpl.formats.folia.TextMarkupCorrection

method), 845
remove() (pynlpl.formats.folia.TextMarkupError

method), 856
remove() (pynlpl.formats.folia.TextMarkupGap method),

813

remove() (pynlpl.formats.folia.TextMarkupString
method), 824

remove() (pynlpl.formats.folia.TextMarkupStyle
method), 835

remove() (pynlpl.formats.folia.TimeSegment method),
640

remove() (pynlpl.formats.folia.TimingLayer method),
758

remove() (pynlpl.formats.folia.Whitespace method), 406
remove() (pynlpl.formats.folia.Word method), 421
replace() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 81
replace() (pynlpl.formats.folia.AbstractElement method),

31
replace() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 58
replace() (pynlpl.formats.folia.AbstractStructureElement

method), 44
replace() (pynlpl.formats.folia.AbstractTextMarkup

method), 91
replace() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 69
replace() (pynlpl.formats.folia.ActorFeature method),

890
replace() (pynlpl.formats.folia.Alignment method), 1014
replace() (pynlpl.formats.folia.AlignReference method),

1025
replace() (pynlpl.formats.folia.Alternative method), 925
replace() (pynlpl.formats.folia.AlternativeLayers

method), 937
replace() (pynlpl.formats.folia.BegindatetimeFeature

method), 901
replace() (pynlpl.formats.folia.Cell method), 107
replace() (pynlpl.formats.folia.Chunk method), 524
replace() (pynlpl.formats.folia.ChunkingLayer method),

652
replace() (pynlpl.formats.folia.CoreferenceChain

method), 535
replace() (pynlpl.formats.folia.CoreferenceLayer

method), 664
replace() (pynlpl.formats.folia.CoreferenceLink method),

770
replace() (pynlpl.formats.folia.Correction method), 948
replace() (pynlpl.formats.folia.Current method), 959
replace() (pynlpl.formats.folia.Definition method), 120
replace() (pynlpl.formats.folia.DependenciesLayer

method), 676
replace() (pynlpl.formats.folia.Dependency method), 547
replace() (pynlpl.formats.folia.DependencyDependent

method), 782
replace() (pynlpl.formats.folia.Description method), 1037
replace() (pynlpl.formats.folia.Division method), 133
replace() (pynlpl.formats.folia.DomainAnnotation

method), 434
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replace() (pynlpl.formats.folia.EnddatetimeFeature
method), 912

replace() (pynlpl.formats.folia.EntitiesLayer method),
688

replace() (pynlpl.formats.folia.Entity method), 558
replace() (pynlpl.formats.folia.Entry method), 146
replace() (pynlpl.formats.folia.ErrorDetection method),

970
replace() (pynlpl.formats.folia.Event method), 159
replace() (pynlpl.formats.folia.Example method), 172
replace() (pynlpl.formats.folia.Feature method), 868
replace() (pynlpl.formats.folia.Figure method), 185
replace() (pynlpl.formats.folia.Gap method), 196
replace() (pynlpl.formats.folia.Head method), 209
replace() (pynlpl.formats.folia.Headspan method), 793
replace() (pynlpl.formats.folia.LangAnnotation method),

456
replace() (pynlpl.formats.folia.LemmaAnnotation

method), 467
replace() (pynlpl.formats.folia.Linebreak method), 222
replace() (pynlpl.formats.folia.List method), 235
replace() (pynlpl.formats.folia.ListItem method), 248
replace() (pynlpl.formats.folia.Metric method), 1048
replace() (pynlpl.formats.folia.New method), 981
replace() (pynlpl.formats.folia.Note method), 261
replace() (pynlpl.formats.folia.Observation method), 570
replace() (pynlpl.formats.folia.ObservationLayer

method), 700
replace() (pynlpl.formats.folia.Original method), 992
replace() (pynlpl.formats.folia.Paragraph method), 274
replace() (pynlpl.formats.folia.Part method), 287
replace() (pynlpl.formats.folia.PhonContent method), 510
replace() (pynlpl.formats.folia.PosAnnotation method),

445
replace() (pynlpl.formats.folia.Predicate method), 582
replace() (pynlpl.formats.folia.Quote method), 300
replace() (pynlpl.formats.folia.Reference method), 313
replace() (pynlpl.formats.folia.Row method), 326
replace() (pynlpl.formats.folia.SemanticRole method),

628
replace() (pynlpl.formats.folia.SemanticRolesLayer

method), 747
replace() (pynlpl.formats.folia.SenseAnnotation method),

478
replace() (pynlpl.formats.folia.Sentence method), 341
replace() (pynlpl.formats.folia.Sentiment method), 593
replace() (pynlpl.formats.folia.SentimentLayer method),

711
replace() (pynlpl.formats.folia.Statement method), 605
replace() (pynlpl.formats.folia.StatementLayer method),

723
replace() (pynlpl.formats.folia.SubjectivityAnnotation

method), 489
replace() (pynlpl.formats.folia.Suggestion method), 1003

replace() (pynlpl.formats.folia.SynsetFeature method),
879

replace() (pynlpl.formats.folia.SyntacticUnit method),
617

replace() (pynlpl.formats.folia.SyntaxLayer method), 735
replace() (pynlpl.formats.folia.Table method), 354
replace() (pynlpl.formats.folia.TableHead method), 380
replace() (pynlpl.formats.folia.Term method), 367
replace() (pynlpl.formats.folia.Text method), 393
replace() (pynlpl.formats.folia.TextContent method), 500
replace() (pynlpl.formats.folia.TextMarkupCorrection

method), 845
replace() (pynlpl.formats.folia.TextMarkupError

method), 856
replace() (pynlpl.formats.folia.TextMarkupGap method),

813
replace() (pynlpl.formats.folia.TextMarkupString

method), 824
replace() (pynlpl.formats.folia.TextMarkupStyle

method), 835
replace() (pynlpl.formats.folia.TimeSegment method),

640
replace() (pynlpl.formats.folia.TimingLayer method), 758
replace() (pynlpl.formats.folia.Whitespace method), 406
replace() (pynlpl.formats.folia.Word method), 421
REQUIRED_ATTRIBS (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
REQUIRED_ATTRIBS (pynlpl.formats.folia.AbstractElement

attribute), 26
REQUIRED_ATTRIBS (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
REQUIRED_ATTRIBS (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
REQUIRED_ATTRIBS (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
REQUIRED_ATTRIBS (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
REQUIRED_ATTRIBS (pynlpl.formats.folia.ActorFeature

attribute), 885
REQUIRED_ATTRIBS (pynlpl.formats.folia.Alignment

attribute), 1009
REQUIRED_ATTRIBS (pynlpl.formats.folia.AlignReference

attribute), 1020
REQUIRED_ATTRIBS (pynlpl.formats.folia.Alternative

attribute), 919
REQUIRED_ATTRIBS (pynlpl.formats.folia.AlternativeLayers

attribute), 931
REQUIRED_ATTRIBS (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
REQUIRED_ATTRIBS (pynlpl.formats.folia.Cell at-

tribute), 100
REQUIRED_ATTRIBS (pynlpl.formats.folia.Chunk at-

tribute), 518
REQUIRED_ATTRIBS (pynlpl.formats.folia.ChunkingLayer
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attribute), 646
REQUIRED_ATTRIBS (pynlpl.formats.folia.CoreferenceChain

attribute), 529
REQUIRED_ATTRIBS (pynlpl.formats.folia.CoreferenceLayer

attribute), 658
REQUIRED_ATTRIBS (pynlpl.formats.folia.CoreferenceLink

attribute), 764
REQUIRED_ATTRIBS (pynlpl.formats.folia.Correction

attribute), 944
REQUIRED_ATTRIBS (pynlpl.formats.folia.Current at-

tribute), 953
REQUIRED_ATTRIBS (pynlpl.formats.folia.Definition

attribute), 113
REQUIRED_ATTRIBS (pynlpl.formats.folia.DependenciesLayer

attribute), 670
REQUIRED_ATTRIBS (pynlpl.formats.folia.Dependency

attribute), 541
REQUIRED_ATTRIBS (pynlpl.formats.folia.DependencyDependent

attribute), 776
REQUIRED_ATTRIBS (pynlpl.formats.folia.Description

attribute), 1031
REQUIRED_ATTRIBS (pynlpl.formats.folia.Division at-

tribute), 126
REQUIRED_ATTRIBS (pynlpl.formats.folia.DomainAnnotation

attribute), 428
REQUIRED_ATTRIBS (pynlpl.formats.folia.EnddatetimeFeature

attribute), 907
REQUIRED_ATTRIBS (pynlpl.formats.folia.EntitiesLayer

attribute), 682
REQUIRED_ATTRIBS (pynlpl.formats.folia.Entity at-

tribute), 553
REQUIRED_ATTRIBS (pynlpl.formats.folia.Entry at-

tribute), 139
REQUIRED_ATTRIBS (pynlpl.formats.folia.ErrorDetection

attribute), 964
REQUIRED_ATTRIBS (pynlpl.formats.folia.Event at-

tribute), 152
REQUIRED_ATTRIBS (pynlpl.formats.folia.Example

attribute), 165
REQUIRED_ATTRIBS (pynlpl.formats.folia.Feature at-

tribute), 862
REQUIRED_ATTRIBS (pynlpl.formats.folia.Figure at-

tribute), 178
REQUIRED_ATTRIBS (pynlpl.formats.folia.Gap at-

tribute), 191
REQUIRED_ATTRIBS (pynlpl.formats.folia.Head at-

tribute), 202
REQUIRED_ATTRIBS (pynlpl.formats.folia.Headspan

attribute), 788
REQUIRED_ATTRIBS (pynlpl.formats.folia.LangAnnotation

attribute), 451
REQUIRED_ATTRIBS (pynlpl.formats.folia.LemmaAnnotation

attribute), 462
REQUIRED_ATTRIBS (pynlpl.formats.folia.Linebreak

attribute), 215
REQUIRED_ATTRIBS (pynlpl.formats.folia.List at-

tribute), 228
REQUIRED_ATTRIBS (pynlpl.formats.folia.ListItem at-

tribute), 241
REQUIRED_ATTRIBS (pynlpl.formats.folia.Metric at-

tribute), 1042
REQUIRED_ATTRIBS (pynlpl.formats.folia.New

attribute), 976
REQUIRED_ATTRIBS (pynlpl.formats.folia.Note

attribute), 254
REQUIRED_ATTRIBS (pynlpl.formats.folia.Observation

attribute), 564
REQUIRED_ATTRIBS (pynlpl.formats.folia.ObservationLayer

attribute), 694
REQUIRED_ATTRIBS (pynlpl.formats.folia.Original at-

tribute), 987
REQUIRED_ATTRIBS (pynlpl.formats.folia.Paragraph

attribute), 267
REQUIRED_ATTRIBS (pynlpl.formats.folia.Part at-

tribute), 280
REQUIRED_ATTRIBS (pynlpl.formats.folia.PhonContent

attribute), 506
REQUIRED_ATTRIBS (pynlpl.formats.folia.PosAnnotation

attribute), 440
REQUIRED_ATTRIBS (pynlpl.formats.folia.Predicate

attribute), 576
REQUIRED_ATTRIBS (pynlpl.formats.folia.Quote at-

tribute), 293
REQUIRED_ATTRIBS (pynlpl.formats.folia.Reference

attribute), 306
REQUIRED_ATTRIBS (pynlpl.formats.folia.Row

attribute), 319
REQUIRED_ATTRIBS (pynlpl.formats.folia.SemanticRole

attribute), 623
REQUIRED_ATTRIBS (pynlpl.formats.folia.SemanticRolesLayer

attribute), 741
REQUIRED_ATTRIBS (pynlpl.formats.folia.SenseAnnotation

attribute), 473
REQUIRED_ATTRIBS (pynlpl.formats.folia.Sentence

attribute), 333
REQUIRED_ATTRIBS (pynlpl.formats.folia.Sentiment

attribute), 588
REQUIRED_ATTRIBS (pynlpl.formats.folia.SentimentLayer

attribute), 705
REQUIRED_ATTRIBS (pynlpl.formats.folia.Statement

attribute), 599
REQUIRED_ATTRIBS (pynlpl.formats.folia.StatementLayer

attribute), 717
REQUIRED_ATTRIBS (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 484
REQUIRED_ATTRIBS (pynlpl.formats.folia.Suggestion

attribute), 998
REQUIRED_ATTRIBS (pynlpl.formats.folia.SynsetFeature
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attribute), 874
REQUIRED_ATTRIBS (pynlpl.formats.folia.SyntacticUnit

attribute), 611
REQUIRED_ATTRIBS (pynlpl.formats.folia.SyntaxLayer

attribute), 729
REQUIRED_ATTRIBS (pynlpl.formats.folia.Table at-

tribute), 347
REQUIRED_ATTRIBS (pynlpl.formats.folia.TableHead

attribute), 373
REQUIRED_ATTRIBS (pynlpl.formats.folia.Term at-

tribute), 360
REQUIRED_ATTRIBS (pynlpl.formats.folia.Text

attribute), 386
REQUIRED_ATTRIBS (pynlpl.formats.folia.TextContent

attribute), 495
REQUIRED_ATTRIBS (pynlpl.formats.folia.TextMarkupCorrection

attribute), 840
REQUIRED_ATTRIBS (pynlpl.formats.folia.TextMarkupError

attribute), 851
REQUIRED_ATTRIBS (pynlpl.formats.folia.TextMarkupGap

attribute), 808
REQUIRED_ATTRIBS (pynlpl.formats.folia.TextMarkupString

attribute), 819
REQUIRED_ATTRIBS (pynlpl.formats.folia.TextMarkupStyle

attribute), 830
REQUIRED_ATTRIBS (pynlpl.formats.folia.TimeSegment

attribute), 634
REQUIRED_ATTRIBS (pynlpl.formats.folia.TimingLayer

attribute), 752
REQUIRED_ATTRIBS (pynlpl.formats.folia.Whitespace

attribute), 399
REQUIRED_ATTRIBS (pynlpl.formats.folia.Word at-

tribute), 413
REQUIRED_DATA (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
REQUIRED_DATA (pynlpl.formats.folia.AbstractElement

attribute), 26
REQUIRED_DATA (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
REQUIRED_DATA (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
REQUIRED_DATA (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
REQUIRED_DATA (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
REQUIRED_DATA (pynlpl.formats.folia.ActorFeature

attribute), 885
REQUIRED_DATA (pynlpl.formats.folia.Alignment at-

tribute), 1009
REQUIRED_DATA (pynlpl.formats.folia.AlignReference

attribute), 1020
REQUIRED_DATA (pynlpl.formats.folia.Alternative at-

tribute), 919
REQUIRED_DATA (pynlpl.formats.folia.AlternativeLayers

attribute), 931
REQUIRED_DATA (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
REQUIRED_DATA (pynlpl.formats.folia.Cell attribute),

100
REQUIRED_DATA (pynlpl.formats.folia.Chunk at-

tribute), 518
REQUIRED_DATA (pynlpl.formats.folia.ChunkingLayer

attribute), 646
REQUIRED_DATA (pynlpl.formats.folia.CoreferenceChain

attribute), 530
REQUIRED_DATA (pynlpl.formats.folia.CoreferenceLayer

attribute), 658
REQUIRED_DATA (pynlpl.formats.folia.CoreferenceLink

attribute), 764
REQUIRED_DATA (pynlpl.formats.folia.Correction at-

tribute), 944
REQUIRED_DATA (pynlpl.formats.folia.Current at-

tribute), 953
REQUIRED_DATA (pynlpl.formats.folia.Definition at-

tribute), 113
REQUIRED_DATA (pynlpl.formats.folia.DependenciesLayer

attribute), 670
REQUIRED_DATA (pynlpl.formats.folia.Dependency

attribute), 541
REQUIRED_DATA (pynlpl.formats.folia.DependencyDependent

attribute), 776
REQUIRED_DATA (pynlpl.formats.folia.Description at-

tribute), 1031
REQUIRED_DATA (pynlpl.formats.folia.Division

attribute), 126
REQUIRED_DATA (pynlpl.formats.folia.DomainAnnotation

attribute), 429
REQUIRED_DATA (pynlpl.formats.folia.EnddatetimeFeature

attribute), 907
REQUIRED_DATA (pynlpl.formats.folia.EntitiesLayer

attribute), 682
REQUIRED_DATA (pynlpl.formats.folia.Entity at-

tribute), 553
REQUIRED_DATA (pynlpl.formats.folia.Entry at-

tribute), 139
REQUIRED_DATA (pynlpl.formats.folia.ErrorDetection

attribute), 965
REQUIRED_DATA (pynlpl.formats.folia.Event at-

tribute), 152
REQUIRED_DATA (pynlpl.formats.folia.Example at-

tribute), 165
REQUIRED_DATA (pynlpl.formats.folia.Feature at-

tribute), 862
REQUIRED_DATA (pynlpl.formats.folia.Figure at-

tribute), 178
REQUIRED_DATA (pynlpl.formats.folia.Gap attribute),

191
REQUIRED_DATA (pynlpl.formats.folia.Head attribute),

1152 Index



PyNLPl Documentation, Release 1.2.8

202
REQUIRED_DATA (pynlpl.formats.folia.Headspan at-

tribute), 788
REQUIRED_DATA (pynlpl.formats.folia.LangAnnotation

attribute), 451
REQUIRED_DATA (pynlpl.formats.folia.LemmaAnnotation

attribute), 462
REQUIRED_DATA (pynlpl.formats.folia.Linebreak at-

tribute), 215
REQUIRED_DATA (pynlpl.formats.folia.List attribute),

228
REQUIRED_DATA (pynlpl.formats.folia.ListItem

attribute), 241
REQUIRED_DATA (pynlpl.formats.folia.Metric at-

tribute), 1043
REQUIRED_DATA (pynlpl.formats.folia.New attribute),

976
REQUIRED_DATA (pynlpl.formats.folia.Note attribute),

254
REQUIRED_DATA (pynlpl.formats.folia.Observation at-

tribute), 564
REQUIRED_DATA (pynlpl.formats.folia.ObservationLayer

attribute), 694
REQUIRED_DATA (pynlpl.formats.folia.Original

attribute), 987
REQUIRED_DATA (pynlpl.formats.folia.Paragraph at-

tribute), 267
REQUIRED_DATA (pynlpl.formats.folia.Part attribute),

280
REQUIRED_DATA (pynlpl.formats.folia.PhonContent

attribute), 506
REQUIRED_DATA (pynlpl.formats.folia.PosAnnotation

attribute), 440
REQUIRED_DATA (pynlpl.formats.folia.Predicate at-

tribute), 576
REQUIRED_DATA (pynlpl.formats.folia.Quote at-

tribute), 293
REQUIRED_DATA (pynlpl.formats.folia.Reference at-

tribute), 306
REQUIRED_DATA (pynlpl.formats.folia.Row attribute),

319
REQUIRED_DATA (pynlpl.formats.folia.SemanticRole

attribute), 623
REQUIRED_DATA (pynlpl.formats.folia.SemanticRolesLayer

attribute), 741
REQUIRED_DATA (pynlpl.formats.folia.SenseAnnotation

attribute), 473
REQUIRED_DATA (pynlpl.formats.folia.Sentence at-

tribute), 333
REQUIRED_DATA (pynlpl.formats.folia.Sentiment at-

tribute), 588
REQUIRED_DATA (pynlpl.formats.folia.SentimentLayer

attribute), 705
REQUIRED_DATA (pynlpl.formats.folia.Statement at-

tribute), 599
REQUIRED_DATA (pynlpl.formats.folia.StatementLayer

attribute), 717
REQUIRED_DATA (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 484
REQUIRED_DATA (pynlpl.formats.folia.Suggestion at-

tribute), 998
REQUIRED_DATA (pynlpl.formats.folia.SynsetFeature

attribute), 874
REQUIRED_DATA (pynlpl.formats.folia.SyntacticUnit

attribute), 611
REQUIRED_DATA (pynlpl.formats.folia.SyntaxLayer

attribute), 729
REQUIRED_DATA (pynlpl.formats.folia.Table at-

tribute), 347
REQUIRED_DATA (pynlpl.formats.folia.TableHead at-

tribute), 373
REQUIRED_DATA (pynlpl.formats.folia.Term attribute),

360
REQUIRED_DATA (pynlpl.formats.folia.Text attribute),

386
REQUIRED_DATA (pynlpl.formats.folia.TextContent at-

tribute), 495
REQUIRED_DATA (pynlpl.formats.folia.TextMarkupCorrection

attribute), 840
REQUIRED_DATA (pynlpl.formats.folia.TextMarkupError

attribute), 851
REQUIRED_DATA (pynlpl.formats.folia.TextMarkupGap

attribute), 808
REQUIRED_DATA (pynlpl.formats.folia.TextMarkupString

attribute), 819
REQUIRED_DATA (pynlpl.formats.folia.TextMarkupStyle

attribute), 830
REQUIRED_DATA (pynlpl.formats.folia.TimeSegment

attribute), 634
REQUIRED_DATA (pynlpl.formats.folia.TimingLayer

attribute), 752
REQUIRED_DATA (pynlpl.formats.folia.Whitespace at-

tribute), 399
REQUIRED_DATA (pynlpl.formats.folia.Word at-

tribute), 413
reset() (pynlpl.formats.giza.IntersectionAlignment

method), 1053
reset() (pynlpl.formats.giza.MultiWordAlignment

method), 1053
reset() (pynlpl.formats.giza.WordAlignment method),

1054
reset() (pynlpl.formats.taggerdata.Taggerdata method),

1055
reset() (pynlpl.search.AbstractSearch method), 1059
resolve() (pynlpl.formats.folia.AbstractTextMarkup

method), 92
resolve() (pynlpl.formats.folia.Alignment method), 1014
resolve() (pynlpl.formats.folia.AlignReference method),
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1026
resolve() (pynlpl.formats.folia.Linebreak method), 222
resolve() (pynlpl.formats.folia.Reference method), 313
resolve() (pynlpl.formats.folia.TextMarkupCorrection

method), 846
resolve() (pynlpl.formats.folia.TextMarkupError

method), 856
resolve() (pynlpl.formats.folia.TextMarkupGap method),

814
resolve() (pynlpl.formats.folia.TextMarkupString

method), 824
resolve() (pynlpl.formats.folia.TextMarkupStyle

method), 835
resolveword() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 81
resolveword() (pynlpl.formats.folia.AbstractElement

method), 31
resolveword() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 58
resolveword() (pynlpl.formats.folia.AbstractStructureElement

method), 44
resolveword() (pynlpl.formats.folia.AbstractTextMarkup

method), 92
resolveword() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 69
resolveword() (pynlpl.formats.folia.ActorFeature

method), 890
resolveword() (pynlpl.formats.folia.Alignment method),

1014
resolveword() (pynlpl.formats.folia.AlignReference

method), 1026
resolveword() (pynlpl.formats.folia.Alternative method),

926
resolveword() (pynlpl.formats.folia.AlternativeLayers

method), 937
resolveword() (pynlpl.formats.folia.BegindatetimeFeature

method), 901
resolveword() (pynlpl.formats.folia.Cell method), 107
resolveword() (pynlpl.formats.folia.Chunk method), 524
resolveword() (pynlpl.formats.folia.ChunkingLayer

method), 653
resolveword() (pynlpl.formats.folia.CoreferenceChain

method), 535
resolveword() (pynlpl.formats.folia.CoreferenceLayer

method), 664
resolveword() (pynlpl.formats.folia.CoreferenceLink

method), 770
resolveword() (pynlpl.formats.folia.Correction method),

949
resolveword() (pynlpl.formats.folia.Current method), 959
resolveword() (pynlpl.formats.folia.Definition method),

120
resolveword() (pynlpl.formats.folia.DependenciesLayer

method), 676

resolveword() (pynlpl.formats.folia.Dependency
method), 547

resolveword() (pynlpl.formats.folia.DependencyDependent
method), 782

resolveword() (pynlpl.formats.folia.Description method),
1037

resolveword() (pynlpl.formats.folia.Division method),
133

resolveword() (pynlpl.formats.folia.DomainAnnotation
method), 434

resolveword() (pynlpl.formats.folia.EnddatetimeFeature
method), 912

resolveword() (pynlpl.formats.folia.EntitiesLayer
method), 688

resolveword() (pynlpl.formats.folia.Entity method), 559
resolveword() (pynlpl.formats.folia.Entry method), 146
resolveword() (pynlpl.formats.folia.ErrorDetection

method), 970
resolveword() (pynlpl.formats.folia.Event method), 159
resolveword() (pynlpl.formats.folia.Example method),

172
resolveword() (pynlpl.formats.folia.Feature method), 868
resolveword() (pynlpl.formats.folia.Figure method), 185
resolveword() (pynlpl.formats.folia.Gap method), 196
resolveword() (pynlpl.formats.folia.Head method), 209
resolveword() (pynlpl.formats.folia.Headspan method),

794
resolveword() (pynlpl.formats.folia.LangAnnotation

method), 456
resolveword() (pynlpl.formats.folia.LemmaAnnotation

method), 467
resolveword() (pynlpl.formats.folia.Linebreak method),

222
resolveword() (pynlpl.formats.folia.List method), 235
resolveword() (pynlpl.formats.folia.ListItem method),

248
resolveword() (pynlpl.formats.folia.Metric method), 1048
resolveword() (pynlpl.formats.folia.New method), 981
resolveword() (pynlpl.formats.folia.Note method), 261
resolveword() (pynlpl.formats.folia.Observation method),

570
resolveword() (pynlpl.formats.folia.ObservationLayer

method), 700
resolveword() (pynlpl.formats.folia.Original method),

992
resolveword() (pynlpl.formats.folia.Paragraph method),

274
resolveword() (pynlpl.formats.folia.Part method), 287
resolveword() (pynlpl.formats.folia.PhonContent

method), 510
resolveword() (pynlpl.formats.folia.PosAnnotation

method), 445
resolveword() (pynlpl.formats.folia.Predicate method),

582
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resolveword() (pynlpl.formats.folia.Quote method), 300
resolveword() (pynlpl.formats.folia.Reference method),

313
resolveword() (pynlpl.formats.folia.Row method), 326
resolveword() (pynlpl.formats.folia.SemanticRole

method), 629
resolveword() (pynlpl.formats.folia.SemanticRolesLayer

method), 747
resolveword() (pynlpl.formats.folia.SenseAnnotation

method), 478
resolveword() (pynlpl.formats.folia.Sentence method),

341
resolveword() (pynlpl.formats.folia.Sentiment method),

594
resolveword() (pynlpl.formats.folia.SentimentLayer

method), 711
resolveword() (pynlpl.formats.folia.Statement method),

605
resolveword() (pynlpl.formats.folia.StatementLayer

method), 723
resolveword() (pynlpl.formats.folia.SubjectivityAnnotation

method), 489
resolveword() (pynlpl.formats.folia.Suggestion method),

1003
resolveword() (pynlpl.formats.folia.SynsetFeature

method), 879
resolveword() (pynlpl.formats.folia.SyntacticUnit

method), 617
resolveword() (pynlpl.formats.folia.SyntaxLayer

method), 735
resolveword() (pynlpl.formats.folia.Table method), 354
resolveword() (pynlpl.formats.folia.TableHead method),

380
resolveword() (pynlpl.formats.folia.Term method), 367
resolveword() (pynlpl.formats.folia.Text method), 393
resolveword() (pynlpl.formats.folia.TextContent method),

500
resolveword() (pynlpl.formats.folia.TextMarkupCorrection

method), 846
resolveword() (pynlpl.formats.folia.TextMarkupError

method), 856
resolveword() (pynlpl.formats.folia.TextMarkupGap

method), 814
resolveword() (pynlpl.formats.folia.TextMarkupString

method), 824
resolveword() (pynlpl.formats.folia.TextMarkupStyle

method), 835
resolveword() (pynlpl.formats.folia.TimeSegment

method), 640
resolveword() (pynlpl.formats.folia.TimingLayer

method), 758
resolveword() (pynlpl.formats.folia.Whitespace method),

406
resolveword() (pynlpl.formats.folia.Word method), 421

rightcontext() (pynlpl.formats.folia.AbstractAnnotationLayer
method), 81

rightcontext() (pynlpl.formats.folia.AbstractElement
method), 31

rightcontext() (pynlpl.formats.folia.AbstractSpanAnnotation
method), 58

rightcontext() (pynlpl.formats.folia.AbstractStructureElement
method), 44

rightcontext() (pynlpl.formats.folia.AbstractTextMarkup
method), 92

rightcontext() (pynlpl.formats.folia.AbstractTokenAnnotation
method), 69

rightcontext() (pynlpl.formats.folia.ActorFeature
method), 890

rightcontext() (pynlpl.formats.folia.Alignment method),
1014

rightcontext() (pynlpl.formats.folia.AlignReference
method), 1026

rightcontext() (pynlpl.formats.folia.Alternative method),
926

rightcontext() (pynlpl.formats.folia.AlternativeLayers
method), 937

rightcontext() (pynlpl.formats.folia.BegindatetimeFeature
method), 901

rightcontext() (pynlpl.formats.folia.Cell method), 107
rightcontext() (pynlpl.formats.folia.Chunk method), 524
rightcontext() (pynlpl.formats.folia.ChunkingLayer

method), 653
rightcontext() (pynlpl.formats.folia.CoreferenceChain

method), 535
rightcontext() (pynlpl.formats.folia.CoreferenceLayer

method), 664
rightcontext() (pynlpl.formats.folia.CoreferenceLink

method), 770
rightcontext() (pynlpl.formats.folia.Correction method),

949
rightcontext() (pynlpl.formats.folia.Current method), 959
rightcontext() (pynlpl.formats.folia.Definition method),

120
rightcontext() (pynlpl.formats.folia.DependenciesLayer

method), 676
rightcontext() (pynlpl.formats.folia.Dependency method),

547
rightcontext() (pynlpl.formats.folia.DependencyDependent

method), 782
rightcontext() (pynlpl.formats.folia.Description method),

1037
rightcontext() (pynlpl.formats.folia.Division method),

133
rightcontext() (pynlpl.formats.folia.DomainAnnotation

method), 434
rightcontext() (pynlpl.formats.folia.EnddatetimeFeature

method), 912
rightcontext() (pynlpl.formats.folia.EntitiesLayer
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method), 688
rightcontext() (pynlpl.formats.folia.Entity method), 559
rightcontext() (pynlpl.formats.folia.Entry method), 146
rightcontext() (pynlpl.formats.folia.ErrorDetection

method), 970
rightcontext() (pynlpl.formats.folia.Event method), 159
rightcontext() (pynlpl.formats.folia.Example method),

172
rightcontext() (pynlpl.formats.folia.Feature method), 868
rightcontext() (pynlpl.formats.folia.Figure method), 185
rightcontext() (pynlpl.formats.folia.Gap method), 196
rightcontext() (pynlpl.formats.folia.Head method), 209
rightcontext() (pynlpl.formats.folia.Headspan method),

794
rightcontext() (pynlpl.formats.folia.LangAnnotation

method), 456
rightcontext() (pynlpl.formats.folia.LemmaAnnotation

method), 467
rightcontext() (pynlpl.formats.folia.Linebreak method),

222
rightcontext() (pynlpl.formats.folia.List method), 235
rightcontext() (pynlpl.formats.folia.ListItem method),

248
rightcontext() (pynlpl.formats.folia.Metric method), 1048
rightcontext() (pynlpl.formats.folia.New method), 981
rightcontext() (pynlpl.formats.folia.Note method), 261
rightcontext() (pynlpl.formats.folia.Observation method),

570
rightcontext() (pynlpl.formats.folia.ObservationLayer

method), 700
rightcontext() (pynlpl.formats.folia.Original method),

992
rightcontext() (pynlpl.formats.folia.Paragraph method),

274
rightcontext() (pynlpl.formats.folia.Part method), 287
rightcontext() (pynlpl.formats.folia.PhonContent

method), 511
rightcontext() (pynlpl.formats.folia.PosAnnotation

method), 445
rightcontext() (pynlpl.formats.folia.Predicate method),

582
rightcontext() (pynlpl.formats.folia.Quote method), 300
rightcontext() (pynlpl.formats.folia.Reference method),

313
rightcontext() (pynlpl.formats.folia.Row method), 326
rightcontext() (pynlpl.formats.folia.SemanticRole

method), 629
rightcontext() (pynlpl.formats.folia.SemanticRolesLayer

method), 747
rightcontext() (pynlpl.formats.folia.SenseAnnotation

method), 478
rightcontext() (pynlpl.formats.folia.Sentence method),

341
rightcontext() (pynlpl.formats.folia.Sentiment method),

594
rightcontext() (pynlpl.formats.folia.SentimentLayer

method), 711
rightcontext() (pynlpl.formats.folia.Statement method),

605
rightcontext() (pynlpl.formats.folia.StatementLayer

method), 723
rightcontext() (pynlpl.formats.folia.SubjectivityAnnotation

method), 489
rightcontext() (pynlpl.formats.folia.Suggestion method),

1003
rightcontext() (pynlpl.formats.folia.SynsetFeature

method), 879
rightcontext() (pynlpl.formats.folia.SyntacticUnit

method), 617
rightcontext() (pynlpl.formats.folia.SyntaxLayer

method), 735
rightcontext() (pynlpl.formats.folia.Table method), 354
rightcontext() (pynlpl.formats.folia.TableHead method),

380
rightcontext() (pynlpl.formats.folia.Term method), 367
rightcontext() (pynlpl.formats.folia.Text method), 393
rightcontext() (pynlpl.formats.folia.TextContent method),

501
rightcontext() (pynlpl.formats.folia.TextMarkupCorrection

method), 846
rightcontext() (pynlpl.formats.folia.TextMarkupError

method), 856
rightcontext() (pynlpl.formats.folia.TextMarkupGap

method), 814
rightcontext() (pynlpl.formats.folia.TextMarkupString

method), 824
rightcontext() (pynlpl.formats.folia.TextMarkupStyle

method), 835
rightcontext() (pynlpl.formats.folia.TimeSegment

method), 640
rightcontext() (pynlpl.formats.folia.TimingLayer

method), 758
rightcontext() (pynlpl.formats.folia.Whitespace method),

406
rightcontext() (pynlpl.formats.folia.Word method), 421
rmse() (in module pynlpl.evaluation), 11
rmse() (pynlpl.evaluation.OrdinalEvaluation method), 10
root() (pynlpl.datatypes.Trie method), 7
Row (class in pynlpl.formats.folia), 316
run() (pynlpl.evaluation.AbstractExperiment method), 9
run() (pynlpl.evaluation.ExperimentPool method), 10

S
sample() (pynlpl.evaluation.AbstractExperiment

method), 9
save() (pynlpl.formats.folia.Document method), 20
save() (pynlpl.formats.sonar.CorpusDocumentX method),

1054
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save() (pynlpl.lm.lm.SimpleLanguageModel method),
1057

save() (pynlpl.statistics.FrequencyList method), 1063
score() (pynlpl.datatypes.PriorityQueue method), 6
score() (pynlpl.evaluation.AbstractExperiment method),

9
score() (pynlpl.lm.lm.ARPALanguageModel method),

1057
score() (pynlpl.search.AbstractSearchState method), 1060
scoresentence() (pynlpl.lm.client.LMClient method),

1058
scoresentence() (pynlpl.lm.lm.SimpleLanguageModel

method), 1057
scoresentence() (pynlpl.lm.srilm.SRILM method), 1057
scoreword() (pynlpl.lm.lm.ARPALanguageModel
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select() (pynlpl.formats.folia.Sentiment method), 594
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SETONLY (pynlpl.formats.folia.Predicate attribute), 576
SETONLY (pynlpl.formats.folia.Quote attribute), 293
SETONLY (pynlpl.formats.folia.Reference attribute), 306
SETONLY (pynlpl.formats.folia.Row attribute), 319
SETONLY (pynlpl.formats.folia.SemanticRole attribute),

623
SETONLY (pynlpl.formats.folia.SemanticRolesLayer at-

tribute), 741
SETONLY (pynlpl.formats.folia.SenseAnnotation at-

tribute), 473
SETONLY (pynlpl.formats.folia.Sentence attribute), 333
SETONLY (pynlpl.formats.folia.Sentiment attribute), 588
SETONLY (pynlpl.formats.folia.SentimentLayer at-

tribute), 705
SETONLY (pynlpl.formats.folia.Statement attribute), 599
SETONLY (pynlpl.formats.folia.StatementLayer at-

tribute), 717
SETONLY (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 484
SETONLY (pynlpl.formats.folia.Suggestion attribute),

998
SETONLY (pynlpl.formats.folia.SynsetFeature attribute),

874
SETONLY (pynlpl.formats.folia.SyntacticUnit attribute),

611
SETONLY (pynlpl.formats.folia.SyntaxLayer attribute),

729
SETONLY (pynlpl.formats.folia.Table attribute), 347
SETONLY (pynlpl.formats.folia.TableHead attribute),

373
SETONLY (pynlpl.formats.folia.Term attribute), 360
SETONLY (pynlpl.formats.folia.Text attribute), 386
SETONLY (pynlpl.formats.folia.TextContent attribute),

495
SETONLY (pynlpl.formats.folia.TextMarkupCorrection

attribute), 840
SETONLY (pynlpl.formats.folia.TextMarkupError

attribute), 851
SETONLY (pynlpl.formats.folia.TextMarkupGap at-

tribute), 808
SETONLY (pynlpl.formats.folia.TextMarkupString at-

tribute), 819
SETONLY (pynlpl.formats.folia.TextMarkupStyle

attribute), 830
SETONLY (pynlpl.formats.folia.TimeSegment attribute),

634
SETONLY (pynlpl.formats.folia.TimingLayer attribute),

752
SETONLY (pynlpl.formats.folia.Whitespace attribute),

399
SETONLY (pynlpl.formats.folia.Word attribute), 413
setparents() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 81
setparents() (pynlpl.formats.folia.AbstractElement

method), 32
setparents() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 58
setparents() (pynlpl.formats.folia.AbstractStructureElement

method), 45
setparents() (pynlpl.formats.folia.AbstractTextMarkup

method), 92
setparents() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 70
setparents() (pynlpl.formats.folia.ActorFeature method),

891
setparents() (pynlpl.formats.folia.Alignment method),

1015
setparents() (pynlpl.formats.folia.AlignReference

method), 1026
setparents() (pynlpl.formats.folia.Alternative method),

926
setparents() (pynlpl.formats.folia.AlternativeLayers

method), 937
setparents() (pynlpl.formats.folia.BegindatetimeFeature

method), 902
setparents() (pynlpl.formats.folia.Cell method), 108
setparents() (pynlpl.formats.folia.Chunk method), 524
setparents() (pynlpl.formats.folia.ChunkingLayer

method), 653
setparents() (pynlpl.formats.folia.CoreferenceChain

method), 536
setparents() (pynlpl.formats.folia.CoreferenceLayer

method), 665
setparents() (pynlpl.formats.folia.CoreferenceLink

method), 771
setparents() (pynlpl.formats.folia.Correction method),

949
setparents() (pynlpl.formats.folia.Current method), 960
setparents() (pynlpl.formats.folia.Definition method), 121
setparents() (pynlpl.formats.folia.DependenciesLayer

method), 677
setparents() (pynlpl.formats.folia.Dependency method),

548
setparents() (pynlpl.formats.folia.DependencyDependent

method), 783
setparents() (pynlpl.formats.folia.Description method),

1038
setparents() (pynlpl.formats.folia.Division method), 134
setparents() (pynlpl.formats.folia.DomainAnnotation

method), 435
setparents() (pynlpl.formats.folia.EnddatetimeFeature

method), 913
setparents() (pynlpl.formats.folia.EntitiesLayer method),

689
setparents() (pynlpl.formats.folia.Entity method), 559
setparents() (pynlpl.formats.folia.Entry method), 147
setparents() (pynlpl.formats.folia.ErrorDetection

method), 971
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setparents() (pynlpl.formats.folia.Event method), 160
setparents() (pynlpl.formats.folia.Example method), 173
setparents() (pynlpl.formats.folia.Feature method), 869
setparents() (pynlpl.formats.folia.Figure method), 186
setparents() (pynlpl.formats.folia.Gap method), 197
setparents() (pynlpl.formats.folia.Head method), 210
setparents() (pynlpl.formats.folia.Headspan method), 794
setparents() (pynlpl.formats.folia.LangAnnotation

method), 457
setparents() (pynlpl.formats.folia.LemmaAnnotation

method), 468
setparents() (pynlpl.formats.folia.Linebreak method), 223
setparents() (pynlpl.formats.folia.List method), 236
setparents() (pynlpl.formats.folia.ListItem method), 249
setparents() (pynlpl.formats.folia.Metric method), 1049
setparents() (pynlpl.formats.folia.New method), 982
setparents() (pynlpl.formats.folia.Note method), 262
setparents() (pynlpl.formats.folia.Observation method),

571
setparents() (pynlpl.formats.folia.ObservationLayer

method), 700
setparents() (pynlpl.formats.folia.Original method), 993
setparents() (pynlpl.formats.folia.Paragraph method), 275
setparents() (pynlpl.formats.folia.Part method), 288
setparents() (pynlpl.formats.folia.PhonContent method),

511
setparents() (pynlpl.formats.folia.PosAnnotation

method), 446
setparents() (pynlpl.formats.folia.Predicate method), 583
setparents() (pynlpl.formats.folia.Quote method), 301
setparents() (pynlpl.formats.folia.Reference method), 314
setparents() (pynlpl.formats.folia.Row method), 327
setparents() (pynlpl.formats.folia.SemanticRole method),

629
setparents() (pynlpl.formats.folia.SemanticRolesLayer

method), 747
setparents() (pynlpl.formats.folia.SenseAnnotation

method), 479
setparents() (pynlpl.formats.folia.Sentence method), 342
setparents() (pynlpl.formats.folia.Sentiment method), 594
setparents() (pynlpl.formats.folia.SentimentLayer

method), 712
setparents() (pynlpl.formats.folia.Statement method), 606
setparents() (pynlpl.formats.folia.StatementLayer

method), 724
setparents() (pynlpl.formats.folia.SubjectivityAnnotation

method), 490
setparents() (pynlpl.formats.folia.Suggestion method),

1004
setparents() (pynlpl.formats.folia.SynsetFeature method),

880
setparents() (pynlpl.formats.folia.SyntacticUnit method),

618
setparents() (pynlpl.formats.folia.SyntaxLayer method),

736
setparents() (pynlpl.formats.folia.Table method), 355
setparents() (pynlpl.formats.folia.TableHead method),

381
setparents() (pynlpl.formats.folia.Term method), 368
setparents() (pynlpl.formats.folia.Text method), 394
setparents() (pynlpl.formats.folia.TextContent method),

501
setparents() (pynlpl.formats.folia.TextMarkupCorrection

method), 846
setparents() (pynlpl.formats.folia.TextMarkupError

method), 857
setparents() (pynlpl.formats.folia.TextMarkupGap

method), 814
setparents() (pynlpl.formats.folia.TextMarkupString

method), 825
setparents() (pynlpl.formats.folia.TextMarkupStyle

method), 836
setparents() (pynlpl.formats.folia.TimeSegment method),

641
setparents() (pynlpl.formats.folia.TimingLayer method),

759
setparents() (pynlpl.formats.folia.Whitespace method),

407
setparents() (pynlpl.formats.folia.Word method), 422
setphon() (pynlpl.formats.folia.PhonContent method),

511
setspan() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 59
setspan() (pynlpl.formats.folia.Chunk method), 525
setspan() (pynlpl.formats.folia.CoreferenceChain

method), 536
setspan() (pynlpl.formats.folia.CoreferenceLink method),

771
setspan() (pynlpl.formats.folia.Dependency method), 548
setspan() (pynlpl.formats.folia.DependencyDependent

method), 783
setspan() (pynlpl.formats.folia.Entity method), 559
setspan() (pynlpl.formats.folia.Headspan method), 794
setspan() (pynlpl.formats.folia.Observation method), 571
setspan() (pynlpl.formats.folia.Predicate method), 583
setspan() (pynlpl.formats.folia.SemanticRole method),

629
setspan() (pynlpl.formats.folia.Sentiment method), 594
setspan() (pynlpl.formats.folia.Statement method), 606
setspan() (pynlpl.formats.folia.SyntacticUnit method),

618
setspan() (pynlpl.formats.folia.TimeSegment method),

641
settext() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 82
settext() (pynlpl.formats.folia.AbstractElement method),

32
settext() (pynlpl.formats.folia.AbstractSpanAnnotation
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method), 59
settext() (pynlpl.formats.folia.AbstractStructureElement

method), 45
settext() (pynlpl.formats.folia.AbstractTextMarkup

method), 92
settext() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 70
settext() (pynlpl.formats.folia.ActorFeature method), 891
settext() (pynlpl.formats.folia.Alignment method), 1015
settext() (pynlpl.formats.folia.AlignReference method),

1026
settext() (pynlpl.formats.folia.Alternative method), 926
settext() (pynlpl.formats.folia.AlternativeLayers method),

938
settext() (pynlpl.formats.folia.BegindatetimeFeature

method), 902
settext() (pynlpl.formats.folia.Cell method), 108
settext() (pynlpl.formats.folia.Chunk method), 525
settext() (pynlpl.formats.folia.ChunkingLayer method),

653
settext() (pynlpl.formats.folia.CoreferenceChain

method), 536
settext() (pynlpl.formats.folia.CoreferenceLayer method),

665
settext() (pynlpl.formats.folia.CoreferenceLink method),

771
settext() (pynlpl.formats.folia.Correction method), 949
settext() (pynlpl.formats.folia.Current method), 960
settext() (pynlpl.formats.folia.Definition method), 121
settext() (pynlpl.formats.folia.DependenciesLayer

method), 677
settext() (pynlpl.formats.folia.Dependency method), 548
settext() (pynlpl.formats.folia.DependencyDependent

method), 783
settext() (pynlpl.formats.folia.Description method), 1038
settext() (pynlpl.formats.folia.Division method), 134
settext() (pynlpl.formats.folia.DomainAnnotation

method), 435
settext() (pynlpl.formats.folia.EnddatetimeFeature

method), 913
settext() (pynlpl.formats.folia.EntitiesLayer method), 689
settext() (pynlpl.formats.folia.Entity method), 559
settext() (pynlpl.formats.folia.Entry method), 147
settext() (pynlpl.formats.folia.ErrorDetection method),

971
settext() (pynlpl.formats.folia.Event method), 160
settext() (pynlpl.formats.folia.Example method), 173
settext() (pynlpl.formats.folia.Feature method), 869
settext() (pynlpl.formats.folia.Figure method), 186
settext() (pynlpl.formats.folia.Gap method), 197
settext() (pynlpl.formats.folia.Head method), 210
settext() (pynlpl.formats.folia.Headspan method), 794
settext() (pynlpl.formats.folia.LangAnnotation method),

457

settext() (pynlpl.formats.folia.LemmaAnnotation
method), 468

settext() (pynlpl.formats.folia.Linebreak method), 223
settext() (pynlpl.formats.folia.List method), 236
settext() (pynlpl.formats.folia.ListItem method), 249
settext() (pynlpl.formats.folia.Metric method), 1049
settext() (pynlpl.formats.folia.New method), 982
settext() (pynlpl.formats.folia.Note method), 262
settext() (pynlpl.formats.folia.Observation method), 571
settext() (pynlpl.formats.folia.ObservationLayer method),

701
settext() (pynlpl.formats.folia.Original method), 993
settext() (pynlpl.formats.folia.Paragraph method), 275
settext() (pynlpl.formats.folia.Part method), 288
settext() (pynlpl.formats.folia.PhonContent method), 511
settext() (pynlpl.formats.folia.PosAnnotation method),

446
settext() (pynlpl.formats.folia.Predicate method), 583
settext() (pynlpl.formats.folia.Quote method), 301
settext() (pynlpl.formats.folia.Reference method), 314
settext() (pynlpl.formats.folia.Row method), 327
settext() (pynlpl.formats.folia.SemanticRole method),

629
settext() (pynlpl.formats.folia.SemanticRolesLayer

method), 748
settext() (pynlpl.formats.folia.SenseAnnotation method),

479
settext() (pynlpl.formats.folia.Sentence method), 342
settext() (pynlpl.formats.folia.Sentiment method), 594
settext() (pynlpl.formats.folia.SentimentLayer method),

712
settext() (pynlpl.formats.folia.Statement method), 606
settext() (pynlpl.formats.folia.StatementLayer method),

724
settext() (pynlpl.formats.folia.SubjectivityAnnotation

method), 490
settext() (pynlpl.formats.folia.Suggestion method), 1004
settext() (pynlpl.formats.folia.SynsetFeature method),

880
settext() (pynlpl.formats.folia.SyntacticUnit method), 618
settext() (pynlpl.formats.folia.SyntaxLayer method), 736
settext() (pynlpl.formats.folia.Table method), 355
settext() (pynlpl.formats.folia.TableHead method), 381
settext() (pynlpl.formats.folia.Term method), 368
settext() (pynlpl.formats.folia.Text method), 394
settext() (pynlpl.formats.folia.TextContent method), 501
settext() (pynlpl.formats.folia.TextMarkupCorrection

method), 847
settext() (pynlpl.formats.folia.TextMarkupError method),

857
settext() (pynlpl.formats.folia.TextMarkupGap method),

815
settext() (pynlpl.formats.folia.TextMarkupString

method), 825
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settext() (pynlpl.formats.folia.TextMarkupStyle method),
836

settext() (pynlpl.formats.folia.TimeSegment method),
641

settext() (pynlpl.formats.folia.TimingLayer method), 759
settext() (pynlpl.formats.folia.Whitespace method), 407
settext() (pynlpl.formats.folia.Word method), 422
settransitions() (pynlpl.statistics.MarkovChain method),

1063
SimpleLanguageModel (class in pynlpl.lm.lm), 1057
size() (pynlpl.datatypes.Trie method), 7
size() (pynlpl.statistics.MarkovChain method), 1064
SPEAKABLE (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
SPEAKABLE (pynlpl.formats.folia.AbstractElement at-

tribute), 26
SPEAKABLE (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
SPEAKABLE (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
SPEAKABLE (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
SPEAKABLE (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
SPEAKABLE (pynlpl.formats.folia.ActorFeature at-

tribute), 885
SPEAKABLE (pynlpl.formats.folia.Alignment attribute),

1009
SPEAKABLE (pynlpl.formats.folia.AlignReference at-

tribute), 1020
SPEAKABLE (pynlpl.formats.folia.Alternative at-

tribute), 919
SPEAKABLE (pynlpl.formats.folia.AlternativeLayers at-

tribute), 931
SPEAKABLE (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
SPEAKABLE (pynlpl.formats.folia.Cell attribute), 100
SPEAKABLE (pynlpl.formats.folia.Chunk attribute), 518
SPEAKABLE (pynlpl.formats.folia.ChunkingLayer at-

tribute), 647
SPEAKABLE (pynlpl.formats.folia.CoreferenceChain

attribute), 530
SPEAKABLE (pynlpl.formats.folia.CoreferenceLayer at-

tribute), 658
SPEAKABLE (pynlpl.formats.folia.CoreferenceLink at-

tribute), 764
SPEAKABLE (pynlpl.formats.folia.Correction attribute),

944
SPEAKABLE (pynlpl.formats.folia.Current attribute),

953
SPEAKABLE (pynlpl.formats.folia.Definition attribute),

113
SPEAKABLE (pynlpl.formats.folia.DependenciesLayer

attribute), 670

SPEAKABLE (pynlpl.formats.folia.Dependency at-
tribute), 541

SPEAKABLE (pynlpl.formats.folia.DependencyDependent
attribute), 776

SPEAKABLE (pynlpl.formats.folia.Description at-
tribute), 1032

SPEAKABLE (pynlpl.formats.folia.Division attribute),
126

SPEAKABLE (pynlpl.formats.folia.DomainAnnotation
attribute), 429

SPEAKABLE (pynlpl.formats.folia.EnddatetimeFeature
attribute), 907

SPEAKABLE (pynlpl.formats.folia.EntitiesLayer at-
tribute), 682

SPEAKABLE (pynlpl.formats.folia.Entity attribute), 553
SPEAKABLE (pynlpl.formats.folia.Entry attribute), 139
SPEAKABLE (pynlpl.formats.folia.ErrorDetection at-

tribute), 965
SPEAKABLE (pynlpl.formats.folia.Event attribute), 152
SPEAKABLE (pynlpl.formats.folia.Example attribute),

165
SPEAKABLE (pynlpl.formats.folia.Feature attribute),

862
SPEAKABLE (pynlpl.formats.folia.Figure attribute), 178
SPEAKABLE (pynlpl.formats.folia.Gap attribute), 191
SPEAKABLE (pynlpl.formats.folia.Head attribute), 202
SPEAKABLE (pynlpl.formats.folia.Headspan attribute),

788
SPEAKABLE (pynlpl.formats.folia.LangAnnotation at-

tribute), 451
SPEAKABLE (pynlpl.formats.folia.LemmaAnnotation

attribute), 462
SPEAKABLE (pynlpl.formats.folia.Linebreak attribute),

215
SPEAKABLE (pynlpl.formats.folia.List attribute), 228
SPEAKABLE (pynlpl.formats.folia.ListItem attribute),

241
SPEAKABLE (pynlpl.formats.folia.Metric attribute),

1043
SPEAKABLE (pynlpl.formats.folia.New attribute), 976
SPEAKABLE (pynlpl.formats.folia.Note attribute), 254
SPEAKABLE (pynlpl.formats.folia.Observation at-

tribute), 564
SPEAKABLE (pynlpl.formats.folia.ObservationLayer at-

tribute), 694
SPEAKABLE (pynlpl.formats.folia.Original attribute),

987
SPEAKABLE (pynlpl.formats.folia.Paragraph attribute),

267
SPEAKABLE (pynlpl.formats.folia.Part attribute), 280
SPEAKABLE (pynlpl.formats.folia.PhonContent at-

tribute), 506
SPEAKABLE (pynlpl.formats.folia.PosAnnotation at-

tribute), 440
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SPEAKABLE (pynlpl.formats.folia.Predicate attribute),
576

SPEAKABLE (pynlpl.formats.folia.Quote attribute), 293
SPEAKABLE (pynlpl.formats.folia.Reference attribute),

306
SPEAKABLE (pynlpl.formats.folia.Row attribute), 319
SPEAKABLE (pynlpl.formats.folia.SemanticRole

attribute), 623
SPEAKABLE (pynlpl.formats.folia.SemanticRolesLayer

attribute), 741
SPEAKABLE (pynlpl.formats.folia.SenseAnnotation at-

tribute), 473
SPEAKABLE (pynlpl.formats.folia.Sentence attribute),

333
SPEAKABLE (pynlpl.formats.folia.Sentiment attribute),

588
SPEAKABLE (pynlpl.formats.folia.SentimentLayer at-

tribute), 705
SPEAKABLE (pynlpl.formats.folia.Statement attribute),

599
SPEAKABLE (pynlpl.formats.folia.StatementLayer at-

tribute), 717
SPEAKABLE (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 484
SPEAKABLE (pynlpl.formats.folia.Suggestion at-

tribute), 998
SPEAKABLE (pynlpl.formats.folia.SynsetFeature

attribute), 874
SPEAKABLE (pynlpl.formats.folia.SyntacticUnit at-

tribute), 611
SPEAKABLE (pynlpl.formats.folia.SyntaxLayer at-

tribute), 729
SPEAKABLE (pynlpl.formats.folia.Table attribute), 347
SPEAKABLE (pynlpl.formats.folia.TableHead attribute),

373
SPEAKABLE (pynlpl.formats.folia.Term attribute), 360
SPEAKABLE (pynlpl.formats.folia.Text attribute), 386
SPEAKABLE (pynlpl.formats.folia.TextContent at-

tribute), 495
SPEAKABLE (pynlpl.formats.folia.TextMarkupCorrection

attribute), 840
SPEAKABLE (pynlpl.formats.folia.TextMarkupError at-

tribute), 851
SPEAKABLE (pynlpl.formats.folia.TextMarkupGap at-

tribute), 808
SPEAKABLE (pynlpl.formats.folia.TextMarkupString

attribute), 819
SPEAKABLE (pynlpl.formats.folia.TextMarkupStyle at-

tribute), 830
SPEAKABLE (pynlpl.formats.folia.TimeSegment

attribute), 634
SPEAKABLE (pynlpl.formats.folia.TimingLayer at-

tribute), 752
SPEAKABLE (pynlpl.formats.folia.Whitespace at-

tribute), 399
SPEAKABLE (pynlpl.formats.folia.Word attribute), 413
specificity() (pynlpl.evaluation.ClassEvaluation method),

10
speech_speaker() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 82
speech_speaker() (pynlpl.formats.folia.AbstractElement

method), 32
speech_speaker() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 59
speech_speaker() (pynlpl.formats.folia.AbstractStructureElement

method), 45
speech_speaker() (pynlpl.formats.folia.AbstractTextMarkup

method), 92
speech_speaker() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 70
speech_speaker() (pynlpl.formats.folia.ActorFeature

method), 891
speech_speaker() (pynlpl.formats.folia.Alignment

method), 1015
speech_speaker() (pynlpl.formats.folia.AlignReference

method), 1027
speech_speaker() (pynlpl.formats.folia.Alternative

method), 927
speech_speaker() (pynlpl.formats.folia.AlternativeLayers

method), 938
speech_speaker() (pynlpl.formats.folia.BegindatetimeFeature

method), 902
speech_speaker() (pynlpl.formats.folia.Cell method), 108
speech_speaker() (pynlpl.formats.folia.Chunk method),

525
speech_speaker() (pynlpl.formats.folia.ChunkingLayer

method), 654
speech_speaker() (pynlpl.formats.folia.CoreferenceChain

method), 536
speech_speaker() (pynlpl.formats.folia.CoreferenceLayer

method), 665
speech_speaker() (pynlpl.formats.folia.CoreferenceLink

method), 771
speech_speaker() (pynlpl.formats.folia.Correction

method), 950
speech_speaker() (pynlpl.formats.folia.Current method),

960
speech_speaker() (pynlpl.formats.folia.Definition

method), 121
speech_speaker() (pynlpl.formats.folia.DependenciesLayer

method), 677
speech_speaker() (pynlpl.formats.folia.Dependency

method), 548
speech_speaker() (pynlpl.formats.folia.DependencyDependent

method), 783
speech_speaker() (pynlpl.formats.folia.Description

method), 1038
speech_speaker() (pynlpl.formats.folia.Division method),

1166 Index



PyNLPl Documentation, Release 1.2.8

134
speech_speaker() (pynlpl.formats.folia.DomainAnnotation

method), 435
speech_speaker() (pynlpl.formats.folia.EnddatetimeFeature

method), 913
speech_speaker() (pynlpl.formats.folia.EntitiesLayer

method), 689
speech_speaker() (pynlpl.formats.folia.Entity method),

560
speech_speaker() (pynlpl.formats.folia.Entry method),

147
speech_speaker() (pynlpl.formats.folia.ErrorDetection

method), 971
speech_speaker() (pynlpl.formats.folia.Event method),

160
speech_speaker() (pynlpl.formats.folia.Example method),

173
speech_speaker() (pynlpl.formats.folia.Feature method),

869
speech_speaker() (pynlpl.formats.folia.Figure method),

186
speech_speaker() (pynlpl.formats.folia.Gap method), 197
speech_speaker() (pynlpl.formats.folia.Head method),

210
speech_speaker() (pynlpl.formats.folia.Headspan

method), 795
speech_speaker() (pynlpl.formats.folia.LangAnnotation

method), 457
speech_speaker() (pynlpl.formats.folia.LemmaAnnotation

method), 468
speech_speaker() (pynlpl.formats.folia.Linebreak

method), 223
speech_speaker() (pynlpl.formats.folia.List method), 236
speech_speaker() (pynlpl.formats.folia.ListItem method),

249
speech_speaker() (pynlpl.formats.folia.Metric method),

1049
speech_speaker() (pynlpl.formats.folia.New method), 982
speech_speaker() (pynlpl.formats.folia.Note method),

262
speech_speaker() (pynlpl.formats.folia.Observation

method), 571
speech_speaker() (pynlpl.formats.folia.ObservationLayer

method), 701
speech_speaker() (pynlpl.formats.folia.Original method),

993
speech_speaker() (pynlpl.formats.folia.Paragraph

method), 275
speech_speaker() (pynlpl.formats.folia.Part method), 288
speech_speaker() (pynlpl.formats.folia.PhonContent

method), 512
speech_speaker() (pynlpl.formats.folia.PosAnnotation

method), 446
speech_speaker() (pynlpl.formats.folia.Predicate

method), 583
speech_speaker() (pynlpl.formats.folia.Quote method),

301
speech_speaker() (pynlpl.formats.folia.Reference

method), 314
speech_speaker() (pynlpl.formats.folia.Row method), 327
speech_speaker() (pynlpl.formats.folia.SemanticRole

method), 630
speech_speaker() (pynlpl.formats.folia.SemanticRolesLayer

method), 748
speech_speaker() (pynlpl.formats.folia.SenseAnnotation

method), 479
speech_speaker() (pynlpl.formats.folia.Sentence

method), 342
speech_speaker() (pynlpl.formats.folia.Sentiment

method), 595
speech_speaker() (pynlpl.formats.folia.SentimentLayer

method), 712
speech_speaker() (pynlpl.formats.folia.Statement

method), 606
speech_speaker() (pynlpl.formats.folia.StatementLayer

method), 724
speech_speaker() (pynlpl.formats.folia.SubjectivityAnnotation

method), 490
speech_speaker() (pynlpl.formats.folia.Suggestion

method), 1004
speech_speaker() (pynlpl.formats.folia.SynsetFeature

method), 880
speech_speaker() (pynlpl.formats.folia.SyntacticUnit

method), 618
speech_speaker() (pynlpl.formats.folia.SyntaxLayer

method), 736
speech_speaker() (pynlpl.formats.folia.Table method),

355
speech_speaker() (pynlpl.formats.folia.TableHead

method), 381
speech_speaker() (pynlpl.formats.folia.Term method),

368
speech_speaker() (pynlpl.formats.folia.Text method), 394
speech_speaker() (pynlpl.formats.folia.TextContent

method), 501
speech_speaker() (pynlpl.formats.folia.TextMarkupCorrection

method), 847
speech_speaker() (pynlpl.formats.folia.TextMarkupError

method), 857
speech_speaker() (pynlpl.formats.folia.TextMarkupGap

method), 815
speech_speaker() (pynlpl.formats.folia.TextMarkupString

method), 825
speech_speaker() (pynlpl.formats.folia.TextMarkupStyle

method), 836
speech_speaker() (pynlpl.formats.folia.TimeSegment

method), 641
speech_speaker() (pynlpl.formats.folia.TimingLayer
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method), 759
speech_speaker() (pynlpl.formats.folia.Whitespace

method), 407
speech_speaker() (pynlpl.formats.folia.Word method),

422
speech_src() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 82
speech_src() (pynlpl.formats.folia.AbstractElement

method), 32
speech_src() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 59
speech_src() (pynlpl.formats.folia.AbstractStructureElement

method), 45
speech_src() (pynlpl.formats.folia.AbstractTextMarkup

method), 93
speech_src() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 70
speech_src() (pynlpl.formats.folia.ActorFeature method),

891
speech_src() (pynlpl.formats.folia.Alignment method),

1016
speech_src() (pynlpl.formats.folia.AlignReference

method), 1027
speech_src() (pynlpl.formats.folia.Alternative method),

927
speech_src() (pynlpl.formats.folia.AlternativeLayers

method), 938
speech_src() (pynlpl.formats.folia.BegindatetimeFeature

method), 902
speech_src() (pynlpl.formats.folia.Cell method), 108
speech_src() (pynlpl.formats.folia.Chunk method), 525
speech_src() (pynlpl.formats.folia.ChunkingLayer

method), 654
speech_src() (pynlpl.formats.folia.CoreferenceChain

method), 536
speech_src() (pynlpl.formats.folia.CoreferenceLayer

method), 666
speech_src() (pynlpl.formats.folia.CoreferenceLink

method), 771
speech_src() (pynlpl.formats.folia.Correction method),

950
speech_src() (pynlpl.formats.folia.Current method), 960
speech_src() (pynlpl.formats.folia.Definition method),

121
speech_src() (pynlpl.formats.folia.DependenciesLayer

method), 677
speech_src() (pynlpl.formats.folia.Dependency method),

548
speech_src() (pynlpl.formats.folia.DependencyDependent

method), 783
speech_src() (pynlpl.formats.folia.Description method),

1038
speech_src() (pynlpl.formats.folia.Division method), 134
speech_src() (pynlpl.formats.folia.DomainAnnotation

method), 435
speech_src() (pynlpl.formats.folia.EnddatetimeFeature

method), 913
speech_src() (pynlpl.formats.folia.EntitiesLayer method),

689
speech_src() (pynlpl.formats.folia.Entity method), 560
speech_src() (pynlpl.formats.folia.Entry method), 147
speech_src() (pynlpl.formats.folia.ErrorDetection

method), 971
speech_src() (pynlpl.formats.folia.Event method), 160
speech_src() (pynlpl.formats.folia.Example method), 173
speech_src() (pynlpl.formats.folia.Feature method), 869
speech_src() (pynlpl.formats.folia.Figure method), 186
speech_src() (pynlpl.formats.folia.Gap method), 198
speech_src() (pynlpl.formats.folia.Head method), 210
speech_src() (pynlpl.formats.folia.Headspan method),

795
speech_src() (pynlpl.formats.folia.LangAnnotation

method), 457
speech_src() (pynlpl.formats.folia.LemmaAnnotation

method), 468
speech_src() (pynlpl.formats.folia.Linebreak method),

223
speech_src() (pynlpl.formats.folia.List method), 236
speech_src() (pynlpl.formats.folia.ListItem method), 249
speech_src() (pynlpl.formats.folia.Metric method), 1049
speech_src() (pynlpl.formats.folia.New method), 982
speech_src() (pynlpl.formats.folia.Note method), 262
speech_src() (pynlpl.formats.folia.Observation method),

571
speech_src() (pynlpl.formats.folia.ObservationLayer

method), 701
speech_src() (pynlpl.formats.folia.Original method), 993
speech_src() (pynlpl.formats.folia.Paragraph method),

275
speech_src() (pynlpl.formats.folia.Part method), 288
speech_src() (pynlpl.formats.folia.PhonContent method),

512
speech_src() (pynlpl.formats.folia.PosAnnotation

method), 446
speech_src() (pynlpl.formats.folia.Predicate method), 583
speech_src() (pynlpl.formats.folia.Quote method), 301
speech_src() (pynlpl.formats.folia.Reference method),

314
speech_src() (pynlpl.formats.folia.Row method), 327
speech_src() (pynlpl.formats.folia.SemanticRole

method), 630
speech_src() (pynlpl.formats.folia.SemanticRolesLayer

method), 748
speech_src() (pynlpl.formats.folia.SenseAnnotation

method), 479
speech_src() (pynlpl.formats.folia.Sentence method), 342
speech_src() (pynlpl.formats.folia.Sentiment method),

595
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speech_src() (pynlpl.formats.folia.SentimentLayer
method), 713

speech_src() (pynlpl.formats.folia.Statement method),
606

speech_src() (pynlpl.formats.folia.StatementLayer
method), 724

speech_src() (pynlpl.formats.folia.SubjectivityAnnotation
method), 490

speech_src() (pynlpl.formats.folia.Suggestion method),
1004

speech_src() (pynlpl.formats.folia.SynsetFeature
method), 880

speech_src() (pynlpl.formats.folia.SyntacticUnit
method), 618

speech_src() (pynlpl.formats.folia.SyntaxLayer method),
736

speech_src() (pynlpl.formats.folia.Table method), 355
speech_src() (pynlpl.formats.folia.TableHead method),

381
speech_src() (pynlpl.formats.folia.Term method), 368
speech_src() (pynlpl.formats.folia.Text method), 394
speech_src() (pynlpl.formats.folia.TextContent method),

502
speech_src() (pynlpl.formats.folia.TextMarkupCorrection

method), 847
speech_src() (pynlpl.formats.folia.TextMarkupError

method), 857
speech_src() (pynlpl.formats.folia.TextMarkupGap

method), 815
speech_src() (pynlpl.formats.folia.TextMarkupString

method), 825
speech_src() (pynlpl.formats.folia.TextMarkupStyle

method), 836
speech_src() (pynlpl.formats.folia.TimeSegment

method), 641
speech_src() (pynlpl.formats.folia.TimingLayer method),

760
speech_src() (pynlpl.formats.folia.Whitespace method),

407
speech_src() (pynlpl.formats.folia.Word method), 422
split() (pynlpl.formats.folia.Word method), 422
split_sentences() (in module pynlpl.textprocessors), 1066
splitword() (pynlpl.formats.folia.Sentence method), 342
SRILM (class in pynlpl.lm.srilm), 1057
SRILMException, 1058
start() (pynlpl.evaluation.AbstractExperiment method), 9
start() (pynlpl.evaluation.ExperimentPool method), 10
startcommand() (pynlpl.evaluation.AbstractExperiment

method), 9
Statement (class in pynlpl.formats.folia), 597
StatementLayer (class in pynlpl.formats.folia), 714
stddev() (in module pynlpl.statistics), 1064
StochasticBeamSearch (class in pynlpl.search), 1060
stochasticprune() (pynlpl.datatypes.PriorityQueue

method), 6
stricttext() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 82
stricttext() (pynlpl.formats.folia.AbstractElement

method), 32
stricttext() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 59
stricttext() (pynlpl.formats.folia.AbstractStructureElement

method), 46
stricttext() (pynlpl.formats.folia.AbstractTextMarkup

method), 93
stricttext() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 70
stricttext() (pynlpl.formats.folia.ActorFeature method),

892
stricttext() (pynlpl.formats.folia.Alignment method),

1016
stricttext() (pynlpl.formats.folia.AlignReference method),

1027
stricttext() (pynlpl.formats.folia.Alternative method), 927
stricttext() (pynlpl.formats.folia.AlternativeLayers

method), 938
stricttext() (pynlpl.formats.folia.BegindatetimeFeature

method), 903
stricttext() (pynlpl.formats.folia.Cell method), 109
stricttext() (pynlpl.formats.folia.Chunk method), 525
stricttext() (pynlpl.formats.folia.ChunkingLayer method),

654
stricttext() (pynlpl.formats.folia.CoreferenceChain

method), 537
stricttext() (pynlpl.formats.folia.CoreferenceLayer

method), 666
stricttext() (pynlpl.formats.folia.CoreferenceLink

method), 771
stricttext() (pynlpl.formats.folia.Correction method), 950
stricttext() (pynlpl.formats.folia.Current method), 960
stricttext() (pynlpl.formats.folia.Definition method), 122
stricttext() (pynlpl.formats.folia.DependenciesLayer

method), 677
stricttext() (pynlpl.formats.folia.Dependency method),

548
stricttext() (pynlpl.formats.folia.DependencyDependent

method), 783
stricttext() (pynlpl.formats.folia.Description method),

1038
stricttext() (pynlpl.formats.folia.Division method), 135
stricttext() (pynlpl.formats.folia.DomainAnnotation

method), 435
stricttext() (pynlpl.formats.folia.EnddatetimeFeature

method), 914
stricttext() (pynlpl.formats.folia.EntitiesLayer method),

689
stricttext() (pynlpl.formats.folia.Entity method), 560
stricttext() (pynlpl.formats.folia.Entry method), 148
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stricttext() (pynlpl.formats.folia.ErrorDetection method),
971

stricttext() (pynlpl.formats.folia.Event method), 161
stricttext() (pynlpl.formats.folia.Example method), 174
stricttext() (pynlpl.formats.folia.Feature method), 869
stricttext() (pynlpl.formats.folia.Figure method), 187
stricttext() (pynlpl.formats.folia.Gap method), 198
stricttext() (pynlpl.formats.folia.Head method), 211
stricttext() (pynlpl.formats.folia.Headspan method), 795
stricttext() (pynlpl.formats.folia.LangAnnotation

method), 457
stricttext() (pynlpl.formats.folia.LemmaAnnotation

method), 468
stricttext() (pynlpl.formats.folia.Linebreak method), 223
stricttext() (pynlpl.formats.folia.List method), 237
stricttext() (pynlpl.formats.folia.ListItem method), 250
stricttext() (pynlpl.formats.folia.Metric method), 1049
stricttext() (pynlpl.formats.folia.New method), 982
stricttext() (pynlpl.formats.folia.Note method), 263
stricttext() (pynlpl.formats.folia.Observation method),

572
stricttext() (pynlpl.formats.folia.ObservationLayer

method), 701
stricttext() (pynlpl.formats.folia.Original method), 993
stricttext() (pynlpl.formats.folia.Paragraph method), 276
stricttext() (pynlpl.formats.folia.Part method), 289
stricttext() (pynlpl.formats.folia.PhonContent method),

512
stricttext() (pynlpl.formats.folia.PosAnnotation method),

446
stricttext() (pynlpl.formats.folia.Predicate method), 583
stricttext() (pynlpl.formats.folia.Quote method), 302
stricttext() (pynlpl.formats.folia.Reference method), 315
stricttext() (pynlpl.formats.folia.Row method), 328
stricttext() (pynlpl.formats.folia.SemanticRole method),

630
stricttext() (pynlpl.formats.folia.SemanticRolesLayer

method), 748
stricttext() (pynlpl.formats.folia.SenseAnnotation

method), 479
stricttext() (pynlpl.formats.folia.Sentence method), 342
stricttext() (pynlpl.formats.folia.Sentiment method), 595
stricttext() (pynlpl.formats.folia.SentimentLayer

method), 713
stricttext() (pynlpl.formats.folia.Statement method), 607
stricttext() (pynlpl.formats.folia.StatementLayer method),

724
stricttext() (pynlpl.formats.folia.SubjectivityAnnotation

method), 490
stricttext() (pynlpl.formats.folia.Suggestion method),

1004
stricttext() (pynlpl.formats.folia.SynsetFeature method),

880
stricttext() (pynlpl.formats.folia.SyntacticUnit method),

618
stricttext() (pynlpl.formats.folia.SyntaxLayer method),

736
stricttext() (pynlpl.formats.folia.Table method), 355
stricttext() (pynlpl.formats.folia.TableHead method), 381
stricttext() (pynlpl.formats.folia.Term method), 368
stricttext() (pynlpl.formats.folia.Text method), 394
stricttext() (pynlpl.formats.folia.TextContent method),

502
stricttext() (pynlpl.formats.folia.TextMarkupCorrection

method), 847
stricttext() (pynlpl.formats.folia.TextMarkupError

method), 858
stricttext() (pynlpl.formats.folia.TextMarkupGap

method), 815
stricttext() (pynlpl.formats.folia.TextMarkupString

method), 826
stricttext() (pynlpl.formats.folia.TextMarkupStyle

method), 836
stricttext() (pynlpl.formats.folia.TimeSegment method),

642
stricttext() (pynlpl.formats.folia.TimingLayer method),

760
stricttext() (pynlpl.formats.folia.Whitespace method),

407
stricttext() (pynlpl.formats.folia.Word method), 422
strip_accents() (in module pynlpl.textprocessors), 1067
SubjectivityAnnotation (class in pynlpl.formats.folia),

481
SUBSET (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
SUBSET (pynlpl.formats.folia.AbstractElement at-

tribute), 26
SUBSET (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
SUBSET (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
SUBSET (pynlpl.formats.folia.AbstractTextMarkup at-

tribute), 86
SUBSET (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
SUBSET (pynlpl.formats.folia.ActorFeature attribute),

885
SUBSET (pynlpl.formats.folia.Alignment attribute),

1009
SUBSET (pynlpl.formats.folia.AlignReference attribute),

1020
SUBSET (pynlpl.formats.folia.Alternative attribute), 919
SUBSET (pynlpl.formats.folia.AlternativeLayers at-

tribute), 931
SUBSET (pynlpl.formats.folia.BegindatetimeFeature at-

tribute), 896
SUBSET (pynlpl.formats.folia.Cell attribute), 101
SUBSET (pynlpl.formats.folia.Chunk attribute), 518
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SUBSET (pynlpl.formats.folia.ChunkingLayer attribute),
647

SUBSET (pynlpl.formats.folia.CoreferenceChain at-
tribute), 530

SUBSET (pynlpl.formats.folia.CoreferenceLayer at-
tribute), 658

SUBSET (pynlpl.formats.folia.CoreferenceLink at-
tribute), 764

SUBSET (pynlpl.formats.folia.Correction attribute), 944
SUBSET (pynlpl.formats.folia.Current attribute), 954
SUBSET (pynlpl.formats.folia.Definition attribute), 113
SUBSET (pynlpl.formats.folia.DependenciesLayer at-

tribute), 670
SUBSET (pynlpl.formats.folia.Dependency attribute),

541
SUBSET (pynlpl.formats.folia.DependencyDependent

attribute), 776
SUBSET (pynlpl.formats.folia.Description attribute),

1032
SUBSET (pynlpl.formats.folia.Division attribute), 126
SUBSET (pynlpl.formats.folia.DomainAnnotation

attribute), 429
SUBSET (pynlpl.formats.folia.EnddatetimeFeature at-

tribute), 907
SUBSET (pynlpl.formats.folia.EntitiesLayer attribute),

682
SUBSET (pynlpl.formats.folia.Entity attribute), 553
SUBSET (pynlpl.formats.folia.Entry attribute), 139
SUBSET (pynlpl.formats.folia.ErrorDetection attribute),

965
SUBSET (pynlpl.formats.folia.Event attribute), 152
SUBSET (pynlpl.formats.folia.Example attribute), 165
SUBSET (pynlpl.formats.folia.Feature attribute), 862
SUBSET (pynlpl.formats.folia.Figure attribute), 178
SUBSET (pynlpl.formats.folia.Gap attribute), 191
SUBSET (pynlpl.formats.folia.Head attribute), 202
SUBSET (pynlpl.formats.folia.Headspan attribute), 788
SUBSET (pynlpl.formats.folia.LangAnnotation at-

tribute), 451
SUBSET (pynlpl.formats.folia.LemmaAnnotation at-

tribute), 462
SUBSET (pynlpl.formats.folia.Linebreak attribute), 215
SUBSET (pynlpl.formats.folia.List attribute), 228
SUBSET (pynlpl.formats.folia.ListItem attribute), 241
SUBSET (pynlpl.formats.folia.Metric attribute), 1043
SUBSET (pynlpl.formats.folia.New attribute), 976
SUBSET (pynlpl.formats.folia.Note attribute), 254
SUBSET (pynlpl.formats.folia.Observation attribute),

565
SUBSET (pynlpl.formats.folia.ObservationLayer at-

tribute), 694
SUBSET (pynlpl.formats.folia.Original attribute), 987
SUBSET (pynlpl.formats.folia.Paragraph attribute), 267
SUBSET (pynlpl.formats.folia.Part attribute), 280

SUBSET (pynlpl.formats.folia.PhonContent attribute),
506

SUBSET (pynlpl.formats.folia.PosAnnotation attribute),
440

SUBSET (pynlpl.formats.folia.Predicate attribute), 576
SUBSET (pynlpl.formats.folia.Quote attribute), 293
SUBSET (pynlpl.formats.folia.Reference attribute), 306
SUBSET (pynlpl.formats.folia.Row attribute), 319
SUBSET (pynlpl.formats.folia.SemanticRole attribute),

623
SUBSET (pynlpl.formats.folia.SemanticRolesLayer at-

tribute), 741
SUBSET (pynlpl.formats.folia.SenseAnnotation at-

tribute), 473
SUBSET (pynlpl.formats.folia.Sentence attribute), 333
SUBSET (pynlpl.formats.folia.Sentiment attribute), 588
SUBSET (pynlpl.formats.folia.SentimentLayer attribute),

705
SUBSET (pynlpl.formats.folia.Statement attribute), 599
SUBSET (pynlpl.formats.folia.StatementLayer attribute),

717
SUBSET (pynlpl.formats.folia.SubjectivityAnnotation at-

tribute), 484
SUBSET (pynlpl.formats.folia.Suggestion attribute), 998
SUBSET (pynlpl.formats.folia.SynsetFeature attribute),

874
SUBSET (pynlpl.formats.folia.SyntacticUnit attribute),

611
SUBSET (pynlpl.formats.folia.SyntaxLayer attribute),

729
SUBSET (pynlpl.formats.folia.Table attribute), 347
SUBSET (pynlpl.formats.folia.TableHead attribute), 373
SUBSET (pynlpl.formats.folia.Term attribute), 360
SUBSET (pynlpl.formats.folia.Text attribute), 386
SUBSET (pynlpl.formats.folia.TextContent attribute),

495
SUBSET (pynlpl.formats.folia.TextMarkupCorrection at-

tribute), 840
SUBSET (pynlpl.formats.folia.TextMarkupError at-

tribute), 851
SUBSET (pynlpl.formats.folia.TextMarkupGap at-

tribute), 808
SUBSET (pynlpl.formats.folia.TextMarkupString at-

tribute), 819
SUBSET (pynlpl.formats.folia.TextMarkupStyle at-

tribute), 830
SUBSET (pynlpl.formats.folia.TimeSegment attribute),

634
SUBSET (pynlpl.formats.folia.TimingLayer attribute),

752
SUBSET (pynlpl.formats.folia.Whitespace attribute), 399
SUBSET (pynlpl.formats.folia.Word attribute), 413
Suggestion (class in pynlpl.formats.folia), 995
suggestions() (pynlpl.formats.folia.Correction method),
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950
sum() (pynlpl.statistics.FrequencyList method), 1063
swap() (in module pynlpl.textprocessors), 1067
SynsetFeature (class in pynlpl.formats.folia), 871
SyntacticUnit (class in pynlpl.formats.folia), 608
SyntaxLayer (class in pynlpl.formats.folia), 726

T
Table (class in pynlpl.formats.folia), 344
TableHead (class in pynlpl.formats.folia), 370
Taggerdata (class in pynlpl.formats.taggerdata), 1055
targetword() (pynlpl.formats.giza.MultiWordAlignment

method), 1054
targetword() (pynlpl.formats.giza.WordAlignment

method), 1054
targetwords() (pynlpl.formats.giza.MultiWordAlignment

method), 1054
Term (class in pynlpl.formats.folia), 357
test() (pynlpl.evaluation.WPSParamSearch method), 10
test() (pynlpl.search.AbstractSearchState method), 1060
Text (class in pynlpl.formats.folia), 383
text() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 82
text() (pynlpl.formats.folia.AbstractElement method), 32
text() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 59
text() (pynlpl.formats.folia.AbstractStructureElement

method), 46
text() (pynlpl.formats.folia.AbstractTextMarkup method),

93
text() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 70
text() (pynlpl.formats.folia.ActorFeature method), 892
text() (pynlpl.formats.folia.Alignment method), 1016
text() (pynlpl.formats.folia.AlignReference method),

1027
text() (pynlpl.formats.folia.Alternative method), 927
text() (pynlpl.formats.folia.AlternativeLayers method),

938
text() (pynlpl.formats.folia.BegindatetimeFeature

method), 903
text() (pynlpl.formats.folia.Cell method), 109
text() (pynlpl.formats.folia.Chunk method), 525
text() (pynlpl.formats.folia.ChunkingLayer method), 654
text() (pynlpl.formats.folia.CoreferenceChain method),

537
text() (pynlpl.formats.folia.CoreferenceLayer method),

666
text() (pynlpl.formats.folia.CoreferenceLink method),

772
text() (pynlpl.formats.folia.Correction method), 950
text() (pynlpl.formats.folia.Current method), 960
text() (pynlpl.formats.folia.Definition method), 122

text() (pynlpl.formats.folia.DependenciesLayer method),
677

text() (pynlpl.formats.folia.Dependency method), 548
text() (pynlpl.formats.folia.DependencyDependent

method), 783
text() (pynlpl.formats.folia.Description method), 1038
text() (pynlpl.formats.folia.Division method), 135
text() (pynlpl.formats.folia.Document method), 20
text() (pynlpl.formats.folia.DomainAnnotation method),

435
text() (pynlpl.formats.folia.EnddatetimeFeature method),

914
text() (pynlpl.formats.folia.EntitiesLayer method), 689
text() (pynlpl.formats.folia.Entity method), 560
text() (pynlpl.formats.folia.Entry method), 148
text() (pynlpl.formats.folia.ErrorDetection method), 971
text() (pynlpl.formats.folia.Event method), 161
text() (pynlpl.formats.folia.Example method), 174
text() (pynlpl.formats.folia.Feature method), 869
text() (pynlpl.formats.folia.Figure method), 187
text() (pynlpl.formats.folia.Gap method), 198
text() (pynlpl.formats.folia.Head method), 211
text() (pynlpl.formats.folia.Headspan method), 795
text() (pynlpl.formats.folia.LangAnnotation method), 457
text() (pynlpl.formats.folia.LemmaAnnotation method),

468
text() (pynlpl.formats.folia.Linebreak method), 223
text() (pynlpl.formats.folia.List method), 237
text() (pynlpl.formats.folia.ListItem method), 250
text() (pynlpl.formats.folia.Metric method), 1049
text() (pynlpl.formats.folia.New method), 982
text() (pynlpl.formats.folia.Note method), 263
text() (pynlpl.formats.folia.Observation method), 572
text() (pynlpl.formats.folia.ObservationLayer method),

701
text() (pynlpl.formats.folia.Original method), 993
text() (pynlpl.formats.folia.Paragraph method), 276
text() (pynlpl.formats.folia.Part method), 289
text() (pynlpl.formats.folia.PhonContent method), 512
text() (pynlpl.formats.folia.PosAnnotation method), 446
text() (pynlpl.formats.folia.Predicate method), 583
text() (pynlpl.formats.folia.Quote method), 302
text() (pynlpl.formats.folia.Reference method), 315
text() (pynlpl.formats.folia.Row method), 328
text() (pynlpl.formats.folia.SemanticRole method), 630
text() (pynlpl.formats.folia.SemanticRolesLayer method),

748
text() (pynlpl.formats.folia.SenseAnnotation method),

479
text() (pynlpl.formats.folia.Sentence method), 342
text() (pynlpl.formats.folia.Sentiment method), 595
text() (pynlpl.formats.folia.SentimentLayer method), 713
text() (pynlpl.formats.folia.Statement method), 607
text() (pynlpl.formats.folia.StatementLayer method), 724
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text() (pynlpl.formats.folia.SubjectivityAnnotation
method), 490

text() (pynlpl.formats.folia.Suggestion method), 1004
text() (pynlpl.formats.folia.SynsetFeature method), 880
text() (pynlpl.formats.folia.SyntacticUnit method), 618
text() (pynlpl.formats.folia.SyntaxLayer method), 736
text() (pynlpl.formats.folia.Table method), 355
text() (pynlpl.formats.folia.TableHead method), 381
text() (pynlpl.formats.folia.Term method), 368
text() (pynlpl.formats.folia.Text method), 394
text() (pynlpl.formats.folia.TextContent method), 502
text() (pynlpl.formats.folia.TextMarkupCorrection

method), 847
text() (pynlpl.formats.folia.TextMarkupError method),

858
text() (pynlpl.formats.folia.TextMarkupGap method), 815
text() (pynlpl.formats.folia.TextMarkupString method),

826
text() (pynlpl.formats.folia.TextMarkupStyle method),

836
text() (pynlpl.formats.folia.TimeSegment method), 642
text() (pynlpl.formats.folia.TimingLayer method), 760
text() (pynlpl.formats.folia.Whitespace method), 407
text() (pynlpl.formats.folia.Word method), 422
TEXTCONTAINER (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
TEXTCONTAINER (pynlpl.formats.folia.AbstractElement

attribute), 26
TEXTCONTAINER (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
TEXTCONTAINER (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
TEXTCONTAINER (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
TEXTCONTAINER (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
TEXTCONTAINER (pynlpl.formats.folia.ActorFeature

attribute), 885
TEXTCONTAINER (pynlpl.formats.folia.Alignment at-

tribute), 1009
TEXTCONTAINER (pynlpl.formats.folia.AlignReference

attribute), 1020
TEXTCONTAINER (pynlpl.formats.folia.Alternative at-

tribute), 919
TEXTCONTAINER (pynlpl.formats.folia.AlternativeLayers

attribute), 931
TEXTCONTAINER (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
TEXTCONTAINER (pynlpl.formats.folia.Cell attribute),

101
TEXTCONTAINER (pynlpl.formats.folia.Chunk at-

tribute), 518
TEXTCONTAINER (pynlpl.formats.folia.ChunkingLayer

attribute), 647

TEXTCONTAINER (pynlpl.formats.folia.CoreferenceChain
attribute), 530

TEXTCONTAINER (pynlpl.formats.folia.CoreferenceLayer
attribute), 658

TEXTCONTAINER (pynlpl.formats.folia.CoreferenceLink
attribute), 764

TEXTCONTAINER (pynlpl.formats.folia.Correction at-
tribute), 944

TEXTCONTAINER (pynlpl.formats.folia.Current at-
tribute), 954

TEXTCONTAINER (pynlpl.formats.folia.Definition at-
tribute), 113

TEXTCONTAINER (pynlpl.formats.folia.DependenciesLayer
attribute), 670

TEXTCONTAINER (pynlpl.formats.folia.Dependency
attribute), 541

TEXTCONTAINER (pynlpl.formats.folia.DependencyDependent
attribute), 776

TEXTCONTAINER (pynlpl.formats.folia.Description at-
tribute), 1032

TEXTCONTAINER (pynlpl.formats.folia.Division at-
tribute), 126

TEXTCONTAINER (pynlpl.formats.folia.DomainAnnotation
attribute), 429

TEXTCONTAINER (pynlpl.formats.folia.EnddatetimeFeature
attribute), 907

TEXTCONTAINER (pynlpl.formats.folia.EntitiesLayer
attribute), 682

TEXTCONTAINER (pynlpl.formats.folia.Entity at-
tribute), 553

TEXTCONTAINER (pynlpl.formats.folia.Entry at-
tribute), 139

TEXTCONTAINER (pynlpl.formats.folia.ErrorDetection
attribute), 965

TEXTCONTAINER (pynlpl.formats.folia.Event at-
tribute), 152

TEXTCONTAINER (pynlpl.formats.folia.Example at-
tribute), 165

TEXTCONTAINER (pynlpl.formats.folia.Feature at-
tribute), 862

TEXTCONTAINER (pynlpl.formats.folia.Figure at-
tribute), 178

TEXTCONTAINER (pynlpl.formats.folia.Gap attribute),
191

TEXTCONTAINER (pynlpl.formats.folia.Head at-
tribute), 203

TEXTCONTAINER (pynlpl.formats.folia.Headspan at-
tribute), 788

TEXTCONTAINER (pynlpl.formats.folia.LangAnnotation
attribute), 451

TEXTCONTAINER (pynlpl.formats.folia.LemmaAnnotation
attribute), 462

TEXTCONTAINER (pynlpl.formats.folia.Linebreak at-
tribute), 215
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TEXTCONTAINER (pynlpl.formats.folia.List attribute),
228

TEXTCONTAINER (pynlpl.formats.folia.ListItem at-
tribute), 241

TEXTCONTAINER (pynlpl.formats.folia.Metric at-
tribute), 1043

TEXTCONTAINER (pynlpl.formats.folia.New attribute),
976

TEXTCONTAINER (pynlpl.formats.folia.Note attribute),
254

TEXTCONTAINER (pynlpl.formats.folia.Observation
attribute), 565

TEXTCONTAINER (pynlpl.formats.folia.ObservationLayer
attribute), 694

TEXTCONTAINER (pynlpl.formats.folia.Original
attribute), 987

TEXTCONTAINER (pynlpl.formats.folia.Paragraph at-
tribute), 267

TEXTCONTAINER (pynlpl.formats.folia.Part attribute),
280

TEXTCONTAINER (pynlpl.formats.folia.PhonContent
attribute), 506

TEXTCONTAINER (pynlpl.formats.folia.PosAnnotation
attribute), 440

TEXTCONTAINER (pynlpl.formats.folia.Predicate at-
tribute), 576

TEXTCONTAINER (pynlpl.formats.folia.Quote at-
tribute), 293

TEXTCONTAINER (pynlpl.formats.folia.Reference at-
tribute), 306

TEXTCONTAINER (pynlpl.formats.folia.Row attribute),
319

TEXTCONTAINER (pynlpl.formats.folia.SemanticRole
attribute), 623

TEXTCONTAINER (pynlpl.formats.folia.SemanticRolesLayer
attribute), 741

TEXTCONTAINER (pynlpl.formats.folia.SenseAnnotation
attribute), 473

TEXTCONTAINER (pynlpl.formats.folia.Sentence at-
tribute), 333

TEXTCONTAINER (pynlpl.formats.folia.Sentiment at-
tribute), 588

TEXTCONTAINER (pynlpl.formats.folia.SentimentLayer
attribute), 705

TEXTCONTAINER (pynlpl.formats.folia.Statement at-
tribute), 599

TEXTCONTAINER (pynlpl.formats.folia.StatementLayer
attribute), 717

TEXTCONTAINER (pynlpl.formats.folia.SubjectivityAnnotation
attribute), 484

TEXTCONTAINER (pynlpl.formats.folia.Suggestion at-
tribute), 998

TEXTCONTAINER (pynlpl.formats.folia.SynsetFeature
attribute), 874

TEXTCONTAINER (pynlpl.formats.folia.SyntacticUnit
attribute), 611

TEXTCONTAINER (pynlpl.formats.folia.SyntaxLayer
attribute), 729

TEXTCONTAINER (pynlpl.formats.folia.Table at-
tribute), 347

TEXTCONTAINER (pynlpl.formats.folia.TableHead at-
tribute), 373

TEXTCONTAINER (pynlpl.formats.folia.Term at-
tribute), 360

TEXTCONTAINER (pynlpl.formats.folia.Text attribute),
386

TEXTCONTAINER (pynlpl.formats.folia.TextContent
attribute), 495

TEXTCONTAINER (pynlpl.formats.folia.TextMarkupCorrection
attribute), 840

TEXTCONTAINER (pynlpl.formats.folia.TextMarkupError
attribute), 851

TEXTCONTAINER (pynlpl.formats.folia.TextMarkupGap
attribute), 808

TEXTCONTAINER (pynlpl.formats.folia.TextMarkupString
attribute), 819

TEXTCONTAINER (pynlpl.formats.folia.TextMarkupStyle
attribute), 830

TEXTCONTAINER (pynlpl.formats.folia.TimeSegment
attribute), 634

TEXTCONTAINER (pynlpl.formats.folia.TimingLayer
attribute), 752

TEXTCONTAINER (pynlpl.formats.folia.Whitespace at-
tribute), 399

TEXTCONTAINER (pynlpl.formats.folia.Word at-
tribute), 413

TextContent (class in pynlpl.formats.folia), 492
textcontent() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 83
textcontent() (pynlpl.formats.folia.AbstractElement

method), 33
textcontent() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 60
textcontent() (pynlpl.formats.folia.AbstractStructureElement

method), 46
textcontent() (pynlpl.formats.folia.AbstractTextMarkup

method), 93
textcontent() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 71
textcontent() (pynlpl.formats.folia.ActorFeature method),

892
textcontent() (pynlpl.formats.folia.Alignment method),

1016
textcontent() (pynlpl.formats.folia.AlignReference

method), 1027
textcontent() (pynlpl.formats.folia.Alternative method),

927
textcontent() (pynlpl.formats.folia.AlternativeLayers
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method), 939
textcontent() (pynlpl.formats.folia.BegindatetimeFeature

method), 903
textcontent() (pynlpl.formats.folia.Cell method), 109
textcontent() (pynlpl.formats.folia.Chunk method), 526
textcontent() (pynlpl.formats.folia.ChunkingLayer

method), 654
textcontent() (pynlpl.formats.folia.CoreferenceChain

method), 537
textcontent() (pynlpl.formats.folia.CoreferenceLayer

method), 666
textcontent() (pynlpl.formats.folia.CoreferenceLink

method), 772
textcontent() (pynlpl.formats.folia.Correction method),

950
textcontent() (pynlpl.formats.folia.Current method), 961
textcontent() (pynlpl.formats.folia.Definition method),

122
textcontent() (pynlpl.formats.folia.DependenciesLayer

method), 678
textcontent() (pynlpl.formats.folia.Dependency method),

549
textcontent() (pynlpl.formats.folia.DependencyDependent

method), 784
textcontent() (pynlpl.formats.folia.Description method),

1039
textcontent() (pynlpl.formats.folia.Division method), 135
textcontent() (pynlpl.formats.folia.DomainAnnotation

method), 436
textcontent() (pynlpl.formats.folia.EnddatetimeFeature

method), 914
textcontent() (pynlpl.formats.folia.EntitiesLayer method),

690
textcontent() (pynlpl.formats.folia.Entity method), 561
textcontent() (pynlpl.formats.folia.Entry method), 148
textcontent() (pynlpl.formats.folia.ErrorDetection

method), 972
textcontent() (pynlpl.formats.folia.Event method), 161
textcontent() (pynlpl.formats.folia.Example method), 174
textcontent() (pynlpl.formats.folia.Feature method), 870
textcontent() (pynlpl.formats.folia.Figure method), 187
textcontent() (pynlpl.formats.folia.Gap method), 198
textcontent() (pynlpl.formats.folia.Head method), 211
textcontent() (pynlpl.formats.folia.Headspan method),

796
textcontent() (pynlpl.formats.folia.LangAnnotation

method), 458
textcontent() (pynlpl.formats.folia.LemmaAnnotation

method), 469
textcontent() (pynlpl.formats.folia.Linebreak method),

224
textcontent() (pynlpl.formats.folia.List method), 237
textcontent() (pynlpl.formats.folia.ListItem method), 250
textcontent() (pynlpl.formats.folia.Metric method), 1050

textcontent() (pynlpl.formats.folia.New method), 983
textcontent() (pynlpl.formats.folia.Note method), 263
textcontent() (pynlpl.formats.folia.Observation method),

572
textcontent() (pynlpl.formats.folia.ObservationLayer

method), 702
textcontent() (pynlpl.formats.folia.Original method), 994
textcontent() (pynlpl.formats.folia.Paragraph method),

276
textcontent() (pynlpl.formats.folia.Part method), 289
textcontent() (pynlpl.formats.folia.PhonContent method),

512
textcontent() (pynlpl.formats.folia.PosAnnotation

method), 447
textcontent() (pynlpl.formats.folia.Predicate method),

584
textcontent() (pynlpl.formats.folia.Quote method), 302
textcontent() (pynlpl.formats.folia.Reference method),

315
textcontent() (pynlpl.formats.folia.Row method), 328
textcontent() (pynlpl.formats.folia.SemanticRole

method), 631
textcontent() (pynlpl.formats.folia.SemanticRolesLayer

method), 749
textcontent() (pynlpl.formats.folia.SenseAnnotation

method), 480
textcontent() (pynlpl.formats.folia.Sentence method), 343
textcontent() (pynlpl.formats.folia.Sentiment method),

596
textcontent() (pynlpl.formats.folia.SentimentLayer

method), 713
textcontent() (pynlpl.formats.folia.Statement method),

607
textcontent() (pynlpl.formats.folia.StatementLayer

method), 725
textcontent() (pynlpl.formats.folia.SubjectivityAnnotation

method), 491
textcontent() (pynlpl.formats.folia.Suggestion method),

1005
textcontent() (pynlpl.formats.folia.SynsetFeature

method), 881
textcontent() (pynlpl.formats.folia.SyntacticUnit

method), 619
textcontent() (pynlpl.formats.folia.SyntaxLayer method),

737
textcontent() (pynlpl.formats.folia.Table method), 356
textcontent() (pynlpl.formats.folia.TableHead method),

382
textcontent() (pynlpl.formats.folia.Term method), 369
textcontent() (pynlpl.formats.folia.Text method), 395
textcontent() (pynlpl.formats.folia.TextContent method),

502
textcontent() (pynlpl.formats.folia.TextMarkupCorrection

method), 848
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textcontent() (pynlpl.formats.folia.TextMarkupError
method), 858

textcontent() (pynlpl.formats.folia.TextMarkupGap
method), 816

textcontent() (pynlpl.formats.folia.TextMarkupString
method), 826

textcontent() (pynlpl.formats.folia.TextMarkupStyle
method), 837

textcontent() (pynlpl.formats.folia.TimeSegment
method), 642

textcontent() (pynlpl.formats.folia.TimingLayer method),
760

textcontent() (pynlpl.formats.folia.Whitespace method),
408

textcontent() (pynlpl.formats.folia.Word method), 423
TEXTDELIMITER (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
TEXTDELIMITER (pynlpl.formats.folia.AbstractElement

attribute), 26
TEXTDELIMITER (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
TEXTDELIMITER (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
TEXTDELIMITER (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
TEXTDELIMITER (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
TEXTDELIMITER (pynlpl.formats.folia.ActorFeature

attribute), 885
TEXTDELIMITER (pynlpl.formats.folia.Alignment at-

tribute), 1009
TEXTDELIMITER (pynlpl.formats.folia.AlignReference

attribute), 1020
TEXTDELIMITER (pynlpl.formats.folia.Alternative at-

tribute), 919
TEXTDELIMITER (pynlpl.formats.folia.AlternativeLayers

attribute), 931
TEXTDELIMITER (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
TEXTDELIMITER (pynlpl.formats.folia.Cell attribute),

101
TEXTDELIMITER (pynlpl.formats.folia.Chunk at-

tribute), 518
TEXTDELIMITER (pynlpl.formats.folia.ChunkingLayer

attribute), 647
TEXTDELIMITER (pynlpl.formats.folia.CoreferenceChain

attribute), 530
TEXTDELIMITER (pynlpl.formats.folia.CoreferenceLayer

attribute), 658
TEXTDELIMITER (pynlpl.formats.folia.CoreferenceLink

attribute), 764
TEXTDELIMITER (pynlpl.formats.folia.Correction at-

tribute), 944
TEXTDELIMITER (pynlpl.formats.folia.Current at-

tribute), 954
TEXTDELIMITER (pynlpl.formats.folia.Definition at-

tribute), 113
TEXTDELIMITER (pynlpl.formats.folia.DependenciesLayer

attribute), 670
TEXTDELIMITER (pynlpl.formats.folia.Dependency at-

tribute), 541
TEXTDELIMITER (pynlpl.formats.folia.DependencyDependent

attribute), 776
TEXTDELIMITER (pynlpl.formats.folia.Description at-

tribute), 1032
TEXTDELIMITER (pynlpl.formats.folia.Division

attribute), 126
TEXTDELIMITER (pynlpl.formats.folia.DomainAnnotation

attribute), 429
TEXTDELIMITER (pynlpl.formats.folia.EnddatetimeFeature

attribute), 907
TEXTDELIMITER (pynlpl.formats.folia.EntitiesLayer

attribute), 682
TEXTDELIMITER (pynlpl.formats.folia.Entity at-

tribute), 553
TEXTDELIMITER (pynlpl.formats.folia.Entry attribute),

139
TEXTDELIMITER (pynlpl.formats.folia.ErrorDetection

attribute), 965
TEXTDELIMITER (pynlpl.formats.folia.Event at-

tribute), 152
TEXTDELIMITER (pynlpl.formats.folia.Example

attribute), 165
TEXTDELIMITER (pynlpl.formats.folia.Feature at-

tribute), 862
TEXTDELIMITER (pynlpl.formats.folia.Figure at-

tribute), 178
TEXTDELIMITER (pynlpl.formats.folia.Gap attribute),

191
TEXTDELIMITER (pynlpl.formats.folia.Head attribute),

203
TEXTDELIMITER (pynlpl.formats.folia.Headspan at-

tribute), 788
TEXTDELIMITER (pynlpl.formats.folia.LangAnnotation

attribute), 451
TEXTDELIMITER (pynlpl.formats.folia.LemmaAnnotation

attribute), 462
TEXTDELIMITER (pynlpl.formats.folia.Linebreak at-

tribute), 215
TEXTDELIMITER (pynlpl.formats.folia.List attribute),

228
TEXTDELIMITER (pynlpl.formats.folia.ListItem

attribute), 241
TEXTDELIMITER (pynlpl.formats.folia.Metric at-

tribute), 1043
TEXTDELIMITER (pynlpl.formats.folia.New attribute),

976
TEXTDELIMITER (pynlpl.formats.folia.Note attribute),
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254
TEXTDELIMITER (pynlpl.formats.folia.Observation at-

tribute), 565
TEXTDELIMITER (pynlpl.formats.folia.ObservationLayer

attribute), 694
TEXTDELIMITER (pynlpl.formats.folia.Original at-

tribute), 987
TEXTDELIMITER (pynlpl.formats.folia.Paragraph at-

tribute), 267
TEXTDELIMITER (pynlpl.formats.folia.Part attribute),

280
TEXTDELIMITER (pynlpl.formats.folia.PhonContent

attribute), 506
TEXTDELIMITER (pynlpl.formats.folia.PosAnnotation

attribute), 440
TEXTDELIMITER (pynlpl.formats.folia.Predicate at-

tribute), 576
TEXTDELIMITER (pynlpl.formats.folia.Quote at-

tribute), 293
TEXTDELIMITER (pynlpl.formats.folia.Reference at-

tribute), 306
TEXTDELIMITER (pynlpl.formats.folia.Row attribute),

319
TEXTDELIMITER (pynlpl.formats.folia.SemanticRole

attribute), 623
TEXTDELIMITER (pynlpl.formats.folia.SemanticRolesLayer

attribute), 741
TEXTDELIMITER (pynlpl.formats.folia.SenseAnnotation

attribute), 473
TEXTDELIMITER (pynlpl.formats.folia.Sentence

attribute), 333
TEXTDELIMITER (pynlpl.formats.folia.Sentiment at-

tribute), 588
TEXTDELIMITER (pynlpl.formats.folia.SentimentLayer

attribute), 706
TEXTDELIMITER (pynlpl.formats.folia.Statement at-

tribute), 599
TEXTDELIMITER (pynlpl.formats.folia.StatementLayer

attribute), 717
TEXTDELIMITER (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 484
TEXTDELIMITER (pynlpl.formats.folia.Suggestion at-

tribute), 998
TEXTDELIMITER (pynlpl.formats.folia.SynsetFeature

attribute), 874
TEXTDELIMITER (pynlpl.formats.folia.SyntacticUnit

attribute), 611
TEXTDELIMITER (pynlpl.formats.folia.SyntaxLayer

attribute), 729
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TEXTDELIMITER (pynlpl.formats.folia.TableHead at-
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TEXTDELIMITER (pynlpl.formats.folia.Term attribute),
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TEXTDELIMITER (pynlpl.formats.folia.Text attribute),
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TEXTDELIMITER (pynlpl.formats.folia.TextContent at-
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TEXTDELIMITER (pynlpl.formats.folia.TextMarkupCorrection
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TEXTDELIMITER (pynlpl.formats.folia.TextMarkupError

attribute), 851
TEXTDELIMITER (pynlpl.formats.folia.TextMarkupGap
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TEXTDELIMITER (pynlpl.formats.folia.TextMarkupString

attribute), 819
TEXTDELIMITER (pynlpl.formats.folia.TextMarkupStyle

attribute), 830
TEXTDELIMITER (pynlpl.formats.folia.TimeSegment

attribute), 634
TEXTDELIMITER (pynlpl.formats.folia.TimingLayer

attribute), 753
TEXTDELIMITER (pynlpl.formats.folia.Whitespace at-

tribute), 399
TEXTDELIMITER (pynlpl.formats.folia.Word attribute),

413
TextMarkupCorrection (class in pynlpl.formats.folia),

838
TextMarkupError (class in pynlpl.formats.folia), 849
TextMarkupGap (class in pynlpl.formats.folia), 806
TextMarkupString (class in pynlpl.formats.folia), 817
TextMarkupStyle (class in pynlpl.formats.folia), 827
textvalidation() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 83
textvalidation() (pynlpl.formats.folia.AbstractElement

method), 33
textvalidation() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 60
textvalidation() (pynlpl.formats.folia.AbstractStructureElement

method), 47
textvalidation() (pynlpl.formats.folia.AbstractTextMarkup

method), 94
textvalidation() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 71
textvalidation() (pynlpl.formats.folia.ActorFeature

method), 893
textvalidation() (pynlpl.formats.folia.Alignment method),

1017
textvalidation() (pynlpl.formats.folia.AlignReference

method), 1028
textvalidation() (pynlpl.formats.folia.Alternative

method), 928
textvalidation() (pynlpl.formats.folia.AlternativeLayers

method), 939
textvalidation() (pynlpl.formats.folia.BegindatetimeFeature

method), 904
textvalidation() (pynlpl.formats.folia.Cell method), 110
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textvalidation() (pynlpl.formats.folia.Chunk method), 526
textvalidation() (pynlpl.formats.folia.ChunkingLayer

method), 655
textvalidation() (pynlpl.formats.folia.CoreferenceChain

method), 538
textvalidation() (pynlpl.formats.folia.CoreferenceLayer

method), 667
textvalidation() (pynlpl.formats.folia.CoreferenceLink

method), 773
textvalidation() (pynlpl.formats.folia.Correction method),

950
textvalidation() (pynlpl.formats.folia.Current method),

961
textvalidation() (pynlpl.formats.folia.Definition method),

123
textvalidation() (pynlpl.formats.folia.DependenciesLayer

method), 678
textvalidation() (pynlpl.formats.folia.Dependency

method), 549
textvalidation() (pynlpl.formats.folia.DependencyDependent

method), 784
textvalidation() (pynlpl.formats.folia.Description

method), 1039
textvalidation() (pynlpl.formats.folia.Division method),
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textvalidation() (pynlpl.formats.folia.DomainAnnotation

method), 436
textvalidation() (pynlpl.formats.folia.EnddatetimeFeature

method), 915
textvalidation() (pynlpl.formats.folia.EntitiesLayer

method), 690
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textvalidation() (pynlpl.formats.folia.Entry method), 149
textvalidation() (pynlpl.formats.folia.ErrorDetection

method), 972
textvalidation() (pynlpl.formats.folia.Event method), 162
textvalidation() (pynlpl.formats.folia.Example method),

175
textvalidation() (pynlpl.formats.folia.Feature method),

870
textvalidation() (pynlpl.formats.folia.Figure method), 188
textvalidation() (pynlpl.formats.folia.Gap method), 199
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textvalidation() (pynlpl.formats.folia.Headspan method),
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method), 573
textvalidation() (pynlpl.formats.folia.ObservationLayer

method), 702
textvalidation() (pynlpl.formats.folia.Original method),

994
textvalidation() (pynlpl.formats.folia.Paragraph method),

277
textvalidation() (pynlpl.formats.folia.Part method), 290
textvalidation() (pynlpl.formats.folia.PhonContent

method), 513
textvalidation() (pynlpl.formats.folia.PosAnnotation

method), 447
textvalidation() (pynlpl.formats.folia.Predicate method),

584
textvalidation() (pynlpl.formats.folia.Quote method), 303
textvalidation() (pynlpl.formats.folia.Reference method),

316
textvalidation() (pynlpl.formats.folia.Row method), 329
textvalidation() (pynlpl.formats.folia.SemanticRole

method), 631
textvalidation() (pynlpl.formats.folia.SemanticRolesLayer

method), 749
textvalidation() (pynlpl.formats.folia.SenseAnnotation

method), 480
textvalidation() (pynlpl.formats.folia.Sentence method),

343
textvalidation() (pynlpl.formats.folia.Sentiment method),

596
textvalidation() (pynlpl.formats.folia.SentimentLayer

method), 714
textvalidation() (pynlpl.formats.folia.Statement method),

608
textvalidation() (pynlpl.formats.folia.StatementLayer

method), 725
textvalidation() (pynlpl.formats.folia.SubjectivityAnnotation

method), 491
textvalidation() (pynlpl.formats.folia.Suggestion

method), 1005
textvalidation() (pynlpl.formats.folia.SynsetFeature

method), 881
textvalidation() (pynlpl.formats.folia.SyntacticUnit

method), 619
textvalidation() (pynlpl.formats.folia.SyntaxLayer

method), 737
textvalidation() (pynlpl.formats.folia.Table method), 356
textvalidation() (pynlpl.formats.folia.TableHead method),

382
textvalidation() (pynlpl.formats.folia.Term method), 369
textvalidation() (pynlpl.formats.folia.Text method), 395
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textvalidation() (pynlpl.formats.folia.TextContent
method), 502

textvalidation() (pynlpl.formats.folia.TextMarkupCorrection
method), 848

textvalidation() (pynlpl.formats.folia.TextMarkupError
method), 859

textvalidation() (pynlpl.formats.folia.TextMarkupGap
method), 816

textvalidation() (pynlpl.formats.folia.TextMarkupString
method), 827

textvalidation() (pynlpl.formats.folia.TextMarkupStyle
method), 837

textvalidation() (pynlpl.formats.folia.TimeSegment
method), 643

textvalidation() (pynlpl.formats.folia.TimingLayer
method), 761

textvalidation() (pynlpl.formats.folia.Whitespace
method), 408

textvalidation() (pynlpl.formats.folia.Word method), 423
TimblOutput (class in pynlpl.formats.timbl), 1055
TimeSegment (class in pynlpl.formats.folia), 632
TimingLayer (class in pynlpl.formats.folia), 750
title() (pynlpl.formats.folia.Document method), 20
tokenise() (in module pynlpl.textprocessors), 1067
tokenize() (in module pynlpl.textprocessors), 1067
Tokenizer (class in pynlpl.textprocessors), 1066
tokens() (pynlpl.statistics.FrequencyList method), 1063
toktext() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 83
toktext() (pynlpl.formats.folia.AbstractElement method),

34
toktext() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 60
toktext() (pynlpl.formats.folia.AbstractStructureElement

method), 47
toktext() (pynlpl.formats.folia.AbstractTextMarkup

method), 94
toktext() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 71
toktext() (pynlpl.formats.folia.ActorFeature method), 893
toktext() (pynlpl.formats.folia.Alignment method), 1017
toktext() (pynlpl.formats.folia.AlignReference method),

1028
toktext() (pynlpl.formats.folia.Alternative method), 928
toktext() (pynlpl.formats.folia.AlternativeLayers

method), 939
toktext() (pynlpl.formats.folia.BegindatetimeFeature

method), 904
toktext() (pynlpl.formats.folia.Cell method), 110
toktext() (pynlpl.formats.folia.Chunk method), 526
toktext() (pynlpl.formats.folia.ChunkingLayer method),

655
toktext() (pynlpl.formats.folia.CoreferenceChain

method), 538

toktext() (pynlpl.formats.folia.CoreferenceLayer
method), 667

toktext() (pynlpl.formats.folia.CoreferenceLink method),
773

toktext() (pynlpl.formats.folia.Correction method), 950
toktext() (pynlpl.formats.folia.Current method), 961
toktext() (pynlpl.formats.folia.Definition method), 123
toktext() (pynlpl.formats.folia.DependenciesLayer

method), 679
toktext() (pynlpl.formats.folia.Dependency method), 550
toktext() (pynlpl.formats.folia.DependencyDependent

method), 784
toktext() (pynlpl.formats.folia.Description method), 1039
toktext() (pynlpl.formats.folia.Division method), 136
toktext() (pynlpl.formats.folia.DomainAnnotation

method), 436
toktext() (pynlpl.formats.folia.EnddatetimeFeature

method), 915
toktext() (pynlpl.formats.folia.EntitiesLayer method),

690
toktext() (pynlpl.formats.folia.Entity method), 561
toktext() (pynlpl.formats.folia.Entry method), 149
toktext() (pynlpl.formats.folia.ErrorDetection method),

972
toktext() (pynlpl.formats.folia.Event method), 162
toktext() (pynlpl.formats.folia.Example method), 175
toktext() (pynlpl.formats.folia.Feature method), 870
toktext() (pynlpl.formats.folia.Figure method), 188
toktext() (pynlpl.formats.folia.Gap method), 199
toktext() (pynlpl.formats.folia.Head method), 212
toktext() (pynlpl.formats.folia.Headspan method), 796
toktext() (pynlpl.formats.folia.LangAnnotation method),
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toktext() (pynlpl.formats.folia.LemmaAnnotation

method), 469
toktext() (pynlpl.formats.folia.Linebreak method), 225
toktext() (pynlpl.formats.folia.List method), 238
toktext() (pynlpl.formats.folia.ListItem method), 251
toktext() (pynlpl.formats.folia.Metric method), 1050
toktext() (pynlpl.formats.folia.New method), 983
toktext() (pynlpl.formats.folia.Note method), 264
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toktext() (pynlpl.formats.folia.ObservationLayer

method), 702
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447
toktext() (pynlpl.formats.folia.Predicate method), 584
toktext() (pynlpl.formats.folia.Quote method), 303
toktext() (pynlpl.formats.folia.Reference method), 316
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toktext() (pynlpl.formats.folia.SemanticRole method),
631

toktext() (pynlpl.formats.folia.SemanticRolesLayer
method), 749

toktext() (pynlpl.formats.folia.SenseAnnotation method),
480

toktext() (pynlpl.formats.folia.Sentence method), 343
toktext() (pynlpl.formats.folia.Sentiment method), 596
toktext() (pynlpl.formats.folia.SentimentLayer method),
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toktext() (pynlpl.formats.folia.StatementLayer method),

726
toktext() (pynlpl.formats.folia.SubjectivityAnnotation

method), 491
toktext() (pynlpl.formats.folia.Suggestion method), 1005
toktext() (pynlpl.formats.folia.SynsetFeature method),

882
toktext() (pynlpl.formats.folia.SyntacticUnit method),

619
toktext() (pynlpl.formats.folia.SyntaxLayer method), 737
toktext() (pynlpl.formats.folia.Table method), 356
toktext() (pynlpl.formats.folia.TableHead method), 382
toktext() (pynlpl.formats.folia.Term method), 369
toktext() (pynlpl.formats.folia.Text method), 396
toktext() (pynlpl.formats.folia.TextContent method), 502
toktext() (pynlpl.formats.folia.TextMarkupCorrection

method), 848
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toktext() (pynlpl.formats.folia.TimeSegment method),
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toktext() (pynlpl.formats.folia.TimingLayer method), 761
toktext() (pynlpl.formats.folia.Whitespace method), 409
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tp_rate() (pynlpl.evaluation.ClassEvaluation method), 10
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traversal() (pynlpl.search.IterativeDeepening method),

1060
traversalsize() (pynlpl.search.AbstractSearch method),

1059
traversalsize() (pynlpl.search.IterativeDeepening

method), 1060
Tree (class in pynlpl.datatypes), 6
Trie (class in pynlpl.datatypes), 6
typetokenratio() (pynlpl.statistics.FrequencyList method),

1063

U
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updatetext() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 83
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method), 34
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method), 60
updatetext() (pynlpl.formats.folia.AbstractStructureElement

method), 47
updatetext() (pynlpl.formats.folia.AbstractTextMarkup

method), 94
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updatetext() (pynlpl.formats.folia.Alternative method),

928
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method), 939
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method), 904
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words() (pynlpl.formats.folia.Entry method), 149
words() (pynlpl.formats.folia.Event method), 162
words() (pynlpl.formats.folia.Example method), 175
words() (pynlpl.formats.folia.Figure method), 188
words() (pynlpl.formats.folia.Head method), 212
words() (pynlpl.formats.folia.Linebreak method), 225
words() (pynlpl.formats.folia.List method), 238
words() (pynlpl.formats.folia.ListItem method), 251
words() (pynlpl.formats.folia.Note method), 264
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