PyNLPI Documentation
Release 1.2.8

Maarten van Gompel

Nov 12, 2018

Contents

Common Functions 3
Data Types 5
Evaluation & Experiments 9
FoLiA library 13
4.1 Reading FOLIA e e e e e 13
4.1.1 Loadingadocument 13
4.1.2 Printin@ teXt e e e e e e e e e e e e e 21
413 Index e 22
4.1.4 Elements e e 22
4.1.5 Obtaining listof elements e e e e 94
4.1.6 Selectmethod e 95
4.1.77 Selection ShOrtCuts L L e e e e e e e 95
4.1.8 Navigatingadocument e e e 96
4.1.9 Structure Annotation TYPesS i e e e e e e e e e 97
4.1.10 Common attributes e e e e e e e 425
4111 Annotations L.l e e e e e e e e e e 425
4.2 Editing FoLiA e 797
42.1 Creatinganew documentt it ittt e e e 797
422 Declarationsl e e e e 797
423 Adding Structure e e e e e e e e e e e e e e e e e e 797
424 Adding annotations e e e e e e e e e e e e e e e e e e 798
4.2.5 Addingspanannotationo e e e 799
4.2.6 Deleting annotationso e 800
4277 Copying annotations vt i bt e e e e e e e e e e e 800
4.3 Searchingin a FoLiA document i i i e e e e e e 801
43.1 Corpus Query Language (CQL) o . i i i i e i e e e e 801
43.2 FoLiA Query Language (FQL) e 802
433 StreamingReader L 804
4.4 Higher-Order AnNnOtations v vttt e e e e e e 806
441 TextMarkup e e e e e e 806
442 FeatUres v v v v i it e e e e e e e e e e e e 859
443 AIernatives L e e e e e e e e e e 915
444 COITECHONS .« . v v v v e 940
445 ANGNIMENtS Lo e e e e e e 1006

4.4.6 Descriptions, MetriCS v v v i i e e e e e e e e e e e e e 1029

45 Metadatal e e e e e e e e 1051
5 Formats 1053
5.1 Corpus Gesproken Nederlands i e e 1053
52 FoLiA . . 1053
53 GIZA++ . e 1053
54 MOSES . . o v e e e e e e e e e e e e e e e e e 1054
5.5 SoNaR . . . 1054
5.6 Taggerdata L. e e e e 1055
57 TIMBL . . . 1055
6 Language Models 1057
7 Search Algorithms 1059
8 Statistics and Information Theory 1061
8.1 Generic functions L e e e e e e e e e e e 1061
8.2 Frequency Lists and Distributions L e 1061
83 APIReference e e e e e 1062
9 Text Processors 1065
9.1 Tokenisation i i i e e e e e e e e e e e e e e 1065
0.2 N-gram extraction ottt e e e e e e 1065
10 Indices and tables 1069
Python Module Index 1071

PyNLPI Documentation, Release 1.2.8

PyNLPI, pronounced as ‘pineapple’, is a Python library for Natural Language Processing. It contains various modules
useful for common, and less common, NLP tasks. PyNLPI can be used for basic tasks such as the extraction of n-
grams and frequency lists, and to build simple language model. There are also more complex data types and algorithms.
Moreover, there are parsers for file formats common in NLP (e.g. FoLiA/Giza/Moses/ARPA/Timbl/CQL). There are
also clients to interface with various NLP specific servers. PyNLP] most notably features a very extensive library for
working with FoLiA XML (Format for Linguistic Annotatation).

The library is a divided into several packages and modules. It works on Python 2.7, as well as Python 3.

The following modules are available:

pynlpl.datatypes - Extra datatypes (priority queues, patterns, tries)

pynlpl.evaluation - Evaluation & experiment classes (parameter search, wrapped progressive sampling,
class evaluation (precision/recall/f-score/auc), sampler, confusion matrix, multithreaded experiment pool)

pynlpl.formats.cgn - Module for parsing CGN (Corpus Gesproken Nederlands) part-of-speech tags

pynlpl.formats.folia - Extensive library for reading and manipulating the documents in FoLLiA format
(Format for Linguistic Annotation).

pynlpl.formats.fgl - Extensive library for the FOLiA Query Language (FQL), built on top of pynlpl.
formats.folia. FQL is currently documented here.

pynlpl.formats.cql - Parser for the Corpus Query Language (CQL), as also used by Corpus Workbench
and Sketch Engine. Contains a convertor to FQL.

pynlpl.formats.giza - Module for reading GIZA++ word alignment data
pynlpl.formats.moses - Module for reading Moses phrase-translation tables.

pynlpl.formats.sonar - Largely obsolete module for pre-releases of the SoNaR corpus, use pynlpl.
formats.folia instead.

pynlpl.formats.timbl - Module for reading Timbl output (consider using python-timbl instead though)

pynlpl.lm.1lm-Module for simple language model and reader for ARPA language model data as well (used
by SRILM).

pynlpl.search - Various search algorithms (Breadth-first, depth-first, beam-search, hill climbing, A star,
various variants of each)

pynlpl.statistics - Frequency lists, Levenshtein, common statistics and information theory functions

pynlpl.textprocessors - Simple tokeniser, n-gram extraction

Contents:

Contents 1

http://proycon.github.io/folia
https://github.com/proycon/foliadocserve
https://github.com/proycon/python-timbl

PyNLPI Documentation, Release 1.2.8

2 Contents

CHAPTER 1

Common Functions

pynlpl.
pynlpl.
pynlpl.
pynlpl.

common . Enum (*names)
common.b (s)
common.isstring(s)

common . log (msg, **kwargs)

Generic log method. Will prepend timestamp.

pynlpl.

Keyword Arguments

e — Name of the system/module (system)—

Integer denoting the desired level of indentation (indent)-
* — List of streams to output to (streams)-—
* — Stream to output to (stream)-

common . u (s, encoding="utf-8’, errors="strict’)

PyNLPI Documentation, Release 1.2.8

4 Chapter 1. Common Functions

CHAPTER 2

Data Types

This library contains various extra data types, based to a certain extend on MIT-licensed code from Peter Norvig, Al:
A Modern Appproach : http://aima.cs.berkeley.edu/python/utils.html

class pynlpl.datatypes.FIFOQueue (data=[])
A First-In-First-Out Queue

append (item)

extend (items)
Append all elements from items to the queue

pop ()
Retrieve the next element in line, this will remove it from the queue

class pynlpl.datatypes.Pattern (data, classdecoder=None)

static fromstring (s, classencoder)
iterbytes (begin=0, end=0)

class pynlpl.datatypes.PatternMap (default=None)

items ()

class pynlpl.datatypes.PatternSet

add (pattern)
remove (pattern)

class pynlpl.datatypes.PriorityQueue (data=[], f[=<function PriorityQueue.<lambda>>, min-
imize=False, length=0, blockworse=False, blocke-

qual=False, duplicates=True)
A queue in which the maximum (or minumum) element is returned first, as determined by either an external

score function f (by default calling the objects score() method). If minimize=True, the item with minimum f(x)
is returned first; otherwise is the item with maximum f(x) or x.score().

http://aima.cs.berkeley.edu/python/utils.html

PyNLPI Documentation, Release 1.2.8

length can be set to an integer > 0. Items will only be added to the queue if they’re better or equal to the worst
scoring item. If set to zero, length is unbounded. blockworse can be set to true if you want to prohibit adding
worse-scoring items to the queue. Only items scoring better than the BEST one are added. blockequal can be
set to false if you also want to prohibit adding equally-scoring items to the queue. (Both parameters default to
False)

append (item)
Adds an item to the priority queue (in the right place), returns True if successfull, False if the item was
blocked (because of a bad score)

pop ()
Retrieve the next element in line, this will remove it from the queue

prune (n)
prune all but the first (=best) n items

prunebyscore (score, retainequalscore=False)
Deletes all items below/above a certain score from the queue, depending on whether minimize is True
or False. Note: It is recommended (more efficient) to use blockworse=True / blockequal=True instead!
Preventing the addition of ‘worse’ items.

randomprune (n)
prune down to n items at random, disregarding their score

score (i)
Return the score for item x (cheap lookup), Item 0 is always the best item

stochasticprune (n)
prune down to n items, chance of an item being pruned is reverse proportional to its score

class pynlpl.datatypes.Queue

Queue is an abstract class/interface. There are three types: Python List: A Last In First Out Queue (no
Queue object necessary). FIFOQueue(): A First In First Out Queue. PriorityQueue(It): Queue where
items are sorted by It, (default <).

Each type supports the following methods and functions: q.append(item) — add an item to the queue
g.extend(items) — equivalent to: for item in items: qg.append(item) q.pop() — return the top item from
the queue len(q) — number of items in q (also q.__len()).

extend (items)
Append all elements from items to the queue

class pynlpl.datatypes.Tree (value=None, children=None)
Simple tree structure. Nodes are themselves trees.

append (item)
Add an item to the Tree

leaf ()
Is this a leaf node or not?

class pynlpl.datatypes.Trie (sequence=None)
Simple trie structure. Nodes are themselves tries, values are stored on the edges, not the nodes.

append (sequence)

depth ()
Returns the depth of the current node

find (sequence)

items ()

6 Chapter 2. Data Types

PyNLPI Documentation, Release 1.2.8

leaf ()
Is this a leaf node or not?

path ()
Returns the path to the current node

root ()
Returns True if this is the root of the Trie

sequence ()

size ()
Size is number of nodes under the trie, including the current node

walk (leavesonly=True, maxdepth=None, _depth=0)
Depth-first search, walking through trie, returning all encounterd nodes (by default only leaves)

PyNLPI Documentation, Release 1.2.8

8 Chapter 2. Data Types

CHAPTER 3

Evaluation & Experiments

class pynlpl.evaluation.AbstractExperiment (inputdata=None, **parameters)

defaultparameters ()
delete ()

done (warn=True)
Is the subprocess done?

duration ()
run ()

sample (size)
Return a sample of the input data

score ()

start ()
Start as a detached subprocess, immediately returning execution to caller.

startcommand (command, cwd, stdout, stderr, *arguments, **parameters)
wait ()

class pynlpl.evaluation.ClassEvaluation (goals=[], observations=[], missing={},
encoding="utf-8’)

accuracy (cls=None)

append (goal, observation)

auc (cls=None, macro=False)

compute ()

confusionmatrix (casesensitive=True)

fp_rate (cls=None, macro=False)

PyNLPI Documentation, Release 1.2.8

fscore (cls=None, beta=1, macro=False)
outputmetrics ()

precision (cls=None, macro=False)
recall (cls=None, macro=False)
specificity (cls=None, macro=False)
tp_rate (cls=None, macro=False)

class pynlpl.evaluation.ConfusionMatrix (fokens=None, casesensitive=True, dovalida-
)) tion=True)
Confusion Matrix

class pynlpl.evaluation.ExperimentPool (size)

append (experiment)
poll (haltonerror=True)
run (haltonerror=True)
start (experiment)
class pynlpl.evaluation.OrdinalEvaluation (goals=[], observations=[], missing={},
encoding="utf-8’)
compute ()
mae (cls=None)
rmse (cls=None)

class pynlpl.evaluation.ParamSearch (experimentclass, inputdata, parameterscope, poolsize=1,
constraintfunc=None, delete=True)
A simpler version of ParamSearch without Wrapped Progressive Sampling

exception pynlpl.evaluation.ProcessFailed

class pynlpl.evaluation.WPSParamSearch (experimentclass, inputdata, size, parameterscope,
poolsize=1, sizefunc=None, prunefunc=None, con-
straintfunc=None, delete=True)
ParamSearch with support for Wrapped Progressive Sampling

searchbest ()
test (i=None)

pynlpl.evaluation.aue (x, Y, reorder=False)
Compute Area Under the Curve (AUC) using the trapezoidal rule

This is a general fuction, given points on a curve. For computing the area under the ROC-curve, see
auc_score ().

Parameters
e x(array, shape = [n])- X coordinates.
* y(array, shape = [n])-Yy coordinates.

e reorder (boolean, optional (default=False)) — If True, assume that the
curve is ascending in the case of ties, as for an ROC curve. If the curve is non-ascending,
the result will be wrong.

Returns auc

10 Chapter 3. Evaluation & Experiments

PyNLPI Documentation, Release 1.2.8

Return type float

Examples

>>> import numpy as np

>>> from sklearn import metrics

>>> y = np.array ([1l, 1, 2, 21])

>>> pred = np.array([0.1, 0.4, 0.35, 0.8])

>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
>>> metrics.auc (fpr, tpr)

0.75

See also:
auc_score () Computes the area under the ROC curve

pynlpl.evaluation.filesampler (files, testsetsize=0.1, devsetsize=0, trainsetsize=0, outputdir="",
encoding="utf-8’)
Extract a training set, test set and optimally a development set from one file, or multiple interdependent files
(such as a parallel corpus). It is assumed each line contains one instance (such as a word or sentence for
example).

pynlpl.evaluation.mae (absolute_error_values)

pynlpl.evaluation.rmse (squared_error_values)

11

PyNLPI Documentation, Release 1.2.8

12 Chapter 3. Evaluation & Experiments

CHAPTER 4

FoLiA library

This tutorial will introduce the FoLiA Python library, part of PyNLPI. The FoLiA library provides an Application
Programming Interface for the reading, creation and manipulation of FoLiA XML documents. The library works
under Python 2.7 as well as Python 3, which is the recommended version. The samples in this documentation follow
Python 3 conventions.

Prior to reading this document, it is recommended to first read the FoLiA documentation itself and familiarise your-
self with the format and underlying paradigm. The FoLiA documentation can be found on the FoLiA website . It
is especially important to understand the way FoLiA handles sets/classes, declarations, common attributes such as
annotator/annotatortype and the distinction between various kinds of annotation categories such as token annotation
and span annotation.

This Python library is also the foundation of the FoLLiA Tools collection, which consists of various command line
utilities to perform common tasks on FoLiA documents. If you’re merely interested in performing a certain common
task, such as a single query or conversion, you might want to check there if it contains is a tool that does what you
want already.

4.1 Reading FoLiA

4.1.1 Loading a document

Any script that uses FoLiA starts with the import:

from pynlpl.formats import folia

At the basis of any FoLiA processing lies the following class:

Document This is the FoLiA Document and holds all its data in
memory.

13

https://proycon.github.io/folia/
https://pypi.python.org/pypi/FoLiA-tools/

PyNLPI Documentation, Release 1.2.8

pynlpl.formats.folia.Document

class pynlpl.formats.folia.Document (*args, **kwargs)

Bases: object

This is the FoLiA Document and holds all its data in memory.

All FoLiA elements have to be associated with a FoLiA document. Besides holding elements, the document

may hold metadata including declarations, and an index of all IDs.

Method Summary

___init__ (*args, **kwargs)

Start/load a FoLiA document:

add(text)

Alias for Document . append ()

alias(annotationtype, set[, fallback])

Return the alias for a set (if applicable, returns the
unaltered set otherwise iff fallback is enabled)

append(text)

Add a text (or speech) to the document:

count(Class], set, recursive, ignore])

See AbstractElement.count ()

create(Class, *args, **kwargs)

Create an element associated with this Document.

date([value])

Get or set the document’s date from/in the metadata.

dec1are(annotationtype, set, **kwargs)

Declare a new annotation type to be used in the doc-
ument.

declared(annotationtype, set)

Checks if the annotation type is present (i.e.

defaultannotator(annotationtypel, set])

Obtain the default annotator for the specified annota-
tion type and set.

defaultannotatortype(annotationtype[, set])

Obtain the default annotator type for the specified an-
notation type and set.

defaultdatetime(annotationtype[, set])

Obtain the default datetime for the specified annota-
tion type and set.

de faultset(annotationtype)

Obtain the default set for the specified annotation
type.

findwords(*args, **kwargs)

items()

Returns a depth-first flat list of all items in the docu-
ment

Json()

Serialise the document to a dict ready for seriali-
sation to JSON.

jsondeclarations()

Return all declarations in a form ready to be seri-
alised to JSON.

Ianguage([value]) No arguments: Get the document’s language (ISO-
639-3) from metadata Argument: Set the document’s
language (ISO-639-3) in metadata

1icense([value]) No arguments: Get the document’s license from
metadata Argument: Set the document’s license in
metadata

load(filename) Load a FoLiA XML file.

paragraphs([index]) Return a generator of all paragraphs found in the

document.

parsemetadata(node)

Internal method to parse metadata

parsesubmetadata(node)

parsexml(node[, ParentClass])

Internal method.

parsexmldeclarations(node)

Internal method to parse XML declarations

Continued on next page

14

Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

Table 2 — continued from previous page

pendingvalidation([warnonly]) Perform any pending validations

publisher([value]) No arguments: Get the document’s publisher from
metadata Argument: Set the document’s publisher in
metadata

save([filename]) Save the document to file.

select(Class], set, recursive, ignore]) See AbstractElement.select ()

sentences([index]) Return a generator of all sentence found in the docu-
ment.

set imdi(node) OBSOLETE

text([cls, retaintokenisation]) Returns the text of the entire document (returns a uni-
code instance)

titI1e([value]) Get or set the document’s title from/in the metadata

unalias(annotationtype, alias) Return the set for an alias (if applicable, raises an
exception otherwise)

words([index]) Return a generator of all active words found in the
document.

xmI1() Serialise the document to XML.

xmldeclarations() Internal method to generate XML nodes for all dec-
larations

xmlmetadatal() Internal method to serialize metadata to XML

xmlstring() Return the XML representation of the document as a
string.

xpath(query) Run Xpath expression and parse the resulting ele-
ments.

Attributes
IDSEPARATOR

Method Details
__init_ (*args, **kwargs)
Start/load a FoLiA document:
There are four sources of input for loading a FoLiA document:

1. Create a new document by specifying an ID:

’doc = folia.Document (id="test"')

2. Load a document from FoLiA or D-Coi XML file:

’doc = folia.Document (file='/path/to/doc.xml")

3. Load a document from an XML string:

’doc = folia.Document (string="<FoLiA>....</FoLiA>")

4. Load a document by passing a parse xml tree (Ixml.etree):
doc = folia.Document(tree=xmltree)

Additionally, there are three modes that can be set with the mode= keyword argument:

4.1. Reading FoLiA 15

PyNLPI Documentation, Release 1.2.8

¢ folia.Mode. MEMORY - The entire FoLiA Document will be loaded into memory. This is the default
mode and the only mode in which documents can be manipulated and saved again.

¢ folia.Mode.XPATH - The full XML tree will still be loaded into memory, but conversion to FoLiA
classes occurs only when queried. This mode can be used when the full power of XPath is required.
Keyword Arguments

* setdefinition (dict) — A dictionary of set definitions, the key corresponds to the
set name, the value is a SetDefinition instance

¢ loadsetdefinitions (bool) - download and load set definitions (default: False)

* deepvalidation (bool) — Do deep validation of the document (default: False), im-
plies loadsetdefinitions

* textvalidation (bool)— Do validation of text consistency (default: False)*

* preparsexmlcallback (function)— Callback for a function taking one argument
(node, an Ixml node). Will be called whenever an XML element is parsed into FoLiA.
The function should return an instance inherited from folia.AbstractElement, or None to
abort parsing this element (and all its children)

e parsexmlcallback (function) — Callback for a function taking one argument
(element, a FoLiA element). Will be called whenever an XML element is parsed into
FoLiA. The function should return an instance inherited from folia.AbstractElement, or
None to abort adding this element (and all its children)

* debug (boo1l)— Boolean to enable/disable debug
__init__ (*args, **kwargs)
Start/load a FoLiA document:
There are four sources of input for loading a FoLiA document:

1. Create a new document by specifying an ID:

’doc = folia.Document (id="test ')

2. Load a document from FoLiA or D-Coi XML file:

’doc = folia.Document (file='/path/to/doc.xml")

3. Load a document from an XML string:

’doc = folia.Document (string='<FoLiA>....</FoLiA>")

4. Load a document by passing a parse xml tree (Ixml.etree):
doc = folia.Document(tree=xmltree)
Additionally, there are three modes that can be set with the mode= keyword argument:

* folia.Mode. MEMORY - The entire FoLiA Document will be loaded into memory. This is the default
mode and the only mode in which documents can be manipulated and saved again.

* folia.Mode.XPATH - The full XML tree will still be loaded into memory, but conversion to FoLiA
classes occurs only when queried. This mode can be used when the full power of XPath is required.

Keyword Arguments

16 Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

* setdefinition (dict) — A dictionary of set definitions, the key corresponds to the
set name, the value is a SetDefinition instance

* loadsetdefinitions (bool) - download and load set definitions (default: False)

* deepvalidation (bool) — Do deep validation of the document (default: False), im-
plies loadsetdefinitions

* textvalidation (bool)— Do validation of text consistency (default: False)*

* preparsexmlcallback (function)— Callback for a function taking one argument
(node, an Ixml node). Will be called whenever an XML element is parsed into FoLiA.
The function should return an instance inherited from folia.AbstractElement, or None to
abort parsing this element (and all its children)

* parsexmlcallback (function) — Callback for a function taking one argument
(element, a FoLiA element). Will be called whenever an XML element is parsed into
FoLiA. The function should return an instance inherited from folia.AbstractElement, or
None to abort adding this element (and all its children)

* debug (bool)— Boolean to enable/disable debug
add (rext)
Alias for Document . append ()

alias (annotationtype, set, fallback="False)
Return the alias for a set (if applicable, returns the unaltered set otherwise iff fallback is enabled)

append (fext)
Add a text (or speech) to the document:

Example 1:

doc.append(folia.Text)

Example 2:: doc.append(folia.Text(doc, id="example.text’))

Example 3:

doc.append(folia.Speech)

count (Class, set=None, recursive=True, ignore=True)
See AbstractElement.count ()

create (Class, *args, **kwargs)
Create an element associated with this Document. This method may be obsolete and removed later.

date (value=None)
Get or set the document’s date from/in the metadata.

No arguments: Get the document’s date from metadata Argument: Set the document’s date in metadata

declare (annotationtype, set, **kwargs)
Declare a new annotation type to be used in the document.

Keyword arguments can be used to set defaults for any annotation of this type and set.
Parameters

* annotationtype — The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

4.1.

Reading FoLiA

17

PyNLPI Documentation, Release 1.2.8

* set (str)—the set, should formally be a URL pointing to the set definition
Keyword Arguments
* annotator (str) — Sets a default annotator

* annotatortype - Should be either AnnotatorType.MANUAL or
AnnotatorType.AUTO, indicating whether the annotation was performed manu-
ally or by an automated process.

* datetime (datetime.datet ime) — Sets the default datetime

* alias (str)— Defines alias that may be used in set attribute of elements instead of the
full set name

Example:

doc.declare (folia.PosAnnotation, 'http://some/path/brown-tag-set', annotator=
—"mytagger", annotatortype=folia.AnnotatorType.AUTO)

declared (annotationtype, set)
Checks if the annotation type is present (i.e. declared) in the document.

Parameters

* annotationtype — The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

* set (str) — the set, should formally be a URL pointing to the set definition (aliases are
also supported)

Example:

if doc.declared(folia.PosAnnotation, 'http://some/path/brown-tag-set'):

Returns bool
defaultannotator (annotationtype, set=None)
Obtain the default annotator for the specified annotation type and set.
Parameters

* annotationtype — The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

* set (str) - the set, should formally be a URL pointing to the set definition
Returns the set (str)

Raises NoDefaultError if the annotation type does not exist or if there is ambiguity (multi-
ple sets for the same type)

defaultannotatortype (annotationtype, set=None)
Obtain the default annotator type for the specified annotation type and set.

Parameters

* annotationtype — The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

18 Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

* set (str)—the set, should formally be a URL pointing to the set definition
Returns AnnotatorType.AUTO or AnnotatorType.MANUAL

Raises NoDefaultError if the annotation type does not exist or if there is ambiguity (multi-
ple sets for the same type)

defaultdatetime (annotationtype, set=None)
Obtain the default datetime for the specified annotation type and set.

Parameters

* annotationtype — The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

* set (str) — the set, should formally be a URL pointing to the set definition
Returns the set (str)

Raises NoDefaultError if the annotation type does not exist or if there is ambiguity (multi-
ple sets for the same type)

defaultset (annotationtype)
Obtain the default set for the specified annotation type.

Parameters annotationtype — The type of annotation, this is conveyed by passing the
corresponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

Returns the set (str)

Raises NoDefaultError if the annotation type does not exist or if there is ambiguity (multi-
ple sets for the same type)

findwords (*args, **kwargs)

items ()
Returns a depth-first flat list of all items in the document

json ()
Serialise the document to a dict ready for serialisation to JSON.

Example:

import json
jsondoc = json.dumps (doc. json())

jsondeclarations ()
Return all declarations in a form ready to be serialised to JSON.

Returns list of dict

language (value=None)
No arguments: Get the document’s language (ISO-639-3) from metadata Argument: Set the document’s
language (ISO-639-3) in metadata

license (value=None)
No arguments: Get the document’s license from metadata Argument: Set the document’s license in meta-
data

load (filename)
Load a FoLiA XML file.

Argument: filename (str): The file to load

4.1.

Reading FoLiA 19

PyNLPI Documentation, Release 1.2.8

paragraphs (index=None)
Return a generator of all paragraphs found in the document.

If an index is specified, return the n’th paragraph only (starting at 0)

parsemetadata (node)
Internal method to parse metadata

parsesubmetadata (node)

parsexml (node, ParentClass=None)
Internal method.

This is the main XML parser, will invoke class-specific XML parsers.

parsexmldeclarations (node)
Internal method to parse XML declarations

pendingvalidation (warnonly=None)
Perform any pending validations

Parameters warnonly (bool)— Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

publisher (value=None)
No arguments: Get the document’s publisher from metadata Argument: Set the document’s publisher in
metadata

save (filename=None)
Save the document to file.

Parameters f£ilename (*) — The filename to save to. If not set (None, default), saves to the
same file as loaded from.

select (Class, set=None, recursive=True, ignore=True)
See AbstractElement.select ()

sentences (index=None)
Return a generator of all sentence found in the document. Except for sentences in quotes.

If an index is specified, return the n’th sentence only (starting at 0)

setimdi (node)
OBSOLETE

text (cls=’current’, retaintokenisation=False)
Returns the text of the entire document (returns a unicode instance)

See also:
AbstractElement.text ()

title (value=None)
Get or set the document’s title from/in the metadata

No arguments: Get the document’s title from metadata Argument: Set the document’s title in metadata

unalias (annotationtype, alias)
Return the set for an alias (if applicable, raises an exception otherwise)

20

Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

words (index=None)
Return a generator of all active words found in the document. Does not descend into annotation layers,
alternatives, originals, suggestions.

If an index is specified, return the n’th word only (starting at 0)

xml ()
Serialise the document to XML.

Returns Ixml.etree.Element
See also:
Document .xmlstring()

xmldeclarations ()
Internal method to generate XML nodes for all declarations

xmlmetadata ()
Internal method to serialize metadata to XML

xmlstring ()
Return the XML representation of the document as a string.

xpath (query)
Run Xpath expression and parse the resulting elements. Don’t forget to use the FoLiA namesapace in your
expressions, using folia: or the short form f:

To read a document from file, instantiate a document as follows:

doc = folia.Document (file="/path/to/document.xml")

This returned Document instance holds the entire document in memory. Note that for large FoLiA documents this
may consume quite some memory! If you happened to already have the document content in a string, you can load as
follows:

’doc = folia.Document (string="<FoLiA ...")

Once you have loaded a document, all data is available for you to read and manipulate as you see fit. We will first
illustrate some simple use cases:

To save a document back to the file it was loaded from, we do:

’doc.save()

Or we can specify a specific filename:

’doc.save("/tmp/document.xml")

Note: Any content that is in a different XML namespace than the FoLiA namespaces or other supported namespaces
(XML, Xlink), will be ignored upon loading and lost when saving.

4.1.2 Printing text

You may want to simply print all (plain) text contained in the document, which is as easy as:

print (doc)

4.1. Reading FoLiA 21

PyNLPI Documentation, Release 1.2.8

Obtaining the text as a string is done by invoking the document’s Document . text () method:

’text = doc.text ()

Or alternatively as follows:

’text = str (doc)

For any subelement of the document, you can obtain its text in the same fashion as well, by calling its
AbstractElement.text () method or by using str (), the only difference is that the former allows for ex-
tensive fine tuning using various extra parameters (See AbstractElement.text ()).

Note: In Python 2, both str () as well as unicode () return a unicode instance. You may need to append .
encode ('utf-8") for proper output.

4.1.3 Index

A document instance has an index which you can use to grab any of its elements by ID. Querying using the index
proceeds similar to using a python dictionary:

word = doc['example.p.3.s.5.w.1"]
print (word)

Note: Python 2 users will have to do print word.text () .encode ('utf-8") instead, to ensure non-ascii
characters are printed properly.

IDs are unique in the entire document, and preferably even beyond.

4.1.4 Elements

All FoLiA elements are derived from AbstractElement and offer an identical interface. To quickly check whether
you are dealing with a FoLiA element you can therefore always do the following:

isinstance (word, folia.AbstractElement)

This abstract base element is never instantiated directly. The FoLiA paradigm derives several more abstract base
classes which may implement some additional methods or overload some of the original ones:

AbstractElement Abstract base class from which all FoLiA elements are
derived.

AbstractStructureElement Abstract element, all structure elements inherit from this
class.

AllowTokenAnnotation Elements that allow token annotation (including ex-
tended annotation) must inherit from this class

AbstractSpanAnnotation Abstract element, all span annotation elements are de-
rived from this class

AbstractTokenAnnotation Abstract element, all token annotation elements are de-

rived from this class

Continued on next page

22 Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

Table 4 — continued from previous page

AbstractAnnotationLayer Annotation layers for Span Annotation are derived from

this abstract base class

AbstractTextMarkup Abstract class for text markup elements, elements that

appear with the TextContent (t) element.

pynlpl.formats.folia.AbstractElement

class pynlpl.formats.folia.AbstractElement (doc, *args, **kwargs)
Bases: object

Abstract base class from which all FoLiA elements are derived.

This class implements many generic methods that are available on all FoLiA elements.

To see if an element is a FoLiA element, as opposed to any other python object, do:

isinstance (x, AbstractElement)

Generic FoLiA attributes can be accessed on all instances derived from this class:

L]

element.id (str) - The unique identifier of the element
element . set (str) - The set the element pertains to.

element .cls (str) - The assigned class, i.e. the actual value of the annotation, defined in the set. Classes
correspond with tagsets in this case of many annotation types. Note that since class is already a reserved
keyword in python, the library consistently uses c1s everywhere.

element .annotator (str) - The name or ID of the annotator who added/modified this element

element.annotatortype - The type of annotator, can be either folia.AnnotatorType.
MANUAL or folia.AnnotatorType.AUTO

element.confidence (float) - A confidence value expressing
element .datetime (datetime.datetime) - The date and time when the element was added/modified.

element.n (str) - An ordinal label, used for instance in enumerated list contexts, numbered sections,
etc..

The following generic attributes are specific to a speech context:

L]

L]

element.src (str) - A URL or filename referring the an audio or video file containing the speech.
Access this attribute using the element . speaker_src () method, as it is inheritable from ancestors.

element .speaker (str) - The name of ID of the speaker. Access this attribute using the element .
speech_speaker () method, as it is inheritable from ancestors.

element .begintime (4-tuple) - The time in the above source fragment when the phonetic content of
this element starts, this is a (hours, minutes, seconds,milliseconds) tuple.

element .endtime (4-tuple) - The time in the above source fragment when the phonetic content of this
element ends, thisisa (hours, minutes, seconds,milliseconds) tuple.

Not all attributes are allowed, unset or unavailable attributes will always default to None.

Note: This class should never be instantiated directly, as it is abstract!

See also:

4.1. Reading FoLiA 23

PyNLPI Documentation, Release 1.2.8

AbstractElement.___init__ ()

Method Summary

__init__(doc, *args, **kwargs)

Initialize self.

accept s(Class[, raiseexceptions, parentinstance])

add(child, *args, **kwargs)

addable(parent], set, raiseexceptions])

Tests whether a new element of this class can be
added to the parent.

addidsuf fix(idsuffix[, recursive])

Appends a suffix to this element’s ID, and optionally
to all child IDs as well.

addtoindex([norecurse])

Makes sure this element (and all subelements), are
properly added to the index.

ancestor(*Classes)

Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class])

Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

append(child, *args, **kwargs)

context(size[, placeholder, scope])

Returns this word in context, {size} words to the left,
the current word, and {size} words to the right

copy([newdoc, idsuffix])

Make a deep copy of this element and all its children.

copychildren([newdoc, idsuffix])

Generator creating a deep copy of the children of this
element.

count(Class|, set, recursive, ignore, node])

Like AbstractElement.select (), but in-
stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.

findcorrectionhandling(cls)

Find the proper correctionhandling given a textclass
by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set])

Internal method to find replaceable elements.

get index(child[, recursive, ignore])

Get the index at which an element occurs, recursive
by default!

getmetadata([key])

Get the metadata that applies to this element, auto-
matically inherited from parent elements

gettextdelimiter([retaintokenisation])

Return the text delimiter for this class.

hasphon([cls, strict, correctionhandling])

Does this element have phonetic content (of the spec-
ified class)

hastext([cls, strict, correctionhandling])

Does this element have text (of the specified class)

incorrection()

Is this element part of a correction? If it is, it returns
the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)

1 tems([founditems])

Returns a depth-first flat list of all items below this
element (not limited to AbstractElement)

Jjson([attribs, recurse, ignorelist])

Serialises the FoLiA element and all its contents to a
Python dictionary suitable for serialisation to JSON.

leftcontext(size[, placeholder, scope])

Returns the left context for an element, as a list.

Continued on next page

24

Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

Table 5 — continued from previous page

next([Class, scope, reverse])

Returns the next element, if it is of the specified type
and if it does not cross the boundary of the defined
scope.

originaltext([cls])

Alias for retrieving the original uncorrect text.

parsexml(node, doc, **kwargs)

Internal class method used for turning an XML ele-
ment into an instance of the Class.

phon([cls, previousdelimiter, strict, ...])

Get the phonetic representation associated with this
element (of the specified class)

phoncontent([cls, correctionhandling])

Get the phonetic content explicitly associated with
this element (of the specified class).

postappend()

This method will be called after an element is added
to another and does some checks.

previous([Class, scope])

Returns the previous element, if it is of the specified
type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, ...])

Returns a RelaxNG definition for this element (as an
XML element (Ixml.etree) rather than a string)

remove(child)

Removes the child element

replace(child, *args, **kwargs)

Appends a child element like append (), but re-
places any existing child element of the same type
and set.

resolveword(id)

rightcontext(size[, placeholder, scope])

Returns the right context for an element, as a list.

select(Classl, set, recursive, ignore, node])

Select child elements of the specified class.

setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.

settext(text], cls])

Set the text for this element.

speech_speaker()

Retrieves the speaker of the audio or video file asso-
ciated with the element.

speech_src()

Retrieves the URL/filename of the audio or video file
associated with the element.

stricttext([cls])

Alias for text () with strict=True

text([cls, retaintokenisation, ...])

Get the text associated with this element (of the spec-
ified class)

textcontent([cls, correctionhandling])

Get the text content explicitly associated with this
element (of the specified class).

textvalidation([warnonly])

Run text validation on this element.

toktext([cls]) Alias for text () with
retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.

xm1([attribs, elements, skipchildren])

Serialises the FoLiA element and all its contents to
XML.

xmlstring([pretty_print])

Serialises this FoLiA element and all its contents to
XML.

_diter () Iterate over all children of this element.

__Ien_ () Returns the number of child elements under the cur-
rent element.

__str_ () Alias for text ()

4.1. Reading FoLiA

25

PyNLPI Documentation, Release 1.2.8

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.fo
ANNOTATIONTYPE = None
AUTH = True
AUTO_GENERATE_ID = False
OCCURRENCES = 0
OCCURRENCES_PER_SET = 0
OPTIONAL_ATTRIBS = None
PHONCONTAINER = False
PRIMARYELEMENT = True
PRINTABLE = False
REQUIRED_ATTRIBS = None
REQUIRED_DATA = None
SETONLY = False
SPEAKABLE = False

SUBSET = None
TEXTCONTAINER = False

TEXTDELIMITER None

XLINK = False

XMLTAG = None

Method Details

__init_ (doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__ (doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts (Class, raiseexceptions=True, parentinstance=None)
add (child, *args, **kwargs)

classmethod addable (parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters
* parent (AbstractElement)— The element that is being added to
e set (str or None)- The set
* raiseexceptions (bool)— Raise an exception if the element can’t be added?

Returns bool

26 Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

Raises ValueError

addidsuffix (idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy ()

addtoindex (norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor (*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes — The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor (folia.Paragraph)

ancestors (Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class — The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)
append (child, *args, **kwargs)

context (size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy (newdoc=None, idsuffix="")
Make a deep copy of this element and all its children.

Parameters
* newdoc (Document) — The document the copy should be associated with.

e idsuffix (str or bool)-If setto a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren (newdoc=None, idsuffix="")
Generator creating a deep copy of the children of this element.

Invokes copy () on all children, parameters are the same.

count (Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select (), butinstead of returning the elements, it merely counts them.

Returns int

deepvalidation ()
Perform deep validation of this element.

Raises DeepValidationError

description ()
Obtain the description associated with the element.

4.1.

Reading FoLiA 27

PyNLPI Documentation, Release 1.2.8

Raises NoSuchAnnotation if there is no associated description.

feat (subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:
sense = word.annotation (folia.Sense)
synset = sense.feat ('synset')

Returns str or list

findcorrectionhandling (cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables (parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace (). Can be overriden for more fine-grained control.

getindex (child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata (key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter (retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon (cls="current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon (), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters
* cls (str) - The class of the phonetic content to obtain, defaults to current.

* strict (bool) - Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

* correctionhandling - Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext (cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text (), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

28 Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

¢ cls (str)— The class of the text content to obtain, defaults to current.

e strict (bool) — Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

* correctionhandling — Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection ()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert (index, child, *args, **kwargs)

items (founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json (attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps (word. json ())

Returns dict

leftcontext (size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next (Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

* Class (x) — The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

* scope (#) — A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, Listltem,Caption), set to None to not constrain at all.

originaltext (cls=’original’)
Alias for retrieving the original uncorrect text.

A callto text () with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml (node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters
* node - XML Element (*)-—

e doc - Document (*)—

4.1.

Reading FoLiA 29

PyNLPI Documentation, Release 1.2.8

Returns An instance of the current Class.

phon (cls="current’, previousdelimiter=", strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters
* cls (str)— The class of the phonetic content to obtain, defaults to current.

* retaintokenisation (bool) — If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

* previousdelimiter (str)— Can be set to a delimiter that was last outputed, useful
when chaining calls to phon (). Defaults to an empty string.

e strict (bool) - Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

* correctionhandling — Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon ()

Returns The phonetic content of the element (unicode instance in Python 2, st r in Python
3)

Raises NoSuchPhon — if no phonetic conent is found at all.

See also:

phoncontent (): Retrieves the phonetic content as an element rather than a string text ()
textcontent ()

phoncontent (cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon (), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters
* cls (str) - The class of the phonetic content to obtain, defaults to current.

* correctionhandling — Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

30 Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

See also:
phon () textcontent () text ()

postappend ()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous (Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

* Class () — The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

* scope (x) — A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListIltem,Caption), set to None to not constrain at all.

classmethod relaxng (includechildren=True, extraattribs=None, extraelements=None, orig-

class=None)
Returns a RelaxING definition for this element (as an XML element (Ixml.etree) rather than a string)

remove (child)
Removes the child element

replace (child, *args, **kwargs)
Appends a child element like append (), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

* alternative (bool) —If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append () if you want the added element

e be an alternative. (to)—
See AbstractElement .append () for more information and all parameters.
resolveword (id)

rightcontext (size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select (Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.
Parameters

* Class (class) — The class to select; any python class (not instance) subclassed off
AbstractElement

* Set (str)-The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

4.1.

Reading FoLiA 31

PyNLPI Documentation, Release 1.2.8

* recursive (bool) — Select recursively? Descending into child elements? Defaults to
True.

* ignore — A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, Alternativelayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

* node (#) — Reserved for internal usage, used in recursion.
Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select (folia.Sense, 'cornetto', True, [folia.Original, |
—~folia.Suggestion, folia.Alternative]):

setdoc (newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy ()

setdocument (doc)
Associate a document with this element.

Parameters doc (Document)— A document
Each element must be associated with a FoLiA document.

setparents ()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy ()

settext (text, cls="current’)
Set the text for this element.

Parameters
¢ text (str) - The text

* cls (str)—The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker ()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext (cls=’current’)
Alias for text () with strict=True

32 Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

text (cls=’current’, retaintokenisation=False, previousdelimiter=", strict=False, correctionhan-
dling=1, normalize_spaces=False)
Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters
e cls (str)— The class of the text content to obtain, defaults to current.

* retaintokenisation (bool) - If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

* previousdelimiter (str)— Can be set to a delimiter that was last outputed, useful
when chaining calls to text (). Defaults to an empty string.

e strict (bool) — Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

* correctionhandling — Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

* normalize_spaces (bool) — Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text ()

Returns The text of the element (unicode instance in Python 2, st r in Python 3)
Raises NoSuchText —if no text is found at all.
textcontent (cls="current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text (), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters
¢ cls (str)— The class of the text content to obtain, defaults to current.

* correctionhandling — Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)
Raises NoSuchText if there is no text content for the element
See also:

text () phoncontent () phon ()

4.1.

Reading FoLiA 33

PyNLPI Documentation, Release 1.2.8

textvalidation (warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) — Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext (cls=’current’)
Alias for text () with retaintokenisation=True

updatetext ()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml (attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.
Returns an Ixml.etree.Element
See also:
AbstractElement.xmlstring () - for direct string output

xmlstring (pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children
Return type str

__iter_ ()
Iterate over all children of this element.

Example:

for annotation in word:

len ()
Returns the number of child elements under the current element.

__str ()
Alias for text ()

pynlpl.formats.folia.AbstractStructureElement

class pynlpl.formats.folia.AbstractStructureElement (doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.
AllowTokenAnnotation,pynlpl.formats.folia.AllowGeneratelD

Abstract element, all structure elements inherit from this class. Never instantiated directly.

Method Summary

34 Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

__init__(doc, *args, ¥**kwargs)

Initialize self.

accept s(Class[, raiseexceptions, parentinstance])

add(child, *args, **kwargs)

addable(parent|, set, raiseexceptions])

Tests whether a new element of this class can be
added to the parent.

addidsuffix(idsuffix[, recursive])

Appends a suffix to this element’s ID, and optionally
to all child IDs as well.

addtoindex([norecurse])

Makes sure this element (and all subelements), are
properly added to the index.

alternatives([Class, set])

Generator over alternatives, either all or only of a
specific annotation type, and possibly restrained also
by set.

ancestor(*Classes)

Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class])

Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(typel, set])

Obtain a single annotation element.

annotations(Class[, set])

Obtain child elements (annotations) of the specified
class.

append(child, *args, **kwargs)

See AbstractElement .append ()

context(size[, placeholder, scope])

Returns this word in context, {size} words to the left,
the current word, and {size} words to the right

copy([newdoc, idsuffix])

Make a deep copy of this element and all its children.

copychildren([newdoc, idsuffix])

Generator creating a deep copy of the children of this
element.

correct(**kwargs)

Apply a correction (TODO: documentation to be
written still)

count(Class], set, recursive, ignore, node])

Like AbstractElement.select (), but in-
stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.

findcorrectionhandling(cls)

Find the proper correctionhandling given a textclass
by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set])

Internal method to find replaceable elements.

generate_1id(cls)

get index(child[, recursive, ignore])

Get the index at which an element occurs, recursive
by default!

getmetadata([key])

Get the metadata that applies to this element, auto-
matically inherited from parent elements

gettextdelimiter([retaintokenisation])

Return the text delimiter for this class.

hasannotation(Class[, set])

Returns an integer indicating whether such as anno-
tation exists, and if so, how many.

hasannotationlayer([annotationtype, set])

Does the specified annotation layer exist?

hasphon([cls, strict, correctionhandling])

Does this element have phonetic content (of the spec-
ified class)

hastext([cls, strict, correctionhandling])

Does this element have text (of the specified class)

Continued on next page

4.1. Reading FoLiA

35

PyNLPI Documentation, Release 1.2.8

Table 6 — continued from previous page

incorrection()

Is this element part of a correction? If it is, it returns
the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)

1 tems([founditems])

Returns a depth-first flat list of all items below this
element (not limited to AbstractElement)

Jjson([attribs, recurse, ignorelist])

Serialises the FoLiA element and all its contents to a
Python dictionary suitable for serialisation to JSON.

1layers([annotationtype, set])

Returns a list of annotation layers found directly un-
der this element, does not include alternative layers

leftcontext(size[, placeholder, scope])

Returns the left context for an element, as a list.

next([Class, scope, reverse])

Returns the next element, if it is of the specified type
and if it does not cross the boundary of the defined
scope.

originaltext([cls])

Alias for retrieving the original uncorrect text.

paragraphs([index])

Returns a generator of Paragraph elements found (re-
cursively) under this element.

parsexml(node, doc, **kwargs)

Internal class method used for turning an XML ele-
ment into an instance of the Class.

phon([cls, previousdelimiter, strict, ...])

Get the phonetic representation associated with this
element (of the specified class)

phoncontent([cls, correctionhandling])

Get the phonetic content explicitly associated with
this element (of the specified class).

postappend()

This method will be called after an element is added
to another and does some checks.

previous([Class, scope])

Returns the previous element, if it is of the specified
type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, ...])

Returns a RelaxNG definition for this element (as an
XML element (Ixml.etree) rather than a string)

remove(child)

Removes the child element

replace(child, *args, **kwargs)

Appends a child element like append (), but re-
places any existing child element of the same type
and set.

resolveword(id)

rightcontext(size[, placeholder, scope])

Returns the right context for an element, as a list.

select(Class], set, recursive, ignore, node])

Select child elements of the specified class.

sentences([index])

Returns a generator of Sentence elements found (re-
cursively) under this element

setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.

settext(text], cls])

Set the text for this element.

speech_speaker()

Retrieves the speaker of the audio or video file asso-
ciated with the element.

speech_src()

Retrieves the URL/filename of the audio or video file
associated with the element.

stricttext([cls])

Alias for text () with strict=True

text([cls, retaintokenisation, ...])

Get the text associated with this element (of the spec-
ified class)

Continued on next page

36

Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

Table 6 — continued from previous page

textcontent([cls, correctionhandling])

Get the text content explicitly associated with this
element (of the specified class).

textvalidation([warnonly])

Run text validation on this element.

toktext([cls]) Alias for text () with
retaintokenisation=True

updatetext() Recompute textual value based on the text content of
the children.

words([index]) Returns a generator of Word elements found (recur-

sively) under this element.

xm1([attribs, elements, skipchildren])

Serialises the FoLiA element and all its contents to

XML.

xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to
XML.

diter () Iterate over all children of this element.

__Ien_ () Returns the number of child elements under the cur-
rent element.

__str_ () Alias for text ()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>,
ANNOTATIONTYPE = None
AUTH = True

AUTO_GENERATE_ID =
OCCURRENCES = 0

True

OCCURRENCES_PER_SET = 0
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)
PHONCONTAINER = False
PRIMARYELEMENT = True
PRINTABLE = True
REQUIRED_ ATTRIBS = None
REQUIRED_DATA = None
SETONLY = False
SPEAKABLE = True

SUBSET = None
TEXTCONTAINER = False
TEXTDELIMITER = '\n\n'
XLINK = False

XMLTAG = None

<class

4.1. Reading FoLiA

37

'pynlp

PyNLPI Documentation, Release 1.2.8

Method Details

__init_ (doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__ (doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts (Class, raiseexceptions=True, parentinstance=None)
add (child, *args, **kwargs)

classmethod addable (parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

* parent (AbstractElement) - The element that is being added to

e set (str or None)-The set

* raiseexceptions (bool)— Raise an exception if the element can’t be added?
Returns bool
Raises ValueError

addidsuffix (idsuffix, recursive=True)

Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy ()

addtoindex (norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives (Class=None, set=None)

Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

* Class (class) — The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

* set (str)— The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields A1ternative elements

ancestor (*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes — The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor (folia.Paragraph)

38 Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

ancestors (Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class — The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from Abst ractElement)

annotation (fype, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.
Parameters

* Class (class) — The class to select; any python class (not instance) subclassed off
AbstractElement

* Set (str)-—The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations () AbstractElement.select ()
Raises NoSuchAnnotation if no such annotation exists
annotations (Class, set=None)
Obtain child elements (annotations) of the specified class.
A further restriction can be made based on set.
Parameters

* Class (class) — The class to select; any python class (not instance) subclassed off
AbstractElement

* Set (str)—The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations (folia.Sense, 'http://some/path/cornetto'):

See also:

AbstractElement.select ()

Raises
e AllowTokenAnnotation.annotations()

e NoSuchAnnotation if no such annotation exists

4.1.

Reading FoLiA 39

PyNLPI Documentation, Release 1.2.8

append (child, *args, **kwargs)
See AbstractElement .append ()

context (size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy (newdoc=None, idsuffix="")
Make a deep copy of this element and all its children.

Parameters
* newdoc (Document) — The document the copy should be associated with.

e idsuffix (str or bool)-If setto a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren (newdoc=None, idsuffix="")
Generator creating a deep copy of the children of this element.

Invokes copy () on all children, parameters are the same.

correct (**kwargs)
Apply a correction (TODO: documentation to be written still)

count (Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select (), butinstead of returning the elements, it merely counts them.

Returns int

deepvalidation ()
Perform deep validation of this element.

Raises DeepvValidationError

description ()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat (subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:
sense = word.annotation (folia.Sense)
synset = sense.feat ('synset')

Returns str or list

findcorrectionhandling (cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables (parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace (). Can be overriden for more fine-grained control.

generate_id (cls)

40 Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

getindex (child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata (key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter (retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation (Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations’ () for a description of the parameters.

hasannotationlayer (annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon (cls="current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon (), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters
* cls (str)— The class of the phonetic content to obtain, defaults to current.

* strict (bool) - Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

* correctionhandling - Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext (cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text (), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters
¢ cls (str) - The class of the text content to obtain, defaults to current.

e strict (bool) — Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

* correctionhandling — Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.1.

Reading FoLiA 41

PyNLPI Documentation, Release 1.2.8

incorrection ()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert (index, child, *args, **kwargs)

items (founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json (attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps (word. json ())

Returns dict
layers (annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext (size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next (Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

* Class () — The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

* scope (x) — A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, Listltem,Caption), set to None to not constrain at all.

originaltext (cls=’original’)
Alias for retrieving the original uncorrect text.

A callto text () with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs (index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) — If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml (node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters
* node - XML Element (#)-—
¢ doc - Document (x)—

Returns An instance of the current Class.

42 Chapter 4. FoLiA library

PyNLPI Documentation, Release 1.2.8

phon (cls="current’, previousdelimiter=", strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed f