
PyNLPl Documentation
Release 1.2.8

Maarten van Gompel

Nov 12, 2018

Contents

1 Common Functions 3

2 Data Types 5

3 Evaluation & Experiments 9

4 FoLiA library 13
4.1 Reading FoLiA . 13

4.1.1 Loading a document . 13
4.1.2 Printing text . 21
4.1.3 Index . 22
4.1.4 Elements . 22
4.1.5 Obtaining list of elements . 94
4.1.6 Select method . 95
4.1.7 Selection Shortcuts . 95
4.1.8 Navigating a document . 96
4.1.9 Structure Annotation Types . 97
4.1.10 Common attributes . 425
4.1.11 Annotations . 425

4.2 Editing FoLiA . 797
4.2.1 Creating a new document . 797
4.2.2 Declarations . 797
4.2.3 Adding structure . 797
4.2.4 Adding annotations . 798
4.2.5 Adding span annotation . 799
4.2.6 Deleting annotations . 800
4.2.7 Copying annotations . 800

4.3 Searching in a FoLiA document . 801
4.3.1 Corpus Query Language (CQL) . 801
4.3.2 FoLiA Query Language (FQL) . 802
4.3.3 Streaming Reader . 804

4.4 Higher-Order Annotations . 806
4.4.1 Text Markup . 806
4.4.2 Features . 859
4.4.3 Alternatives . 915
4.4.4 Corrections . 940
4.4.5 Alignments . 1006

i

4.4.6 Descriptions, Metrics . 1029
4.5 Metadata . 1051

5 Formats 1053
5.1 Corpus Gesproken Nederlands . 1053
5.2 FoLiA . 1053
5.3 GIZA++ . 1053
5.4 Moses . 1054
5.5 SoNaR . 1054
5.6 Taggerdata . 1055
5.7 TiMBL . 1055

6 Language Models 1057

7 Search Algorithms 1059

8 Statistics and Information Theory 1061
8.1 Generic functions . 1061
8.2 Frequency Lists and Distributions . 1061
8.3 API Reference . 1062

9 Text Processors 1065
9.1 Tokenisation . 1065
9.2 N-gram extraction . 1065

10 Indices and tables 1069

Python Module Index 1071

ii

PyNLPl Documentation, Release 1.2.8

PyNLPl, pronounced as ‘pineapple’, is a Python library for Natural Language Processing. It contains various modules
useful for common, and less common, NLP tasks. PyNLPl can be used for basic tasks such as the extraction of n-
grams and frequency lists, and to build simple language model. There are also more complex data types and algorithms.
Moreover, there are parsers for file formats common in NLP (e.g. FoLiA/Giza/Moses/ARPA/Timbl/CQL). There are
also clients to interface with various NLP specific servers. PyNLPl most notably features a very extensive library for
working with FoLiA XML (Format for Linguistic Annotatation).

The library is a divided into several packages and modules. It works on Python 2.7, as well as Python 3.

The following modules are available:

• pynlpl.datatypes - Extra datatypes (priority queues, patterns, tries)

• pynlpl.evaluation - Evaluation & experiment classes (parameter search, wrapped progressive sampling,
class evaluation (precision/recall/f-score/auc), sampler, confusion matrix, multithreaded experiment pool)

• pynlpl.formats.cgn - Module for parsing CGN (Corpus Gesproken Nederlands) part-of-speech tags

• pynlpl.formats.folia - Extensive library for reading and manipulating the documents in FoLiA format
(Format for Linguistic Annotation).

• pynlpl.formats.fql - Extensive library for the FoLiA Query Language (FQL), built on top of pynlpl.
formats.folia. FQL is currently documented here.

• pynlpl.formats.cql - Parser for the Corpus Query Language (CQL), as also used by Corpus Workbench
and Sketch Engine. Contains a convertor to FQL.

• pynlpl.formats.giza - Module for reading GIZA++ word alignment data

• pynlpl.formats.moses - Module for reading Moses phrase-translation tables.

• pynlpl.formats.sonar - Largely obsolete module for pre-releases of the SoNaR corpus, use pynlpl.
formats.folia instead.

• pynlpl.formats.timbl - Module for reading Timbl output (consider using python-timbl instead though)

• pynlpl.lm.lm - Module for simple language model and reader for ARPA language model data as well (used
by SRILM).

• pynlpl.search - Various search algorithms (Breadth-first, depth-first, beam-search, hill climbing, A star,
various variants of each)

• pynlpl.statistics - Frequency lists, Levenshtein, common statistics and information theory functions

• pynlpl.textprocessors - Simple tokeniser, n-gram extraction

Contents:

Contents 1

http://proycon.github.io/folia
https://github.com/proycon/foliadocserve
https://github.com/proycon/python-timbl

PyNLPl Documentation, Release 1.2.8

2 Contents

CHAPTER 1

Common Functions

pynlpl.common.Enum(*names)

pynlpl.common.b(s)

pynlpl.common.isstring(s)

pynlpl.common.log(msg, **kwargs)
Generic log method. Will prepend timestamp.

Keyword Arguments

• - Name of the system/module (system) –

• - Integer denoting the desired level of indentation (indent) –

• - List of streams to output to (streams) –

• - Stream to output to (stream) –

pynlpl.common.u(s, encoding=’utf-8’, errors=’strict’)

3

PyNLPl Documentation, Release 1.2.8

4 Chapter 1. Common Functions

CHAPTER 2

Data Types

This library contains various extra data types, based to a certain extend on MIT-licensed code from Peter Norvig, AI:
A Modern Appproach : http://aima.cs.berkeley.edu/python/utils.html

class pynlpl.datatypes.FIFOQueue(data=[])
A First-In-First-Out Queue

append(item)

extend(items)
Append all elements from items to the queue

pop()
Retrieve the next element in line, this will remove it from the queue

class pynlpl.datatypes.Pattern(data, classdecoder=None)

static fromstring(s, classencoder)

iterbytes(begin=0, end=0)

class pynlpl.datatypes.PatternMap(default=None)

items()

class pynlpl.datatypes.PatternSet

add(pattern)

remove(pattern)

class pynlpl.datatypes.PriorityQueue(data=[], f=<function PriorityQueue.<lambda>>, min-
imize=False, length=0, blockworse=False, blocke-
qual=False, duplicates=True)

A queue in which the maximum (or minumum) element is returned first, as determined by either an external
score function f (by default calling the objects score() method). If minimize=True, the item with minimum f(x)
is returned first; otherwise is the item with maximum f(x) or x.score().

5

http://aima.cs.berkeley.edu/python/utils.html

PyNLPl Documentation, Release 1.2.8

length can be set to an integer > 0. Items will only be added to the queue if they’re better or equal to the worst
scoring item. If set to zero, length is unbounded. blockworse can be set to true if you want to prohibit adding
worse-scoring items to the queue. Only items scoring better than the BEST one are added. blockequal can be
set to false if you also want to prohibit adding equally-scoring items to the queue. (Both parameters default to
False)

append(item)
Adds an item to the priority queue (in the right place), returns True if successfull, False if the item was
blocked (because of a bad score)

pop()
Retrieve the next element in line, this will remove it from the queue

prune(n)
prune all but the first (=best) n items

prunebyscore(score, retainequalscore=False)
Deletes all items below/above a certain score from the queue, depending on whether minimize is True
or False. Note: It is recommended (more efficient) to use blockworse=True / blockequal=True instead!
Preventing the addition of ‘worse’ items.

randomprune(n)
prune down to n items at random, disregarding their score

score(i)
Return the score for item x (cheap lookup), Item 0 is always the best item

stochasticprune(n)
prune down to n items, chance of an item being pruned is reverse proportional to its score

class pynlpl.datatypes.Queue

Queue is an abstract class/interface. There are three types: Python List: A Last In First Out Queue (no
Queue object necessary). FIFOQueue(): A First In First Out Queue. PriorityQueue(lt): Queue where
items are sorted by lt, (default <).

Each type supports the following methods and functions: q.append(item) – add an item to the queue
q.extend(items) – equivalent to: for item in items: q.append(item) q.pop() – return the top item from
the queue len(q) – number of items in q (also q.__len()).

extend(items)
Append all elements from items to the queue

class pynlpl.datatypes.Tree(value=None, children=None)
Simple tree structure. Nodes are themselves trees.

append(item)
Add an item to the Tree

leaf()
Is this a leaf node or not?

class pynlpl.datatypes.Trie(sequence=None)
Simple trie structure. Nodes are themselves tries, values are stored on the edges, not the nodes.

append(sequence)

depth()
Returns the depth of the current node

find(sequence)

items()

6 Chapter 2. Data Types

PyNLPl Documentation, Release 1.2.8

leaf()
Is this a leaf node or not?

path()
Returns the path to the current node

root()
Returns True if this is the root of the Trie

sequence()

size()
Size is number of nodes under the trie, including the current node

walk(leavesonly=True, maxdepth=None, _depth=0)
Depth-first search, walking through trie, returning all encounterd nodes (by default only leaves)

7

PyNLPl Documentation, Release 1.2.8

8 Chapter 2. Data Types

CHAPTER 3

Evaluation & Experiments

class pynlpl.evaluation.AbstractExperiment(inputdata=None, **parameters)

defaultparameters()

delete()

done(warn=True)
Is the subprocess done?

duration()

run()

sample(size)
Return a sample of the input data

score()

start()
Start as a detached subprocess, immediately returning execution to caller.

startcommand(command, cwd, stdout, stderr, *arguments, **parameters)

wait()

class pynlpl.evaluation.ClassEvaluation(goals=[], observations=[], missing={},
encoding=’utf-8’)

accuracy(cls=None)

append(goal, observation)

auc(cls=None, macro=False)

compute()

confusionmatrix(casesensitive=True)

fp_rate(cls=None, macro=False)

9

PyNLPl Documentation, Release 1.2.8

fscore(cls=None, beta=1, macro=False)

outputmetrics()

precision(cls=None, macro=False)

recall(cls=None, macro=False)

specificity(cls=None, macro=False)

tp_rate(cls=None, macro=False)

class pynlpl.evaluation.ConfusionMatrix(tokens=None, casesensitive=True, dovalida-
tion=True)

Confusion Matrix

class pynlpl.evaluation.ExperimentPool(size)

append(experiment)

poll(haltonerror=True)

run(haltonerror=True)

start(experiment)

class pynlpl.evaluation.OrdinalEvaluation(goals=[], observations=[], missing={},
encoding=’utf-8’)

compute()

mae(cls=None)

rmse(cls=None)

class pynlpl.evaluation.ParamSearch(experimentclass, inputdata, parameterscope, poolsize=1,
constraintfunc=None, delete=True)

A simpler version of ParamSearch without Wrapped Progressive Sampling

exception pynlpl.evaluation.ProcessFailed

class pynlpl.evaluation.WPSParamSearch(experimentclass, inputdata, size, parameterscope,
poolsize=1, sizefunc=None, prunefunc=None, con-
straintfunc=None, delete=True)

ParamSearch with support for Wrapped Progressive Sampling

searchbest()

test(i=None)

pynlpl.evaluation.auc(x, y, reorder=False)
Compute Area Under the Curve (AUC) using the trapezoidal rule

This is a general fuction, given points on a curve. For computing the area under the ROC-curve, see
auc_score().

Parameters

• x (array, shape = [n]) – x coordinates.

• y (array, shape = [n]) – y coordinates.

• reorder (boolean, optional (default=False)) – If True, assume that the
curve is ascending in the case of ties, as for an ROC curve. If the curve is non-ascending,
the result will be wrong.

Returns auc

10 Chapter 3. Evaluation & Experiments

PyNLPl Documentation, Release 1.2.8

Return type float

Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
>>> metrics.auc(fpr, tpr)
0.75

See also:

auc_score() Computes the area under the ROC curve

pynlpl.evaluation.filesampler(files, testsetsize=0.1, devsetsize=0, trainsetsize=0, outputdir=”,
encoding=’utf-8’)

Extract a training set, test set and optimally a development set from one file, or multiple interdependent files
(such as a parallel corpus). It is assumed each line contains one instance (such as a word or sentence for
example).

pynlpl.evaluation.mae(absolute_error_values)

pynlpl.evaluation.rmse(squared_error_values)

11

PyNLPl Documentation, Release 1.2.8

12 Chapter 3. Evaluation & Experiments

CHAPTER 4

FoLiA library

This tutorial will introduce the FoLiA Python library, part of PyNLPl. The FoLiA library provides an Application
Programming Interface for the reading, creation and manipulation of FoLiA XML documents. The library works
under Python 2.7 as well as Python 3, which is the recommended version. The samples in this documentation follow
Python 3 conventions.

Prior to reading this document, it is recommended to first read the FoLiA documentation itself and familiarise your-
self with the format and underlying paradigm. The FoLiA documentation can be found on the FoLiA website . It
is especially important to understand the way FoLiA handles sets/classes, declarations, common attributes such as
annotator/annotatortype and the distinction between various kinds of annotation categories such as token annotation
and span annotation.

This Python library is also the foundation of the FoLiA Tools collection, which consists of various command line
utilities to perform common tasks on FoLiA documents. If you’re merely interested in performing a certain common
task, such as a single query or conversion, you might want to check there if it contains is a tool that does what you
want already.

4.1 Reading FoLiA

4.1.1 Loading a document

Any script that uses FoLiA starts with the import:

from pynlpl.formats import folia

At the basis of any FoLiA processing lies the following class:

Document This is the FoLiA Document and holds all its data in
memory.

13

https://proycon.github.io/folia/
https://pypi.python.org/pypi/FoLiA-tools/

PyNLPl Documentation, Release 1.2.8

pynlpl.formats.folia.Document

class pynlpl.formats.folia.Document(*args, **kwargs)
Bases: object

This is the FoLiA Document and holds all its data in memory.

All FoLiA elements have to be associated with a FoLiA document. Besides holding elements, the document
may hold metadata including declarations, and an index of all IDs.

Method Summary

__init__(*args, **kwargs) Start/load a FoLiA document:
add(text) Alias for Document.append()
alias(annotationtype, set[, fallback]) Return the alias for a set (if applicable, returns the

unaltered set otherwise iff fallback is enabled)
append(text) Add a text (or speech) to the document:
count(Class[, set, recursive, ignore]) See AbstractElement.count()
create(Class, *args, **kwargs) Create an element associated with this Document.
date([value]) Get or set the document’s date from/in the metadata.
declare(annotationtype, set, **kwargs) Declare a new annotation type to be used in the doc-

ument.
declared(annotationtype, set) Checks if the annotation type is present (i.e.
defaultannotator(annotationtype[, set]) Obtain the default annotator for the specified annota-

tion type and set.
defaultannotatortype(annotationtype[, set]) Obtain the default annotator type for the specified an-

notation type and set.
defaultdatetime(annotationtype[, set]) Obtain the default datetime for the specified annota-

tion type and set.
defaultset(annotationtype) Obtain the default set for the specified annotation

type.
findwords(*args, **kwargs)
items() Returns a depth-first flat list of all items in the docu-

ment
json() Serialise the document to a dict ready for seriali-

sation to JSON.
jsondeclarations() Return all declarations in a form ready to be seri-

alised to JSON.
language([value]) No arguments: Get the document’s language (ISO-

639-3) from metadata Argument: Set the document’s
language (ISO-639-3) in metadata

license([value]) No arguments: Get the document’s license from
metadata Argument: Set the document’s license in
metadata

load(filename) Load a FoLiA XML file.
paragraphs([index]) Return a generator of all paragraphs found in the

document.
parsemetadata(node) Internal method to parse metadata
parsesubmetadata(node)
parsexml(node[, ParentClass]) Internal method.
parsexmldeclarations(node) Internal method to parse XML declarations

Continued on next page

14 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 2 – continued from previous page
pendingvalidation([warnonly]) Perform any pending validations
publisher([value]) No arguments: Get the document’s publisher from

metadata Argument: Set the document’s publisher in
metadata

save([filename]) Save the document to file.
select(Class[, set, recursive, ignore]) See AbstractElement.select()
sentences([index]) Return a generator of all sentence found in the docu-

ment.
setimdi(node) OBSOLETE
text([cls, retaintokenisation]) Returns the text of the entire document (returns a uni-

code instance)
title([value]) Get or set the document’s title from/in the metadata
unalias(annotationtype, alias) Return the set for an alias (if applicable, raises an

exception otherwise)
words([index]) Return a generator of all active words found in the

document.
xml() Serialise the document to XML.
xmldeclarations() Internal method to generate XML nodes for all dec-

larations
xmlmetadata() Internal method to serialize metadata to XML
xmlstring() Return the XML representation of the document as a

string.
xpath(query) Run Xpath expression and parse the resulting ele-

ments.

Attributes

IDSEPARATOR

Method Details

__init__(*args, **kwargs)
Start/load a FoLiA document:

There are four sources of input for loading a FoLiA document:

1. Create a new document by specifying an ID:

doc = folia.Document(id='test')

2. Load a document from FoLiA or D-Coi XML file:

doc = folia.Document(file='/path/to/doc.xml')

3. Load a document from an XML string:

doc = folia.Document(string='<FoLiA>....</FoLiA>')

4. Load a document by passing a parse xml tree (lxml.etree):

doc = folia.Document(tree=xmltree)

Additionally, there are three modes that can be set with the mode= keyword argument:

4.1. Reading FoLiA 15

PyNLPl Documentation, Release 1.2.8

• folia.Mode.MEMORY - The entire FoLiA Document will be loaded into memory. This is the default
mode and the only mode in which documents can be manipulated and saved again.

• folia.Mode.XPATH - The full XML tree will still be loaded into memory, but conversion to FoLiA
classes occurs only when queried. This mode can be used when the full power of XPath is required.

Keyword Arguments

• setdefinition (dict) – A dictionary of set definitions, the key corresponds to the
set name, the value is a SetDefinition instance

• loadsetdefinitions (bool) – download and load set definitions (default: False)

• deepvalidation (bool) – Do deep validation of the document (default: False), im-
plies loadsetdefinitions

• textvalidation (bool) – Do validation of text consistency (default: False)‘‘

• preparsexmlcallback (function) – Callback for a function taking one argument
(node, an lxml node). Will be called whenever an XML element is parsed into FoLiA.
The function should return an instance inherited from folia.AbstractElement, or None to
abort parsing this element (and all its children)

• parsexmlcallback (function) – Callback for a function taking one argument
(element, a FoLiA element). Will be called whenever an XML element is parsed into
FoLiA. The function should return an instance inherited from folia.AbstractElement, or
None to abort adding this element (and all its children)

• debug (bool) – Boolean to enable/disable debug

__init__(*args, **kwargs)
Start/load a FoLiA document:

There are four sources of input for loading a FoLiA document:

1. Create a new document by specifying an ID:

doc = folia.Document(id='test')

2. Load a document from FoLiA or D-Coi XML file:

doc = folia.Document(file='/path/to/doc.xml')

3. Load a document from an XML string:

doc = folia.Document(string='<FoLiA>....</FoLiA>')

4. Load a document by passing a parse xml tree (lxml.etree):

doc = folia.Document(tree=xmltree)

Additionally, there are three modes that can be set with the mode= keyword argument:

• folia.Mode.MEMORY - The entire FoLiA Document will be loaded into memory. This is the default
mode and the only mode in which documents can be manipulated and saved again.

• folia.Mode.XPATH - The full XML tree will still be loaded into memory, but conversion to FoLiA
classes occurs only when queried. This mode can be used when the full power of XPath is required.

Keyword Arguments

16 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• setdefinition (dict) – A dictionary of set definitions, the key corresponds to the
set name, the value is a SetDefinition instance

• loadsetdefinitions (bool) – download and load set definitions (default: False)

• deepvalidation (bool) – Do deep validation of the document (default: False), im-
plies loadsetdefinitions

• textvalidation (bool) – Do validation of text consistency (default: False)‘‘

• preparsexmlcallback (function) – Callback for a function taking one argument
(node, an lxml node). Will be called whenever an XML element is parsed into FoLiA.
The function should return an instance inherited from folia.AbstractElement, or None to
abort parsing this element (and all its children)

• parsexmlcallback (function) – Callback for a function taking one argument
(element, a FoLiA element). Will be called whenever an XML element is parsed into
FoLiA. The function should return an instance inherited from folia.AbstractElement, or
None to abort adding this element (and all its children)

• debug (bool) – Boolean to enable/disable debug

add(text)
Alias for Document.append()

alias(annotationtype, set, fallback=False)
Return the alias for a set (if applicable, returns the unaltered set otherwise iff fallback is enabled)

append(text)
Add a text (or speech) to the document:

Example 1:

doc.append(folia.Text)

Example 2:: doc.append(folia.Text(doc, id=’example.text’))

Example 3:

doc.append(folia.Speech)

count(Class, set=None, recursive=True, ignore=True)
See AbstractElement.count()

create(Class, *args, **kwargs)
Create an element associated with this Document. This method may be obsolete and removed later.

date(value=None)
Get or set the document’s date from/in the metadata.

No arguments: Get the document’s date from metadata Argument: Set the document’s date in metadata

declare(annotationtype, set, **kwargs)
Declare a new annotation type to be used in the document.

Keyword arguments can be used to set defaults for any annotation of this type and set.

Parameters

• annotationtype – The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

4.1. Reading FoLiA 17

PyNLPl Documentation, Release 1.2.8

• set (str) – the set, should formally be a URL pointing to the set definition

Keyword Arguments

• annotator (str) – Sets a default annotator

• annotatortype – Should be either AnnotatorType.MANUAL or
AnnotatorType.AUTO, indicating whether the annotation was performed manu-
ally or by an automated process.

• datetime (datetime.datetime) – Sets the default datetime

• alias (str) – Defines alias that may be used in set attribute of elements instead of the
full set name

Example:

doc.declare(folia.PosAnnotation, 'http://some/path/brown-tag-set', annotator=
→˓"mytagger", annotatortype=folia.AnnotatorType.AUTO)

declared(annotationtype, set)
Checks if the annotation type is present (i.e. declared) in the document.

Parameters

• annotationtype – The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

• set (str) – the set, should formally be a URL pointing to the set definition (aliases are
also supported)

Example:

if doc.declared(folia.PosAnnotation, 'http://some/path/brown-tag-set'):
..

Returns bool

defaultannotator(annotationtype, set=None)
Obtain the default annotator for the specified annotation type and set.

Parameters

• annotationtype – The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

• set (str) – the set, should formally be a URL pointing to the set definition

Returns the set (str)

Raises NoDefaultError if the annotation type does not exist or if there is ambiguity (multi-
ple sets for the same type)

defaultannotatortype(annotationtype, set=None)
Obtain the default annotator type for the specified annotation type and set.

Parameters

• annotationtype – The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

18 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• set (str) – the set, should formally be a URL pointing to the set definition

Returns AnnotatorType.AUTO or AnnotatorType.MANUAL

Raises NoDefaultError if the annotation type does not exist or if there is ambiguity (multi-
ple sets for the same type)

defaultdatetime(annotationtype, set=None)
Obtain the default datetime for the specified annotation type and set.

Parameters

• annotationtype – The type of annotation, this is conveyed by passing the corre-
sponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

• set (str) – the set, should formally be a URL pointing to the set definition

Returns the set (str)

Raises NoDefaultError if the annotation type does not exist or if there is ambiguity (multi-
ple sets for the same type)

defaultset(annotationtype)
Obtain the default set for the specified annotation type.

Parameters annotationtype – The type of annotation, this is conveyed by passing the
corresponding annototion class (such as PosAnnotation for example), or a member of
AnnotationType, such as AnnotationType.POS.

Returns the set (str)

Raises NoDefaultError if the annotation type does not exist or if there is ambiguity (multi-
ple sets for the same type)

findwords(*args, **kwargs)

items()
Returns a depth-first flat list of all items in the document

json()
Serialise the document to a dict ready for serialisation to JSON.

Example:

import json
jsondoc = json.dumps(doc.json())

jsondeclarations()
Return all declarations in a form ready to be serialised to JSON.

Returns list of dict

language(value=None)
No arguments: Get the document’s language (ISO-639-3) from metadata Argument: Set the document’s
language (ISO-639-3) in metadata

license(value=None)
No arguments: Get the document’s license from metadata Argument: Set the document’s license in meta-
data

load(filename)
Load a FoLiA XML file.

Argument: filename (str): The file to load

4.1. Reading FoLiA 19

PyNLPl Documentation, Release 1.2.8

paragraphs(index=None)
Return a generator of all paragraphs found in the document.

If an index is specified, return the n’th paragraph only (starting at 0)

parsemetadata(node)
Internal method to parse metadata

parsesubmetadata(node)

parsexml(node, ParentClass=None)
Internal method.

This is the main XML parser, will invoke class-specific XML parsers.

parsexmldeclarations(node)
Internal method to parse XML declarations

pendingvalidation(warnonly=None)
Perform any pending validations

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

publisher(value=None)
No arguments: Get the document’s publisher from metadata Argument: Set the document’s publisher in
metadata

save(filename=None)
Save the document to file.

Parameters filename (*) – The filename to save to. If not set (None, default), saves to the
same file as loaded from.

select(Class, set=None, recursive=True, ignore=True)
See AbstractElement.select()

sentences(index=None)
Return a generator of all sentence found in the document. Except for sentences in quotes.

If an index is specified, return the n’th sentence only (starting at 0)

setimdi(node)
OBSOLETE

text(cls=’current’, retaintokenisation=False)
Returns the text of the entire document (returns a unicode instance)

See also:

AbstractElement.text()

title(value=None)
Get or set the document’s title from/in the metadata

No arguments: Get the document’s title from metadata Argument: Set the document’s title in metadata

unalias(annotationtype, alias)
Return the set for an alias (if applicable, raises an exception otherwise)

20 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

words(index=None)
Return a generator of all active words found in the document. Does not descend into annotation layers,
alternatives, originals, suggestions.

If an index is specified, return the n’th word only (starting at 0)

xml()
Serialise the document to XML.

Returns lxml.etree.Element

See also:

Document.xmlstring()

xmldeclarations()
Internal method to generate XML nodes for all declarations

xmlmetadata()
Internal method to serialize metadata to XML

xmlstring()
Return the XML representation of the document as a string.

xpath(query)
Run Xpath expression and parse the resulting elements. Don’t forget to use the FoLiA namesapace in your
expressions, using folia: or the short form f:

To read a document from file, instantiate a document as follows:

doc = folia.Document(file="/path/to/document.xml")

This returned Document instance holds the entire document in memory. Note that for large FoLiA documents this
may consume quite some memory! If you happened to already have the document content in a string, you can load as
follows:

doc = folia.Document(string="<FoLiA ...")

Once you have loaded a document, all data is available for you to read and manipulate as you see fit. We will first
illustrate some simple use cases:

To save a document back to the file it was loaded from, we do:

doc.save()

Or we can specify a specific filename:

doc.save("/tmp/document.xml")

Note: Any content that is in a different XML namespace than the FoLiA namespaces or other supported namespaces
(XML, Xlink), will be ignored upon loading and lost when saving.

4.1.2 Printing text

You may want to simply print all (plain) text contained in the document, which is as easy as:

print(doc)

4.1. Reading FoLiA 21

PyNLPl Documentation, Release 1.2.8

Obtaining the text as a string is done by invoking the document’s Document.text() method:

text = doc.text()

Or alternatively as follows:

text = str(doc)

For any subelement of the document, you can obtain its text in the same fashion as well, by calling its
AbstractElement.text() method or by using str(), the only difference is that the former allows for ex-
tensive fine tuning using various extra parameters (See AbstractElement.text()).

Note: In Python 2, both str() as well as unicode() return a unicode instance. You may need to append .
encode('utf-8') for proper output.

4.1.3 Index

A document instance has an index which you can use to grab any of its elements by ID. Querying using the index
proceeds similar to using a python dictionary:

word = doc['example.p.3.s.5.w.1']
print(word)

Note: Python 2 users will have to do print word.text().encode('utf-8') instead, to ensure non-ascii
characters are printed properly.

IDs are unique in the entire document, and preferably even beyond.

4.1.4 Elements

All FoLiA elements are derived from AbstractElement and offer an identical interface. To quickly check whether
you are dealing with a FoLiA element you can therefore always do the following:

isinstance(word, folia.AbstractElement)

This abstract base element is never instantiated directly. The FoLiA paradigm derives several more abstract base
classes which may implement some additional methods or overload some of the original ones:

AbstractElement Abstract base class from which all FoLiA elements are
derived.

AbstractStructureElement Abstract element, all structure elements inherit from this
class.

AllowTokenAnnotation Elements that allow token annotation (including ex-
tended annotation) must inherit from this class

AbstractSpanAnnotation Abstract element, all span annotation elements are de-
rived from this class

AbstractTokenAnnotation Abstract element, all token annotation elements are de-
rived from this class

Continued on next page

22 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 4 – continued from previous page
AbstractAnnotationLayer Annotation layers for Span Annotation are derived from

this abstract base class
AbstractTextMarkup Abstract class for text markup elements, elements that

appear with the TextContent (t) element.

pynlpl.formats.folia.AbstractElement

class pynlpl.formats.folia.AbstractElement(doc, *args, **kwargs)
Bases: object

Abstract base class from which all FoLiA elements are derived.

This class implements many generic methods that are available on all FoLiA elements.

To see if an element is a FoLiA element, as opposed to any other python object, do:

isinstance(x, AbstractElement)

Generic FoLiA attributes can be accessed on all instances derived from this class:

• element.id (str) - The unique identifier of the element

• element.set (str) - The set the element pertains to.

• element.cls (str) - The assigned class, i.e. the actual value of the annotation, defined in the set. Classes
correspond with tagsets in this case of many annotation types. Note that since class is already a reserved
keyword in python, the library consistently uses cls everywhere.

• element.annotator (str) - The name or ID of the annotator who added/modified this element

• element.annotatortype - The type of annotator, can be either folia.AnnotatorType.
MANUAL or folia.AnnotatorType.AUTO

• element.confidence (float) - A confidence value expressing

• element.datetime (datetime.datetime) - The date and time when the element was added/modified.

• element.n (str) - An ordinal label, used for instance in enumerated list contexts, numbered sections,
etc..

The following generic attributes are specific to a speech context:

• element.src (str) - A URL or filename referring the an audio or video file containing the speech.
Access this attribute using the element.speaker_src() method, as it is inheritable from ancestors.

• element.speaker (str) - The name of ID of the speaker. Access this attribute using the element.
speech_speaker() method, as it is inheritable from ancestors.

• element.begintime (4-tuple) - The time in the above source fragment when the phonetic content of
this element starts, this is a (hours, minutes,seconds,milliseconds) tuple.

• element.endtime (4-tuple) - The time in the above source fragment when the phonetic content of this
element ends, this is a (hours, minutes,seconds,milliseconds) tuple.

Not all attributes are allowed, unset or unavailable attributes will always default to None.

Note: This class should never be instantiated directly, as it is abstract!

See also:

4.1. Reading FoLiA 23

PyNLPl Documentation, Release 1.2.8

AbstractElement.__init__()

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.

Continued on next page

24 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 5 – continued from previous page
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

4.1. Reading FoLiA 25

PyNLPl Documentation, Release 1.2.8

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

26 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

4.1. Reading FoLiA 27

PyNLPl Documentation, Release 1.2.8

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

28 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

4.1. Reading FoLiA 29

PyNLPl Documentation, Release 1.2.8

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

30 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

4.1. Reading FoLiA 31

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

32 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

4.1. Reading FoLiA 33

PyNLPl Documentation, Release 1.2.8

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.AbstractStructureElement

class pynlpl.formats.folia.AbstractStructureElement(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.
AllowTokenAnnotation, pynlpl.formats.folia.AllowGenerateID

Abstract element, all structure elements inherit from this class. Never instantiated directly.

Method Summary

34 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)

Continued on next page

4.1. Reading FoLiA 35

PyNLPl Documentation, Release 1.2.8

Table 6 – continued from previous page
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
Continued on next page

36 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 6 – continued from previous page
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = None

4.1. Reading FoLiA 37

PyNLPl Documentation, Release 1.2.8

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

38 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

4.1. Reading FoLiA 39

PyNLPl Documentation, Release 1.2.8

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

40 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.1. Reading FoLiA 41

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

42 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

4.1. Reading FoLiA 43

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

44 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

4.1. Reading FoLiA 45

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

46 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.AllowTokenAnnotation

class pynlpl.formats.folia.AllowTokenAnnotation
Bases: pynlpl.formats.folia.AllowCorrections

4.1. Reading FoLiA 47

PyNLPl Documentation, Release 1.2.8

Elements that allow token annotation (including extended annotation) must inherit from this class

Method Summary

alternatives([Class, set]) Generator over alternatives, either all or only of a
specific annotation type, and possibly restrained also
by set.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
__str__ Return str(self).

Method Details

__init__()
Initialize self. See help(type(self)) for accurate signature.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

48 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

__str__()
Return str(self).

pynlpl.formats.folia.AbstractSpanAnnotation

class pynlpl.formats.folia.AbstractSpanAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.
AllowGenerateID, pynlpl.formats.folia.AllowCorrections

Abstract element, all span annotation elements are derived from this class

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)

Continued on next page

4.1. Reading FoLiA 49

PyNLPl Documentation, Release 1.2.8

Table 8 – continued from previous page
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.

Continued on next page

50 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 8 – continued from previous page
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.

Continued on next page

4.1. Reading FoLiA 51

PyNLPl Documentation, Release 1.2.8

Table 8 – continued from previous page
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

52 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

4.1. Reading FoLiA 53

PyNLPl Documentation, Release 1.2.8

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

54 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

4.1. Reading FoLiA 55

PyNLPl Documentation, Release 1.2.8

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

56 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

4.1. Reading FoLiA 57

PyNLPl Documentation, Release 1.2.8

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

58 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

4.1. Reading FoLiA 59

PyNLPl Documentation, Release 1.2.8

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

60 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.AbstractTokenAnnotation

class pynlpl.formats.folia.AbstractTokenAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.
AllowGenerateID

Abstract element, all token annotation elements are derived from this class

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.

Continued on next page

4.1. Reading FoLiA 61

PyNLPl Documentation, Release 1.2.8

Table 9 – continued from previous page
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.

Continued on next page

62 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 9 – continued from previous page
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 1

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

4.1. Reading FoLiA 63

PyNLPl Documentation, Release 1.2.8

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

64 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

4.1. Reading FoLiA 65

PyNLPl Documentation, Release 1.2.8

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

66 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,

4.1. Reading FoLiA 67

PyNLPl Documentation, Release 1.2.8

which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

68 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

4.1. Reading FoLiA 69

PyNLPl Documentation, Release 1.2.8

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

70 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

4.1. Reading FoLiA 71

PyNLPl Documentation, Release 1.2.8

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.AbstractAnnotationLayer

class pynlpl.formats.folia.AbstractAnnotationLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.
AllowGenerateID, pynlpl.formats.folia.AllowCorrections

Annotation layers for Span Annotation are derived from this abstract base class

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
Continued on next page

72 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 10 – continued from previous page
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
Continued on next page

4.1. Reading FoLiA 73

PyNLPl Documentation, Release 1.2.8

Table 10 – continued from previous page
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

74 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

4.1. Reading FoLiA 75

PyNLPl Documentation, Release 1.2.8

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

76 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

4.1. Reading FoLiA 77

PyNLPl Documentation, Release 1.2.8

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

78 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

4.1. Reading FoLiA 79

PyNLPl Documentation, Release 1.2.8

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

80 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

4.1. Reading FoLiA 81

PyNLPl Documentation, Release 1.2.8

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

82 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

4.1. Reading FoLiA 83

PyNLPl Documentation, Release 1.2.8

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.AbstractTextMarkup

class pynlpl.formats.folia.AbstractTextMarkup(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

Abstract class for text markup elements, elements that appear with the TextContent (t) element.

Markup elements pertain primarily to styling, but also have other roles.

Iterating over the element of a TextContent element will first and foremost produce strings, but also uncover
these markup elements when present.

Method Summary

__init__(doc, *args, **kwargs) See AbstractElement.__init__(), text is
passed as a string in *args.

accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

Continued on next page

84 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 11 – continued from previous page
findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Sets the text content of the markup element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
Continued on next page

4.1. Reading FoLiA 85

PyNLPl Documentation, Release 1.2.8

Table 11 – continued from previous page
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = True

TEXTDELIMITER = ''

XLINK = True

XMLTAG = None

86 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Method Details

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

4.1. Reading FoLiA 87

PyNLPl Documentation, Release 1.2.8

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

88 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

4.1. Reading FoLiA 89

PyNLPl Documentation, Release 1.2.8

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

90 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

4.1. Reading FoLiA 91

PyNLPl Documentation, Release 1.2.8

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Sets the text content of the markup element.

Parameters text (str) –

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

92 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.1. Reading FoLiA 93

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.1.5 Obtaining list of elements

The aforementioned index is useful only if you know the ID of the element. This if often not the case, and you will
want to iterate through the hierarchy of elements through different means.

If you want to iterate over all of the child elements of a certain element, regardless of what type they are, you can
simply do so as follows:

94 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

for subelement in element:
if isinstance(subelement, folia.Sentence):

print("this is a sentence")
else:

print("this is something else")

If applied recursively this allows you to traverse the entire element tree, there are however specialised methods avail-
able that do this for you.

4.1.6 Select method

There is a generic method AbstractElement.select() available on all elements to select child elements of
any desired class. This method is by default applied recursively for most element types:

sentence = doc['example.p.3.s.5.w.1']
words = sentence.select(folia.Word)
for word in words:

print(word)

The AbstractElement.select() method has a sibling AbstractElement.count(), invoked with the
same arguments, which simply counts how many items it finds, without actually returning them:

word = sentence.count(folia.Word)

Note: The select() method and similar high-level methods derived from it, are generators. This implies that the
results of the selection are returned one by one in the iteration, as opposed to all stored in memory. This also implies
that you can only iterate over it once, we can not do another iteration over the words variable in the above example,
unless we reinvoke the select() method to get a new generator. Likewise, we can not do len(words), but have
to use the count() method instead.

If you want to have all results in memory in a list, you can simply do the following:

words = list(sentence.select(folia.Word))

The select method is by default recursive, set the third argument to False to make it non-recursive. The second
argument can be used for restricting matches to a specific set, a tuple of classes. The recursion will not go into any
non-authoritative elements such as alternatives, originals of corrections.

4.1.7 Selection Shortcuts

There are various shortcut methods for select().

For example, you can iterate over all words in the document using Document.words(), or all words under any
structural element using AbstractStructureElement.words():

for word in doc.words():
print(word)

That however gives you one big iteration of words without boundaries. You may more likely want to seek words within
sentences, provided the document distinguishes sentences. So we first iterate over all sentences using Document.
sentences() and then over the words therein using AbstractStructureElement.words():

4.1. Reading FoLiA 95

PyNLPl Documentation, Release 1.2.8

for sentence in doc.sentences():
for word in sentence.words():

print(word)

Or including paragraphs, assuming the document has them:

for paragraph in doc.paragraphs():
for sentence in paragraph.sentences():

for word in sentence.words():
print(word)

Warning: Do be aware that such constructions make presumptions about the structure of the FoLiA document
that may not always apply!

All of these shortcut methods also take an index parameter to quickly select a specific item in the sequence:

word = sentence.words(3) #retrieves the fourth word

4.1.8 Navigating a document

The AbstractElement.select() method is your main tool for descending downwards in the document tree.
There are occassions, however, when you want go upwards or sideways. The AbstractElement.next() and
AbstractElement.previous() methods can be used for sideway navigation, they return the next or previous
element, respectively:

nextelement = element.next()
previouselement = element.previous()

You can explicitly filter by passing an element type:

nextword = word.next(folia.Word)

By default, the search is constrained not to cross certain boundaries, such as sentences and paragraphs. You can do so
explicitly as well by passing a list of constraints:

nextword = word.next(folia.Word, [folia.Sentence])

If you do not want any constraints, pass None:

nextword = word.next(folia.Word, None)

These methods will return None if no next/previous element was found (of the specified type).

Each element has a parent attribute that links it to its parent:

sentence = word.parent

Only for the top-level element (Text or Speech), the parent is None. There is also the method
AbstractElement.ancestors() to iterate over all ancestors, ordered from most immediate to most distant
ancestor:

for ancestor in element.ancestors():
print(type(ancestor))

96 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

If you are looking for ancestors of a specific type, you can pass it as an argument:

for ancestor in element.ancestors(folia.Division):
print(type(ancestor))

If only a single ancestor is desired, use the AbstractElement.ancestor()method instead, unlike the generator
version AbstractElement.ancestors(), it will raise a NoSuchAnnotation exception if the ancestor was
not found:

paragraph = word.ancestor(folia.Paragraph)

4.1.9 Structure Annotation Types

The FoLiA library discerns various Python classes for structure annotation, all are subclasses of
AbstractStructureElement, which in turn is a subclass of AbstractElement. We list the classes
for structure anntoation along with the FoLiA XML tag. Sets and classes can be associated with most of these
elements to make them more specific, these are never prescribed by FoLiA. The list of classes is as follows:

Cell A cell in a Row in a Table
Definition Element used in Entry for the portion that provides a

definition for the entry.
Division Structure element representing some kind of division.
Entry Represents an entry in a glossary/lexicon/dictionary.
Event Structural element representing events, often used in

new media contexts for things such as tweets,chat mes-
sages and forum posts.

Example Element that provides an example.
Figure Element for the representation of a graphical figure.
Gap Gap element, represents skipped portions of the text.
Head Head element; a structure element that acts as the

header/title of a Division.
Linebreak Line break element, signals a line break.
List Element for enumeration/itemisation.
ListItem Single element in a List.
Note Element used for notes, such as footnotes or warnings

or notice blocks.
Paragraph Paragraph element.
Part Generic structure element used to mark a part inside an-

other block.
Quote Quote: a structure element.
Reference A structural element that denotes a reference, internal or

external.
Row A row in a Table
Sentence Sentence element.
Table A table consisting of Row elements that in turn consist

of Cell elements
Term A term, often used in contect of Entry
TableHead Encapsulated the header of a table, contains Cell ele-

ments
Text A full text.
Whitespace Whitespace element, signals a vertical whitespace

Continued on next page

4.1. Reading FoLiA 97

PyNLPl Documentation, Release 1.2.8

Table 12 – continued from previous page
Word Word (aka token) element.

pynlpl.formats.folia.Cell

class pynlpl.formats.folia.Cell(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

A cell in a Row in a Table

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)

Continued on next page

98 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 13 – continued from previous page
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.

Continued on next page

4.1. Reading FoLiA 99

PyNLPl Documentation, Release 1.2.8

Table 13 – continued from previous page
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Cell'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

100 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = ' | '

XLINK = False

XMLTAG = 'cell'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

4.1. Reading FoLiA 101

PyNLPl Documentation, Release 1.2.8

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

102 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

4.1. Reading FoLiA 103

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

104 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

4.1. Reading FoLiA 105

PyNLPl Documentation, Release 1.2.8

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if

106 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

4.1. Reading FoLiA 107

PyNLPl Documentation, Release 1.2.8

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

108 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if

4.1. Reading FoLiA 109

PyNLPl Documentation, Release 1.2.8

you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

110 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

pynlpl.formats.folia.Definition

class pynlpl.formats.folia.Definition(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

Element used in Entry for the portion that provides a definition for the entry.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
Continued on next page

4.1. Reading FoLiA 111

PyNLPl Documentation, Release 1.2.8

Table 14 – continued from previous page
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.

Continued on next page

112 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 14 – continued from previous page
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = 39

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Definition'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

4.1. Reading FoLiA 113

PyNLPl Documentation, Release 1.2.8

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'def'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

114 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

4.1. Reading FoLiA 115

PyNLPl Documentation, Release 1.2.8

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

116 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you

4.1. Reading FoLiA 117

PyNLPl Documentation, Release 1.2.8

want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

118 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

4.1. Reading FoLiA 119

PyNLPl Documentation, Release 1.2.8

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

120 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

4.1. Reading FoLiA 121

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

122 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Division

class pynlpl.formats.folia.Division(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

4.1. Reading FoLiA 123

PyNLPl Documentation, Release 1.2.8

Structure element representing some kind of division. Divisions may be nested at will, and may include almost
all kinds of other structure elements.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
Continued on next page

124 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 15 – continued from previous page
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
head()
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
Continued on next page

4.1. Reading FoLiA 125

PyNLPl Documentation, Release 1.2.8

Table 15 – continued from previous page
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Division'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>)

ANNOTATIONTYPE = 2

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Division'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n\n'

126 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

XLINK = False

XMLTAG = 'div'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

4.1. Reading FoLiA 127

PyNLPl Documentation, Release 1.2.8

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

128 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

4.1. Reading FoLiA 129

PyNLPl Documentation, Release 1.2.8

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

130 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

head()

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

4.1. Reading FoLiA 131

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

132 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

4.1. Reading FoLiA 133

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

134 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

4.1. Reading FoLiA 135

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Entry

class pynlpl.formats.folia.Entry(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

136 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Represents an entry in a glossary/lexicon/dictionary.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?

Continued on next page

4.1. Reading FoLiA 137

PyNLPl Documentation, Release 1.2.8

Table 16 – continued from previous page
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
Continued on next page

138 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 16 – continued from previous page
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Definition'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Term'>)

ANNOTATIONTYPE = 37

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Entry'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'entry'

4.1. Reading FoLiA 139

PyNLPl Documentation, Release 1.2.8

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

140 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

4.1. Reading FoLiA 141

PyNLPl Documentation, Release 1.2.8

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

142 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.1. Reading FoLiA 143

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

144 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

4.1. Reading FoLiA 145

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

146 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

4.1. Reading FoLiA 147

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

148 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Event

class pynlpl.formats.folia.Event(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

4.1. Reading FoLiA 149

PyNLPl Documentation, Release 1.2.8

Structural element representing events, often used in new media contexts for things such as tweets,chat messages
and forum posts.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
Continued on next page

150 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 17 – continued from previous page
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
Continued on next page

4.1. Reading FoLiA 151

PyNLPl Documentation, Release 1.2.8

Table 17 – continued from previous page
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.ActorFeature'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.BegindatetimeFeature'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Division'>, <class 'pynlpl.formats.folia.EnddatetimeFeature'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = 21

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Event'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

152 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

XLINK = False

XMLTAG = 'event'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

4.1. Reading FoLiA 153

PyNLPl Documentation, Release 1.2.8

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

154 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

4.1. Reading FoLiA 155

PyNLPl Documentation, Release 1.2.8

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

156 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

4.1. Reading FoLiA 157

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

158 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

4.1. Reading FoLiA 159

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

160 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

4.1. Reading FoLiA 161

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Example

class pynlpl.formats.folia.Example(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

162 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Element that provides an example. Used for instance in the context of Entry

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?

Continued on next page

4.1. Reading FoLiA 163

PyNLPl Documentation, Release 1.2.8

Table 18 – continued from previous page
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
Continued on next page

164 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 18 – continued from previous page
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = 40

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Example'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'ex'

4.1. Reading FoLiA 165

PyNLPl Documentation, Release 1.2.8

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

166 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

4.1. Reading FoLiA 167

PyNLPl Documentation, Release 1.2.8

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

168 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.1. Reading FoLiA 169

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

170 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

4.1. Reading FoLiA 171

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

172 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

4.1. Reading FoLiA 173

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

174 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Figure

class pynlpl.formats.folia.Figure(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

4.1. Reading FoLiA 175

PyNLPl Documentation, Release 1.2.8

Element for the representation of a graphical figure. Structure element.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
caption()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
Continued on next page

176 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 19 – continued from previous page
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
Continued on next page

4.1. Reading FoLiA 177

PyNLPl Documentation, Release 1.2.8

Table 19 – continued from previous page
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Caption'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = 5

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Figure'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

178 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

XLINK = False

XMLTAG = 'figure'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

4.1. Reading FoLiA 179

PyNLPl Documentation, Release 1.2.8

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

180 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

caption()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

4.1. Reading FoLiA 181

PyNLPl Documentation, Release 1.2.8

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you

182 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

4.1. Reading FoLiA 183

PyNLPl Documentation, Release 1.2.8

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

184 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

4.1. Reading FoLiA 185

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

186 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

4.1. Reading FoLiA 187

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Gap

class pynlpl.formats.folia.Gap(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

188 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Gap element, represents skipped portions of the text.

Usually contains Content and possibly also a Description element

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
content()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
Continued on next page

4.1. Reading FoLiA 189

PyNLPl Documentation, Release 1.2.8

Table 20 – continued from previous page
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.

Continued on next page

190 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 20 – continued from previous page
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Content'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

ANNOTATIONTYPE = 24

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Gap'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 5, 8, 6, 7, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'gap'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

4.1. Reading FoLiA 191

PyNLPl Documentation, Release 1.2.8

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

content()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

192 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to

4.1. Reading FoLiA 193

PyNLPl Documentation, Release 1.2.8

CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

194 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

4.1. Reading FoLiA 195

PyNLPl Documentation, Release 1.2.8

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

196 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

4.1. Reading FoLiA 197

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the

198 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.1. Reading FoLiA 199

PyNLPl Documentation, Release 1.2.8

pynlpl.formats.folia.Head

class pynlpl.formats.folia.Head(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

Head element; a structure element that acts as the header/title of a Division.

There may be only one per division. Often contains sentences (Sentence) or Words (Word).

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
Continued on next page

200 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 21 – continued from previous page
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.

Continued on next page

4.1. Reading FoLiA 201

PyNLPl Documentation, Release 1.2.8

Table 21 – continued from previous page
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Head'

OCCURRENCES = 1

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

202 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'head'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

4.1. Reading FoLiA 203

PyNLPl Documentation, Release 1.2.8

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

204 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

4.1. Reading FoLiA 205

PyNLPl Documentation, Release 1.2.8

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you

206 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

4.1. Reading FoLiA 207

PyNLPl Documentation, Release 1.2.8

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

208 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

4.1. Reading FoLiA 209

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

210 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

4.1. Reading FoLiA 211

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Linebreak

class pynlpl.formats.folia.Linebreak(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement, pynlpl.formats.folia.

212 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

AbstractTextMarkup

Line break element, signals a line break.

This element acts both as a structure element as well as a text markup element.

Method Summary

__init__(doc, *args, **kwargs) See AbstractElement.__init__(), text is
passed as a string in *args.

accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
Continued on next page

4.1. Reading FoLiA 213

PyNLPl Documentation, Release 1.2.8

Table 22 – continued from previous page
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Sets the text content of the markup element.

Continued on next page

214 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 22 – continued from previous page
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

ANNOTATIONTYPE = 7

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Linebreak'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = True

4.1. Reading FoLiA 215

PyNLPl Documentation, Release 1.2.8

TEXTDELIMITER = ''

XLINK = True

XMLTAG = 'br'

Method Details

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

216 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

4.1. Reading FoLiA 217

PyNLPl Documentation, Release 1.2.8

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

218 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you

4.1. Reading FoLiA 219

PyNLPl Documentation, Release 1.2.8

want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

220 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

4.1. Reading FoLiA 221

PyNLPl Documentation, Release 1.2.8

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

222 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Sets the text content of the markup element.

Parameters text (str) –

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=None, normalize_spaces=False)

Get the text associated with this element (of the specified class)

4.1. Reading FoLiA 223

PyNLPl Documentation, Release 1.2.8

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

224 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.List

class pynlpl.formats.folia.List(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

Element for enumeration/itemisation. Structure element. Contains ListItem elements.

Method Summary

4.1. Reading FoLiA 225

PyNLPl Documentation, Release 1.2.8

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)

Continued on next page

226 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 23 – continued from previous page
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
Continued on next page

4.1. Reading FoLiA 227

PyNLPl Documentation, Release 1.2.8

Table 23 – continued from previous page
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Caption'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.ListItem'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = 4

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'List'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'list'

228 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

4.1. Reading FoLiA 229

PyNLPl Documentation, Release 1.2.8

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

230 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

4.1. Reading FoLiA 231

PyNLPl Documentation, Release 1.2.8

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

232 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

4.1. Reading FoLiA 233

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

234 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

4.1. Reading FoLiA 235

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

236 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

4.1. Reading FoLiA 237

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.ListItem

class pynlpl.formats.folia.ListItem(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

238 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Single element in a List. Structure element. Contained within List element.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?

Continued on next page

4.1. Reading FoLiA 239

PyNLPl Documentation, Release 1.2.8

Table 24 – continued from previous page
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
Continued on next page

240 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 24 – continued from previous page
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Label'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'List Item'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n'

XLINK = False

XMLTAG = 'item'

4.1. Reading FoLiA 241

PyNLPl Documentation, Release 1.2.8

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

242 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

4.1. Reading FoLiA 243

PyNLPl Documentation, Release 1.2.8

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

244 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.1. Reading FoLiA 245

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

246 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

4.1. Reading FoLiA 247

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

248 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

4.1. Reading FoLiA 249

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

250 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Note

class pynlpl.formats.folia.Note(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

4.1. Reading FoLiA 251

PyNLPl Documentation, Release 1.2.8

Element used for notes, such as footnotes or warnings or notice blocks.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?

Continued on next page

252 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 25 – continued from previous page
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
Continued on next page

4.1. Reading FoLiA 253

PyNLPl Documentation, Release 1.2.8

Table 25 – continued from previous page
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = 25

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Note'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'note'

254 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

4.1. Reading FoLiA 255

PyNLPl Documentation, Release 1.2.8

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

256 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

4.1. Reading FoLiA 257

PyNLPl Documentation, Release 1.2.8

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

258 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

4.1. Reading FoLiA 259

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

260 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

4.1. Reading FoLiA 261

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

262 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

4.1. Reading FoLiA 263

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Paragraph

class pynlpl.formats.folia.Paragraph(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

264 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Paragraph element. A structure element. Represents a paragraph and holds all its sentences (and possibly other
structure Whitespace and Quotes).

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
Continued on next page

4.1. Reading FoLiA 265

PyNLPl Documentation, Release 1.2.8

Table 26 – continued from previous page
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
Continued on next page

266 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 26 – continued from previous page
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = 3

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Paragraph'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

4.1. Reading FoLiA 267

PyNLPl Documentation, Release 1.2.8

XLINK = False

XMLTAG = 'p'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

268 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

4.1. Reading FoLiA 269

PyNLPl Documentation, Release 1.2.8

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

270 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.1. Reading FoLiA 271

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

272 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

4.1. Reading FoLiA 273

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

274 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

4.1. Reading FoLiA 275

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

276 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Part

class pynlpl.formats.folia.Part(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

4.1. Reading FoLiA 277

PyNLPl Documentation, Release 1.2.8

Generic structure element used to mark a part inside another block.

Do not use this for morphology, use Morpheme instead.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
Continued on next page

278 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 27 – continued from previous page
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
Continued on next page

4.1. Reading FoLiA 279

PyNLPl Documentation, Release 1.2.8

Table 27 – continued from previous page
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = 35

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Part'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

280 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

XLINK = False

XMLTAG = 'part'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

4.1. Reading FoLiA 281

PyNLPl Documentation, Release 1.2.8

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

282 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

4.1. Reading FoLiA 283

PyNLPl Documentation, Release 1.2.8

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

284 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

4.1. Reading FoLiA 285

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

286 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

4.1. Reading FoLiA 287

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

288 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

4.1. Reading FoLiA 289

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Quote

class pynlpl.formats.folia.Quote(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

290 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Quote: a structure element. For quotes/citations. May hold Word, Sentence or Paragraph data.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?

Continued on next page

4.1. Reading FoLiA 291

PyNLPl Documentation, Release 1.2.8

Table 28 – continued from previous page
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
Continued on next page

292 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 28 – continued from previous page
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Division'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Quote'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'quote'

4.1. Reading FoLiA 293

PyNLPl Documentation, Release 1.2.8

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

294 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

4.1. Reading FoLiA 295

PyNLPl Documentation, Release 1.2.8

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

296 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.1. Reading FoLiA 297

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

298 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

4.1. Reading FoLiA 299

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

300 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

4.1. Reading FoLiA 301

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

302 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Reference

class pynlpl.formats.folia.Reference(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

4.1. Reading FoLiA 303

PyNLPl Documentation, Release 1.2.8

A structural element that denotes a reference, internal or external. Examples are references to footnotes, bibli-
ographies, hyperlinks.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
Continued on next page

304 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 29 – continued from previous page
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
Continued on next page

4.1. Reading FoLiA 305

PyNLPl Documentation, Release 1.2.8

Table 29 – continued from previous page
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Reference'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

306 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

XLINK = False

XMLTAG = 'ref'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

4.1. Reading FoLiA 307

PyNLPl Documentation, Release 1.2.8

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

308 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

4.1. Reading FoLiA 309

PyNLPl Documentation, Release 1.2.8

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

310 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

4.1. Reading FoLiA 311

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

312 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

4.1. Reading FoLiA 313

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

314 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

4.1. Reading FoLiA 315

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Row

class pynlpl.formats.folia.Row(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

316 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

A row in a Table

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?

Continued on next page

4.1. Reading FoLiA 317

PyNLPl Documentation, Release 1.2.8

Table 30 – continued from previous page
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
Continued on next page

318 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 30 – continued from previous page
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Cell'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Table Row'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n'

XLINK = False

XMLTAG = 'row'

4.1. Reading FoLiA 319

PyNLPl Documentation, Release 1.2.8

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

320 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

4.1. Reading FoLiA 321

PyNLPl Documentation, Release 1.2.8

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

322 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.1. Reading FoLiA 323

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

324 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

4.1. Reading FoLiA 325

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

326 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

4.1. Reading FoLiA 327

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

328 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Sentence

class pynlpl.formats.folia.Sentence(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

4.1. Reading FoLiA 329

PyNLPl Documentation, Release 1.2.8

Sentence element. A structure element. Represents a sentence and holds all its words (Word), and possibly
other structure such as LineBreak, Whitespace and Quote

Method Summary

__init__(doc, *args, **kwargs) Example.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
corrections() Are there corrections in this sentence?
correctwords(originalwords, newwords,
**kwargs)

Generic correction method for words.

count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-
stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
deleteword(word, **kwargs) TODO: Write documentation
description() Obtain the description associated with the element.
division() Obtain the division this sentence is a part of (None

otherwise).
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)

Continued on next page

330 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 31 – continued from previous page
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
insertword(newword, prevword, **kwargs) Inserts a word as a correction after an existing word.
insertwordleft(newword, nextword,
**kwargs)

Inserts a word as a correction before an existing
word.

items([founditems]) Returns a depth-first flat list of all items below this
element (not limited to AbstractElement)

json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a
Python dictionary suitable for serialisation to JSON.

layers([annotationtype, set]) Returns a list of annotation layers found directly un-
der this element, does not include alternative layers

leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
mergewords(newword, *originalwords,
**kwargs)

TODO: Write documentation

next([Class, scope, reverse]) Returns the next element, if it is of the specified type
and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraph() Obtain the paragraph this sentence is a part of (None

otherwise).
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
Continued on next page

4.1. Reading FoLiA 331

PyNLPl Documentation, Release 1.2.8

Table 31 – continued from previous page
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
splitword(originalword, *newwords, **kwargs) TODO: Write documentation
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = 8

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Sentence'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

332 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = ' '

XLINK = False

XMLTAG = 's'

Method Details

__init__(doc, *args, **kwargs)
Example:

sentence = paragraph.append(folia.Sentence)

sentence.append(folia.Word, 'This')
sentence.append(folia.Word, 'is')
sentence.append(folia.Word, 'a')
sentence.append(folia.Word, 'test', space=False)
sentence.append(folia.Word, '.')

Example:

sentence = folia.Sentence(doc, folia.Word(doc, 'This'), folia.Word(doc, 'is
→˓'), folia.Word(doc, 'a'), folia.Word(doc, 'test', space=False), folia.
→˓Word(doc, '.'))
paragraph.append(sentence)

See also:

AbstractElement.__init__()

__init__(doc, *args, **kwargs)
Example:

sentence = paragraph.append(folia.Sentence)

sentence.append(folia.Word, 'This')
sentence.append(folia.Word, 'is')
sentence.append(folia.Word, 'a')
sentence.append(folia.Word, 'test', space=False)
sentence.append(folia.Word, '.')

Example:

4.1. Reading FoLiA 333

PyNLPl Documentation, Release 1.2.8

sentence = folia.Sentence(doc, folia.Word(doc, 'This'), folia.Word(doc, 'is
→˓'), folia.Word(doc, 'a'), folia.Word(doc, 'test', space=False), folia.
→˓Word(doc, '.'))
paragraph.append(sentence)

See also:

AbstractElement.__init__()

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

334 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

4.1. Reading FoLiA 335

PyNLPl Documentation, Release 1.2.8

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

corrections()
Are there corrections in this sentence?

Returns bool

correctwords(originalwords, newwords, **kwargs)
Generic correction method for words. You most likely want to use the helper functions Sentence.
splitword() , Sentence.mergewords(), deleteword(), insertword() instead

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

deleteword(word, **kwargs)
TODO: Write documentation

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

division()
Obtain the division this sentence is a part of (None otherwise). Shortcut for AbstractElement.
ancestor()

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

336 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

4.1. Reading FoLiA 337

PyNLPl Documentation, Release 1.2.8

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

insertword(newword, prevword, **kwargs)
Inserts a word as a correction after an existing word.

This method automatically computes the index of insertion and calls AbstractElement.insert()

Parameters

• newword (Word) – The new word to insert

• prevword (Word) – The word to insert after

Keyword Arguments suggest (bool) – Do a suggestion for correction rather than the default
authoritive correction

See also:

AbstractElement.insert() and AbstractElement.getindex() If you do not want to do
corrections

insertwordleft(newword, nextword, **kwargs)
Inserts a word as a correction before an existing word.

Reverse of Sentence.insertword().

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

338 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

mergewords(newword, *originalwords, **kwargs)
TODO: Write documentation

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraph()
Obtain the paragraph this sentence is a part of (None otherwise). Shortcut for AbstractElement.
ancestor()

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

4.1. Reading FoLiA 339

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

340 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

4.1. Reading FoLiA 341

PyNLPl Documentation, Release 1.2.8

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

splitword(originalword, *newwords, **kwargs)
TODO: Write documentation

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

342 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

4.1. Reading FoLiA 343

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Table

class pynlpl.formats.folia.Table(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

A table consisting of Row elements that in turn consist of Cell elements

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
Continued on next page

344 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 32 – continued from previous page
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
Continued on next page

4.1. Reading FoLiA 345

PyNLPl Documentation, Release 1.2.8

Table 32 – continued from previous page
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
Continued on next page

346 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 32 – continued from previous page
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Row'>, <class 'pynlpl.formats.folia.TableHead'>)

ANNOTATIONTYPE = 33

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Table'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'table'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

4.1. Reading FoLiA 347

PyNLPl Documentation, Release 1.2.8

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

348 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

4.1. Reading FoLiA 349

PyNLPl Documentation, Release 1.2.8

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

350 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

4.1. Reading FoLiA 351

PyNLPl Documentation, Release 1.2.8

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

352 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

4.1. Reading FoLiA 353

PyNLPl Documentation, Release 1.2.8

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

354 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.1. Reading FoLiA 355

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

356 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Term

class pynlpl.formats.folia.Term(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

A term, often used in contect of Entry

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
Continued on next page

4.1. Reading FoLiA 357

PyNLPl Documentation, Release 1.2.8

Table 33 – continued from previous page
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
Continued on next page

358 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 33 – continued from previous page
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
Continued on next page

4.1. Reading FoLiA 359

PyNLPl Documentation, Release 1.2.8

Table 33 – continued from previous page
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = 38

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Term'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'term'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

360 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

4.1. Reading FoLiA 361

PyNLPl Documentation, Release 1.2.8

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

362 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

4.1. Reading FoLiA 363

PyNLPl Documentation, Release 1.2.8

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

364 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

4.1. Reading FoLiA 365

PyNLPl Documentation, Release 1.2.8

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

366 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

4.1. Reading FoLiA 367

PyNLPl Documentation, Release 1.2.8

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

368 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

4.1. Reading FoLiA 369

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.TableHead

class pynlpl.formats.folia.TableHead(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

Encapsulated the header of a table, contains Cell elements

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
Continued on next page

370 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 34 – continued from previous page
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
Continued on next page

4.1. Reading FoLiA 371

PyNLPl Documentation, Release 1.2.8

Table 34 – continued from previous page
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
Continued on next page

372 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 34 – continued from previous page
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Row'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Table Header'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n'

XLINK = False

XMLTAG = 'tablehead'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

4.1. Reading FoLiA 373

PyNLPl Documentation, Release 1.2.8

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

374 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

4.1. Reading FoLiA 375

PyNLPl Documentation, Release 1.2.8

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

376 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

4.1. Reading FoLiA 377

PyNLPl Documentation, Release 1.2.8

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

378 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

4.1. Reading FoLiA 379

PyNLPl Documentation, Release 1.2.8

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

380 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.1. Reading FoLiA 381

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

382 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Text

class pynlpl.formats.folia.Text(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

A full text. This is a high-level element (not to be confused with TextContent!). This element may contain
Division,:class:Paragraph, class:Sentence, etc..

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
Continued on next page

4.1. Reading FoLiA 383

PyNLPl Documentation, Release 1.2.8

Table 35 – continued from previous page
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
Continued on next page

384 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 35 – continued from previous page
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
Continued on next page

4.1. Reading FoLiA 385

PyNLPl Documentation, Release 1.2.8

Table 35 – continued from previous page
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Division'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.External'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Text Body'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = '\n\n\n'

XLINK = False

XMLTAG = 'text'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

386 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

4.1. Reading FoLiA 387

PyNLPl Documentation, Release 1.2.8

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

388 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

4.1. Reading FoLiA 389

PyNLPl Documentation, Release 1.2.8

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

390 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

4.1. Reading FoLiA 391

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

392 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

4.1. Reading FoLiA 393

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

394 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

4.1. Reading FoLiA 395

PyNLPl Documentation, Release 1.2.8

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Whitespace

class pynlpl.formats.folia.Whitespace(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement

Whitespace element, signals a vertical whitespace

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)

Continued on next page

396 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 36 – continued from previous page
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
Continued on next page

4.1. Reading FoLiA 397

PyNLPl Documentation, Release 1.2.8

Table 36 – continued from previous page
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.

Continued on next page

398 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 36 – continued from previous page
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

ANNOTATIONTYPE = 6

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Whitespace'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = ''

XLINK = False

XMLTAG = 'whitespace'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

4.1. Reading FoLiA 399

PyNLPl Documentation, Release 1.2.8

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

400 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

4.1. Reading FoLiA 401

PyNLPl Documentation, Release 1.2.8

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

402 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

4.1. Reading FoLiA 403

PyNLPl Documentation, Release 1.2.8

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

404 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

4.1. Reading FoLiA 405

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

406 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=None, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

4.1. Reading FoLiA 407

PyNLPl Documentation, Release 1.2.8

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

408 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Word

class pynlpl.formats.folia.Word(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractStructureElement, pynlpl.formats.folia.
AllowCorrections

Word (aka token) element. Holds a word/token and all its related token annotations.

Method Summary

__init__(doc, *args, **kwargs) Constructor for words.
accepts(Class[, raiseexceptions, parentinstance])

Continued on next page

4.1. Reading FoLiA 409

PyNLPl Documentation, Release 1.2.8

Table 37 – continued from previous page
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
division() Obtain the deepest division this word is a part of,

otherwise return None
domain([set]) Shortcut: returns the FoLiA class of the domain an-

notation (will return only one if there are multiple!)
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspans(type[, set]) Yields span annotation elements of the specified type

that include this word.
generate_id(cls)
getcorrection([set, cls])
getcorrections([set, cls])
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Returns the text delimiter
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
Continued on next page

410 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 37 – continued from previous page
hasannotationlayer([annotationtype, set]) Does the specified annotation layer exist?
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
layers([annotationtype, set]) Returns a list of annotation layers found directly un-

der this element, does not include alternative layers
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
lemma([set]) Shortcut: returns the FoLiA class of the lemma an-

notation (will return only one if there are multiple!)
morpheme(index[, set]) Returns a specific morpheme, the n’th morpheme

(given the particular set if specified).
morphemes([set]) Generator yielding all morphemes (in a particular set

if specified).
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
paragraph() Obtain the paragraph this word is a part of, otherwise

return None
paragraphs([index]) Returns a generator of Paragraph elements found (re-

cursively) under this element.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
phoneme(index[, set]) Returns a specific phoneme, the n’th morpheme

(given the particular set if specified).
phonemes([set]) Generator yielding all phonemes (in a particular set

if specified).
pos([set]) Shortcut: returns the FoLiA class of the PoS annota-

tion (will return only one if there are multiple!)
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
Continued on next page

4.1. Reading FoLiA 411

PyNLPl Documentation, Release 1.2.8

Table 37 – continued from previous page
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
sense([set]) Shortcut: returns the FoLiA class of the sense anno-

tation (will return only one if there are multiple!)
sentence() Obtain the sentence this word is a part of, otherwise

return None
sentences([index]) Returns a generator of Sentence elements found (re-

cursively) under this element
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
split(*newwords, **kwargs)
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
words([index]) Returns a generator of Word elements found (recur-

sively) under this element.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = 1

AUTH = True

AUTO_GENERATE_ID = True

LABEL = 'Word/Token'

412 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = ' '

XLINK = False

XMLTAG = 'w'

Method Details

__init__(doc, *args, **kwargs)
Constructor for words.

See AbstractElement.__init__ for all inherited keyword arguments and parameters.

Keyword arguments:

• space (bool): Indicates whether this token is followed by a space (defaults to True)

Example:

sentence.append(folia.Word, 'This')
sentence.append(folia.Word, 'is')
sentence.append(folia.Word, 'a')
sentence.append(folia.Word, 'test', space=False)
sentence.append(folia.Word, '.')

See also:

AbstractElement.__init__

__init__(doc, *args, **kwargs)
Constructor for words.

See AbstractElement.__init__ for all inherited keyword arguments and parameters.

Keyword arguments:

• space (bool): Indicates whether this token is followed by a space (defaults to True)

Example:

4.1. Reading FoLiA 413

PyNLPl Documentation, Release 1.2.8

sentence.append(folia.Word, 'This')
sentence.append(folia.Word, 'is')
sentence.append(folia.Word, 'a')
sentence.append(folia.Word, 'test', space=False)
sentence.append(folia.Word, '.')

See also:

AbstractElement.__init__

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

414 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

4.1. Reading FoLiA 415

PyNLPl Documentation, Release 1.2.8

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

division()
Obtain the deepest division this word is a part of, otherwise return None

domain(set=None)
Shortcut: returns the FoLiA class of the domain annotation (will return only one if there are multiple!)

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

416 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspans(type, set=None)
Yields span annotation elements of the specified type that include this word.

Parameters

• type – The annotation type, can be passed as using any of the AnnotationType
member, or by passing the relevant AbstractSpanAnnotation or
AbstractAnnotationLayer class.

• set (str or None) – Constrain by set

Example:

for chunk in word.findspans(folia.Chunk):
print(" Chunk class=", chunk.cls, " words=")
for word2 in chunk.wrefs(): #print all words in the chunk (of which the

→˓word is a part)
print(word2, end="")

print()

Yields Matching span annotation instances (derived from AbstractSpanAnnotation)

generate_id(cls)

getcorrection(set=None, cls=None)

getcorrections(set=None, cls=None)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Returns the text delimiter

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasannotationlayer(annotationtype=None, set=None)
Does the specified annotation layer exist?

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

4.1. Reading FoLiA 417

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

layers(annotationtype=None, set=None)
Returns a list of annotation layers found directly under this element, does not include alternative layers

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

lemma(set=None)
Shortcut: returns the FoLiA class of the lemma annotation (will return only one if there are multiple!)

morpheme(index, set=None)
Returns a specific morpheme, the n’th morpheme (given the particular set if specified).

418 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

morphemes(set=None)
Generator yielding all morphemes (in a particular set if specified). For retrieving one specific morpheme
by index, use morpheme() instead

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

paragraph()
Obtain the paragraph this word is a part of, otherwise return None

paragraphs(index=None)
Returns a generator of Paragraph elements found (recursively) under this element.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the generator of all

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

4.1. Reading FoLiA 419

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

phoneme(index, set=None)
Returns a specific phoneme, the n’th morpheme (given the particular set if specified).

phonemes(set=None)
Generator yielding all phonemes (in a particular set if specified). For retrieving one specific morpheme by
index, use morpheme() instead

pos(set=None)
Shortcut: returns the FoLiA class of the PoS annotation (will return only one if there are multiple!)

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

420 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

4.1. Reading FoLiA 421

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

sense(set=None)
Shortcut: returns the FoLiA class of the sense annotation (will return only one if there are multiple!)

sentence()
Obtain the sentence this word is a part of, otherwise return None

sentences(index=None)
Returns a generator of Sentence elements found (recursively) under this element

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning a generator of all

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

split(*newwords, **kwargs)

stricttext(cls=’current’)
Alias for text() with strict=True

422 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

4.1. Reading FoLiA 423

PyNLPl Documentation, Release 1.2.8

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

words(index=None)
Returns a generator of Word elements found (recursively) under this element.

Parameters index (*) – If set to an integer, will retrieve and return the n’th element (starting
at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

The FoLiA documentation explains the exact semantics and use of these in detail. Make sure to consult it to familiarize
yourself with how the elements should be used.

FoLiA and this library enforce explicit rules about what elements are allowed in what others. Exceptions will be raised
when this is about to be violated.

424 Chapter 4. FoLiA library

https://github.com/proycon/folia/raw/master/docs/folia.pdf

PyNLPl Documentation, Release 1.2.8

4.1.10 Common attributes

The FoLiA paradigm features sets and classes as primary means to represent the actual value (class) of an annotation.
A set often corresponds to a tagset, such as a set of part-of-speech tags, and a class is one selected value in such a set.

The paradigm furthermore introduces other common attributes to set on annotation elements, such as an identifier,
information on the annotator, and more. A full list is provided below:

• element.id (str) - The unique identifier of the element

• element.set (str) - The set the element pertains to.

• element.cls (str) - The assigned class, i.e. the actual value of the annotation, defined in the set. Classes
correspond with tagsets in this case of many annotation types. Note that since class is already a reserved keyword
in python, the library consistently uses cls everywhere.

• element.annotator (str) - The name or ID of the annotator who added/modified this element

• element.annotatortype - The type of annotator, can be either folia.AnnotatorType.MANUAL or
folia.AnnotatorType.AUTO

• element.confidence (float) - A confidence value expressing

• element.datetime (datetime.datetime) - The date and time when the element was added/modified.

• element.n (str) - An ordinal label, used for instance in enumerated list contexts, numbered sections, etc..

The following attributes are specific to a speech context:

• element.src (str) - A URL or filename referring the an audio or video file containing the speech. Access
this attribute using the element.speaker_src() method, as it is inheritable from ancestors.

• element.speaker (str) - The name of ID of the speaker. Access this attribute using the element.
speech_speaker() method, as it is inheritable from ancestors.

• element.begintime (4-tuple) - The time in the above source fragment when the phonetic content of this
element starts, this is a (hours, minutes,seconds,milliseconds) tuple.

• element.endtime (4-tuple) - The time in the above source fragment when the phonetic content of this
element ends, this is a (hours, minutes,seconds,milliseconds) tuple.

Attributes that are not available for certain elements, or not set, default to None.

4.1.11 Annotations

As FoLiA is a format for linguistic annotation, accessing annotation is one of the primary functions
of this library. This can be done using the methods AllowTokenAnnotation.annotations() or
AllowTokenAnnotation.annotation() that are available on many FoLiA elements. These methods are
similar to the AbstractElement.select() method except they will raise a NoSuchAnnotation exception
when no such annotation is found. The difference between annotation() and annotations() is that the for-
mer will grab only one and raise an exception if there are more between which it can’t disambiguate, whereas the
second is a generator, but will still raise an exception if none is found:

for word in doc.words():
try:

pos = word.annotation(folia.PosAnnotation, 'http://somewhere/CGN')
lemma = word.annotation(folia.LemmaAnnotation)
print("Word: ", word)
print("ID: ", word.id)
print("PoS-tag: " , pos.cls)
print("PoS Annotator: ", pos.annotator)

(continues on next page)

4.1. Reading FoLiA 425

PyNLPl Documentation, Release 1.2.8

(continued from previous page)

print("Lemma-tag: " , lemma.cls)
except folia.NoSuchAnnotation:

print("No PoS or Lemma annotation")

Note that the second argument of AllowTokenAnnotation.annotation(), AllowTokenAnnotation.
annotations() or AbstractElement.select() can be used to restrict your selection to a certain set. In the
above example we restrict ourselves to Part-of-Speech tags in the CGN set.

Token Annotation Types

The following token annotation elements are available in FoLiA, they are embedded under a structural element (not
necessarily a token, despite the name).

DomainAnnotation Domain annotation: an extended token annotation ele-
ment

PosAnnotation Part-of-Speech annotation: a token annotation element
LangAnnotation Language annotation: an extended token annotation el-

ement
LemmaAnnotation Lemma annotation: a token annotation element
SenseAnnotation Sense annotation: a token annotation element
SubjectivityAnnotation Subjectivity annotation/Sentiment analysis: a token an-

notation element

pynlpl.formats.folia.DomainAnnotation

class pynlpl.formats.folia.DomainAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractExtendedTokenAnnotation

Domain annotation: an extended token annotation element

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
Continued on next page

426 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 39 – continued from previous page
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
Continued on next page

4.1. Reading FoLiA 427

PyNLPl Documentation, Release 1.2.8

Table 39 – continued from previous page
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 11

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Domain'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

428 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'domain'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

4.1. Reading FoLiA 429

PyNLPl Documentation, Release 1.2.8

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

430 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.1. Reading FoLiA 431

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

432 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

4.1. Reading FoLiA 433

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

434 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.1. Reading FoLiA 435

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

436 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.PosAnnotation

class pynlpl.formats.folia.PosAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTokenAnnotation

Part-of-Speech annotation: a token annotation element

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page

4.1. Reading FoLiA 437

PyNLPl Documentation, Release 1.2.8

Table 40 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page

438 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 40 – continued from previous page
relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.HeadFeature'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 9

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Part-of-Speech'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 1

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

4.1. Reading FoLiA 439

PyNLPl Documentation, Release 1.2.8

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'pos'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

440 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

4.1. Reading FoLiA 441

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

442 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

4.1. Reading FoLiA 443

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

444 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

4.1. Reading FoLiA 445

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

446 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

4.1. Reading FoLiA 447

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.LangAnnotation

class pynlpl.formats.folia.LangAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractExtendedTokenAnnotation

Language annotation: an extended token annotation element

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page

448 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 41 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page

4.1. Reading FoLiA 449

PyNLPl Documentation, Release 1.2.8

Table 41 – continued from previous page
relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 31

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Language'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 1

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

450 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'lang'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

4.1. Reading FoLiA 451

PyNLPl Documentation, Release 1.2.8

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

452 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.1. Reading FoLiA 453

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

454 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

4.1. Reading FoLiA 455

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

456 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.1. Reading FoLiA 457

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

458 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.LemmaAnnotation

class pynlpl.formats.folia.LemmaAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTokenAnnotation

Lemma annotation: a token annotation element

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page

4.1. Reading FoLiA 459

PyNLPl Documentation, Release 1.2.8

Table 42 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page

460 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 42 – continued from previous page
relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 10

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Lemma'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 1

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

4.1. Reading FoLiA 461

PyNLPl Documentation, Release 1.2.8

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'lemma'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

462 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

4.1. Reading FoLiA 463

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

464 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

4.1. Reading FoLiA 465

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

466 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

4.1. Reading FoLiA 467

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

468 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

4.1. Reading FoLiA 469

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SenseAnnotation

class pynlpl.formats.folia.SenseAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTokenAnnotation

Sense annotation: a token annotation element

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page

470 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 43 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page

4.1. Reading FoLiA 471

PyNLPl Documentation, Release 1.2.8

Table 43 – continued from previous page
relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.SynsetFeature'>)

ANNOTATIONTYPE = 12

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Semantic Sense'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

472 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'sense'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

4.1. Reading FoLiA 473

PyNLPl Documentation, Release 1.2.8

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

474 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.1. Reading FoLiA 475

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

476 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

4.1. Reading FoLiA 477

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

478 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.1. Reading FoLiA 479

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

480 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SubjectivityAnnotation

class pynlpl.formats.folia.SubjectivityAnnotation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTokenAnnotation

Subjectivity annotation/Sentiment analysis: a token annotation element

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page

4.1. Reading FoLiA 481

PyNLPl Documentation, Release 1.2.8

Table 44 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page

482 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 44 – continued from previous page
relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 19

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Subjectivity/Sentiment'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 1

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

4.1. Reading FoLiA 483

PyNLPl Documentation, Release 1.2.8

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'subjectivity'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

484 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

4.1. Reading FoLiA 485

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

486 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

4.1. Reading FoLiA 487

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

488 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

4.1. Reading FoLiA 489

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

490 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

4.1. Reading FoLiA 491

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

Text and phonetic annotation

The actual text of an element, or a phonetic textual representation, are also considered annotations themselves.

TextContent Text content element (t), holds text to be associated
with whatever element the text content element is a child
of.

PhonContent Phonetic content element (ph), holds a phonetic rep-
resentation to be associated with whatever element the
phonetic content element is a child of.

pynlpl.formats.folia.TextContent

class pynlpl.formats.folia.TextContent(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

Text content element (t), holds text to be associated with whatever element the text content element is a child
of.

Text content elements on structure elements like Paragraph and Sentence are by definition untokenised.
Only on Word` level and deeper they are by definition tokenised.

Text content elements can specify offset that refer to text at a higher parent level. Use the following keyword

492 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

arguments:

• ref=: The instance to point to, this points to the element holding the text content element, not the text
content element itself.

• offset=: The offset where this text is found, offsets start at 0

Method Summary

__init__(doc, *args, **kwargs) Example.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

finddefaultreference() Find the default reference for text offsets: The par-
ent of the current textcontent’s parent (counting only
Structure Elements and Subtoken Annotation Ele-
ments)

findreplaceables(parent, set, **kwargs) (Method for internal usage, see AbstractElement)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
getreference([validate]) Returns and validates the Text Content’s reference.
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)

Continued on next page

4.1. Reading FoLiA 493

PyNLPl Documentation, Release 1.2.8

Table 46 – continued from previous page
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) (Method for internal usage, see AbstractElement)
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([normalize_spaces]) Obtain the text (unicode instance)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()

Continued on next page

494 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 46 – continued from previous page
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

ANNOTATIONTYPE = 0

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Text'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (1, 2, 3, 5, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = True

TEXTDELIMITER = None

XLINK = True

XMLTAG = 't'

Method Details

__init__(doc, *args, **kwargs)
Example:

text = folia.TextContent(doc, 'test')
text = folia.TextContent(doc, 'test',cls='original')

__init__(doc, *args, **kwargs)
Example:

4.1. Reading FoLiA 495

PyNLPl Documentation, Release 1.2.8

text = folia.TextContent(doc, 'test')
text = folia.TextContent(doc, 'test',cls='original')

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

496 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

finddefaultreference()
Find the default reference for text offsets: The parent of the current textcontent’s parent (counting only
Structure Elements and Subtoken Annotation Elements)

Note: This returns not a TextContent element, but its parent. Whether the textcontent actually exists is
checked later/elsewhere

classmethod findreplaceables(parent, set, **kwargs)
(Method for internal usage, see AbstractElement)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

getreference(validate=True)
Returns and validates the Text Content’s reference. Raises UnresolvableTextContent when invalid

4.1. Reading FoLiA 497

PyNLPl Documentation, Release 1.2.8

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

498 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
(Method for internal usage, see AbstractElement)

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

4.1. Reading FoLiA 499

PyNLPl Documentation, Release 1.2.8

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

500 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

4.1. Reading FoLiA 501

PyNLPl Documentation, Release 1.2.8

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(normalize_spaces=False)
Obtain the text (unicode instance)

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

502 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.PhonContent

class pynlpl.formats.folia.PhonContent(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

Phonetic content element (ph), holds a phonetic representation to be associated with whatever element the
phonetic content element is a child of.

Phonetic content elements behave much like text content elements.

Phonetic content elements can specify offset that refer to phonetic content at a higher parent level. Use the
following keyword arguments:

• ref=: The instance to point to, this points to the element holding the text content element, not the text
content element itself.

• offset=: The offset where this text is found, offsets start at 0

Method Summary

__init__(doc, *args, **kwargs) Example.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)

Continued on next page

4.1. Reading FoLiA 503

PyNLPl Documentation, Release 1.2.8

Table 47 – continued from previous page
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

finddefaultreference() Find the default reference for text offsets: The par-
ent of the current textcontent’s parent (counting only
Structure Elements and Subtoken Annotation Ele-
ments)

findreplaceables(parent, set, **kwargs) (Method for internal usage, see AbstractElement)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
getreference([validate]) Return and validate the Phonetic Content’s reference.
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) (Method for internal usage, see AbstractElement)
phon() Obtain the actual phonetic representation (uni-

code/str instance)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page

504 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 47 – continued from previous page
relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setphon(phon) Set the representation for the phonetic content (uni-

code instance), called whenever phon= is passed as a
keyword argument to an element constructor

settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>)

ANNOTATIONTYPE = 18

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Phonetic Content'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

4.1. Reading FoLiA 505

PyNLPl Documentation, Release 1.2.8

OPTIONAL_ATTRIBS = (1, 2, 3, 5, 11)

PHONCONTAINER = True

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'ph'

Method Details

__init__(doc, *args, **kwargs)
Example:

phon = folia.PhonContent(doc, 'hl')
phon = folia.PhonContent(doc, 'hl', cls="original")

__init__(doc, *args, **kwargs)
Example:

phon = folia.PhonContent(doc, 'hl')
phon = folia.PhonContent(doc, 'hl', cls="original")

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

506 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

4.1. Reading FoLiA 507

PyNLPl Documentation, Release 1.2.8

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

finddefaultreference()
Find the default reference for text offsets: The parent of the current textcontent’s parent (counting only
Structure Elements and Subtoken Annotation Elements)

Note: This returns not a TextContent element, but its parent. Whether the textcontent actually exists is
checked later/elsewhere

classmethod findreplaceables(parent, set, **kwargs)
(Method for internal usage, see AbstractElement)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

getreference(validate=True)
Return and validate the Phonetic Content’s reference. Raises UnresolvableTextContent when invalid

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

508 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
(Method for internal usage, see AbstractElement)

phon()
Obtain the actual phonetic representation (unicode/str instance)

4.1. Reading FoLiA 509

PyNLPl Documentation, Release 1.2.8

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

510 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setphon(phon)
Set the representation for the phonetic content (unicode instance), called whenever phon= is passed as a
keyword argument to an element constructor

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

4.1. Reading FoLiA 511

PyNLPl Documentation, Release 1.2.8

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

512 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

4.1. Reading FoLiA 513

PyNLPl Documentation, Release 1.2.8

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

Text is retrieved as string using AbstractElement.text(), or as element using Phonetic content is retrieved as
string using AbstractElement.text(), or as element using AbstractElement.textcontent().

Note: These are the only elements for which FoLiA prescribes a default set and a default class (current). This will
only be relevant if you work with multiple text layers (current text vs OCRed text for instance) or with corrections of
orthography or phonetics.

Span Annotation

FoLiA distinguishes token annotation and span annotation, token annotation is embedded in-line within a structural
element, and the annotation therefore pertains to that structural element, whereas span annotation is stored in a stand-
off annotation layer outside the element and refers back to it. Span annotation elements typically span over multiple
structural elements, they are all subclasses of AbstractSpanAnnotation.

We will discuss three ways of accessing span annotation. As stated, span annotation is contained within an annotation
layer (a subclass of AbstractAnnotationLayer) of a certain structure element, often a sentence. In the first
way of accessing span annotation, we do everything explicitly: We first obtain the layer, then iterate over the span
annotation elements within that layer, and finally iterate over the words to which the span applies. Assume we have a
sentence and we want to print all the named entities in it, assuming the entities layer is embedded at sentence level
as is conventional:

for layer in sentence.select(folia.EntitiesLayer):
for entity in layer.select(folia.Entity):

print(" Entity class=", entity.cls, " words=")
for word in entity.wrefs():

print(word, end="") #print without newline
print() #print newline

The AbstractSpanAnnotation.wrefs() method, available on all span annotation elements, will return a list
of all words (as well as morphemes and phonemes) over which a span annotation element spans.

This first way is rather verbose. The second way of accessing span annotation takes another approach, using the
Word.findspans() method available on Word instances. Here we start from a word and seek span annotations
in which that word occurs. Assume we have a word and want to find chunks it occurs in:

for chunk in word.findspans(folia.Chunk):
print(" Chunk class=", chunk.cls, " words=")
for word2 in chunk.wrefs(): #print all words in the chunk (of which the word is a

→˓part)
print(word2, end="")

print()

The Word.findspans()method can be called with either the class of a Span Annotation Element, such as Chunk,
or with the class of the layer, such as ChunkingLayer.

514 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

The third way allows us to look for span elements given an annotation layer and words. In other words, it checks if one
or more words form a span. This is an exact match and not a sub-part match as in the previously described method.
To do this, we use use the AbstractAnnotationLayer.findspan method, available on all annotation layers:

for span in annotationlayer.findspan(word1,word2):
print("Class: ", span.cls)
print("Text: ", span.text()) #same for every span here

Span Annotation Types

This section lists the available Span annotation elements, the layer that contains them is explicitly mentioned as well.

Some of the span annotation elements are complex and take span role elements as children, these are normal span an-
notation elements that occur on a within another span annotation (of a particular type) and can not be used standalone.

FoLiA distinguishes the following span annotation elements:

Chunk Chunk element, span annotation element to be used in
ChunkingLayer

CoreferenceChain Coreference chain.
Dependency Span annotation element to encode dependency rela-

tions
Entity Entity element, for entities such as named entities,

multi-word expressions, temporal entities.
Observation Observation.
Predicate Predicate, used within SemanticRolesLayer,

takes SemanticRole annotations as children, but has
its own annotation type and separate declaration

Sentiment Sentiment.
Statement Statement.
SyntacticUnit Syntactic Unit, span annotation element to be used in

SyntaxLayer
SemanticRole Semantic Role
TimeSegment A time segment

pynlpl.formats.folia.Chunk

class pynlpl.formats.folia.Chunk(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Chunk element, span annotation element to be used in ChunkingLayer

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
Continued on next page

4.1. Reading FoLiA 515

PyNLPl Documentation, Release 1.2.8

Table 49 – continued from previous page
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.

Continued on next page

516 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 49 – continued from previous page
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.

Continued on next page

4.1. Reading FoLiA 517

PyNLPl Documentation, Release 1.2.8

Table 49 – continued from previous page
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 14

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Chunk'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'chunk'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

518 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

4.1. Reading FoLiA 519

PyNLPl Documentation, Release 1.2.8

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

520 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

4.1. Reading FoLiA 521

PyNLPl Documentation, Release 1.2.8

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

522 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

4.1. Reading FoLiA 523

PyNLPl Documentation, Release 1.2.8

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

524 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

4.1. Reading FoLiA 525

PyNLPl Documentation, Release 1.2.8

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

526 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.CoreferenceChain

class pynlpl.formats.folia.CoreferenceChain(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Coreference chain. Holds CoreferenceLink instances.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
Continued on next page

4.1. Reading FoLiA 527

PyNLPl Documentation, Release 1.2.8

Table 50 – continued from previous page
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

Continued on next page

528 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 50 – continued from previous page
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.CoreferenceLink'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 28

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Coreference Chain'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

4.1. Reading FoLiA 529

PyNLPl Documentation, Release 1.2.8

REQUIRED_ATTRIBS = None

REQUIRED_DATA = (<class 'pynlpl.formats.folia.CoreferenceLink'>,)

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'coreferencechain'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

530 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

4.1. Reading FoLiA 531

PyNLPl Documentation, Release 1.2.8

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

532 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

4.1. Reading FoLiA 533

PyNLPl Documentation, Release 1.2.8

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if

534 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

4.1. Reading FoLiA 535

PyNLPl Documentation, Release 1.2.8

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

536 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if

4.1. Reading FoLiA 537

PyNLPl Documentation, Release 1.2.8

you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Dependency

class pynlpl.formats.folia.Dependency(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

538 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Span annotation element to encode dependency relations

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
dependent() Returns the dependent of the dependency relation.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)

Continued on next page

4.1. Reading FoLiA 539

PyNLPl Documentation, Release 1.2.8

Table 51 – continued from previous page
head() Returns the head of the dependency relation.
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.

Continued on next page

540 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 51 – continued from previous page
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.DependencyDependent'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 22

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Dependency'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = (<class 'pynlpl.formats.folia.DependencyDependent'>, <class 'pynlpl.formats.folia.Headspan'>)

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'dependency'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

4.1. Reading FoLiA 541

PyNLPl Documentation, Release 1.2.8

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

542 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

dependent()
Returns the dependent of the dependency relation. Instance of DependencyDependent

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

4.1. Reading FoLiA 543

PyNLPl Documentation, Release 1.2.8

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

544 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

head()
Returns the head of the dependency relation. Instance of Headspan

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

4.1. Reading FoLiA 545

PyNLPl Documentation, Release 1.2.8

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

546 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

4.1. Reading FoLiA 547

PyNLPl Documentation, Release 1.2.8

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

548 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

4.1. Reading FoLiA 549

PyNLPl Documentation, Release 1.2.8

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Entity

class pynlpl.formats.folia.Entity(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Entity element, for entities such as named entities, multi-word expressions, temporal entities. This is a span
annotation element to be used in EntitiesLayer

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
Continued on next page

550 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 52 – continued from previous page
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
Continued on next page

4.1. Reading FoLiA 551

PyNLPl Documentation, Release 1.2.8

Table 52 – continued from previous page
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

552 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 15

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Entity'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'entity'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

4.1. Reading FoLiA 553

PyNLPl Documentation, Release 1.2.8

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

554 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

4.1. Reading FoLiA 555

PyNLPl Documentation, Release 1.2.8

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

556 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

4.1. Reading FoLiA 557

PyNLPl Documentation, Release 1.2.8

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

558 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

4.1. Reading FoLiA 559

PyNLPl Documentation, Release 1.2.8

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

560 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

4.1. Reading FoLiA 561

PyNLPl Documentation, Release 1.2.8

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Observation

class pynlpl.formats.folia.Observation(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Observation.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.

Continued on next page

562 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 53 – continued from previous page
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.

Continued on next page

4.1. Reading FoLiA 563

PyNLPl Documentation, Release 1.2.8

Table 53 – continued from previous page
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 43

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Observation'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

564 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'observation'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

4.1. Reading FoLiA 565

PyNLPl Documentation, Release 1.2.8

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

566 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

4.1. Reading FoLiA 567

PyNLPl Documentation, Release 1.2.8

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

568 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

4.1. Reading FoLiA 569

PyNLPl Documentation, Release 1.2.8

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

570 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

4.1. Reading FoLiA 571

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

572 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Predicate

class pynlpl.formats.folia.Predicate(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Predicate, used within SemanticRolesLayer, takes SemanticRole annotations as children, but has its
own annotation type and separate declaration

4.1. Reading FoLiA 573

PyNLPl Documentation, Release 1.2.8

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
Continued on next page

574 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 54 – continued from previous page
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
Continued on next page

4.1. Reading FoLiA 575

PyNLPl Documentation, Release 1.2.8

Table 54 – continued from previous page
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.SemanticRole'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 42

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Predicate'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'predicate'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

576 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

4.1. Reading FoLiA 577

PyNLPl Documentation, Release 1.2.8

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

578 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

4.1. Reading FoLiA 579

PyNLPl Documentation, Release 1.2.8

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

580 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

4.1. Reading FoLiA 581

PyNLPl Documentation, Release 1.2.8

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

582 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.1. Reading FoLiA 583

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

584 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Sentiment

class pynlpl.formats.folia.Sentiment(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Sentiment. Takes span roles Headspan, Source and Target as children

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page

4.1. Reading FoLiA 585

PyNLPl Documentation, Release 1.2.8

Table 55 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
Continued on next page

586 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 55 – continued from previous page
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PolarityFeature'>, <class 'pynlpl.formats.folia.Source'>, <class 'pynlpl.formats.folia.StrengthFeature'>, <class 'pynlpl.formats.folia.Target'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 44

4.1. Reading FoLiA 587

PyNLPl Documentation, Release 1.2.8

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Sentiment'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'sentiment'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

588 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

4.1. Reading FoLiA 589

PyNLPl Documentation, Release 1.2.8

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

590 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

4.1. Reading FoLiA 591

PyNLPl Documentation, Release 1.2.8

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

592 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

4.1. Reading FoLiA 593

PyNLPl Documentation, Release 1.2.8

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

594 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

4.1. Reading FoLiA 595

PyNLPl Documentation, Release 1.2.8

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

596 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Statement

class pynlpl.formats.folia.Statement(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Statement. Takes span roles Headspan, Source and Relation as children

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)

Continued on next page

4.1. Reading FoLiA 597

PyNLPl Documentation, Release 1.2.8

Table 56 – continued from previous page
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.

Continued on next page

598 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 56 – continued from previous page
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Relation'>, <class 'pynlpl.formats.folia.Source'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 45

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Statement'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

4.1. Reading FoLiA 599

PyNLPl Documentation, Release 1.2.8

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'statement'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

600 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

4.1. Reading FoLiA 601

PyNLPl Documentation, Release 1.2.8

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

602 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

4.1. Reading FoLiA 603

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

604 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

4.1. Reading FoLiA 605

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

606 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

4.1. Reading FoLiA 607

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SyntacticUnit

class pynlpl.formats.folia.SyntacticUnit(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Syntactic Unit, span annotation element to be used in SyntaxLayer

608 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
Continued on next page

4.1. Reading FoLiA 609

PyNLPl Documentation, Release 1.2.8

Table 57 – continued from previous page
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
Continued on next page

610 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 57 – continued from previous page
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.SyntacticUnit'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 13

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Syntactic Unit'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'su'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

4.1. Reading FoLiA 611

PyNLPl Documentation, Release 1.2.8

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

612 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

4.1. Reading FoLiA 613

PyNLPl Documentation, Release 1.2.8

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

614 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

4.1. Reading FoLiA 615

PyNLPl Documentation, Release 1.2.8

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

616 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

4.1. Reading FoLiA 617

PyNLPl Documentation, Release 1.2.8

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

618 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

4.1. Reading FoLiA 619

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SemanticRole

class pynlpl.formats.folia.SemanticRole(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Semantic Role

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page

620 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 58 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
Continued on next page

4.1. Reading FoLiA 621

PyNLPl Documentation, Release 1.2.8

Table 58 – continued from previous page
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 29

622 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Semantic Role'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'semrole'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

4.1. Reading FoLiA 623

PyNLPl Documentation, Release 1.2.8

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

624 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

4.1. Reading FoLiA 625

PyNLPl Documentation, Release 1.2.8

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

626 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

4.1. Reading FoLiA 627

PyNLPl Documentation, Release 1.2.8

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

628 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

4.1. Reading FoLiA 629

PyNLPl Documentation, Release 1.2.8

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

630 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

4.1. Reading FoLiA 631

PyNLPl Documentation, Release 1.2.8

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.TimeSegment

class pynlpl.formats.folia.TimeSegment(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanAnnotation

A time segment

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)

Continued on next page

632 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 59 – continued from previous page
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.

Continued on next page

4.1. Reading FoLiA 633

PyNLPl Documentation, Release 1.2.8

Table 59 – continued from previous page
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.ActorFeature'>, <class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.BegindatetimeFeature'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.EnddatetimeFeature'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 23

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Time Segment'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

634 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'timesegment'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

4.1. Reading FoLiA 635

PyNLPl Documentation, Release 1.2.8

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

636 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.1. Reading FoLiA 637

PyNLPl Documentation, Release 1.2.8

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

638 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

4.1. Reading FoLiA 639

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

640 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

4.1. Reading FoLiA 641

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

642 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

These are placed in the following annotation layers:

ChunkingLayer Chunking Layer: Annotation layer for Chunk span an-
notation elements

CoreferenceLayer Syntax Layer: Annotation layer for SyntacticUnit
span annotation elements

DependenciesLayer Dependencies Layer: Annotation layer for
Dependency span annotation elements.

EntitiesLayer Entities Layer: Annotation layer for Entity span an-
notation elements.

Continued on next page

4.1. Reading FoLiA 643

PyNLPl Documentation, Release 1.2.8

Table 60 – continued from previous page
ObservationLayer Observation Layer: Annotation layer for

Observation span annotation elements.
SentimentLayer Sentiment Layer: Annotation layer for Sentiment

span annotation elements, used for sentiment analysis.
StatementLayer Statement Layer: Annotation layer for Statement

span annotation elements, used for attribution annota-
tion.

SyntaxLayer Syntax Layer: Annotation layer for SyntacticUnit
span annotation elements

SemanticRolesLayer Syntax Layer: Annotation layer for SemanticRole
span annotation elements

TimingLayer Timing layer: Annotation layer for TimeSegment
span annotation elements.

pynlpl.formats.folia.ChunkingLayer

class pynlpl.formats.folia.ChunkingLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Chunking Layer: Annotation layer for Chunk span annotation elements

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
Continued on next page

644 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 61 – continued from previous page
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

Continued on next page

4.1. Reading FoLiA 645

PyNLPl Documentation, Release 1.2.8

Table 61 – continued from previous page
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Chunk'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

ANNOTATIONTYPE = 14

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

646 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'chunking'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

4.1. Reading FoLiA 647

PyNLPl Documentation, Release 1.2.8

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

648 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

4.1. Reading FoLiA 649

PyNLPl Documentation, Release 1.2.8

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

650 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

4.1. Reading FoLiA 651

PyNLPl Documentation, Release 1.2.8

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

652 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

4.1. Reading FoLiA 653

PyNLPl Documentation, Release 1.2.8

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

654 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.1. Reading FoLiA 655

PyNLPl Documentation, Release 1.2.8

pynlpl.formats.folia.CoreferenceLayer

class pynlpl.formats.folia.CoreferenceLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Syntax Layer: Annotation layer for SyntacticUnit span annotation elements

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
Continued on next page

656 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 62 – continued from previous page
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True

Continued on next page

4.1. Reading FoLiA 657

PyNLPl Documentation, Release 1.2.8

Table 62 – continued from previous page
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.CoreferenceChain'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

ANNOTATIONTYPE = 28

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'coreferences'

658 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

4.1. Reading FoLiA 659

PyNLPl Documentation, Release 1.2.8

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

660 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to

4.1. Reading FoLiA 661

PyNLPl Documentation, Release 1.2.8

CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

662 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

4.1. Reading FoLiA 663

PyNLPl Documentation, Release 1.2.8

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

664 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

4.1. Reading FoLiA 665

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the

666 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.DependenciesLayer

class pynlpl.formats.folia.DependenciesLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Dependencies Layer: Annotation layer for Dependency span annotation elements. For dependency entities.

4.1. Reading FoLiA 667

PyNLPl Documentation, Release 1.2.8

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
Continued on next page

668 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 63 – continued from previous page
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
Continued on next page

4.1. Reading FoLiA 669

PyNLPl Documentation, Release 1.2.8

Table 63 – continued from previous page
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Dependency'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

ANNOTATIONTYPE = 22

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'dependencies'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

670 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

4.1. Reading FoLiA 671

PyNLPl Documentation, Release 1.2.8

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

672 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

4.1. Reading FoLiA 673

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

674 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

4.1. Reading FoLiA 675

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

676 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

4.1. Reading FoLiA 677

PyNLPl Documentation, Release 1.2.8

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

678 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.EntitiesLayer

class pynlpl.formats.folia.EntitiesLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Entities Layer: Annotation layer for Entity span annotation elements. For named entities.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
Continued on next page

4.1. Reading FoLiA 679

PyNLPl Documentation, Release 1.2.8

Table 64 – continued from previous page
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
Continued on next page

680 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 64 – continued from previous page
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.

Continued on next page

4.1. Reading FoLiA 681

PyNLPl Documentation, Release 1.2.8

Table 64 – continued from previous page
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Entity'>, <class 'pynlpl.formats.folia.ForeignData'>)

ANNOTATIONTYPE = 15

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'entities'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

682 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

4.1. Reading FoLiA 683

PyNLPl Documentation, Release 1.2.8

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

684 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

4.1. Reading FoLiA 685

PyNLPl Documentation, Release 1.2.8

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

686 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

4.1. Reading FoLiA 687

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

688 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.1. Reading FoLiA 689

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

690 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.ObservationLayer

class pynlpl.formats.folia.ObservationLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Observation Layer: Annotation layer for Observation span annotation elements.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

Continued on next page

4.1. Reading FoLiA 691

PyNLPl Documentation, Release 1.2.8

Table 65 – continued from previous page
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
Continued on next page

692 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 65 – continued from previous page
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Observation'>)

ANNOTATIONTYPE = 43

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

4.1. Reading FoLiA 693

PyNLPl Documentation, Release 1.2.8

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'observations'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

694 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

4.1. Reading FoLiA 695

PyNLPl Documentation, Release 1.2.8

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

696 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

4.1. Reading FoLiA 697

PyNLPl Documentation, Release 1.2.8

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

698 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

4.1. Reading FoLiA 699

PyNLPl Documentation, Release 1.2.8

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

700 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

4.1. Reading FoLiA 701

PyNLPl Documentation, Release 1.2.8

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

702 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SentimentLayer

class pynlpl.formats.folia.SentimentLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Sentiment Layer: Annotation layer for Sentiment span annotation elements, used for sentiment analysis.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.

Continued on next page

4.1. Reading FoLiA 703

PyNLPl Documentation, Release 1.2.8

Table 66 – continued from previous page
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.

Continued on next page

704 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 66 – continued from previous page
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Sentiment'>)

ANNOTATIONTYPE = 44

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

4.1. Reading FoLiA 705

PyNLPl Documentation, Release 1.2.8

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'sentiments'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

706 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

4.1. Reading FoLiA 707

PyNLPl Documentation, Release 1.2.8

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

708 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

4.1. Reading FoLiA 709

PyNLPl Documentation, Release 1.2.8

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

710 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

4.1. Reading FoLiA 711

PyNLPl Documentation, Release 1.2.8

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

712 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.1. Reading FoLiA 713

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.StatementLayer

class pynlpl.formats.folia.StatementLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Statement Layer: Annotation layer for Statement span annotation elements, used for attribution annotation.

714 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
Continued on next page

4.1. Reading FoLiA 715

PyNLPl Documentation, Release 1.2.8

Table 67 – continued from previous page
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
Continued on next page

716 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 67 – continued from previous page
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Statement'>)

ANNOTATIONTYPE = 45

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'statements'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

4.1. Reading FoLiA 717

PyNLPl Documentation, Release 1.2.8

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

718 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

4.1. Reading FoLiA 719

PyNLPl Documentation, Release 1.2.8

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

720 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

4.1. Reading FoLiA 721

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

722 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

4.1. Reading FoLiA 723

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

724 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

4.1. Reading FoLiA 725

PyNLPl Documentation, Release 1.2.8

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SyntaxLayer

class pynlpl.formats.folia.SyntaxLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Syntax Layer: Annotation layer for SyntacticUnit span annotation elements

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
Continued on next page

726 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 68 – continued from previous page
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
Continued on next page

4.1. Reading FoLiA 727

PyNLPl Documentation, Release 1.2.8

Table 68 – continued from previous page
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.

Continued on next page

728 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 68 – continued from previous page
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.SyntacticUnit'>)

ANNOTATIONTYPE = 13

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'syntax'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

4.1. Reading FoLiA 729

PyNLPl Documentation, Release 1.2.8

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

730 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

4.1. Reading FoLiA 731

PyNLPl Documentation, Release 1.2.8

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

732 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

4.1. Reading FoLiA 733

PyNLPl Documentation, Release 1.2.8

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

734 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

4.1. Reading FoLiA 735

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

736 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

4.1. Reading FoLiA 737

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SemanticRolesLayer

class pynlpl.formats.folia.SemanticRolesLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Syntax Layer: Annotation layer for SemanticRole span annotation elements

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

Continued on next page

738 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 69 – continued from previous page
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
Continued on next page

4.1. Reading FoLiA 739

PyNLPl Documentation, Release 1.2.8

Table 69 – continued from previous page
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Predicate'>, <class 'pynlpl.formats.folia.SemanticRole'>)

ANNOTATIONTYPE = 29

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

740 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'semroles'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

4.1. Reading FoLiA 741

PyNLPl Documentation, Release 1.2.8

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

742 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

4.1. Reading FoLiA 743

PyNLPl Documentation, Release 1.2.8

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

744 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

4.1. Reading FoLiA 745

PyNLPl Documentation, Release 1.2.8

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

746 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

4.1. Reading FoLiA 747

PyNLPl Documentation, Release 1.2.8

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

748 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

4.1. Reading FoLiA 749

PyNLPl Documentation, Release 1.2.8

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.TimingLayer

class pynlpl.formats.folia.TimingLayer(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Timing layer: Annotation layer for TimeSegment span annotation elements.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Will return a single annotation (even if there are mul-
tiple).

annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.

Continued on next page

750 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 70 – continued from previous page
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
findspan(*words) Returns the span element which spans over the spec-

ified words or morphemes.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.

Continued on next page

4.1. Reading FoLiA 751

PyNLPl Documentation, Release 1.2.8

Table 70 – continued from previous page
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.TimeSegment'>)

ANNOTATIONTYPE = 23

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = True

SPEAKABLE = False

SUBSET = None

752 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'timing'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Returns Generator over Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

4.1. Reading FoLiA 753

PyNLPl Documentation, Release 1.2.8

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

754 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

findspan(*words)
Returns the span element which spans over the specified words or morphemes.

See also:

Word.findspans()

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

4.1. Reading FoLiA 755

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

756 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

4.1. Reading FoLiA 757

PyNLPl Documentation, Release 1.2.8

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

758 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

4.1. Reading FoLiA 759

PyNLPl Documentation, Release 1.2.8

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

760 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

Some span annotation elements take span roles, depending on their type:

CoreferenceLink Coreference link.
DependencyDependent Span role element that marks the dependent in a depen-

dency relation.
Continued on next page

4.1. Reading FoLiA 761

PyNLPl Documentation, Release 1.2.8

Table 71 – continued from previous page
Headspan The headspan role is used to mark the head of a span

annotation.

pynlpl.formats.folia.CoreferenceLink

class pynlpl.formats.folia.CoreferenceLink(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanRole

Coreference link. Used in CoreferenceChain

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
Continued on next page

762 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 72 – continued from previous page
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
Continued on next page

4.1. Reading FoLiA 763

PyNLPl Documentation, Release 1.2.8

Table 72 – continued from previous page
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.LevelFeature'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.ModalityFeature'>, <class 'pynlpl.formats.folia.TimeFeature'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = 28

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Coreference Link'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 4, 5)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

764 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

XMLTAG = 'coreferencelink'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

4.1. Reading FoLiA 765

PyNLPl Documentation, Release 1.2.8

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

766 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you

4.1. Reading FoLiA 767

PyNLPl Documentation, Release 1.2.8

want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

768 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

4.1. Reading FoLiA 769

PyNLPl Documentation, Release 1.2.8

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

770 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

4.1. Reading FoLiA 771

PyNLPl Documentation, Release 1.2.8

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

772 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.DependencyDependent

class pynlpl.formats.folia.DependencyDependent(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanRole

Span role element that marks the dependent in a dependency relation. Used in Dependency .

Headspan in turn is used to mark the head of a dependency relation.

4.1. Reading FoLiA 773

PyNLPl Documentation, Release 1.2.8

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
Continued on next page

774 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 73 – continued from previous page
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
Continued on next page

4.1. Reading FoLiA 775

PyNLPl Documentation, Release 1.2.8

Table 73 – continued from previous page
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Dependent'

OCCURRENCES = 1

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 4, 5)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'dep'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

776 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

4.1. Reading FoLiA 777

PyNLPl Documentation, Release 1.2.8

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

778 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

4.1. Reading FoLiA 779

PyNLPl Documentation, Release 1.2.8

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

780 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

4.1. Reading FoLiA 781

PyNLPl Documentation, Release 1.2.8

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

782 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.1. Reading FoLiA 783

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

784 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Headspan

class pynlpl.formats.folia.Headspan(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractSpanRole

The headspan role is used to mark the head of a span annotation.

It can be used in various contexts, for instance to mark the head of a Dependency . It is allowed by most span
annotations.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index
Continued on next page

4.1. Reading FoLiA 785

PyNLPl Documentation, Release 1.2.8

Table 74 – continued from previous page
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
annotation(type[, set]) Will return a single annotation (even if there are mul-

tiple).
annotations(Class[, set]) Obtain annotations.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
Continued on next page

786 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 74 – continued from previous page
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
setspan(*args) Sets the span of the span element anew, erases all

data inside.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
wrefs([index, recurse]) Returns a list of word references, these can be Words

but also Morphemes or Phonemes.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

4.1. Reading FoLiA 787

PyNLPl Documentation, Release 1.2.8

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Head'

OCCURRENCES = 1

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 4, 5)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'hd'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

788 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=None)
Makes sure this element (and all subelements), are properly added to the index

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if
none was found

annotations(Class, set=None)
Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

Parameters

• Class - The Class you want to retrieve (*) –

• set - The set you want to retrieve (*) –

Yields elements

Raises NoSuchAnnotation if the specified annotation does not exist.

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a
random idsuffix will be generated including a random 32-bit hash

4.1. Reading FoLiA 789

PyNLPl Documentation, Release 1.2.8

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many. See
annotations() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

790 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

4.1. Reading FoLiA 791

PyNLPl Documentation, Release 1.2.8

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

792 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

4.1. Reading FoLiA 793

PyNLPl Documentation, Release 1.2.8

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

setspan(*args)
Sets the span of the span element anew, erases all data inside.

Parameters *args – Instances of Word, Morpheme or Phoneme

settext(text, cls=’current’)
Set the text for this element.

794 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

4.1. Reading FoLiA 795

PyNLPl Documentation, Release 1.2.8

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

wrefs(index=None, recurse=True)
Returns a list of word references, these can be Words but also Morphemes or Phonemes.

Parameters index (int or None) – If set to an integer, will retrieve and return the n’th
element (starting at 0) instead of returning the list of all

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

796 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.2 Editing FoLiA

4.2.1 Creating a new document

Creating a new FoliA document, rather than loading an existing one from file, is done by explicitly providing the ID
for the new document in the Document constructor:

doc = folia.Document(id='example')

4.2.2 Declarations

Whenever you add a new type of annotation, or a different set, to a FoLiA document, you have to first declare it. This
is done using the Document.declare() method. It takes as arguments the annotation type, the set, and you can
optionally pass keyword arguments to annotator= and annotatortype= to set defaults.

An example for Part-of-Speech annotation:

doc.declare(folia.PosAnnotation, 'http://somewhere/brown-tag-set')

An example with a default annotator:

doc.declare(folia.PosAnnotation, 'http://somewhere/brown-tag-set', annotator='proycon
→˓', annotatortype=folia.AnnotatorType.MANUAL)

Any additional sets for Part-of-Speech would have to be explicitly declared as well. To check if a particular annotation
type and set is declared, use the Document.declared() method.

4.2.3 Adding structure

Assuming we begin with an empty document, we should first add a Text element. Then we can add paragraphs,
sentences, or other structural elements. The AbstractElement.add() method adds new children to an element:

text = doc.add(folia.Text)
paragraph = text.add(folia.Paragraph)
sentence = paragraph.add(folia.Sentence)
sentence.add(folia.Word, 'This')
sentence.add(folia.Word, 'is')
sentence.add(folia.Word, 'a')
sentence.add(folia.Word, 'test')
sentence.add(folia.Word, '.')

Note: The AbstractElement.add() method is actually a wrapper around AbstractElement.append(),
which takes the exact same arguments. It performs extra checks and works for both span annotation as well as token
annotation. Using append() will be faster though.

4.2. Editing FoLiA 797

PyNLPl Documentation, Release 1.2.8

4.2.4 Adding annotations

Adding annotations, or any elements for that matter, is done using the AbstractElement.add() method on the
intended parent element. We assume that the annotations we add have already been properly declared, otherwise an
exception will be raised as soon as add() is called. Let’s build on the previous example:

#First we grab the fourth word, 'test', from the sentence
word = sentence.words(3)

#Add Part-of-Speech tag
word.add(folia.PosAnnotation, set='brown-tagset',cls='n')

#Add lemma
lemma.add(folia.LemmaAnnotation, cls='test')

Note that in the above examples, the add() method takes a class as first argument, and subsequently takes keyword
arguments that will be passed to the classes’ constructor.

A second way of using AbstractElement.add() is by simply passing a fully instantiated child element, thus
constructing it prior to adding. The following is equivalent to the above example, as the previous method is merely a
shortcut for convenience:

#First we grab the fourth word, 'test', from the sentence
word = sentence.words(3)

#Add Part-of-Speech tag
word.add(folia.PosAnnotation(doc, set='brown-tagset',cls='n'))

#Add lemma
lemma.add(folia.LemmaAnnotation(doc , cls='test'))

The AbstractElement.add() method always returns that which was added, allowing it to be chained.

In the above example we first explicitly instantiate a PosAnnotation and a LemmaAnnotation. Instantiation of
any FoLiA element (always Python class subclassed off AbstractElement) follows the following pattern:

Class(document, *children, **kwargs)

Note: See AbstractElement.__init__() for all details on construction

Note that the document has to be passed explicitly as first argument to the constructor.

The common attributes are set using equally named keyword arguments:

• id=

• cls=

• set=

• annotator=

• annotatortype=

• confidence=

• src=

• speaker=

798 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• begintime=

• endtime=

Not all attributes are allowed for all elements, and certain attributes are required for certain elements. ValueError
exceptions will be raised when these constraints are not met.

Instead of setting id. you can also set the keyword argument generate_id_in and pass it another element, an
ID will be automatically generated, based on the ID of the element passed. When you use the first method of adding
elements, instantiation with generate_id_in will take place automatically behind the scenes when applicable and
when id is not explicitly set.

Any extra non-keyword arguments should be FoLiA elements and will be appended as the contents of the element,
i.e. the children or subelements. Instead of using non-keyword arguments, you can also use the keyword argument
content and pass a list. This is a shortcut made merely for convenience, as Python obliges all non-keyword argu-
ments to come before the keyword-arguments, which if often aesthetically unpleasing for our purposes. Example of
this use case will be shown in the next section.

4.2.5 Adding span annotation

Adding span annotation is easy with the FoLiA library. As you know, span annotation uses a stand-off annotation
embedded in annotation layers. These layers are in turn embedded in structural elements such as sentences. However,
the AbstractElement.add() method abstracts over this. Consider the following example of a named entity:

doc.declare(folia.Entity, "https://raw.githubusercontent.com/proycon/folia/master/
→˓setdefinitions/namedentities.foliaset.xml")

sentence = text.add(folia.Sentence)
sentence.add(folia.Word, 'I',id='example.s.1.w.1')
sentence.add(folia.Word, 'saw',id='example.s.1.w.2')
sentence.add(folia.Word, 'the',id='example.s.1.w.3')
word = sentence.add(folia.Word, 'Dalai',id='example.s.1.w.4')
word2 =sentence.add(folia.Word, 'Lama',id='example.s.1.w.5')
sentence.add(folia.Word, '.', id='example.s.1.w.6')

word.add(folia.Entity, word, word2, cls="per")

To make references to the words, we simply pass the word instances and use the document’s index to obtain them.
Note also that passing a list using the keyword argument contents is wholly equivalent to passing the non-keyword
arguments separately:

word.add(folia.Entity, cls="per", contents=[word,word2])

In the next example we do things more explicitly. We first create a sentence and then add a syntax parse, consisting of
nested elements:

doc.declare(folia.SyntaxLayer, 'some-syntax-set')

sentence = text.add(folia.Sentence)
sentence.add(folia.Word, 'The',id='example.s.1.w.1')
sentence.add(folia.Word, 'boy',id='example.s.1.w.2')
sentence.add(folia.Word, 'pets',id='example.s.1.w.3')
sentence.add(folia.Word, 'the',id='example.s.1.w.4')
sentence.add(folia.Word, 'cat',id='example.s.1.w.5')
sentence.add(folia.Word, '.', id='example.s.1.w.6')

#Adding Syntax Layer

(continues on next page)

4.2. Editing FoLiA 799

PyNLPl Documentation, Release 1.2.8

(continued from previous page)

layer = sentence.add(folia.SyntaxLayer)

#Adding Syntactic Units
layer.add(

folia.SyntacticUnit(self.doc, cls='s', contents=[
folia.SyntacticUnit(self.doc, cls='np', contents=[

folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.1'], cls='det'),
folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.2'], cls='n'),

]),
folia.SyntacticUnit(self.doc, cls='vp', contents=[

folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.3'], cls='v')
folia.SyntacticUnit(self.doc, cls='np', contents=[

folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.4'], cls=
→˓'det'),

folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.5'], cls='n
→˓'),

]),
]),

folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.6'], cls='fin')
])

)

Note: The lower-level AbstractElement.append() method would have had the same effect in the above
syntax tree sample.

4.2.6 Deleting annotations

Any element can be deleted by calling the AbstractElement.remove() method on its parent. Suppose we want
to delete word:

word.parent.remove(word)

4.2.7 Copying annotations

A deep copy can be made of any element by calling its AbstractElement.copy() method:

word2 = word.copy()

The copy will be without parent and document. If you intend to associate a copy with a new document, then copy as
follows instead:

word2 = word.copy(newdoc)

If you intend to attach the copy somewhere in the same document, you may want to add a suffix for any identifiers in
its scope, since duplicate identifiers are not allowed and would raise an exception. This can be specified as the second
argument:

word2 = word.copy(doc, ".copy")

800 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

4.3 Searching in a FoLiA document

If you have loaded a FoLiA document into memory, you may want to search for a particular annotations.
You can of course loop over all structural and annotation elements using AbstractElement.select(),
AllowTokenAnnotation.annotation() and AllowTokenAnnotation.annotations(). Addition-
ally, Word.findspans() and AbstractAnnotationLayer.findspan() are useful methods of finding
span annotations covering particular words, whereas AbstractSpanAnnotation.wrefs() does the reverse
and finds the words for a given span annotation element. In addition to these main methods of navigation and selec-
tion, there is higher-level function available for searching, this uses the FoLiA Query Language (FQL) or the Corpus
Query Language (CQL).

These two languages are part of separate libraries that need to be imported:

from pynlpl.formats import fql, cql

4.3.1 Corpus Query Language (CQL)

CQL is the easier-language of the two and most suitable for corpus searching. It is, however, less flexible than FQL,
which is designed specifically for FoLiA and can not just query, but also manipulate FoLiA documents in great detail.

CQL was developed for the IMS Corpus Workbench, at Stuttgart Univeristy, and is implemented in Sketch Engine,
who provide good CQL documentation.

CQL has to be converted to FQL first, which is then executed on the given document. This is a simple example
querying for the word “house”:

doc = folia.Document(file="/path/to/some/document.folia.xml")
query = fql.Query(cql.cql2fql('"house"'))
for word in query(doc):

print(word) #these will be folia.Word instances (all matching house)

Multiple words can be queried:

query = fql.Query(cql.cql2fql('"the" "big" "house"'))
for word1,word2,word3 in query(doc):

print(word1, word2,word3)

Queries may contain wildcard expressions to match multiple text patterns. Gaps can be specified using []. The
following will match any three word combination starting with the and ending with something that starts with house.
It will thus match things like “the big house” or “the small household”:

query = fql.Query(cql.cql2fql('"the" [] "house.*"'))
for word1,word2,word3 in query(doc):

...

We can make the gap optional with a question mark, it can be lenghtened with + or * , like regular expressions:

query = fql.Query(cql.cql2fql('"the" []? "house.*"'))
for match in query(doc):

print("We matched ", len(match), " words")

Querying is not limited to text, but all of FoLiA’s annotations can be used. To force our gap consist of one or more
adjectives, we do:

4.3. Searching in a FoLiA document 801

http://www.ims.uni-stuttgart.de/forschung/projekte/CorpusWorkbench.html
http://www.sketchengine.co.uk/documentation/wiki/SkE/CorpusQuerying

PyNLPl Documentation, Release 1.2.8

query = fql.Query(cql.cql2fql('"the" [pos = "a"]+ "house.*"'))
for match in query(doc):

...

The original CQL attribute here is tag rather than pos, this can be used too. In addition, all FoLiA element types can
be used! Just use their FoLiA tagname.

Consult the CQL documentation for more. Do note that CQL is very word/token centered, for searching other types
of elements, use FQL instead.

4.3.2 FoLiA Query Language (FQL)

FQL is documented here, a full overview is beyond the scope of this documentation. We will just introduce some basic
selection queries so you can develop an initial impression of the language’s abilities.

All FQL processing is done via the following class, as already seen in the previous section:

Query This class represents an FQL query.

pynlpl.formats.fql.Query

class pynlpl.formats.fql.Query(q, context=<pynlpl.formats.fql.Context object>)
Bases: object

This class represents an FQL query.

Selecting a word with a particular text is done as follows, doc is an instance of pynlpl.formats.folia.
Document:

query = fql.Query('SELECT w WHERE text = "house"')
for word in query(doc):

print(word) #this will be an instance of folia.Word

Regular expression matching can be done using the MATCHES operator:

query = fql.Query('SELECT w WHERE text MATCHES "^house.*$"')
for word in query(doc):

print(word)

The classes of other annotation types can be easily queried as follows:

query = fql.Query('SELECT w WHERE :pos = "v"' AND :lemma = "be"')
for word in query(doc):

print(word)

You can constrain your queries to a particular target selection using the FOR keyword:

query = fql.Query('SELECT w WHERE text MATCHES "^house.*$" FOR s WHERE text
→˓CONTAINS "sell"')
for word in query(doc):

print(word)

This construction also allows you to select the actual annotations. To select all people (a named entity) for words
that are not John:

802 Chapter 4. FoLiA library

https://github.com/proycon/foliadocserve/blob/master/README.rst

PyNLPl Documentation, Release 1.2.8

query = fql.Query('SELECT entity WHERE class = "person" FOR w WHERE text != "John"
→˓')
for entity in query(doc):

print(entity) #this will be an instance of folia.Entity

FOR statement may be chained, and Explicit IDs can be passed using the ID keyword:

query = fql.Query('SELECT entity WHERE class = "person" FOR w WHERE text != "John
→˓" FOR div ID "section.21"')
for entity in query(doc):

print(entity)

Sets are specified using the OF keyword, it can be omitted if there is only one for the annotation type, but will
be required otherwise:

query = fql.Query('SELECT su OF "http://some/syntax/set" WHERE class = "np"')
for su in query(doc):

print(su) #this will be an instance of folia.SyntacticUnit

We have just covered just the SELECT keyword, FQL has other keywords for manipulating documents, such
as EDIT, ADD, APPEND and PREPEND.

Note: Consult the FQL documentation at https://github.com/proycon/foliadocserve/blob/master/README.rst
for further documentation on the language.

Method Summary

__init__(q[, context]) Initialize self.
parse(q[, i])

Method Details

__init__(q, context=<pynlpl.formats.fql.Context object>)
Initialize self. See help(type(self)) for accurate signature.

__init__(q, context=<pynlpl.formats.fql.Context object>)
Initialize self. See help(type(self)) for accurate signature.

parse(q, i=0)

Selecting a word with a particular text is done as follows:

query = fql.Query('SELECT w WHERE text = "house"')
for word in query(doc):

print(word) #this will be an instance of folia.Word

Regular expression matching can be done using the MATCHES operator:

query = fql.Query('SELECT w WHERE text MATCHES "^house.*$"')
for word in query(doc):

print(word)

The classes of other annotation types can be easily queried as follows:

4.3. Searching in a FoLiA document 803

https://github.com/proycon/foliadocserve/blob/master/README.rst

PyNLPl Documentation, Release 1.2.8

query = fql.Query('SELECT w WHERE :pos = "v"' AND :lemma = "be"')
for word in query(doc):

print(word)

You can constrain your queries to a particular target selection using the FOR keyword:

query = fql.Query('SELECT w WHERE text MATCHES "^house.*$" FOR s WHERE text CONTAINS
→˓"sell"')
for word in query(doc):

print(word)

This construction also allows you to select the actual annotations. To select all people (a named entity) for words that
are not John:

query = fql.Query('SELECT entity WHERE class = "person" FOR w WHERE text != "John"')
for entity in query(doc):

print(entity) #this will be an instance of folia.Entity

FOR statement may be chained, and Explicit IDs can be passed using the ID keyword:

query = fql.Query('SELECT entity WHERE class = "person" FOR w WHERE text != "John"
→˓FOR div ID "section.21"')
for entity in query(doc):

print(entity)

Sets are specified using the OF keyword, it can be omitted if there is only one for the annotation type, but will be
required otherwise:

query = fql.Query('SELECT su OF "http://some/syntax/set" WHERE class = "np"')
for su in query(doc):

print(su) #this will be an instance of folia.SyntacticUnit

We have just covered the SELECT keyword, FQL has other keywords for manipulating documents, such as EDIT,
ADD, APPEND and PREPEND.

Note: Consult the FQL documentation at https://github.com/proycon/foliadocserve/blob/master/README.rst for
further documentation on the language.

4.3.3 Streaming Reader

Throughout this tutorial you have seen the Document class as a means of reading FoLiA documents. This class
always loads the entire document in memory, which can be a considerable resource demand. The following class
provides an alternative to loading FoLiA documents:

Reader Streaming FoLiA reader.

pynlpl.formats.folia.Reader

class pynlpl.formats.folia.Reader(filename, target, *args, **kwargs)
Bases: object

Streaming FoLiA reader.

804 Chapter 4. FoLiA library

https://github.com/proycon/foliadocserve/blob/master/README.rst

PyNLPl Documentation, Release 1.2.8

The reader allows you to read a FoLiA Document without holding the whole tree structure in memory. The
document will be read and the elements you seek returned as they are found. If you are querying a corpus of
large FoLiA documents for a specific structure, then it is strongly recommend to use the Reader rather than the
standard Document!

Method Summary

__init__(filename, target, *args, **kwargs) Read a FoLiA document in a streaming fashion.
findwords(*args, **kwargs)
initdoc()

Method Details

__init__(filename, target, *args, **kwargs)
Read a FoLiA document in a streaming fashion. You select a specific target element and all occurrences
of this element, including all contents (so all elements within), will be returned.

Parameters

• filename (*) – The filename of the document to read

• target (*) – The FoLiA element(s) you want to read (with everything contained in
its scope). Passed as a class. For example: folia.Sentence, or a tuple of multiple
element classes. Can also be set to None to return all elements, but that would load the
full tree structure into memory.

__init__(filename, target, *args, **kwargs)
Read a FoLiA document in a streaming fashion. You select a specific target element and all occurrences
of this element, including all contents (so all elements within), will be returned.

Parameters

• filename (*) – The filename of the document to read

• target (*) – The FoLiA element(s) you want to read (with everything contained in
its scope). Passed as a class. For example: folia.Sentence, or a tuple of multiple
element classes. Can also be set to None to return all elements, but that would load the
full tree structure into memory.

findwords(*args, **kwargs)

initdoc()

It does not load the entire document in memory but merely returns the elements you are interested in. This results in
far less memory usage and also provides a speed-up.

A reader is constructed as follows, the second argument is the class of the element you want:

reader = folia.Reader("my.folia.xml", folia.Word)
for word in reader:

print(word.id)

4.3. Searching in a FoLiA document 805

PyNLPl Documentation, Release 1.2.8

4.4 Higher-Order Annotations

4.4.1 Text Markup

FoLiA has a number of text markup elements, these appear within the TextContent (t) element, iterating over the
element of a TextContent element will first and foremost produce strings, but also uncover these markup elements
when present. The following markup types exists:

TextMarkupGap Markup element to mark gaps in text content
(TextContent)

TextMarkupString Markup element to mark arbitrary substrings in text con-
tent (TextContent)

TextMarkupStyle Markup element to style text content (TextContent),
e.g.

TextMarkupCorrection Markup element to mark corrections in text content
(TextContent).

TextMarkupError Markup element to mark gaps in text content
(TextContent)

pynlpl.formats.folia.TextMarkupGap

class pynlpl.formats.folia.TextMarkupGap(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to mark gaps in text content (TextContent)

Only consider this element for gaps in spans of untokenised text. The use of structural element Gap is preferred.

Method Summary

__init__(doc, *args, **kwargs) See AbstractElement.__init__(), text is
passed as a string in *args.

accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
Continued on next page

806 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 80 – continued from previous page
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.

Continued on next page

4.4. Higher-Order Annotations 807

PyNLPl Documentation, Release 1.2.8

Table 80 – continued from previous page
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Sets the text content of the markup element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

ANNOTATIONTYPE = 24

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

808 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

TEXTCONTAINER = True

TEXTDELIMITER = ''

XLINK = True

XMLTAG = 't-gap'

Method Details

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

4.4. Higher-Order Annotations 809

PyNLPl Documentation, Release 1.2.8

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

810 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()

4.4. Higher-Order Annotations 811

PyNLPl Documentation, Release 1.2.8

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

812 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

4.4. Higher-Order Annotations 813

PyNLPl Documentation, Release 1.2.8

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

814 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Sets the text content of the markup element.

Parameters text (str) –

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

4.4. Higher-Order Annotations 815

PyNLPl Documentation, Release 1.2.8

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

816 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

__str__()
Alias for text()

pynlpl.formats.folia.TextMarkupString

class pynlpl.formats.folia.TextMarkupString(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to mark arbitrary substrings in text content (TextContent)

Method Summary

__init__(doc, *args, **kwargs) See AbstractElement.__init__(), text is
passed as a string in *args.

accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)

Continued on next page

4.4. Higher-Order Annotations 817

PyNLPl Documentation, Release 1.2.8

Table 81 – continued from previous page
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Sets the text content of the markup element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
Continued on next page

818 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 81 – continued from previous page
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

ANNOTATIONTYPE = 32

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = True

TEXTDELIMITER = ''

XLINK = True

XMLTAG = 't-str'

Method Details

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

4.4. Higher-Order Annotations 819

PyNLPl Documentation, Release 1.2.8

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

820 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

4.4. Higher-Order Annotations 821

PyNLPl Documentation, Release 1.2.8

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

822 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

4.4. Higher-Order Annotations 823

PyNLPl Documentation, Release 1.2.8

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

824 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Sets the text content of the markup element.

Parameters text (str) –

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

4.4. Higher-Order Annotations 825

PyNLPl Documentation, Release 1.2.8

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

826 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.TextMarkupStyle

class pynlpl.formats.folia.TextMarkupStyle(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to style text content (TextContent), e.g. make text bold, italics, underlined, coloured, etc..

Method Summary

__init__(doc, *args, **kwargs) See AbstractElement.__init__(), text is
passed as a string in *args.

Continued on next page

4.4. Higher-Order Annotations 827

PyNLPl Documentation, Release 1.2.8

Table 82 – continued from previous page
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
Continued on next page

828 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 82 – continued from previous page
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Sets the text content of the markup element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

ANNOTATIONTYPE = 34

AUTH = True

4.4. Higher-Order Annotations 829

PyNLPl Documentation, Release 1.2.8

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = True

TEXTDELIMITER = ''

XLINK = True

XMLTAG = 't-style'

Method Details

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

830 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

4.4. Higher-Order Annotations 831

PyNLPl Documentation, Release 1.2.8

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

832 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

4.4. Higher-Order Annotations 833

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

834 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

4.4. Higher-Order Annotations 835

PyNLPl Documentation, Release 1.2.8

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Sets the text content of the markup element.

Parameters text (str) –

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

836 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

4.4. Higher-Order Annotations 837

PyNLPl Documentation, Release 1.2.8

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.TextMarkupCorrection

class pynlpl.formats.folia.TextMarkupCorrection(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to mark corrections in text content (TextContent).

Only consider this element for corrections on untokenised text. The use of Correction is preferred.

Method Summary

__init__(doc, *args, **kwargs) See AbstractElement.__init__(), text is
passed as a string in *args.

accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
Continued on next page

838 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 83 – continued from previous page
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.

Continued on next page

4.4. Higher-Order Annotations 839

PyNLPl Documentation, Release 1.2.8

Table 83 – continued from previous page
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Sets the text content of the markup element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

ANNOTATIONTYPE = 16

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

840 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

TEXTCONTAINER = True

TEXTDELIMITER = ''

XLINK = True

XMLTAG = 't-correction'

Method Details

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

4.4. Higher-Order Annotations 841

PyNLPl Documentation, Release 1.2.8

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

842 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()

4.4. Higher-Order Annotations 843

PyNLPl Documentation, Release 1.2.8

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

844 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

4.4. Higher-Order Annotations 845

PyNLPl Documentation, Release 1.2.8

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

846 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Sets the text content of the markup element.

Parameters text (str) –

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

4.4. Higher-Order Annotations 847

PyNLPl Documentation, Release 1.2.8

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

848 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

__str__()
Alias for text()

pynlpl.formats.folia.TextMarkupError

class pynlpl.formats.folia.TextMarkupError(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to mark gaps in text content (TextContent)

Only consider this element for gaps in spans of untokenised text. The use of structural element
ErrorDetection is preferred.

Method Summary

__init__(doc, *args, **kwargs) See AbstractElement.__init__(), text is
passed as a string in *args.

accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.

Continued on next page

4.4. Higher-Order Annotations 849

PyNLPl Documentation, Release 1.2.8

Table 84 – continued from previous page
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) See AbstractElement.json()
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve()
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text) Sets the text content of the markup element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.

Continued on next page

850 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 84 – continued from previous page
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) See AbstractElement.xml()
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

ANNOTATIONTYPE = 17

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = False

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = True

TEXTDELIMITER = ''

XLINK = True

XMLTAG = 't-error'

Method Details

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

__init__(doc, *args, **kwargs)
See AbstractElement.__init__(), text is passed as a string in *args.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

4.4. Higher-Order Annotations 851

PyNLPl Documentation, Release 1.2.8

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

852 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

4.4. Higher-Order Annotations 853

PyNLPl Documentation, Release 1.2.8

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
See AbstractElement.json()

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

854 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

4.4. Higher-Order Annotations 855

PyNLPl Documentation, Release 1.2.8

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve()

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

856 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text)
Sets the text content of the markup element.

Parameters text (str) –

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

4.4. Higher-Order Annotations 857

PyNLPl Documentation, Release 1.2.8

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

858 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
See AbstractElement.xml()

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.4.2 Features

Features allow a second-order annotation by adding the ability to assign properties and values to any of the existing
annotation elements. They follow the set/class paradigm by adding the notion of a subset and class relative to this
subset. The AbstractElement.feat() method provides a shortcut that can be used on any annotation element
to obtain the class of the feature, given a subset. To illustrate the concept, take a look at part of speech annotation with
some features:

pos = word.annotation(folia.PosAnnotation)
if pos.cls = "n":

if pos.feat('number') == 'plural':
print("We have a plural noun!")

elif pos.feat('number') == 'singular':
print("We have a singular noun!")

4.4. Higher-Order Annotations 859

PyNLPl Documentation, Release 1.2.8

The AbstractElement.feat() method will return an exception when the feature does not exist. Note that the
actual subset and class values are defined by the set and not FoLiA itself! They are therefore fictitious in the above
example.

The Python class for features is Feature, in the following example we add a feature:

pos.add(folia.Feature, subset="gender", cls="f")

Although FoLiA does not define any sets nor subsets. Some annotation types do come with some associated subsets,
their use is never mandatory. The advantage is that these associated subsets can be directly used as an XML attribute
in the FoLiA document. The FoLiA library provides extra classes, all subclassed off Feature for these:

Feature Feature elements can be used to associate subsets and
subclasses with almost any annotation element

SynsetFeature Synset feature, to be used within Sense
ActorFeature Actor feature, to be used within Event
BegindatetimeFeature Begindatetime feature, to be used within Event
EnddatetimeFeature Enddatetime feature, to be used within Event

pynlpl.formats.folia.Feature

class pynlpl.formats.folia.Feature(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

Feature elements can be used to associate subsets and subclasses with almost any annotation element

Method Summary

__init__(doc, *args, **kwargs) Constructor.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
Continued on next page

860 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 86 – continued from previous page
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
Continued on next page

4.4. Higher-Order Annotations 861

PyNLPl Documentation, Release 1.2.8

Table 86 – continued from previous page
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml() Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Feature'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

862 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'feat'

Method Details

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

4.4. Higher-Order Annotations 863

PyNLPl Documentation, Release 1.2.8

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

864 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.4. Higher-Order Annotations 865

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

866 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

4.4. Higher-Order Annotations 867

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

868 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.4. Higher-Order Annotations 869

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

870 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml()
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.SynsetFeature

class pynlpl.formats.folia.SynsetFeature(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.Feature

Synset feature, to be used within Sense

Method Summary

__init__(doc, *args, **kwargs) Constructor.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page

4.4. Higher-Order Annotations 871

PyNLPl Documentation, Release 1.2.8

Table 87 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page

872 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 87 – continued from previous page
relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml() Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Feature'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

4.4. Higher-Order Annotations 873

PyNLPl Documentation, Release 1.2.8

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = 'synset'

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

874 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

4.4. Higher-Order Annotations 875

PyNLPl Documentation, Release 1.2.8

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

876 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

4.4. Higher-Order Annotations 877

PyNLPl Documentation, Release 1.2.8

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

878 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

4.4. Higher-Order Annotations 879

PyNLPl Documentation, Release 1.2.8

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

880 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

4.4. Higher-Order Annotations 881

PyNLPl Documentation, Release 1.2.8

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml()
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.ActorFeature

class pynlpl.formats.folia.ActorFeature(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.Feature

Actor feature, to be used within Event

Method Summary

882 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

__init__(doc, *args, **kwargs) Constructor.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
Continued on next page

4.4. Higher-Order Annotations 883

PyNLPl Documentation, Release 1.2.8

Table 88 – continued from previous page
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml() Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

884 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Feature'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = 'actor'

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

4.4. Higher-Order Annotations 885

PyNLPl Documentation, Release 1.2.8

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

886 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

4.4. Higher-Order Annotations 887

PyNLPl Documentation, Release 1.2.8

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

888 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

4.4. Higher-Order Annotations 889

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

890 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

4.4. Higher-Order Annotations 891

PyNLPl Documentation, Release 1.2.8

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

892 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml()
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.BegindatetimeFeature

class pynlpl.formats.folia.BegindatetimeFeature(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.Feature

Begindatetime feature, to be used within Event

4.4. Higher-Order Annotations 893

PyNLPl Documentation, Release 1.2.8

Method Summary

__init__(doc, *args, **kwargs) Constructor.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

Continued on next page

894 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 89 – continued from previous page
originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml() Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

4.4. Higher-Order Annotations 895

PyNLPl Documentation, Release 1.2.8

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Feature'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = 'begindatetime'

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

896 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

4.4. Higher-Order Annotations 897

PyNLPl Documentation, Release 1.2.8

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

898 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

4.4. Higher-Order Annotations 899

PyNLPl Documentation, Release 1.2.8

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

900 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

4.4. Higher-Order Annotations 901

PyNLPl Documentation, Release 1.2.8

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

902 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

4.4. Higher-Order Annotations 903

PyNLPl Documentation, Release 1.2.8

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml()
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.EnddatetimeFeature

class pynlpl.formats.folia.EnddatetimeFeature(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.Feature

Enddatetime feature, to be used within Event

904 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Method Summary

__init__(doc, *args, **kwargs) Constructor.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

Continued on next page

4.4. Higher-Order Annotations 905

PyNLPl Documentation, Release 1.2.8

Table 90 – continued from previous page
originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml() Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

906 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Feature'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = 'enddatetime'

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = None

Method Details

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

__init__(doc, *args, **kwargs)
Constructor.

Keyword Arguments

• subset (str) – the subset

• cls (str) – the class

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

4.4. Higher-Order Annotations 907

PyNLPl Documentation, Release 1.2.8

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

908 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

4.4. Higher-Order Annotations 909

PyNLPl Documentation, Release 1.2.8

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

910 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

4.4. Higher-Order Annotations 911

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

912 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

4.4. Higher-Order Annotations 913

PyNLPl Documentation, Release 1.2.8

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

914 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml()
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.4.3 Alternatives

A key feature of FoLiA is its ability to make explicit alternative annotations, for token annotations, the Alternative
(alt) class is used to this end. Alternative annotations are embedded in this structure. This implies the annotation
is not authoritative, but is merely an alternative to the actual annotation (if any). Alternatives may typically occur in
larger numbers, representing a distribution each with a confidence value (not mandatory). Each alternative is wrapped
in its own Alternative element, as multiple elements inside a single alternative are considered dependent and part

4.4. Higher-Order Annotations 915

PyNLPl Documentation, Release 1.2.8

of the same alternative. Combining multiple annotation in one alternative makes sense for mixed annotation types,
where for instance a pos tag alternative is tied to a particular lemma:

alt = word.add(folia.Alternative)
alt.add(folia.PosAnnotation, set='brown-tagset',cls='n',confidence=0.5)
alt = word.add(folia.Alternative) #note that we reassign the variable!
alt.add(folia.PosAnnotation, set='brown-tagset',cls='a',confidence=0.3)
alt = word.add(folia.Alternative)
alt.add(folia.PosAnnotation, set='brown-tagset',cls='v',confidence=0.2)

Span annotation elements have a different mechanism for alternatives, for those the entire annotation layer is embedded
in a AlternativeLayers element. This element should be repeated for every type, unless the layers it describeds
are dependent on it eachother:

alt = sentence.add(folia.AlternativeLayers)
layer = alt.add(folia.Entities)
entity = layer.add(folia.Entity, word1,word2,cls="person", confidence=0.3)

Because the alternative annotations are non-authoritative, normal selection methods such as select() and
annotations() will never yield them, unless explicitly told to do so. For this reason, there is an
alternatives() method on structure elements, for the first category of alternatives.

In summary, a list of the two relevant classes for alternatives:

Alternative Element grouping alternative token annotation(s).
AlternativeLayers Element grouping alternative subtoken annotation(s).

pynlpl.formats.folia.Alternative

class pynlpl.formats.folia.Alternative(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.
AllowTokenAnnotation, pynlpl.formats.folia.AllowGenerateID

Element grouping alternative token annotation(s).

Multiple alternative elements may occur, each denoting a different alternative. Elements grouped inside an
alternative block are considered dependent.

A key feature of FoLiA is its ability to make explicit alternative annotations, for token annotations, this class
is used to this end. Alternative annotations are embedded in this structure. This implies the annotation is not
authoritative, but is merely an alternative to the actual annotation (if any). Alternatives may typically occur in
larger numbers, representing a distribution each with a confidence value (not mandatory). Each alternative is
wrapped in its an instance of this class, as multiple elements inside a single alternative are considered dependent
and part of the same alternative. Combining multiple annotation in one alternative makes sense for mixed
annotation types, where for instance a pos tag alternative is tied to a particular lemma.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
Continued on next page

916 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 92 – continued from previous page
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
alternatives([Class, set]) Generator over alternatives, either all or only of a

specific annotation type, and possibly restrained also
by set.

ancestor(*Classes) Find the most immediate ancestor of the specified
type, multiple classes may be specified.

ancestors([Class]) Generator yielding all ancestors of this element, ef-
fectively back-tracing its path to the root element.

annotation(type[, set]) Obtain a single annotation element.
annotations(Class[, set]) Obtain child elements (annotations) of the specified

class.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs) Apply a correction (TODO: documentation to be

written still)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasannotation(Class[, set]) Returns an integer indicating whether such as anno-

tation exists, and if so, how many.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
Continued on next page

4.4. Higher-Order Annotations 917

PyNLPl Documentation, Release 1.2.8

Table 92 – continued from previous page
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
Continued on next page

918 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 92 – continued from previous page
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.MorphologyLayer'>, <class 'pynlpl.formats.folia.PhonologyLayer'>)

ANNOTATIONTYPE = None

AUTH = False

AUTO_GENERATE_ID = False

LABEL = 'Alternative'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'alt'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

4.4. Higher-Order Annotations 919

PyNLPl Documentation, Release 1.2.8

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

alternatives(Class=None, set=None)
Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by
set.

Parameters

• Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to
None to select all alternatives regardless of what type they are.

• set (str) – The set you want to retrieve (defaults to None, which selects irregardless of
set)

Yields Alternative elements

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

annotation(type, set=None)
Obtain a single annotation element.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Returns An element (instance derived from AbstractElement)

920 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also:

AllowTokenAnnotation.annotations() AbstractElement.select()

Raises NoSuchAnnotation if no such annotation exists

annotations(Class, set=None)
Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
..

See also:

AbstractElement.select()

Raises

• AllowTokenAnnotation.annotations()

• NoSuchAnnotation if no such annotation exists

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

4.4. Higher-Order Annotations 921

PyNLPl Documentation, Release 1.2.8

correct(**kwargs)
Apply a correction (TODO: documentation to be written still)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasannotation(Class, set=None)
Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

922 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

4.4. Higher-Order Annotations 923

PyNLPl Documentation, Release 1.2.8

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

924 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

4.4. Higher-Order Annotations 925

PyNLPl Documentation, Release 1.2.8

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

926 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

4.4. Higher-Order Annotations 927

PyNLPl Documentation, Release 1.2.8

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

928 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.AlternativeLayers

class pynlpl.formats.folia.AlternativeLayers(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

Element grouping alternative subtoken annotation(s). Multiple altlayers elements may occur, each denoting a
different alternative. Elements grouped inside an alternative block are considered dependent.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
Continued on next page

4.4. Higher-Order Annotations 929

PyNLPl Documentation, Release 1.2.8

Table 93 – continued from previous page
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
Continued on next page

930 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 93 – continued from previous page
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

ANNOTATIONTYPE = None

AUTH = False

AUTO_GENERATE_ID = False

LABEL = 'Alternative Layers'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'altlayers'

4.4. Higher-Order Annotations 931

PyNLPl Documentation, Release 1.2.8

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

932 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

4.4. Higher-Order Annotations 933

PyNLPl Documentation, Release 1.2.8

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

934 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

4.4. Higher-Order Annotations 935

PyNLPl Documentation, Release 1.2.8

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

936 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

4.4. Higher-Order Annotations 937

PyNLPl Documentation, Release 1.2.8

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

938 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

4.4. Higher-Order Annotations 939

PyNLPl Documentation, Release 1.2.8

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.4.4 Corrections

Corrections are one of the most complex annotation types in FoLiA. Corrections can be applied not just over text, but
over any type of structure annotation, token annotation or span annotation. Corrections explicitly preserve the original,
and recursively so if corrections are done over other corrections.

Despite their complexity, the library treats correction transparently. Whenever you query for a particular element, and
it is part of a correction, you get the corrected version rather than the original. The original is always non-authoritative
and normal selection methods will ignore it.

If you want to deal with correction, you have to explicitly handle the Correction element. If an element is part of
a correction, its AbstractElement.incorrection() method will give the correction element, if not, it will
return None:

pos = word.annotation(folia.PosAnnotation)
correction = pos.incorrection()
if correction:

if correction.hasoriginal():
originalpos = correction.original(0) #assuming it's the only element as is

→˓customary
#originalpos will be an instance of folia.PosAnnotation
print("The original pos was", originalpos.cls)

Corrections themselves carry a class too, indicating the type of correction (defined by the set used and not by FoLiA).

Besides Correction.original(), corrections distinguish three other types, Correction.new()
(the corrected version), Correction.current() (the current uncorrected version) and Correction.
suggestions() (a suggestion for correction), the former two and latter two usually form pairs, current() and
new() can never be used together. Of suggestions(index) there may be multiple, hence the index argument.
These return, respectively, instances of Original, folia.New, folia.Current and folia.Suggestion.

Adding a correction can be done explicitly:

wrongpos = word.annotation(folia.PosAnnotation)
word.add(folia.Correction, folia.New(doc, folia.PosAnnotation(doc, cls="n")) , folia.
→˓Original(doc, wrongpos), cls="misclassified")

Let’s settle for a suggestion rather than an actual correction:

wrongpos = word.annotation(folia.PosAnnotation)
word.add(folia.Correction, folia.Suggestion(doc, folia.PosAnnotation(doc, cls="n")),
→˓cls="misclassified")

940 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

In some instances, when correcting text or structural elements, New may be empty, which would correspond to an
deletion. Similarly, Original may be empty, corresponding to an insertion.

The use of Current is reserved for use with structure elements, such as words, in combination with suggestions. The
structure elements then have to be embedded in Current. This situation arises for instance when making suggestions
for a merge or split.

Here is a list of all relevant classes for corrections:

Correction Corrections are one of the most complex annotation
types in FoLiA.

Current Used in the context of Correction to encapsulate the
currently authoritative annotations.

ErrorDetection The ErrorDetection element is used to signal the pres-
ence of errors in a structural element.

New
Original Used in the context of Correction to encapsulate the

original annotations prior to correction.
Suggestion Suggestions are used in the context of Correction,

but rather than provide an authoritative correction, it in-
stead offers a suggestion for correction.

pynlpl.formats.folia.Correction

class pynlpl.formats.folia.Correction(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.
AllowGenerateID

Corrections are one of the most complex annotation types in FoLiA. Corrections can be applied not just over text,
but over any type of structure annotation, token annotation or span annotation. Corrections explicitly preserve
the original, and recursively so if corrections are done over other corrections.

Despite their complexity, the library treats correction transparently. Whenever you query for a particular ele-
ment, and it is part of a correction, you get the corrected version rather than the original. The original is always
non-authoritative and normal selection methods will ignore it.

This class takes four classes as children, that in turn encapsulate the actual annotations:

• New - Encapsulates the newly corrected annotation(s)

• Original - Encapsulated the old original annotation(s)

• Current - Encapsulates the current authoritative annotation(s)

• Suggestions - Encapsulates the annotation(s) that are a non-authoritative suggestion for correction

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
Continued on next page

4.4. Higher-Order Annotations 941

PyNLPl Documentation, Release 1.2.8

Table 95 – continued from previous page
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

current([index]) Get the current authoritative annotation (used with
suggestions in a structural context)

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) See AbstractElement.

gettextdelimiter()
hascurrent([allowempty]) Does the correction record the current authoritative

annotation (needed only in a structural context when
suggestions are proposed)

hasnew([allowempty]) Does the correction define new corrected annota-
tions?

hasoriginal([allowempty]) Does the correction record the old annotations prior
to correction?

hasphon([cls, strict, correctionhandling]) See AbstractElement.hasphon()
hassuggestions([allowempty]) Does the correction propose suggestions for correc-

tion?
hastext([cls, strict, correctionhandling]) See AbstractElement.hastext()
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
Continued on next page

942 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 95 – continued from previous page
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
new([index]) Get the new corrected annotation.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

original([index]) Get the old annotation prior to correction.
originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) See AbstractElement.phon()
phoncontent([cls, correctionhandling]) See AbstractElement.phoncontent()
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
suggestions([index]) Get suggestions for correction.
text([cls, retaintokenisation, . . .]) See AbstractElement.text()
textcontent([cls, correctionhandling]) See AbstractElement.textcontent()
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.

Continued on next page

4.4. Higher-Order Annotations 943

PyNLPl Documentation, Release 1.2.8

Table 95 – continued from previous page
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Current'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ErrorDetection'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.New'>, <class 'pynlpl.formats.folia.Original'>, <class 'pynlpl.formats.folia.Suggestion'>)

ANNOTATIONTYPE = 16

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Correction'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'correction'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

944 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)

4.4. Higher-Order Annotations 945

PyNLPl Documentation, Release 1.2.8

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

current(index=None)
Get the current authoritative annotation (used with suggestions in a structural context)

This returns only one annotation if multiple exist, use index to select another in the sequence.

Returns an annotation element (AbstractElement)

Raises NoSuchAnnotation

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
See AbstractElement.gettextdelimiter()

hascurrent(allowempty=False)
Does the correction record the current authoritative annotation (needed only in a structural context when
suggestions are proposed)

hasnew(allowempty=False)
Does the correction define new corrected annotations?

946 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

hasoriginal(allowempty=False)
Does the correction record the old annotations prior to correction?

hasphon(cls=’current’, strict=True, correctionhandling=1)
See AbstractElement.hasphon()

hassuggestions(allowempty=False)
Does the correction propose suggestions for correction?

hastext(cls=’current’, strict=True, correctionhandling=1)
See AbstractElement.hastext()

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

new(index=None)
Get the new corrected annotation.

This returns only one annotation if multiple exist, use index to select another in the sequence.

Returns an annotation element (AbstractElement)

Raises NoSuchAnnotation

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

original(index=None)
Get the old annotation prior to correction.

This returns only one annotation if multiple exist, use index to select another in the sequence.

4.4. Higher-Order Annotations 947

PyNLPl Documentation, Release 1.2.8

Returns an annotation element (AbstractElement)

Raises NoSuchAnnotation

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
See AbstractElement.phon()

phoncontent(cls=’current’, correctionhandling=1)
See AbstractElement.phoncontent()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

948 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

4.4. Higher-Order Annotations 949

PyNLPl Documentation, Release 1.2.8

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

suggestions(index=None)
Get suggestions for correction.

Yields Suggestion element that encapsulate the suggested annotations (if index is None,
default)

Returns a Suggestion element that encapsulate the suggested annotations (if index is set)

Raises IndexError

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

See AbstractElement.text()

textcontent(cls=’current’, correctionhandling=1)
See AbstractElement.textcontent()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

950 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Current

class pynlpl.formats.folia.Current(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractCorrectionChild

Used in the context of Correction to encapsulate the currently authoritative annotations.

Needed only when suggestions for correction are proposed (Suggestion) for structural elements.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
Continued on next page

4.4. Higher-Order Annotations 951

PyNLPl Documentation, Release 1.2.8

Table 96 – continued from previous page
correct(**kwargs)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
Continued on next page

952 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 96 – continued from previous page
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractSpanAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 1

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

4.4. Higher-Order Annotations 953

PyNLPl Documentation, Release 1.2.8

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'current'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

954 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

4.4. Higher-Order Annotations 955

PyNLPl Documentation, Release 1.2.8

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

956 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

4.4. Higher-Order Annotations 957

PyNLPl Documentation, Release 1.2.8

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

958 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

4.4. Higher-Order Annotations 959

PyNLPl Documentation, Release 1.2.8

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

960 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

4.4. Higher-Order Annotations 961

PyNLPl Documentation, Release 1.2.8

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.ErrorDetection

class pynlpl.formats.folia.ErrorDetection(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractExtendedTokenAnnotation

The ErrorDetection element is used to signal the presence of errors in a structural element.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs) See AbstractElement.append()

Continued on next page

962 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 97 – continued from previous page
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
Continued on next page

4.4. Higher-Order Annotations 963

PyNLPl Documentation, Release 1.2.8

Table 97 – continued from previous page
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 17

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Error Detection'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

964 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

REQUIRED_ATTRIBS = (1,)

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'errordetection'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

4.4. Higher-Order Annotations 965

PyNLPl Documentation, Release 1.2.8

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)
See AbstractElement.append()

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

966 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.4. Higher-Order Annotations 967

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

968 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

4.4. Higher-Order Annotations 969

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

970 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.4. Higher-Order Annotations 971

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

972 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.New

class pynlpl.formats.folia.New(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractCorrectionChild

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
Continued on next page

4.4. Higher-Order Annotations 973

PyNLPl Documentation, Release 1.2.8

Table 98 – continued from previous page
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
correct(**kwargs)
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page

974 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 98 – continued from previous page
relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractSpanAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 1

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

4.4. Higher-Order Annotations 975

PyNLPl Documentation, Release 1.2.8

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'new'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

976 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

correct(**kwargs)

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

4.4. Higher-Order Annotations 977

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

978 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

4.4. Higher-Order Annotations 979

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

980 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

4.4. Higher-Order Annotations 981

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

982 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

4.4. Higher-Order Annotations 983

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Original

class pynlpl.formats.folia.Original(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractCorrectionChild

Used in the context of Correction to encapsulate the original annotations prior to correction.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page

984 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 99 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page

4.4. Higher-Order Annotations 985

PyNLPl Documentation, Release 1.2.8

Table 99 – continued from previous page
relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractSpanAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = None

AUTH = False

AUTO_GENERATE_ID = False

OCCURRENCES = 1

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

986 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'original'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

4.4. Higher-Order Annotations 987

PyNLPl Documentation, Release 1.2.8

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

988 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.4. Higher-Order Annotations 989

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

990 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

4.4. Higher-Order Annotations 991

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

992 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.4. Higher-Order Annotations 993

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

994 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Suggestion

class pynlpl.formats.folia.Suggestion(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractCorrectionChild

Suggestions are used in the context of Correction, but rather than provide an authoritative correction, it
instead offers a suggestion for correction.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
Continued on next page

4.4. Higher-Order Annotations 995

PyNLPl Documentation, Release 1.2.8

Table 100 – continued from previous page
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
generate_id(cls)
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

Continued on next page

996 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 100 – continued from previous page
relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an

XML element (lxml.etree) rather than a string)
remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractSpanAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

ANNOTATIONTYPE = None

AUTH = False

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4)

PHONCONTAINER = False

PRIMARYELEMENT = True

4.4. Higher-Order Annotations 997

PyNLPl Documentation, Release 1.2.8

PRINTABLE = True

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = True

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'suggestion'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

998 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

4.4. Higher-Order Annotations 999

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

generate_id(cls)

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

1000 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

4.4. Higher-Order Annotations 1001

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

1002 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

4.4. Higher-Order Annotations 1003

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

1004 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

4.4. Higher-Order Annotations 1005

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.4.5 Alignments

Alignments are used to make reference to external documents. It concerns references as annotation rather than refer-
ences which are explicitly part of the text, such as hyperlinks and Reference.

The following elements are relevant for alignments:

Alignment The Alignment element is a form of higher-order anno-
tation taht is used to point to an external resource.

AlignReference The AlignReference element is used to point to specific
elements inside the aligned source.

pynlpl.formats.folia.Alignment

class pynlpl.formats.folia.Alignment(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

The Alignment element is a form of higher-order annotation taht is used to point to an external resource.

It concerns references as annotation rather than references which are explicitly part of the text, such as hyperlinks
and Reference.

Inside the Alignment element, the AlignReference element may be used to point to specific elements

1006 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

(multiple denotes a span).

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.

Continued on next page

4.4. Higher-Order Annotations 1007

PyNLPl Documentation, Release 1.2.8

Table 102 – continued from previous page
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve([documents])
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
Continued on next page

1008 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 102 – continued from previous page
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

ANNOTATIONTYPE = 26

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Alignment'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = True

XMLTAG = 'alignment'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

4.4. Higher-Order Annotations 1009

PyNLPl Documentation, Release 1.2.8

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

1010 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

4.4. Higher-Order Annotations 1011

PyNLPl Documentation, Release 1.2.8

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

1012 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

4.4. Higher-Order Annotations 1013

PyNLPl Documentation, Release 1.2.8

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolve(documents=None)

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

1014 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

4.4. Higher-Order Annotations 1015

PyNLPl Documentation, Release 1.2.8

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the

1016 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.4. Higher-Order Annotations 1017

PyNLPl Documentation, Release 1.2.8

pynlpl.formats.folia.AlignReference

class pynlpl.formats.folia.AlignReference(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

The AlignReference element is used to point to specific elements inside the aligned source.

It is used with Alignment which is responsible for pointing to the external resource.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

Continued on next page

1018 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 103 – continued from previous page
insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolve([alignmentcontext, documents])
resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
Continued on next page

4.4. Higher-Order Annotations 1019

PyNLPl Documentation, Release 1.2.8

Table 103 – continued from previous page
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = None

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'aref'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

1020 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

4.4. Higher-Order Annotations 1021

PyNLPl Documentation, Release 1.2.8

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

1022 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

4.4. Higher-Order Annotations 1023

PyNLPl Documentation, Release 1.2.8

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

1024 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)
Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

4.4. Higher-Order Annotations 1025

PyNLPl Documentation, Release 1.2.8

See AbstractElement.append() for more information and all parameters.

resolve(alignmentcontext=None, documents={})

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

1026 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

4.4. Higher-Order Annotations 1027

PyNLPl Documentation, Release 1.2.8

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

1028 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.4.6 Descriptions, Metrics

FoLiA allows arbitrary descriptions to be assigned with any element. It also allows assigning metrics to any annotation,
which consist of a key/value pair that often express a quantivative or qualitative measure. This is accomplished,
respectively, with the following element classes:

Description Description is an element that can be used to associate a
description with almost any other FoLiA element

Metric Metric elements provide a key/value pair to allow the
annotation of any kind of metric with any kind of anno-
tation element.

pynlpl.formats.folia.Description

class pynlpl.formats.folia.Description(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

Description is an element that can be used to associate a description with almost any other FoLiA element

Method Summary

__init__(doc, *args, **kwargs) Required keyword arguments: * value=: The text
content for the description (str or unicode)

accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.

Continued on next page

4.4. Higher-Order Annotations 1029

PyNLPl Documentation, Release 1.2.8

Table 105 – continued from previous page
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
Continued on next page

1030 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 105 – continued from previous page
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

ANNOTATIONTYPE = None

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Description'

OCCURRENCES = 1

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

4.4. Higher-Order Annotations 1031

PyNLPl Documentation, Release 1.2.8

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'desc'

Method Details

__init__(doc, *args, **kwargs)
Required keyword arguments: * value=: The text content for the description (str or unicode)

__init__(doc, *args, **kwargs)
Required keyword arguments: * value=: The text content for the description (str or unicode)

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

1032 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

4.4. Higher-Order Annotations 1033

PyNLPl Documentation, Release 1.2.8

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

1034 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

4.4. Higher-Order Annotations 1035

PyNLPl Documentation, Release 1.2.8

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

1036 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

Yields Elements (instances derived from AbstractElement)

Example:

4.4. Higher-Order Annotations 1037

PyNLPl Documentation, Release 1.2.8

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

1038 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

4.4. Higher-Order Annotations 1039

PyNLPl Documentation, Release 1.2.8

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

pynlpl.formats.folia.Metric

class pynlpl.formats.folia.Metric(doc, *args, **kwargs)
Bases: pynlpl.formats.folia.AbstractElement

Metric elements provide a key/value pair to allow the annotation of any kind of metric with any kind of annota-
tion element.

It is used for example for statistical measures to be added to elements as annotation.

Method Summary

__init__(doc, *args, **kwargs) Initialize self.
accepts(Class[, raiseexceptions, parentinstance])
add(child, *args, **kwargs)
addable(parent[, set, raiseexceptions]) Tests whether a new element of this class can be

added to the parent.
addidsuffix(idsuffix[, recursive]) Appends a suffix to this element’s ID, and optionally

to all child IDs as well.
addtoindex([norecurse]) Makes sure this element (and all subelements), are

properly added to the index.
ancestor(*Classes) Find the most immediate ancestor of the specified

type, multiple classes may be specified.
ancestors([Class]) Generator yielding all ancestors of this element, ef-

fectively back-tracing its path to the root element.
Continued on next page

1040 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Table 106 – continued from previous page
append(child, *args, **kwargs)
context(size[, placeholder, scope]) Returns this word in context, {size} words to the left,

the current word, and {size} words to the right
copy([newdoc, idsuffix]) Make a deep copy of this element and all its children.
copychildren([newdoc, idsuffix]) Generator creating a deep copy of the children of this

element.
count(Class[, set, recursive, ignore, node]) Like AbstractElement.select(), but in-

stead of returning the elements, it merely counts
them.

deepvalidation() Perform deep validation of this element.
description() Obtain the description associated with the element.
feat(subset) Obtain the feature class value of the specific subset.
findcorrectionhandling(cls) Find the proper correctionhandling given a textclass

by looking in the underlying corrections where it is
reused

findreplaceables(parent[, set]) Internal method to find replaceable elements.
getindex(child[, recursive, ignore]) Get the index at which an element occurs, recursive

by default!
getmetadata([key]) Get the metadata that applies to this element, auto-

matically inherited from parent elements
gettextdelimiter([retaintokenisation]) Return the text delimiter for this class.
hasphon([cls, strict, correctionhandling]) Does this element have phonetic content (of the spec-

ified class)
hastext([cls, strict, correctionhandling]) Does this element have text (of the specified class)
incorrection() Is this element part of a correction? If it is, it returns

the Correction element (evaluating to True), other-
wise it returns None

insert(index, child, *args, **kwargs)
items([founditems]) Returns a depth-first flat list of all items below this

element (not limited to AbstractElement)
json([attribs, recurse, ignorelist]) Serialises the FoLiA element and all its contents to a

Python dictionary suitable for serialisation to JSON.
leftcontext(size[, placeholder, scope]) Returns the left context for an element, as a list.
next([Class, scope, reverse]) Returns the next element, if it is of the specified type

and if it does not cross the boundary of the defined
scope.

originaltext([cls]) Alias for retrieving the original uncorrect text.
parsexml(node, doc, **kwargs) Internal class method used for turning an XML ele-

ment into an instance of the Class.
phon([cls, previousdelimiter, strict, . . .]) Get the phonetic representation associated with this

element (of the specified class)
phoncontent([cls, correctionhandling]) Get the phonetic content explicitly associated with

this element (of the specified class).
postappend() This method will be called after an element is added

to another and does some checks.
previous([Class, scope]) Returns the previous element, if it is of the specified

type and if it does not cross the boundary of the de-
fined scope.

relaxng([includechildren, extraattribs, . . .]) Returns a RelaxNG definition for this element (as an
XML element (lxml.etree) rather than a string)

remove(child) Removes the child element
Continued on next page

4.4. Higher-Order Annotations 1041

PyNLPl Documentation, Release 1.2.8

Table 106 – continued from previous page
replace(child, *args, **kwargs) Appends a child element like append(), but re-

places any existing child element of the same type
and set.

resolveword(id)
rightcontext(size[, placeholder, scope]) Returns the right context for an element, as a list.
select(Class[, set, recursive, ignore, node]) Select child elements of the specified class.
setdoc(newdoc) Set a different document.
setdocument(doc) Associate a document with this element.
setparents() Correct all parent relations for elements within the

scop.
settext(text[, cls]) Set the text for this element.
speech_speaker() Retrieves the speaker of the audio or video file asso-

ciated with the element.
speech_src() Retrieves the URL/filename of the audio or video file

associated with the element.
stricttext([cls]) Alias for text() with strict=True
text([cls, retaintokenisation, . . .]) Get the text associated with this element (of the spec-

ified class)
textcontent([cls, correctionhandling]) Get the text content explicitly associated with this

element (of the specified class).
textvalidation([warnonly]) Run text validation on this element.
toktext([cls]) Alias for text() with

retaintokenisation=True
updatetext() Recompute textual value based on the text content of

the children.
xml([attribs, elements, skipchildren]) Serialises the FoLiA element and all its contents to

XML.
xmlstring([pretty_print]) Serialises this FoLiA element and all its contents to

XML.
__iter__() Iterate over all children of this element.
__len__() Returns the number of child elements under the cur-

rent element.
__str__() Alias for text()

Class Attributes

ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.ValueFeature'>)

ANNOTATIONTYPE = 30

AUTH = True

AUTO_GENERATE_ID = False

LABEL = 'Metric'

OCCURRENCES = 0

OCCURRENCES_PER_SET = 0

OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

PHONCONTAINER = False

PRIMARYELEMENT = True

PRINTABLE = False

1042 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

REQUIRED_ATTRIBS = None

REQUIRED_DATA = None

SETONLY = False

SPEAKABLE = False

SUBSET = None

TEXTCONTAINER = False

TEXTDELIMITER = None

XLINK = False

XMLTAG = 'metric'

Method Details

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__init__(doc, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

add(child, *args, **kwargs)

classmethod addable(parent, set=None, raiseexceptions=True)
Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use. This will use the OCCURRENCES property, but may be overidden
by subclasses for more customised behaviour.

Parameters

• parent (AbstractElement) – The element that is being added to

• set (str or None) – The set

• raiseexceptions (bool) – Raise an exception if the element can’t be added?

Returns bool

Raises ValueError

addidsuffix(idsuffix, recursive=True)
Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to
call this directly, invoked implicitly by copy()

addtoindex(norecurse=[])
Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

ancestor(*Classes)
Find the most immediate ancestor of the specified type, multiple classes may be specified.

Parameters *Classes – The possible classes (AbstractElement or subclasses) to select
from. Not instances!

Example:

4.4. Higher-Order Annotations 1043

PyNLPl Documentation, Release 1.2.8

paragraph = word.ancestor(folia.Paragraph)

ancestors(Class=None)
Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A
tuple of multiple classes may be specified.

Parameters *Class – The class or classes (AbstractElement or subclasses). Not in-
stances!

Yields elements (instances derived from AbstractElement)

append(child, *args, **kwargs)

context(size, placeholder=None, scope=None)
Returns this word in context, {size} words to the left, the current word, and {size} words to the right

copy(newdoc=None, idsuffix=”)
Make a deep copy of this element and all its children.

Parameters

• newdoc (Document) – The document the copy should be associated with.

• idsuffix (str or bool) – If set to a string, the ID of the copy will be append with
this (prevents duplicate IDs when making copies for the same document). If set to True,
a random suffix will be generated.

Returns a copy of the element

copychildren(newdoc=None, idsuffix=”)
Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

count(Class, set=None, recursive=True, ignore=True, node=None)
Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

Returns int

deepvalidation()
Perform deep validation of this element.

Raises DeepValidationError

description()
Obtain the description associated with the element.

Raises NoSuchAnnotation if there is no associated description.

feat(subset)
Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

Returns str or list

1044 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling(cls)
Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is
reused

classmethod findreplaceables(parent, set=None, **kwargs)
Internal method to find replaceable elements. Auxiliary function used by AbstractElement.
replace(). Can be overriden for more fine-grained control.

getindex(child, recursive=True, ignore=True)
Get the index at which an element occurs, recursive by default!

Returns int

getmetadata(key=None)
Get the metadata that applies to this element, automatically inherited from parent elements

gettextdelimiter(retaintokenisation=False)
Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

hasphon(cls=’current’, strict=True, correctionhandling=1)
Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content
and it is not inherited from its children.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what phonetic content to check for when
corrections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Returns bool

hastext(cls=’current’, strict=True, correctionhandling=1)
Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not
inherited from its children.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• strict (bool) – Set this if you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to True.

• correctionhandling – Specifies what text to check for when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

Returns bool

4.4. Higher-Order Annotations 1045

PyNLPl Documentation, Release 1.2.8

incorrection()
Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise
it returns None

insert(index, child, *args, **kwargs)

items(founditems=[])
Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

json(attribs=None, recurse=True, ignorelist=False)
Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

Returns dict

leftcontext(size, placeholder=None, scope=None)
Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

next(Class=True, scope=True, reverse=False)
Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined
scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘, may
also be a tuple of multiple classes. Set to True to constrain to the same class as that of
the current instance, set to None to not constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

originaltext(cls=’original’)
Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

classmethod parsexml(node, doc, **kwargs)
Internal class method used for turning an XML element into an instance of the Class.

Parameters

• node - XML Element (*) –

• doc - Document (*) –

Returns An instance of the current Class.

phon(cls=’current’, previousdelimiter=”, strict=False, correctionhandling=1)
Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more spe-
cific. If no phonetic content can be obtained from the children and the element has itself phonetic content
associated with it, then that will be used.

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

1046 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and phonetic content will be detokenised as much as possi-
ble. Defaults to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to phon(). Defaults to an empty string.

• strict (bool) – Set this if you are strictly interested in the phonetic content explicitly
associated with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what phonetic content to retrieve when cor-
rections are encountered. The default is CorrectionHandling.CURRENT,
which will retrieve the corrected/current phonetic content. You can set this to
CorrectionHandling.ORIGINAL if you want the phonetic content prior to correc-
tion, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

Returns The phonetic content of the element (unicode instance in Python 2, str in Python
3)

Raises NoSuchPhon – if no phonetic conent is found at all.

See also:

phoncontent(): Retrieves the phonetic content as an element rather than a string text()
textcontent()

phoncontent(cls=’current’, correctionhandling=1)
Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the PhonContent instance rather than the actual text!

Parameters

• cls (str) – The class of the phonetic content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (PhonContent)

Raises NoSuchPhon if there is no phonetic content for the element

See also:

phon() textcontent() text()

postappend()
This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the
right document is associated.

This method is mostly for internal use.

4.4. Higher-Order Annotations 1047

PyNLPl Documentation, Release 1.2.8

previous(Class=True, scope=True)
Returns the previous element, if it is of the specified type and if it does not cross the boundary of the
defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

Parameters

• Class (*) – The class to select; any python class subclassed off ‘AbstractElement‘. Set
to True to constrain to the same class as that of the current instance, set to None to not
constrain at all

• scope (*) – A list of classes which are never crossed looking for a next el-
ement. Set to True to constrain to a default list of structure elements (Sen-
tence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, orig-
class=None)

Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

remove(child)
Removes the child element

replace(child, *args, **kwargs)
Appends a child element like append(), but replaces any existing child element of the same type and
set. If no such child element exists, this will act the same as append()

Keyword Arguments

• alternative (bool) – If set to True, the replaced element will be made into an alter-
native. Simply use AbstractElement.append() if you want the added element

• be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

resolveword(id)

rightcontext(size, placeholder=None, scope=None)
Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by
default, which can be restricted by setting scope

select(Class, set=None, recursive=True, ignore=True, node=None)
Select child elements of the specified class.

A further restriction can be made based on set.

Parameters

• Class (class) – The class to select; any python class (not instance) subclassed off
AbstractElement

• Set (str) – The set to match against, only elements pertaining to this set will be returned.
If set to None (default), all elements regardless of set will be returned.

• recursive (bool) – Select recursively? Descending into child elements? Defaults to
True.

• ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative
elements will be skipped (this is the default behaviour and corresponds to the follow-
ing elements: Alternative, AlternativeLayer, Suggestion, and folia.
Original. These elements and those contained within are never authorative. You may
also include the boolean True as a member of a list, if you want to skip additional tags
along the predefined non-authoritative ones.

• node (*) – Reserved for internal usage, used in recursion.

1048 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

Yields Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original,
→˓folia.Suggestion, folia.Alternative]):

..

setdoc(newdoc)
Set a different document. Usually no need to call this directly, invoked implicitly by copy()

setdocument(doc)
Associate a document with this element.

Parameters doc (Document) – A document

Each element must be associated with a FoLiA document.

setparents()
Correct all parent relations for elements within the scop. There is sually no need to call this directly,
invoked implicitly by copy()

settext(text, cls=’current’)
Set the text for this element.

Parameters

• text (str) – The text

• cls (str) – The class of the text, defaults to current (leave this unless you know what
you are doing). There may be only one text content element of each class associated with
the element.

speech_speaker()
Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

speech_src()
Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method
rather than access the src attribute directly.

Returns str or None if not found

stricttext(cls=’current’)
Alias for text() with strict=True

text(cls=’current’, retaintokenisation=False, previousdelimiter=”, strict=False, correctionhan-
dling=1, normalize_spaces=False)

Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific. If no text
can be obtained from the children and the element has itself text associated with it, then that will be used.

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

4.4. Higher-Order Annotations 1049

PyNLPl Documentation, Release 1.2.8

• retaintokenisation (bool) – If set, the space attribute on words will be ignored,
otherwise it will be adhered to and text will be detokenised as much as possible. Defaults
to False.

• previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful
when chaining calls to text(). Defaults to an empty string.

• strict (bool) – Set this iif you are strictly interested in the text explicitly associated
with the element, without recursing into children. Defaults to False.

• correctionhandling – Specifies what text to retrieve when corrections are encoun-
tered. The default is CorrectionHandling.CURRENT, which will retrieve the cor-
rected/current text. You can set this to CorrectionHandling.ORIGINAL if you
want the text prior to correction, and CorrectionHandling.EITHER if you don’t
care.

• normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs
normalized to single spaces

Example:

word.text()

Returns The text of the element (unicode instance in Python 2, str in Python 3)

Raises NoSuchText – if no text is found at all.

textcontent(cls=’current’, correctionhandling=1)
Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correc-
tion/New element), and it returns the TextContent instance rather than the actual text!

Parameters

• cls (str) – The class of the text content to obtain, defaults to current.

• correctionhandling – Specifies what content to retrieve when corrections are en-
countered. The default is CorrectionHandling.CURRENT, which will retrieve the
corrected/current content. You can set this to CorrectionHandling.ORIGINAL if
you want the content prior to correction, and CorrectionHandling.EITHER if you
don’t care.

Returns The phonetic content (TextContent)

Raises NoSuchText if there is no text content for the element

See also:

text() phoncontent() phon()

textvalidation(warnonly=None)
Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets
are valid.

Parameters warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None
then this value will be determined based on the document’s FoLiA version (Warn only before
FoLiA v1.5)

Returns bool

toktext(cls=’current’)
Alias for text() with retaintokenisation=True

1050 Chapter 4. FoLiA library

PyNLPl Documentation, Release 1.2.8

updatetext()
Recompute textual value based on the text content of the children. Only supported on elements that are a
TEXTCONTAINER

xml(attribs=None, elements=None, skipchildren=False)
Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

Returns an lxml.etree.Element

See also:

AbstractElement.xmlstring() - for direct string output

xmlstring(pretty_print=False)
Serialises this FoLiA element and all its contents to XML.

Returns a string with XML representation for this element and all its children

Return type str

__iter__()
Iterate over all children of this element.

Example:

for annotation in word:
...

__len__()
Returns the number of child elements under the current element.

__str__()
Alias for text()

4.5 Metadata

FoLiA can be used with a variety of more advanced metadata schemes (e.g. Dublin Core, CMDI). If this is too much,
you can use its own simple native metadata facility, a simple key value store . After instantiation of a Document, the
metadata can be accessed through the metadata attribute, which behaves like a Python dictionary:

doc = folia.Document(file="/path/to/document.xml")
doc.metadata['language'] = "en"

4.5. Metadata 1051

PyNLPl Documentation, Release 1.2.8

1052 Chapter 4. FoLiA library

CHAPTER 5

Formats

5.1 Corpus Gesproken Nederlands

exception pynlpl.formats.cgn.InvalidFeatureException

exception pynlpl.formats.cgn.InvalidTagException

pynlpl.formats.cgn.parse_cgn_postag(rawtag, raisefeatureexceptions=False)

5.2 FoLiA

See folia : folia.html

5.3 GIZA++

class pynlpl.formats.giza.GizaModel(filename, encoding=’utf-8’)

class pynlpl.formats.giza.GizaSentenceAlignment(sourceline, targetline, index)

getalignedtarget(index)
Returns target range only if source index aligns to a single consecutive range of target tokens.

intersect(other)

class pynlpl.formats.giza.IntersectionAlignment(source2target, target2source, encod-
ing=False)

reset()

class pynlpl.formats.giza.MultiWordAlignment(filename, encoding=False)
Source to Target alignment: reads source-target.A3.final files, in which each source word may be aligned to
multiple target words (adapted from code by Sander Canisius)

1053

PyNLPl Documentation, Release 1.2.8

reset()

targetword(index, targetwords, alignment)
Return the aligned targeword for a specified index in the source words. Multiple words are concatenated
together with a space in between

targetwords(index, targetwords, alignment)
Return the aligned targetwords for a specified index in the source words

class pynlpl.formats.giza.WordAlignment(filename, encoding=False)
Target to Source alignment: reads target-source.A3.final files, in which each source word is aligned to one target
word

reset()

targetword(index, targetwords, alignment)
Return the aligned targetword for a specified index in the source words

pynlpl.formats.giza.parseAlignment(tokens)

5.4 Moses

class pynlpl.formats.moses.PhraseTable(filename, quiet=False, reverse=False, delim-
iter=’|||’, score_column=3, max_sourcen=0,
sourceencoder=None, targetencoder=None, score-
filter=None)

class pynlpl.formats.moses.PhraseTableClient(host=’localhost’, port=65432)

5.5 SoNaR

class pynlpl.formats.sonar.Corpus(corpusdir, extension=’pos’, restrict_to_collection=”,
conditionf=<function Corpus.<lambda>>, ignoreer-
rors=False)

class pynlpl.formats.sonar.CorpusDocument(filename, encoding=’iso-8859-15’)
This class represent one document/text of the Corpus (read-only)

paragraphs(with_id=False)
Extracts paragraphs, returns list of plain-text(!) paragraphs

sentences()
Iterate over all sentences (sentence_id, sentence) in the document, sentence is a list of 4-tuples
(word,id,pos,lemma)

words()

class pynlpl.formats.sonar.CorpusDocumentX(filename, tree=None, index=True)
This class represent one document/text of the Corpus, loaded into memory at once and retaining the full structure

paragraphs(node=None)
iterate over paragraphs

save(filename=None, encoding=’iso-8859-15’)

sentences(node=None)
iterate over sentences

1054 Chapter 5. Formats

PyNLPl Documentation, Release 1.2.8

validate(formats_dir=’../formats/’)
checks if the document is valid

words(node=None)
iterate over words

xpath(expression)
Executes an xpath expression using the correct namespaces

class pynlpl.formats.sonar.CorpusFiles(corpusdir, extension=’pos’, re-
strict_to_collection=”, conditionf=<function
Corpus.<lambda>>, ignoreerrors=False)

class pynlpl.formats.sonar.CorpusX(corpusdir, extension=’pos’, restrict_to_collection=”,
conditionf=<function Corpus.<lambda>>, ignoreer-
rors=False)

pynlpl.formats.sonar.ns(namespace)
Resolves the namespace identifier to a full URL

5.6 Taggerdata

class pynlpl.formats.taggerdata.Taggerdata(filename, encoding=’utf-8’, mode=’r’)

align(referencewords, datatuple)
align the reference sentence with the tagged data

close()

next()

reset()

write(sentence)

5.7 TiMBL

class pynlpl.formats.timbl.TimblOutput(stream, delimiter=’ ’, ignorecolumns=[], ignoreval-
ues=[])

A class for reading Timbl classifier output, supports the +v+db option and ignores comments starting with #

parseDistribution(instance, start, end=None)

5.6. Taggerdata 1055

PyNLPl Documentation, Release 1.2.8

1056 Chapter 5. Formats

CHAPTER 6

Language Models

class pynlpl.lm.lm.ARPALanguageModel(filename, encoding=’utf-8’, encoder=None,
base_e=True, dounknown=True, debug=False,
mode=’simple’)

Full back-off language model, loaded from file in ARPA format.

This class does not build the model but allows you to use a pre-computed one. You can use the tool ngram-count
from for instance SRILM to actually build the model.

class NgramsProbs(data, mode=’simple’, delim=’ ’)
Store Ngrams with their probabilities and backoffs.

This class is used in order to abstract the physical storage layout, and enable memory/speed tradeoffs.

backoff(ngram)
Return backoff value of a given ngram tuple

prob(ngram)
Return probability of given ngram tuple

score(data, history=None)

scoreword(word, history=None)

class pynlpl.lm.lm.SimpleLanguageModel(n=2, casesensitive=True, beginmarker=’<begin>’,
endmarker=’<end>’)

This is a simple unsmoothed language model. This class can both hold and compute the model.

append(sentence)

load(filename)

save(filename)

scoresentence(sentence)

class pynlpl.lm.srilm.SRILM(filename, n)

logscore(ngram)

1057

PyNLPl Documentation, Release 1.2.8

scoresentence(sentence, unknownwordprob=-12)

exception pynlpl.lm.srilm.SRILMException
Base Exception for SRILM.

class pynlpl.lm.client.LMClient(host=’localhost’, port=12346, n=0)

scoresentence(sentence)

1058 Chapter 6. Language Models

CHAPTER 7

Search Algorithms

This module contains various search algorithms.

class pynlpl.search.AbstractSearch(**kwargs)

prune(state)
Pruning method is called AFTER expansion of each node

reset()

searchall()
Returns a list of all solutions

searchbest()
Returns the single best result (if multiple have the same score, the first match is returned)

searchfirst()
Returns the very first result (regardless of it being the best or not!)

searchlast(n=10)
Return the last n results (or possibly less if not found). Note that the last results are not necessarily the best
ones! Depending on the search type.

searchtop(n=10)
Return the top n best resulta (or possibly less if not enough is found)

traversal()
Returns all visited states (only when keeptraversal=True), note that this is not equal to the path, but contains
all states that were checked!

traversalsize()
Returns the number of nodes visited (also when keeptravel=False). Note that this is not equal to the path,
but contains all states that were checked!

visited(state)

class pynlpl.search.AbstractSearchState(parent=None, cost=0)

1059

PyNLPl Documentation, Release 1.2.8

depth()

expand()
Generates successor states, implement your custom operators in the derived method.

path()

pathcost()

score()
Should return a heuristic value. This needs to be set if you plan to used an informed search algorithm.

test(goalstates=None)
Checks whether this state is a valid goal state, returns a boolean. If no goalstate is defined, then all states
will test positively, this is what you usually want for optimisation problems.

class pynlpl.search.BeamSearch(states, beamsize, **kwargs)
Local beam search algorithm

class pynlpl.search.BeamedBestFirstSearch(states, beamsize, **kwargs)
Best first search with a beamsize (non-optimal!)

prune(state)
Pruning method is called AFTER expansion of each node

class pynlpl.search.BestFirstSearch(state, **kwargs)

class pynlpl.search.BreadthFirstSearch(state, **kwargs)

class pynlpl.search.DepthFirstSearch(state, **kwargs)

class pynlpl.search.EarlyEagerBeamSearch(state, beamsize, **kwargs)
A beam search that prunes early (after each state expansion) and eagerly (weeding out worse successors)

prune(state)
Pruning method is called AFTER expansion of each node

class pynlpl.search.HillClimbingSearch(state, **kwargs)
(identical to beamsearch with beam 1, but implemented differently)

class pynlpl.search.IterativeDeepening(state, **kwargs)

traversal()
Returns all visited states (only when keeptraversal=True), note that this is not equal to the path, but contains
all states that were checked!

traversalsize()
Returns the number of nodes visited (also when keeptravel=False). Note that this is not equal to the path,
but contains all states that were checked!

class pynlpl.search.StochasticBeamSearch(states, beamsize, **kwargs)

prune(state)
Pruning method is called AFTER expansion of each node

pynlpl.search.binary_search(a, x, lo=0, hi=None)

1060 Chapter 7. Search Algorithms

CHAPTER 8

Statistics and Information Theory

This module contains classes and functions for statistics and information theory. It is imported as follows:

import pynlpl.statistics

8.1 Generic functions

Amongst others, the following generic statistical functions are available:

* ``mean(list)`` - Computes the mean of a given list of numbers

• median(list) - Computes the median of a given list of numbers

• stddev(list) - Computes the standard deviation of a given list of numbers

• normalize(list) - Normalizes a list of numbers so that the sum is 1.0 .

8.2 Frequency Lists and Distributions

One of the most basic and widespread tasks in NLP is the creation of a frequency list. Counting is established by
simply appending lists to the frequencylist:

freqlist = pynlpl.statistics.FrequencyList()
freqlist.append(['to','be','or','not','to','be'])

Take care not to append lists rather than strings unless you mean to create a frequency list over its characters rather
than words. You may want to use the pynlpl.textprocessors.crudetokeniser first:

freqlist.append(pynlpl.textprocessors.crude_tokeniser("to be or not to be"))

The count can also be incremented explicitly explicitly for a single item:

1061

PyNLPl Documentation, Release 1.2.8

freqlist.count(‘shakespeare’)

The FrequencyList offers dictionary-like access. For example, the following statement will be true for the frequency
list just created:

freqlist['be'] == 2

Normalised counts (pseudo-probabilities) can be obtained using the p() method:

freqlist.p('be')

Normalised counts can also be obtained by instantiation a Distribution instance using the frequency list:

dist = pynlpl.statistics.Distribution(freqlist)

This too offers a dictionary-like interface, where values are by definition normalised. The advantage of a Distribution
class is that it offers information-theoretic methods such as entropy(), maxentropy(), perplexity() and
poslog().

A frequency list can be saved to file using the save(filename) method, and loaded back from file using the
load(filename) method. The output() method is a generator yielding strings for each line of output, in
ranked order.

8.3 API Reference

This is a Python library containing classes for Statistic and Information Theoretical computations. It also contains
some code from Peter Norvig, AI: A Modern Appproach : http://aima.cs.berkeley.edu/python/utils.html

class pynlpl.statistics.Distribution(data, base=2)
A distribution can be created over a FrequencyList or a plain dictionary with numeric values. It will be normal-
ized automatically. This implemtation uses dictionaries/hashing

entropy(base=2)
Compute the entropy of the distribution

information(type)
Computes the information content of the specified type: -log_e(p(X))

items()
Returns an unranked list of (type, prob) pairs. Use this only if you are not interested in the order.

keys()

maxentropy(base=2)
Compute the maximum entropy of the distribution: log_e(N)

mode()
Returns the type that occurs the most frequently in the probability distribution

output(delimiter=’\t’, freqlist=None)
Generator yielding formatted strings expressing the time and probabily for each item in the distribution

perplexity(base=2)

poslog(type)
alias for information content

values()

1062 Chapter 8. Statistics and Information Theory

http://aima.cs.berkeley.edu/python/utils.html

PyNLPl Documentation, Release 1.2.8

class pynlpl.statistics.FrequencyList(tokens=None, casesensitive=True, dovalida-
tion=True)

A frequency list (implemented using dictionaries)

append(tokens)
Add a list of tokens to the frequencylist. This method will count them for you.

count(type, amount=1)
Count a certain type. The counter will increase by the amount specified (defaults to one)

dict()

items()
Returns an unranked list of (type, count) pairs. Use this only if you are not interested in the order.

load(filename)
Load a frequency list from file (in the format produced by the save method)

mode()
Returns the type that occurs the most frequently in the frequency list

output(delimiter=’\t’, addnormalised=False)
Print a representation of the frequency list

p(type)
Returns the probability (relative frequency) of the token

save(filename, addnormalised=False)
Save a frequency list to file, can be loaded later using the load method

sum()
Returns the total amount of tokens

tokens()
Returns the total amount of tokens

typetokenratio()
Computes the type/token ratio

values()

class pynlpl.statistics.HiddenMarkovModel(startstate, endstate=None)

print_dptable(V)

setemission(state, distribution)

viterbi(observations, doprint=False)

class pynlpl.statistics.MarkovChain(startstate, endstate=None)

accessible(fromstate, tostate)
Is state tonode directly accessible (in one step) from state fromnode? (i.e. is there an edge between the
nodes). If so, return the probability, else zero

communicates(fromstate, tostate, maxlength=999999)
See if a node communicates (directly or indirectly) with another. Returns the probability of the shortest
path (probably, but not necessarily the highest probability)

p(sequence, subsequence=True)
Returns the probability of the given sequence or subsequence (if subsequence=True, default).

reducible()

8.3. API Reference 1063

PyNLPl Documentation, Release 1.2.8

settransitions(state, distribution)

size()

pynlpl.statistics.dotproduct(X, Y)
Return the sum of the element-wise product of vectors x and y. >>> dotproduct([1, 2, 3], [1000, 100, 10]) 1230

pynlpl.statistics.histogram(values, mode=0, bin_function=None)
Return a list of (value, count) pairs, summarizing the input values. Sorted by increasing value, or if mode=1, by
decreasing count. If bin_function is given, map it over values first.

pynlpl.statistics.levenshtein(s1, s2, maxdistance=9999)
Computes the levenshtein distance between two strings. Adapted from: http://en.wikibooks.org/wiki/
Algorithm_Implementation/Strings/Levenshtein_distance#Python

pynlpl.statistics.log2(x)
Base 2 logarithm. >>> log2(1024) 10.0

pynlpl.statistics.mean(values)
Return the arithmetic average of the values.

pynlpl.statistics.median(values)
Return the middle value, when the values are sorted. If there are an odd number of elements, try to average the
middle two. If they can’t be averaged (e.g. they are strings), choose one at random. >>> median([10, 100, 11])
11 >>> median([1, 2, 3, 4]) 2.5

pynlpl.statistics.mode(values)
Return the most common value in the list of values. >>> mode([1, 2, 3, 2]) 2

pynlpl.statistics.normalize(numbers, total=1.0)
Multiply each number by a constant such that the sum is 1.0 (or total). >>> normalize([1,2,1]) [0.25, 0.5, 0.25]

pynlpl.statistics.product(seq)
Return the product of a sequence of numerical values. >>> product([1,2,6]) 12

pynlpl.statistics.stddev(values, meanval=None)
The standard deviation of a set of values. Pass in the mean if you already know it.

pynlpl.statistics.vector_add(a, b)
Component-wise addition of two vectors. >>> vector_add((0, 1), (8, 9)) (8, 10)

1064 Chapter 8. Statistics and Information Theory

http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python
http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python

CHAPTER 9

Text Processors

This module contains classes and functions for text processing. It is imported as follows:

import pynlpl.textprocessors

9.1 Tokenisation

A very crude tokeniser is available in the form of the function pynlpl.textprocessors.
crude_tokeniser(string). This will split punctuation characters from words and returns a list of tokens. It
however has no regard for abbreviations and end-of-sentence detection, which is functionality a more sophisticated
tokeniser can provide:

tokens = pynlpl.textprocessors.crude_tokeniser("to be, or not to be.")

This will result in:

tokens == [‘to’,’be’,’,’,’or’,’not’,’to’,’be’,’.’]

9.2 N-gram extraction

The extraction of n-grams is an elemental operation in Natural Language Processing. PyNLPl offers the Windower
class to accomplish this task:

tokens = pynlpl.textprocessors.crude_tokeniser("to be or not to be")
for trigram in Windower(tokens,3):

print trigram

The input to the Windower should be a list of words and a value for n. In addition, the windower can output extra
symbols at the beginning of the input sequence and at the end of it. By default, this behaviour is enabled and the
input symbol is <begin>, whereas the output symbol is <end>. If this behaviour is unwanted you can suppress it
by instantiating the Windower as follows:

1065

PyNLPl Documentation, Release 1.2.8

Windower(tokens,3, None, None)

The Windower is implemented as a Python generator and at each iteration yields a tuple of length n.

class pynlpl.textprocessors.MultiWindower(tokens, min_n=1, max_n=9, begin-
marker=None, endmarker=None)

Extract n-grams of various configurations from a sequence

class pynlpl.textprocessors.ReflowText(stream, filternontext=True)
Attempts to re-flow a text that has arbitrary line endings in it. Also undoes hyphenisation

class pynlpl.textprocessors.Tokenizer(stream, splitsentences=True,
onesentenceperline=False,
regexps=(re.compile(’^(?:(?:https?):(?:(?://)|(?:\\\\))|www\.)(?:[\w\d:#@%/;$()~_?\+-
=\\\.&](?:#!)?)*’), re.compile(’^[A-Za-z0-9\.\+_-
]+@[A-Za-z0-9\._-]+(?:\.[a-zA-Z]+)+’)))

A tokenizer and sentence splitter, which acts on a file/stream-like object and when iterating over the object it
yields a lists of tokens (in case the sentence splitter is active (default)), or a token (if the sentence splitter is
deactivated).

class pynlpl.textprocessors.Windower(tokens, n=1, beginmarker=’<begin>’, end-
marker=’<end>’)

Moves a sliding window over a list of tokens, upon iteration in yields all n-grams of specified size in a tuple.

Example without markers:

>>> for ngram in Windower("This is a test .",3, None, None):
... print(" ".join(ngram))
This is a
is a test
a test .

Example with default markers:

>>> for ngram in Windower("This is a test .",3):
... print(" ".join(ngram))
<begin> <begin> This
<begin> This is
This is a
is a test
a test .
test . <end>
. <end> <end>

pynlpl.textprocessors.calculate_overlap(haystack, needle, allowpartial=True)
Calculate the overlap between two sequences. Yields (overlap, placement) tuples (multiple because there may
be multiple overlaps!). The former is the part of the sequence that overlaps, and the latter is -1 if the overlap is
on the left side, 0 if it is a subset, 1 if it overlaps on the right side, 2 if its an identical match

pynlpl.textprocessors.crude_tokenizer(text)
Replaced by tokenize(). Alias

pynlpl.textprocessors.find_keyword_in_context(tokens, keyword, contextsize=1)
Find a keyword in a particular sequence of tokens, and return the local context. Contextsize is the number of
words to the left and right. The keyword may have multiple word, in which case it should to passed as a tuple
or list

pynlpl.textprocessors.is_end_of_sentence(tokens, i)

1066 Chapter 9. Text Processors

PyNLPl Documentation, Release 1.2.8

pynlpl.textprocessors.split_sentences(tokens)
Split sentences (based on tokenised data), returns sentences as a list of lists of tokens, each sentence is a list of
tokens

pynlpl.textprocessors.strip_accents(s, encoding=’utf-8’)
Strip characters with diacritics and return a flat ascii representation

pynlpl.textprocessors.swap(tokens, maxdist=2)
Perform a swap operation on a sequence of tokens, exhaustively swapping all tokens up to the maximum speci-
fied distance. This is a subset of all permutations.

pynlpl.textprocessors.tokenise(text, regexps=(re.compile(’^(?:(?:https?):(?:(?://)|(?:\\\\\\\\))|www\\.)(?:[\\w\\d:#@%/;$()~_?\\+-
=\\\\\\.&](?:#!)?)*’), re.compile(’^[A-Za-z0-9\\.\\+_-]+@[A-Za-
z0-9\\._-]+(?:\\.[a-zA-Z]+)+’)))

Alias for the British

pynlpl.textprocessors.tokenize(text, regexps=(re.compile(’^(?:(?:https?):(?:(?://)|(?:\\\\\\\\))|www\\.)(?:[\\w\\d:#@%/;$()~_?\\+-
=\\\\\\.&](?:#!)?)*’), re.compile(’^[A-Za-z0-9\\.\\+_-]+@[A-Za-
z0-9\\._-]+(?:\\.[a-zA-Z]+)+’)))

Tokenizes a string and returns a list of tokens

Parameters

• text (string) – The text to tokenise

• regexps (Tuple/list of regular expressions to use in
tokenisation) – Regular expressions to use as tokeniser rules in tokenisation
(default=_pynlpl.textprocessors.TOKENIZERRULES_)

Return type Returns a list of tokens

Examples:

>>> for token in tokenize("This is a test."):
... print(token)
This
is
a
test
.

9.2. N-gram extraction 1067

PyNLPl Documentation, Release 1.2.8

1068 Chapter 9. Text Processors

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

1069

PyNLPl Documentation, Release 1.2.8

1070 Chapter 10. Indices and tables

Python Module Index

p
pynlpl.common, 3
pynlpl.datatypes, 5
pynlpl.evaluation, 9
pynlpl.formats.cgn, 1053
pynlpl.formats.folia, 11
pynlpl.formats.giza, 1053
pynlpl.formats.moses, 1054
pynlpl.formats.sonar, 1054
pynlpl.formats.taggerdata, 1055
pynlpl.formats.timbl, 1055
pynlpl.lm.client, 1058
pynlpl.lm.lm, 1057
pynlpl.lm.srilm, 1057
pynlpl.search, 1059
pynlpl.statistics, 1062
pynlpl.textprocessors, 1066

1071

PyNLPl Documentation, Release 1.2.8

1072 Python Module Index

Index

Symbols
__init__() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 75
__init__() (pynlpl.formats.folia.AbstractElement

method), 26
__init__() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 52
__init__() (pynlpl.formats.folia.AbstractStructureElement

method), 38
__init__() (pynlpl.formats.folia.AbstractTextMarkup

method), 87
__init__() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 64
__init__() (pynlpl.formats.folia.ActorFeature method),

885
__init__() (pynlpl.formats.folia.AlignReference method),

1020
__init__() (pynlpl.formats.folia.Alignment method), 1009
__init__() (pynlpl.formats.folia.AllowTokenAnnotation

method), 48
__init__() (pynlpl.formats.folia.Alternative method), 919
__init__() (pynlpl.formats.folia.AlternativeLayers

method), 932
__init__() (pynlpl.formats.folia.BegindatetimeFeature

method), 896
__init__() (pynlpl.formats.folia.Cell method), 101
__init__() (pynlpl.formats.folia.Chunk method), 518
__init__() (pynlpl.formats.folia.ChunkingLayer method),

647
__init__() (pynlpl.formats.folia.CoreferenceChain

method), 530
__init__() (pynlpl.formats.folia.CoreferenceLayer

method), 659
__init__() (pynlpl.formats.folia.CoreferenceLink

method), 765
__init__() (pynlpl.formats.folia.Correction method), 944
__init__() (pynlpl.formats.folia.Current method), 954
__init__() (pynlpl.formats.folia.Definition method), 114
__init__() (pynlpl.formats.folia.DependenciesLayer

method), 670
__init__() (pynlpl.formats.folia.Dependency method),

541
__init__() (pynlpl.formats.folia.DependencyDependent

method), 776
__init__() (pynlpl.formats.folia.Description method),

1032
__init__() (pynlpl.formats.folia.Division method), 127
__init__() (pynlpl.formats.folia.Document method), 15,

16
__init__() (pynlpl.formats.folia.DomainAnnotation

method), 429
__init__() (pynlpl.formats.folia.EnddatetimeFeature

method), 907
__init__() (pynlpl.formats.folia.EntitiesLayer method),

682
__init__() (pynlpl.formats.folia.Entity method), 553
__init__() (pynlpl.formats.folia.Entry method), 140
__init__() (pynlpl.formats.folia.ErrorDetection method),

965
__init__() (pynlpl.formats.folia.Event method), 153
__init__() (pynlpl.formats.folia.Example method), 166
__init__() (pynlpl.formats.folia.Feature method), 863
__init__() (pynlpl.formats.folia.Figure method), 179
__init__() (pynlpl.formats.folia.Gap method), 191
__init__() (pynlpl.formats.folia.Head method), 203
__init__() (pynlpl.formats.folia.Headspan method), 788
__init__() (pynlpl.formats.folia.LangAnnotation

method), 451
__init__() (pynlpl.formats.folia.LemmaAnnotation

method), 462
__init__() (pynlpl.formats.folia.Linebreak method), 216
__init__() (pynlpl.formats.folia.List method), 229
__init__() (pynlpl.formats.folia.ListItem method), 242
__init__() (pynlpl.formats.folia.Metric method), 1043
__init__() (pynlpl.formats.folia.New method), 976
__init__() (pynlpl.formats.folia.Note method), 255
__init__() (pynlpl.formats.folia.Observation method),

565
__init__() (pynlpl.formats.folia.ObservationLayer

1073

PyNLPl Documentation, Release 1.2.8

method), 694
__init__() (pynlpl.formats.folia.Original method), 987
__init__() (pynlpl.formats.folia.Paragraph method), 268
__init__() (pynlpl.formats.folia.Part method), 281
__init__() (pynlpl.formats.folia.PhonContent method),

506
__init__() (pynlpl.formats.folia.PosAnnotation method),

440
__init__() (pynlpl.formats.folia.Predicate method), 576
__init__() (pynlpl.formats.folia.Quote method), 294
__init__() (pynlpl.formats.folia.Reader method), 805
__init__() (pynlpl.formats.folia.Reference method), 307
__init__() (pynlpl.formats.folia.Row method), 320
__init__() (pynlpl.formats.folia.SemanticRole method),

623
__init__() (pynlpl.formats.folia.SemanticRolesLayer

method), 741
__init__() (pynlpl.formats.folia.SenseAnnotation

method), 473
__init__() (pynlpl.formats.folia.Sentence method), 333
__init__() (pynlpl.formats.folia.Sentiment method), 588
__init__() (pynlpl.formats.folia.SentimentLayer method),

706
__init__() (pynlpl.formats.folia.Statement method), 600
__init__() (pynlpl.formats.folia.StatementLayer method),

717
__init__() (pynlpl.formats.folia.SubjectivityAnnotation

method), 484
__init__() (pynlpl.formats.folia.Suggestion method), 998
__init__() (pynlpl.formats.folia.SynsetFeature method),

874
__init__() (pynlpl.formats.folia.SyntacticUnit method),

611
__init__() (pynlpl.formats.folia.SyntaxLayer method),

729
__init__() (pynlpl.formats.folia.Table method), 347
__init__() (pynlpl.formats.folia.TableHead method), 373
__init__() (pynlpl.formats.folia.Term method), 360
__init__() (pynlpl.formats.folia.Text method), 386
__init__() (pynlpl.formats.folia.TextContent method),

495
__init__() (pynlpl.formats.folia.TextMarkupCorrection

method), 841
__init__() (pynlpl.formats.folia.TextMarkupError

method), 851
__init__() (pynlpl.formats.folia.TextMarkupGap

method), 809
__init__() (pynlpl.formats.folia.TextMarkupString

method), 819
__init__() (pynlpl.formats.folia.TextMarkupStyle

method), 830
__init__() (pynlpl.formats.folia.TimeSegment method),

635
__init__() (pynlpl.formats.folia.TimingLayer method),

753
__init__() (pynlpl.formats.folia.Whitespace method),

399, 400
__init__() (pynlpl.formats.folia.Word method), 413
__init__() (pynlpl.formats.fql.Query method), 803
__iter__() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 83
__iter__() (pynlpl.formats.folia.AbstractElement

method), 34
__iter__() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 61
__iter__() (pynlpl.formats.folia.AbstractStructureElement

method), 47
__iter__() (pynlpl.formats.folia.AbstractTextMarkup

method), 94
__iter__() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 72
__iter__() (pynlpl.formats.folia.ActorFeature method),

893
__iter__() (pynlpl.formats.folia.AlignReference method),

1028
__iter__() (pynlpl.formats.folia.Alignment method), 1017
__iter__() (pynlpl.formats.folia.Alternative method), 928
__iter__() (pynlpl.formats.folia.AlternativeLayers

method), 939
__iter__() (pynlpl.formats.folia.BegindatetimeFeature

method), 904
__iter__() (pynlpl.formats.folia.Cell method), 110
__iter__() (pynlpl.formats.folia.Chunk method), 527
__iter__() (pynlpl.formats.folia.ChunkingLayer method),

655
__iter__() (pynlpl.formats.folia.CoreferenceChain

method), 538
__iter__() (pynlpl.formats.folia.CoreferenceLayer

method), 667
__iter__() (pynlpl.formats.folia.CoreferenceLink

method), 773
__iter__() (pynlpl.formats.folia.Correction method), 951
__iter__() (pynlpl.formats.folia.Current method), 962
__iter__() (pynlpl.formats.folia.Definition method), 123
__iter__() (pynlpl.formats.folia.DependenciesLayer

method), 679
__iter__() (pynlpl.formats.folia.Dependency method),

550
__iter__() (pynlpl.formats.folia.DependencyDependent

method), 785
__iter__() (pynlpl.formats.folia.Description method),

1040
__iter__() (pynlpl.formats.folia.Division method), 136
__iter__() (pynlpl.formats.folia.DomainAnnotation

method), 437
__iter__() (pynlpl.formats.folia.EnddatetimeFeature

method), 915
__iter__() (pynlpl.formats.folia.EntitiesLayer method),

1074 Index

PyNLPl Documentation, Release 1.2.8

691
__iter__() (pynlpl.formats.folia.Entity method), 561
__iter__() (pynlpl.formats.folia.Entry method), 149
__iter__() (pynlpl.formats.folia.ErrorDetection method),

973
__iter__() (pynlpl.formats.folia.Event method), 162
__iter__() (pynlpl.formats.folia.Example method), 175
__iter__() (pynlpl.formats.folia.Feature method), 871
__iter__() (pynlpl.formats.folia.Figure method), 188
__iter__() (pynlpl.formats.folia.Gap method), 199
__iter__() (pynlpl.formats.folia.Head method), 212
__iter__() (pynlpl.formats.folia.Headspan method), 796
__iter__() (pynlpl.formats.folia.LangAnnotation

method), 459
__iter__() (pynlpl.formats.folia.LemmaAnnotation

method), 470
__iter__() (pynlpl.formats.folia.Linebreak method), 225
__iter__() (pynlpl.formats.folia.List method), 238
__iter__() (pynlpl.formats.folia.ListItem method), 251
__iter__() (pynlpl.formats.folia.Metric method), 1051
__iter__() (pynlpl.formats.folia.New method), 984
__iter__() (pynlpl.formats.folia.Note method), 264
__iter__() (pynlpl.formats.folia.Observation method),

573
__iter__() (pynlpl.formats.folia.ObservationLayer

method), 702
__iter__() (pynlpl.formats.folia.Original method), 995
__iter__() (pynlpl.formats.folia.Paragraph method), 277
__iter__() (pynlpl.formats.folia.Part method), 290
__iter__() (pynlpl.formats.folia.PhonContent method),

513
__iter__() (pynlpl.formats.folia.PosAnnotation method),

448
__iter__() (pynlpl.formats.folia.Predicate method), 585
__iter__() (pynlpl.formats.folia.Quote method), 303
__iter__() (pynlpl.formats.folia.Reference method), 316
__iter__() (pynlpl.formats.folia.Row method), 329
__iter__() (pynlpl.formats.folia.SemanticRole method),

631
__iter__() (pynlpl.formats.folia.SemanticRolesLayer

method), 749
__iter__() (pynlpl.formats.folia.SenseAnnotation

method), 481
__iter__() (pynlpl.formats.folia.Sentence method), 344
__iter__() (pynlpl.formats.folia.Sentiment method), 596
__iter__() (pynlpl.formats.folia.SentimentLayer method),

714
__iter__() (pynlpl.formats.folia.Statement method), 608
__iter__() (pynlpl.formats.folia.StatementLayer method),

726
__iter__() (pynlpl.formats.folia.SubjectivityAnnotation

method), 492
__iter__() (pynlpl.formats.folia.Suggestion method),

1006

__iter__() (pynlpl.formats.folia.SynsetFeature method),
882

__iter__() (pynlpl.formats.folia.SyntacticUnit method),
620

__iter__() (pynlpl.formats.folia.SyntaxLayer method),
738

__iter__() (pynlpl.formats.folia.Table method), 357
__iter__() (pynlpl.formats.folia.TableHead method), 383
__iter__() (pynlpl.formats.folia.Term method), 370
__iter__() (pynlpl.formats.folia.Text method), 396
__iter__() (pynlpl.formats.folia.TextContent method),

503
__iter__() (pynlpl.formats.folia.TextMarkupCorrection

method), 848
__iter__() (pynlpl.formats.folia.TextMarkupError

method), 859
__iter__() (pynlpl.formats.folia.TextMarkupGap

method), 816
__iter__() (pynlpl.formats.folia.TextMarkupString

method), 827
__iter__() (pynlpl.formats.folia.TextMarkupStyle

method), 838
__iter__() (pynlpl.formats.folia.TimeSegment method),

643
__iter__() (pynlpl.formats.folia.TimingLayer method),

761
__iter__() (pynlpl.formats.folia.Whitespace method), 409
__iter__() (pynlpl.formats.folia.Word method), 424
__len__() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 84
__len__() (pynlpl.formats.folia.AbstractElement

method), 34
__len__() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 61
__len__() (pynlpl.formats.folia.AbstractStructureElement

method), 47
__len__() (pynlpl.formats.folia.AbstractTextMarkup

method), 94
__len__() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 72
__len__() (pynlpl.formats.folia.ActorFeature method),

893
__len__() (pynlpl.formats.folia.AlignReference method),

1029
__len__() (pynlpl.formats.folia.Alignment method), 1017
__len__() (pynlpl.formats.folia.Alternative method), 929
__len__() (pynlpl.formats.folia.AlternativeLayers

method), 940
__len__() (pynlpl.formats.folia.BegindatetimeFeature

method), 904
__len__() (pynlpl.formats.folia.Cell method), 110
__len__() (pynlpl.formats.folia.Chunk method), 527
__len__() (pynlpl.formats.folia.ChunkingLayer method),

655

Index 1075

PyNLPl Documentation, Release 1.2.8

__len__() (pynlpl.formats.folia.CoreferenceChain
method), 538

__len__() (pynlpl.formats.folia.CoreferenceLayer
method), 667

__len__() (pynlpl.formats.folia.CoreferenceLink
method), 773

__len__() (pynlpl.formats.folia.Correction method), 951
__len__() (pynlpl.formats.folia.Current method), 962
__len__() (pynlpl.formats.folia.Definition method), 123
__len__() (pynlpl.formats.folia.DependenciesLayer

method), 679
__len__() (pynlpl.formats.folia.Dependency method),

550
__len__() (pynlpl.formats.folia.DependencyDependent

method), 785
__len__() (pynlpl.formats.folia.Description method),

1040
__len__() (pynlpl.formats.folia.Division method), 136
__len__() (pynlpl.formats.folia.DomainAnnotation

method), 437
__len__() (pynlpl.formats.folia.EnddatetimeFeature

method), 915
__len__() (pynlpl.formats.folia.EntitiesLayer method),

691
__len__() (pynlpl.formats.folia.Entity method), 562
__len__() (pynlpl.formats.folia.Entry method), 149
__len__() (pynlpl.formats.folia.ErrorDetection method),

973
__len__() (pynlpl.formats.folia.Event method), 162
__len__() (pynlpl.formats.folia.Example method), 175
__len__() (pynlpl.formats.folia.Feature method), 871
__len__() (pynlpl.formats.folia.Figure method), 188
__len__() (pynlpl.formats.folia.Gap method), 199
__len__() (pynlpl.formats.folia.Head method), 212
__len__() (pynlpl.formats.folia.Headspan method), 796
__len__() (pynlpl.formats.folia.LangAnnotation method),

459
__len__() (pynlpl.formats.folia.LemmaAnnotation

method), 470
__len__() (pynlpl.formats.folia.Linebreak method), 225
__len__() (pynlpl.formats.folia.List method), 238
__len__() (pynlpl.formats.folia.ListItem method), 251
__len__() (pynlpl.formats.folia.Metric method), 1051
__len__() (pynlpl.formats.folia.New method), 984
__len__() (pynlpl.formats.folia.Note method), 264
__len__() (pynlpl.formats.folia.Observation method), 573
__len__() (pynlpl.formats.folia.ObservationLayer

method), 703
__len__() (pynlpl.formats.folia.Original method), 995
__len__() (pynlpl.formats.folia.Paragraph method), 277
__len__() (pynlpl.formats.folia.Part method), 290
__len__() (pynlpl.formats.folia.PhonContent method),

514
__len__() (pynlpl.formats.folia.PosAnnotation method),

448
__len__() (pynlpl.formats.folia.Predicate method), 585
__len__() (pynlpl.formats.folia.Quote method), 303
__len__() (pynlpl.formats.folia.Reference method), 316
__len__() (pynlpl.formats.folia.Row method), 329
__len__() (pynlpl.formats.folia.SemanticRole method),

631
__len__() (pynlpl.formats.folia.SemanticRolesLayer

method), 750
__len__() (pynlpl.formats.folia.SenseAnnotation

method), 481
__len__() (pynlpl.formats.folia.Sentence method), 344
__len__() (pynlpl.formats.folia.Sentiment method), 596
__len__() (pynlpl.formats.folia.SentimentLayer method),

714
__len__() (pynlpl.formats.folia.Statement method), 608
__len__() (pynlpl.formats.folia.StatementLayer method),

726
__len__() (pynlpl.formats.folia.SubjectivityAnnotation

method), 492
__len__() (pynlpl.formats.folia.Suggestion method),

1006
__len__() (pynlpl.formats.folia.SynsetFeature method),

882
__len__() (pynlpl.formats.folia.SyntacticUnit method),

620
__len__() (pynlpl.formats.folia.SyntaxLayer method),

738
__len__() (pynlpl.formats.folia.Table method), 357
__len__() (pynlpl.formats.folia.TableHead method), 383
__len__() (pynlpl.formats.folia.Term method), 370
__len__() (pynlpl.formats.folia.Text method), 396
__len__() (pynlpl.formats.folia.TextContent method), 503
__len__() (pynlpl.formats.folia.TextMarkupCorrection

method), 848
__len__() (pynlpl.formats.folia.TextMarkupError

method), 859
__len__() (pynlpl.formats.folia.TextMarkupGap method),

816
__len__() (pynlpl.formats.folia.TextMarkupString

method), 827
__len__() (pynlpl.formats.folia.TextMarkupStyle

method), 838
__len__() (pynlpl.formats.folia.TimeSegment method),

643
__len__() (pynlpl.formats.folia.TimingLayer method),

761
__len__() (pynlpl.formats.folia.Whitespace method), 409
__len__() (pynlpl.formats.folia.Word method), 424
__str__() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 84
__str__() (pynlpl.formats.folia.AbstractElement method),

34
__str__() (pynlpl.formats.folia.AbstractSpanAnnotation

1076 Index

PyNLPl Documentation, Release 1.2.8

method), 61
__str__() (pynlpl.formats.folia.AbstractStructureElement

method), 47
__str__() (pynlpl.formats.folia.AbstractTextMarkup

method), 94
__str__() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 72
__str__() (pynlpl.formats.folia.ActorFeature method),

893
__str__() (pynlpl.formats.folia.AlignReference method),

1029
__str__() (pynlpl.formats.folia.Alignment method), 1017
__str__() (pynlpl.formats.folia.AllowTokenAnnotation

method), 49
__str__() (pynlpl.formats.folia.Alternative method), 929
__str__() (pynlpl.formats.folia.AlternativeLayers

method), 940
__str__() (pynlpl.formats.folia.BegindatetimeFeature

method), 904
__str__() (pynlpl.formats.folia.Cell method), 110
__str__() (pynlpl.formats.folia.Chunk method), 527
__str__() (pynlpl.formats.folia.ChunkingLayer method),

655
__str__() (pynlpl.formats.folia.CoreferenceChain

method), 538
__str__() (pynlpl.formats.folia.CoreferenceLayer

method), 667
__str__() (pynlpl.formats.folia.CoreferenceLink method),

773
__str__() (pynlpl.formats.folia.Correction method), 951
__str__() (pynlpl.formats.folia.Current method), 962
__str__() (pynlpl.formats.folia.Definition method), 123
__str__() (pynlpl.formats.folia.DependenciesLayer

method), 679
__str__() (pynlpl.formats.folia.Dependency method), 550
__str__() (pynlpl.formats.folia.DependencyDependent

method), 785
__str__() (pynlpl.formats.folia.Description method),

1040
__str__() (pynlpl.formats.folia.Division method), 136
__str__() (pynlpl.formats.folia.DomainAnnotation

method), 437
__str__() (pynlpl.formats.folia.EnddatetimeFeature

method), 915
__str__() (pynlpl.formats.folia.EntitiesLayer method),

691
__str__() (pynlpl.formats.folia.Entity method), 562
__str__() (pynlpl.formats.folia.Entry method), 149
__str__() (pynlpl.formats.folia.ErrorDetection method),

973
__str__() (pynlpl.formats.folia.Event method), 162
__str__() (pynlpl.formats.folia.Example method), 175
__str__() (pynlpl.formats.folia.Feature method), 871
__str__() (pynlpl.formats.folia.Figure method), 188

__str__() (pynlpl.formats.folia.Gap method), 199
__str__() (pynlpl.formats.folia.Head method), 212
__str__() (pynlpl.formats.folia.Headspan method), 797
__str__() (pynlpl.formats.folia.LangAnnotation method),

459
__str__() (pynlpl.formats.folia.LemmaAnnotation

method), 470
__str__() (pynlpl.formats.folia.Linebreak method), 225
__str__() (pynlpl.formats.folia.List method), 238
__str__() (pynlpl.formats.folia.ListItem method), 251
__str__() (pynlpl.formats.folia.Metric method), 1051
__str__() (pynlpl.formats.folia.New method), 984
__str__() (pynlpl.formats.folia.Note method), 264
__str__() (pynlpl.formats.folia.Observation method), 573
__str__() (pynlpl.formats.folia.ObservationLayer

method), 703
__str__() (pynlpl.formats.folia.Original method), 995
__str__() (pynlpl.formats.folia.Paragraph method), 277
__str__() (pynlpl.formats.folia.Part method), 290
__str__() (pynlpl.formats.folia.PhonContent method),

514
__str__() (pynlpl.formats.folia.PosAnnotation method),

448
__str__() (pynlpl.formats.folia.Predicate method), 585
__str__() (pynlpl.formats.folia.Quote method), 303
__str__() (pynlpl.formats.folia.Reference method), 316
__str__() (pynlpl.formats.folia.Row method), 329
__str__() (pynlpl.formats.folia.SemanticRole method),

632
__str__() (pynlpl.formats.folia.SemanticRolesLayer

method), 750
__str__() (pynlpl.formats.folia.SenseAnnotation method),

481
__str__() (pynlpl.formats.folia.Sentence method), 344
__str__() (pynlpl.formats.folia.Sentiment method), 597
__str__() (pynlpl.formats.folia.SentimentLayer method),

714
__str__() (pynlpl.formats.folia.Statement method), 608
__str__() (pynlpl.formats.folia.StatementLayer method),

726
__str__() (pynlpl.formats.folia.SubjectivityAnnotation

method), 492
__str__() (pynlpl.formats.folia.Suggestion method), 1006
__str__() (pynlpl.formats.folia.SynsetFeature method),

882
__str__() (pynlpl.formats.folia.SyntacticUnit method),

620
__str__() (pynlpl.formats.folia.SyntaxLayer method), 738
__str__() (pynlpl.formats.folia.Table method), 357
__str__() (pynlpl.formats.folia.TableHead method), 383
__str__() (pynlpl.formats.folia.Term method), 370
__str__() (pynlpl.formats.folia.Text method), 396
__str__() (pynlpl.formats.folia.TextContent method), 503

Index 1077

PyNLPl Documentation, Release 1.2.8

__str__() (pynlpl.formats.folia.TextMarkupCorrection
method), 848

__str__() (pynlpl.formats.folia.TextMarkupError
method), 859

__str__() (pynlpl.formats.folia.TextMarkupGap method),
816

__str__() (pynlpl.formats.folia.TextMarkupString
method), 827

__str__() (pynlpl.formats.folia.TextMarkupStyle
method), 838

__str__() (pynlpl.formats.folia.TimeSegment method),
643

__str__() (pynlpl.formats.folia.TimingLayer method),
761

__str__() (pynlpl.formats.folia.Whitespace method), 409
__str__() (pynlpl.formats.folia.Word method), 424

A
AbstractAnnotationLayer (class in pynlpl.formats.folia),

72
AbstractElement (class in pynlpl.formats.folia), 23
AbstractExperiment (class in pynlpl.evaluation), 9
AbstractSearch (class in pynlpl.search), 1059
AbstractSearchState (class in pynlpl.search), 1059
AbstractSpanAnnotation (class in pynlpl.formats.folia),

49
AbstractStructureElement (class in pynlpl.formats.folia),

34
AbstractTextMarkup (class in pynlpl.formats.folia), 84
AbstractTokenAnnotation (class in pynlpl.formats.folia),

61
ACCEPTED_DATA (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 74
ACCEPTED_DATA (pynlpl.formats.folia.AbstractElement

attribute), 26
ACCEPTED_DATA (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
ACCEPTED_DATA (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
ACCEPTED_DATA (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
ACCEPTED_DATA (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
ACCEPTED_DATA (pynlpl.formats.folia.ActorFeature

attribute), 884
ACCEPTED_DATA (pynlpl.formats.folia.Alignment at-

tribute), 1009
ACCEPTED_DATA (pynlpl.formats.folia.AlignReference

attribute), 1020
ACCEPTED_DATA (pynlpl.formats.folia.Alternative at-

tribute), 919
ACCEPTED_DATA (pynlpl.formats.folia.AlternativeLayers

attribute), 931

ACCEPTED_DATA (pynlpl.formats.folia.BegindatetimeFeature
attribute), 895

ACCEPTED_DATA (pynlpl.formats.folia.Cell attribute),
100

ACCEPTED_DATA (pynlpl.formats.folia.Chunk at-
tribute), 518

ACCEPTED_DATA (pynlpl.formats.folia.ChunkingLayer
attribute), 646

ACCEPTED_DATA (pynlpl.formats.folia.CoreferenceChain
attribute), 529

ACCEPTED_DATA (pynlpl.formats.folia.CoreferenceLayer
attribute), 658

ACCEPTED_DATA (pynlpl.formats.folia.CoreferenceLink
attribute), 764

ACCEPTED_DATA (pynlpl.formats.folia.Correction at-
tribute), 944

ACCEPTED_DATA (pynlpl.formats.folia.Current at-
tribute), 953

ACCEPTED_DATA (pynlpl.formats.folia.Definition at-
tribute), 113

ACCEPTED_DATA (pynlpl.formats.folia.DependenciesLayer
attribute), 670

ACCEPTED_DATA (pynlpl.formats.folia.Dependency
attribute), 541

ACCEPTED_DATA (pynlpl.formats.folia.DependencyDependent
attribute), 776

ACCEPTED_DATA (pynlpl.formats.folia.Description at-
tribute), 1031

ACCEPTED_DATA (pynlpl.formats.folia.Division
attribute), 126

ACCEPTED_DATA (pynlpl.formats.folia.DomainAnnotation
attribute), 428

ACCEPTED_DATA (pynlpl.formats.folia.EnddatetimeFeature
attribute), 906

ACCEPTED_DATA (pynlpl.formats.folia.EntitiesLayer
attribute), 682

ACCEPTED_DATA (pynlpl.formats.folia.Entity at-
tribute), 553

ACCEPTED_DATA (pynlpl.formats.folia.Entry at-
tribute), 139

ACCEPTED_DATA (pynlpl.formats.folia.ErrorDetection
attribute), 964

ACCEPTED_DATA (pynlpl.formats.folia.Event at-
tribute), 152

ACCEPTED_DATA (pynlpl.formats.folia.Example at-
tribute), 165

ACCEPTED_DATA (pynlpl.formats.folia.Feature at-
tribute), 862

ACCEPTED_DATA (pynlpl.formats.folia.Figure at-
tribute), 178

ACCEPTED_DATA (pynlpl.formats.folia.Gap attribute),
191

ACCEPTED_DATA (pynlpl.formats.folia.Head at-
tribute), 202

1078 Index

PyNLPl Documentation, Release 1.2.8

ACCEPTED_DATA (pynlpl.formats.folia.Headspan at-
tribute), 787

ACCEPTED_DATA (pynlpl.formats.folia.LangAnnotation
attribute), 450

ACCEPTED_DATA (pynlpl.formats.folia.LemmaAnnotation
attribute), 461

ACCEPTED_DATA (pynlpl.formats.folia.Linebreak at-
tribute), 215

ACCEPTED_DATA (pynlpl.formats.folia.List attribute),
228

ACCEPTED_DATA (pynlpl.formats.folia.ListItem
attribute), 241

ACCEPTED_DATA (pynlpl.formats.folia.Metric at-
tribute), 1042

ACCEPTED_DATA (pynlpl.formats.folia.New attribute),
975

ACCEPTED_DATA (pynlpl.formats.folia.Note attribute),
254

ACCEPTED_DATA (pynlpl.formats.folia.Observation at-
tribute), 564

ACCEPTED_DATA (pynlpl.formats.folia.ObservationLayer
attribute), 693

ACCEPTED_DATA (pynlpl.formats.folia.Original
attribute), 986

ACCEPTED_DATA (pynlpl.formats.folia.Paragraph at-
tribute), 267

ACCEPTED_DATA (pynlpl.formats.folia.Part attribute),
280

ACCEPTED_DATA (pynlpl.formats.folia.PhonContent
attribute), 505

ACCEPTED_DATA (pynlpl.formats.folia.PosAnnotation
attribute), 439

ACCEPTED_DATA (pynlpl.formats.folia.Predicate at-
tribute), 576

ACCEPTED_DATA (pynlpl.formats.folia.Quote at-
tribute), 293

ACCEPTED_DATA (pynlpl.formats.folia.Reference at-
tribute), 306

ACCEPTED_DATA (pynlpl.formats.folia.Row attribute),
319

ACCEPTED_DATA (pynlpl.formats.folia.SemanticRole
attribute), 622

ACCEPTED_DATA (pynlpl.formats.folia.SemanticRolesLayer
attribute), 740

ACCEPTED_DATA (pynlpl.formats.folia.SenseAnnotation
attribute), 472

ACCEPTED_DATA (pynlpl.formats.folia.Sentence at-
tribute), 332

ACCEPTED_DATA (pynlpl.formats.folia.Sentiment at-
tribute), 587

ACCEPTED_DATA (pynlpl.formats.folia.SentimentLayer
attribute), 705

ACCEPTED_DATA (pynlpl.formats.folia.Statement at-
tribute), 599

ACCEPTED_DATA (pynlpl.formats.folia.StatementLayer
attribute), 717

ACCEPTED_DATA (pynlpl.formats.folia.SubjectivityAnnotation
attribute), 483

ACCEPTED_DATA (pynlpl.formats.folia.Suggestion at-
tribute), 997

ACCEPTED_DATA (pynlpl.formats.folia.SynsetFeature
attribute), 873

ACCEPTED_DATA (pynlpl.formats.folia.SyntacticUnit
attribute), 611

ACCEPTED_DATA (pynlpl.formats.folia.SyntaxLayer
attribute), 729

ACCEPTED_DATA (pynlpl.formats.folia.Table at-
tribute), 347

ACCEPTED_DATA (pynlpl.formats.folia.TableHead at-
tribute), 373

ACCEPTED_DATA (pynlpl.formats.folia.Term at-
tribute), 360

ACCEPTED_DATA (pynlpl.formats.folia.Text attribute),
386

ACCEPTED_DATA (pynlpl.formats.folia.TextContent
attribute), 495

ACCEPTED_DATA (pynlpl.formats.folia.TextMarkupCorrection
attribute), 840

ACCEPTED_DATA (pynlpl.formats.folia.TextMarkupError
attribute), 851

ACCEPTED_DATA (pynlpl.formats.folia.TextMarkupGap
attribute), 808

ACCEPTED_DATA (pynlpl.formats.folia.TextMarkupString
attribute), 819

ACCEPTED_DATA (pynlpl.formats.folia.TextMarkupStyle
attribute), 829

ACCEPTED_DATA (pynlpl.formats.folia.TimeSegment
attribute), 634

ACCEPTED_DATA (pynlpl.formats.folia.TimingLayer
attribute), 752

ACCEPTED_DATA (pynlpl.formats.folia.Whitespace at-
tribute), 399

ACCEPTED_DATA (pynlpl.formats.folia.Word at-
tribute), 412

accepts() (pynlpl.formats.folia.AbstractAnnotationLayer
class method), 75

accepts() (pynlpl.formats.folia.AbstractElement class
method), 26

accepts() (pynlpl.formats.folia.AbstractSpanAnnotation
class method), 52

accepts() (pynlpl.formats.folia.AbstractStructureElement
class method), 38

accepts() (pynlpl.formats.folia.AbstractTextMarkup class
method), 87

accepts() (pynlpl.formats.folia.AbstractTokenAnnotation
class method), 64

accepts() (pynlpl.formats.folia.ActorFeature class
method), 885

Index 1079

PyNLPl Documentation, Release 1.2.8

accepts() (pynlpl.formats.folia.Alignment class method),
1009

accepts() (pynlpl.formats.folia.AlignReference class
method), 1020

accepts() (pynlpl.formats.folia.Alternative class method),
919

accepts() (pynlpl.formats.folia.AlternativeLayers class
method), 932

accepts() (pynlpl.formats.folia.BegindatetimeFeature
class method), 896

accepts() (pynlpl.formats.folia.Cell class method), 101
accepts() (pynlpl.formats.folia.Chunk class method), 518
accepts() (pynlpl.formats.folia.ChunkingLayer class

method), 647
accepts() (pynlpl.formats.folia.CoreferenceChain class

method), 530
accepts() (pynlpl.formats.folia.CoreferenceLayer class

method), 659
accepts() (pynlpl.formats.folia.CoreferenceLink class

method), 765
accepts() (pynlpl.formats.folia.Correction class method),

944
accepts() (pynlpl.formats.folia.Current class method), 954
accepts() (pynlpl.formats.folia.Definition class method),

114
accepts() (pynlpl.formats.folia.DependenciesLayer class

method), 670
accepts() (pynlpl.formats.folia.Dependency class

method), 542
accepts() (pynlpl.formats.folia.DependencyDependent

class method), 776
accepts() (pynlpl.formats.folia.Description class method),

1032
accepts() (pynlpl.formats.folia.Division class method),

127
accepts() (pynlpl.formats.folia.DomainAnnotation class

method), 429
accepts() (pynlpl.formats.folia.EnddatetimeFeature class

method), 907
accepts() (pynlpl.formats.folia.EntitiesLayer class

method), 682
accepts() (pynlpl.formats.folia.Entity class method), 553
accepts() (pynlpl.formats.folia.Entry class method), 140
accepts() (pynlpl.formats.folia.ErrorDetection class

method), 965
accepts() (pynlpl.formats.folia.Event class method), 153
accepts() (pynlpl.formats.folia.Example class method),

166
accepts() (pynlpl.formats.folia.Feature class method), 863
accepts() (pynlpl.formats.folia.Figure class method), 179
accepts() (pynlpl.formats.folia.Gap class method), 191
accepts() (pynlpl.formats.folia.Head class method), 203
accepts() (pynlpl.formats.folia.Headspan class method),

788

accepts() (pynlpl.formats.folia.LangAnnotation class
method), 451

accepts() (pynlpl.formats.folia.LemmaAnnotation class
method), 462

accepts() (pynlpl.formats.folia.Linebreak class method),
216

accepts() (pynlpl.formats.folia.List class method), 229
accepts() (pynlpl.formats.folia.ListItem class method),

242
accepts() (pynlpl.formats.folia.Metric class method),

1043
accepts() (pynlpl.formats.folia.New class method), 976
accepts() (pynlpl.formats.folia.Note class method), 255
accepts() (pynlpl.formats.folia.Observation class

method), 565
accepts() (pynlpl.formats.folia.ObservationLayer class

method), 694
accepts() (pynlpl.formats.folia.Original class method),

987
accepts() (pynlpl.formats.folia.Paragraph class method),

268
accepts() (pynlpl.formats.folia.Part class method), 281
accepts() (pynlpl.formats.folia.PhonContent class

method), 506
accepts() (pynlpl.formats.folia.PosAnnotation class

method), 440
accepts() (pynlpl.formats.folia.Predicate class method),

576
accepts() (pynlpl.formats.folia.Quote class method), 294
accepts() (pynlpl.formats.folia.Reference class method),

307
accepts() (pynlpl.formats.folia.Row class method), 320
accepts() (pynlpl.formats.folia.SemanticRole class

method), 623
accepts() (pynlpl.formats.folia.SemanticRolesLayer class

method), 741
accepts() (pynlpl.formats.folia.SenseAnnotation class

method), 473
accepts() (pynlpl.formats.folia.Sentence class method),

334
accepts() (pynlpl.formats.folia.Sentiment class method),

588
accepts() (pynlpl.formats.folia.SentimentLayer class

method), 706
accepts() (pynlpl.formats.folia.Statement class method),

600
accepts() (pynlpl.formats.folia.StatementLayer class

method), 717
accepts() (pynlpl.formats.folia.SubjectivityAnnotation

class method), 484
accepts() (pynlpl.formats.folia.Suggestion class method),

998
accepts() (pynlpl.formats.folia.SynsetFeature class

method), 874

1080 Index

PyNLPl Documentation, Release 1.2.8

accepts() (pynlpl.formats.folia.SyntacticUnit class
method), 611

accepts() (pynlpl.formats.folia.SyntaxLayer class
method), 729

accepts() (pynlpl.formats.folia.Table class method), 347
accepts() (pynlpl.formats.folia.TableHead class method),

373
accepts() (pynlpl.formats.folia.Term class method), 360
accepts() (pynlpl.formats.folia.Text class method), 387
accepts() (pynlpl.formats.folia.TextContent class

method), 496
accepts() (pynlpl.formats.folia.TextMarkupCorrection

class method), 841
accepts() (pynlpl.formats.folia.TextMarkupError class

method), 851
accepts() (pynlpl.formats.folia.TextMarkupGap class

method), 809
accepts() (pynlpl.formats.folia.TextMarkupString class

method), 819
accepts() (pynlpl.formats.folia.TextMarkupStyle class

method), 830
accepts() (pynlpl.formats.folia.TimeSegment class

method), 635
accepts() (pynlpl.formats.folia.TimingLayer class

method), 753
accepts() (pynlpl.formats.folia.Whitespace class method),

400
accepts() (pynlpl.formats.folia.Word class method), 414
accessible() (pynlpl.statistics.MarkovChain method),

1063
accuracy() (pynlpl.evaluation.ClassEvaluation method), 9
ActorFeature (class in pynlpl.formats.folia), 882
add() (pynlpl.datatypes.PatternSet method), 5
add() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 75
add() (pynlpl.formats.folia.AbstractElement method), 26
add() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 52
add() (pynlpl.formats.folia.AbstractStructureElement

method), 38
add() (pynlpl.formats.folia.AbstractTextMarkup method),

87
add() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 64
add() (pynlpl.formats.folia.ActorFeature method), 885
add() (pynlpl.formats.folia.Alignment method), 1009
add() (pynlpl.formats.folia.AlignReference method),

1020
add() (pynlpl.formats.folia.Alternative method), 919
add() (pynlpl.formats.folia.AlternativeLayers method),

932
add() (pynlpl.formats.folia.BegindatetimeFeature

method), 896
add() (pynlpl.formats.folia.Cell method), 101

add() (pynlpl.formats.folia.Chunk method), 518
add() (pynlpl.formats.folia.ChunkingLayer method), 647
add() (pynlpl.formats.folia.CoreferenceChain method),

530
add() (pynlpl.formats.folia.CoreferenceLayer method),

659
add() (pynlpl.formats.folia.CoreferenceLink method),

765
add() (pynlpl.formats.folia.Correction method), 944
add() (pynlpl.formats.folia.Current method), 954
add() (pynlpl.formats.folia.Definition method), 114
add() (pynlpl.formats.folia.DependenciesLayer method),

670
add() (pynlpl.formats.folia.Dependency method), 542
add() (pynlpl.formats.folia.DependencyDependent

method), 776
add() (pynlpl.formats.folia.Description method), 1032
add() (pynlpl.formats.folia.Division method), 127
add() (pynlpl.formats.folia.Document method), 17
add() (pynlpl.formats.folia.DomainAnnotation method),

429
add() (pynlpl.formats.folia.EnddatetimeFeature method),

907
add() (pynlpl.formats.folia.EntitiesLayer method), 682
add() (pynlpl.formats.folia.Entity method), 553
add() (pynlpl.formats.folia.Entry method), 140
add() (pynlpl.formats.folia.ErrorDetection method), 965
add() (pynlpl.formats.folia.Event method), 153
add() (pynlpl.formats.folia.Example method), 166
add() (pynlpl.formats.folia.Feature method), 863
add() (pynlpl.formats.folia.Figure method), 179
add() (pynlpl.formats.folia.Gap method), 191
add() (pynlpl.formats.folia.Head method), 203
add() (pynlpl.formats.folia.Headspan method), 788
add() (pynlpl.formats.folia.LangAnnotation method), 451
add() (pynlpl.formats.folia.LemmaAnnotation method),

462
add() (pynlpl.formats.folia.Linebreak method), 216
add() (pynlpl.formats.folia.List method), 229
add() (pynlpl.formats.folia.ListItem method), 242
add() (pynlpl.formats.folia.Metric method), 1043
add() (pynlpl.formats.folia.New method), 976
add() (pynlpl.formats.folia.Note method), 255
add() (pynlpl.formats.folia.Observation method), 565
add() (pynlpl.formats.folia.ObservationLayer method),

694
add() (pynlpl.formats.folia.Original method), 987
add() (pynlpl.formats.folia.Paragraph method), 268
add() (pynlpl.formats.folia.Part method), 281
add() (pynlpl.formats.folia.PhonContent method), 506
add() (pynlpl.formats.folia.PosAnnotation method), 440
add() (pynlpl.formats.folia.Predicate method), 576
add() (pynlpl.formats.folia.Quote method), 294
add() (pynlpl.formats.folia.Reference method), 307

Index 1081

PyNLPl Documentation, Release 1.2.8

add() (pynlpl.formats.folia.Row method), 320
add() (pynlpl.formats.folia.SemanticRole method), 623
add() (pynlpl.formats.folia.SemanticRolesLayer method),

741
add() (pynlpl.formats.folia.SenseAnnotation method),

473
add() (pynlpl.formats.folia.Sentence method), 334
add() (pynlpl.formats.folia.Sentiment method), 588
add() (pynlpl.formats.folia.SentimentLayer method), 706
add() (pynlpl.formats.folia.Statement method), 600
add() (pynlpl.formats.folia.StatementLayer method), 717
add() (pynlpl.formats.folia.SubjectivityAnnotation

method), 484
add() (pynlpl.formats.folia.Suggestion method), 998
add() (pynlpl.formats.folia.SynsetFeature method), 874
add() (pynlpl.formats.folia.SyntacticUnit method), 611
add() (pynlpl.formats.folia.SyntaxLayer method), 729
add() (pynlpl.formats.folia.Table method), 347
add() (pynlpl.formats.folia.TableHead method), 373
add() (pynlpl.formats.folia.Term method), 360
add() (pynlpl.formats.folia.Text method), 387
add() (pynlpl.formats.folia.TextContent method), 496
add() (pynlpl.formats.folia.TextMarkupCorrection

method), 841
add() (pynlpl.formats.folia.TextMarkupError method),

851
add() (pynlpl.formats.folia.TextMarkupGap method), 809
add() (pynlpl.formats.folia.TextMarkupString method),

819
add() (pynlpl.formats.folia.TextMarkupStyle method),

830
add() (pynlpl.formats.folia.TimeSegment method), 635
add() (pynlpl.formats.folia.TimingLayer method), 753
add() (pynlpl.formats.folia.Whitespace method), 400
add() (pynlpl.formats.folia.Word method), 414
addable() (pynlpl.formats.folia.AbstractAnnotationLayer

class method), 75
addable() (pynlpl.formats.folia.AbstractElement class

method), 26
addable() (pynlpl.formats.folia.AbstractSpanAnnotation

class method), 52
addable() (pynlpl.formats.folia.AbstractStructureElement

class method), 38
addable() (pynlpl.formats.folia.AbstractTextMarkup class

method), 87
addable() (pynlpl.formats.folia.AbstractTokenAnnotation

class method), 64
addable() (pynlpl.formats.folia.ActorFeature class

method), 885
addable() (pynlpl.formats.folia.Alignment class method),

1009
addable() (pynlpl.formats.folia.AlignReference class

method), 1020
addable() (pynlpl.formats.folia.Alternative class method),

919
addable() (pynlpl.formats.folia.AlternativeLayers class

method), 932
addable() (pynlpl.formats.folia.BegindatetimeFeature

class method), 896
addable() (pynlpl.formats.folia.Cell class method), 101
addable() (pynlpl.formats.folia.Chunk class method), 518
addable() (pynlpl.formats.folia.ChunkingLayer class

method), 647
addable() (pynlpl.formats.folia.CoreferenceChain class

method), 530
addable() (pynlpl.formats.folia.CoreferenceLayer class

method), 659
addable() (pynlpl.formats.folia.CoreferenceLink class

method), 765
addable() (pynlpl.formats.folia.Correction class method),

944
addable() (pynlpl.formats.folia.Current class method),

954
addable() (pynlpl.formats.folia.Definition class method),

114
addable() (pynlpl.formats.folia.DependenciesLayer class

method), 670
addable() (pynlpl.formats.folia.Dependency class

method), 542
addable() (pynlpl.formats.folia.DependencyDependent

class method), 777
addable() (pynlpl.formats.folia.Description class

method), 1032
addable() (pynlpl.formats.folia.Division class method),

127
addable() (pynlpl.formats.folia.DomainAnnotation class

method), 429
addable() (pynlpl.formats.folia.EnddatetimeFeature class

method), 907
addable() (pynlpl.formats.folia.EntitiesLayer class

method), 682
addable() (pynlpl.formats.folia.Entity class method), 553
addable() (pynlpl.formats.folia.Entry class method), 140
addable() (pynlpl.formats.folia.ErrorDetection class

method), 965
addable() (pynlpl.formats.folia.Event class method), 153
addable() (pynlpl.formats.folia.Example class method),

166
addable() (pynlpl.formats.folia.Feature class method),

863
addable() (pynlpl.formats.folia.Figure class method), 179
addable() (pynlpl.formats.folia.Gap class method), 191
addable() (pynlpl.formats.folia.Head class method), 203
addable() (pynlpl.formats.folia.Headspan class method),

788
addable() (pynlpl.formats.folia.LangAnnotation class

method), 451
addable() (pynlpl.formats.folia.LemmaAnnotation class

1082 Index

PyNLPl Documentation, Release 1.2.8

method), 462
addable() (pynlpl.formats.folia.Linebreak class method),

216
addable() (pynlpl.formats.folia.List class method), 229
addable() (pynlpl.formats.folia.ListItem class method),

242
addable() (pynlpl.formats.folia.Metric class method),

1043
addable() (pynlpl.formats.folia.New class method), 976
addable() (pynlpl.formats.folia.Note class method), 255
addable() (pynlpl.formats.folia.Observation class

method), 565
addable() (pynlpl.formats.folia.ObservationLayer class

method), 694
addable() (pynlpl.formats.folia.Original class method),

987
addable() (pynlpl.formats.folia.Paragraph class method),

268
addable() (pynlpl.formats.folia.Part class method), 281
addable() (pynlpl.formats.folia.PhonContent class

method), 506
addable() (pynlpl.formats.folia.PosAnnotation class

method), 440
addable() (pynlpl.formats.folia.Predicate class method),

577
addable() (pynlpl.formats.folia.Quote class method), 294
addable() (pynlpl.formats.folia.Reference class method),

307
addable() (pynlpl.formats.folia.Row class method), 320
addable() (pynlpl.formats.folia.SemanticRole class

method), 623
addable() (pynlpl.formats.folia.SemanticRolesLayer class

method), 741
addable() (pynlpl.formats.folia.SenseAnnotation class

method), 473
addable() (pynlpl.formats.folia.Sentence class method),

334
addable() (pynlpl.formats.folia.Sentiment class method),

588
addable() (pynlpl.formats.folia.SentimentLayer class

method), 706
addable() (pynlpl.formats.folia.Statement class method),

600
addable() (pynlpl.formats.folia.StatementLayer class

method), 717
addable() (pynlpl.formats.folia.SubjectivityAnnotation

class method), 484
addable() (pynlpl.formats.folia.Suggestion class method),

998
addable() (pynlpl.formats.folia.SynsetFeature class

method), 874
addable() (pynlpl.formats.folia.SyntacticUnit class

method), 612
addable() (pynlpl.formats.folia.SyntaxLayer class

method), 729
addable() (pynlpl.formats.folia.Table class method), 348
addable() (pynlpl.formats.folia.TableHead class method),

374
addable() (pynlpl.formats.folia.Term class method), 361
addable() (pynlpl.formats.folia.Text class method), 387
addable() (pynlpl.formats.folia.TextContent class

method), 496
addable() (pynlpl.formats.folia.TextMarkupCorrection

class method), 841
addable() (pynlpl.formats.folia.TextMarkupError class

method), 852
addable() (pynlpl.formats.folia.TextMarkupGap class

method), 809
addable() (pynlpl.formats.folia.TextMarkupString class

method), 819
addable() (pynlpl.formats.folia.TextMarkupStyle class

method), 830
addable() (pynlpl.formats.folia.TimeSegment class

method), 635
addable() (pynlpl.formats.folia.TimingLayer class

method), 753
addable() (pynlpl.formats.folia.Whitespace class

method), 400
addable() (pynlpl.formats.folia.Word class method), 414
addidsuffix() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 75
addidsuffix() (pynlpl.formats.folia.AbstractElement

method), 27
addidsuffix() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 53
addidsuffix() (pynlpl.formats.folia.AbstractStructureElement

method), 38
addidsuffix() (pynlpl.formats.folia.AbstractTextMarkup

method), 87
addidsuffix() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 64
addidsuffix() (pynlpl.formats.folia.ActorFeature method),

886
addidsuffix() (pynlpl.formats.folia.Alignment method),

1010
addidsuffix() (pynlpl.formats.folia.AlignReference

method), 1021
addidsuffix() (pynlpl.formats.folia.Alternative method),

920
addidsuffix() (pynlpl.formats.folia.AlternativeLayers

method), 932
addidsuffix() (pynlpl.formats.folia.BegindatetimeFeature

method), 897
addidsuffix() (pynlpl.formats.folia.Cell method), 101
addidsuffix() (pynlpl.formats.folia.Chunk method), 519
addidsuffix() (pynlpl.formats.folia.ChunkingLayer

method), 647
addidsuffix() (pynlpl.formats.folia.CoreferenceChain

Index 1083

PyNLPl Documentation, Release 1.2.8

method), 530
addidsuffix() (pynlpl.formats.folia.CoreferenceLayer

method), 659
addidsuffix() (pynlpl.formats.folia.CoreferenceLink

method), 765
addidsuffix() (pynlpl.formats.folia.Correction method),

945
addidsuffix() (pynlpl.formats.folia.Current method), 954
addidsuffix() (pynlpl.formats.folia.Definition method),

114
addidsuffix() (pynlpl.formats.folia.DependenciesLayer

method), 671
addidsuffix() (pynlpl.formats.folia.Dependency method),

542
addidsuffix() (pynlpl.formats.folia.DependencyDependent

method), 777
addidsuffix() (pynlpl.formats.folia.Description method),

1032
addidsuffix() (pynlpl.formats.folia.Division method), 127
addidsuffix() (pynlpl.formats.folia.DomainAnnotation

method), 429
addidsuffix() (pynlpl.formats.folia.EnddatetimeFeature

method), 908
addidsuffix() (pynlpl.formats.folia.EntitiesLayer

method), 683
addidsuffix() (pynlpl.formats.folia.Entity method), 554
addidsuffix() (pynlpl.formats.folia.Entry method), 140
addidsuffix() (pynlpl.formats.folia.ErrorDetection

method), 965
addidsuffix() (pynlpl.formats.folia.Event method), 153
addidsuffix() (pynlpl.formats.folia.Example method), 166
addidsuffix() (pynlpl.formats.folia.Feature method), 863
addidsuffix() (pynlpl.formats.folia.Figure method), 179
addidsuffix() (pynlpl.formats.folia.Gap method), 192
addidsuffix() (pynlpl.formats.folia.Head method), 203
addidsuffix() (pynlpl.formats.folia.Headspan method),

788
addidsuffix() (pynlpl.formats.folia.LangAnnotation

method), 451
addidsuffix() (pynlpl.formats.folia.LemmaAnnotation

method), 462
addidsuffix() (pynlpl.formats.folia.Linebreak method),

216
addidsuffix() (pynlpl.formats.folia.List method), 229
addidsuffix() (pynlpl.formats.folia.ListItem method), 242
addidsuffix() (pynlpl.formats.folia.Metric method), 1043
addidsuffix() (pynlpl.formats.folia.New method), 976
addidsuffix() (pynlpl.formats.folia.Note method), 255
addidsuffix() (pynlpl.formats.folia.Observation method),

565
addidsuffix() (pynlpl.formats.folia.ObservationLayer

method), 694
addidsuffix() (pynlpl.formats.folia.Original method), 987
addidsuffix() (pynlpl.formats.folia.Paragraph method),

268
addidsuffix() (pynlpl.formats.folia.Part method), 281
addidsuffix() (pynlpl.formats.folia.PhonContent method),

506
addidsuffix() (pynlpl.formats.folia.PosAnnotation

method), 440
addidsuffix() (pynlpl.formats.folia.Predicate method),

577
addidsuffix() (pynlpl.formats.folia.Quote method), 294
addidsuffix() (pynlpl.formats.folia.Reference method),

307
addidsuffix() (pynlpl.formats.folia.Row method), 320
addidsuffix() (pynlpl.formats.folia.SemanticRole

method), 623
addidsuffix() (pynlpl.formats.folia.SemanticRolesLayer

method), 741
addidsuffix() (pynlpl.formats.folia.SenseAnnotation

method), 473
addidsuffix() (pynlpl.formats.folia.Sentence method), 334
addidsuffix() (pynlpl.formats.folia.Sentiment method),

588
addidsuffix() (pynlpl.formats.folia.SentimentLayer

method), 706
addidsuffix() (pynlpl.formats.folia.Statement method),

600
addidsuffix() (pynlpl.formats.folia.StatementLayer

method), 718
addidsuffix() (pynlpl.formats.folia.SubjectivityAnnotation

method), 484
addidsuffix() (pynlpl.formats.folia.Suggestion method),

998
addidsuffix() (pynlpl.formats.folia.SynsetFeature

method), 874
addidsuffix() (pynlpl.formats.folia.SyntacticUnit

method), 612
addidsuffix() (pynlpl.formats.folia.SyntaxLayer method),

730
addidsuffix() (pynlpl.formats.folia.Table method), 348
addidsuffix() (pynlpl.formats.folia.TableHead method),

374
addidsuffix() (pynlpl.formats.folia.Term method), 361
addidsuffix() (pynlpl.formats.folia.Text method), 387
addidsuffix() (pynlpl.formats.folia.TextContent method),

496
addidsuffix() (pynlpl.formats.folia.TextMarkupCorrection

method), 841
addidsuffix() (pynlpl.formats.folia.TextMarkupError

method), 852
addidsuffix() (pynlpl.formats.folia.TextMarkupGap

method), 809
addidsuffix() (pynlpl.formats.folia.TextMarkupString

method), 820
addidsuffix() (pynlpl.formats.folia.TextMarkupStyle

method), 830

1084 Index

PyNLPl Documentation, Release 1.2.8

addidsuffix() (pynlpl.formats.folia.TimeSegment
method), 635

addidsuffix() (pynlpl.formats.folia.TimingLayer method),
753

addidsuffix() (pynlpl.formats.folia.Whitespace method),
400

addidsuffix() (pynlpl.formats.folia.Word method), 414
addtoindex() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 75
addtoindex() (pynlpl.formats.folia.AbstractElement

method), 27
addtoindex() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 53
addtoindex() (pynlpl.formats.folia.AbstractStructureElement

method), 38
addtoindex() (pynlpl.formats.folia.AbstractTextMarkup

method), 87
addtoindex() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 64
addtoindex() (pynlpl.formats.folia.ActorFeature method),

886
addtoindex() (pynlpl.formats.folia.Alignment method),

1010
addtoindex() (pynlpl.formats.folia.AlignReference

method), 1021
addtoindex() (pynlpl.formats.folia.Alternative method),

920
addtoindex() (pynlpl.formats.folia.AlternativeLayers

method), 932
addtoindex() (pynlpl.formats.folia.BegindatetimeFeature

method), 897
addtoindex() (pynlpl.formats.folia.Cell method), 101
addtoindex() (pynlpl.formats.folia.Chunk method), 519
addtoindex() (pynlpl.formats.folia.ChunkingLayer

method), 647
addtoindex() (pynlpl.formats.folia.CoreferenceChain

method), 530
addtoindex() (pynlpl.formats.folia.CoreferenceLayer

method), 659
addtoindex() (pynlpl.formats.folia.CoreferenceLink

method), 765
addtoindex() (pynlpl.formats.folia.Correction method),

945
addtoindex() (pynlpl.formats.folia.Current method), 954
addtoindex() (pynlpl.formats.folia.Definition method),

114
addtoindex() (pynlpl.formats.folia.DependenciesLayer

method), 671
addtoindex() (pynlpl.formats.folia.Dependency method),

542
addtoindex() (pynlpl.formats.folia.DependencyDependent

method), 777
addtoindex() (pynlpl.formats.folia.Description method),

1032

addtoindex() (pynlpl.formats.folia.Division method), 127
addtoindex() (pynlpl.formats.folia.DomainAnnotation

method), 429
addtoindex() (pynlpl.formats.folia.EnddatetimeFeature

method), 908
addtoindex() (pynlpl.formats.folia.EntitiesLayer method),

683
addtoindex() (pynlpl.formats.folia.Entity method), 554
addtoindex() (pynlpl.formats.folia.Entry method), 140
addtoindex() (pynlpl.formats.folia.ErrorDetection

method), 965
addtoindex() (pynlpl.formats.folia.Event method), 153
addtoindex() (pynlpl.formats.folia.Example method), 166
addtoindex() (pynlpl.formats.folia.Feature method), 863
addtoindex() (pynlpl.formats.folia.Figure method), 179
addtoindex() (pynlpl.formats.folia.Gap method), 192
addtoindex() (pynlpl.formats.folia.Head method), 203
addtoindex() (pynlpl.formats.folia.Headspan method),

789
addtoindex() (pynlpl.formats.folia.LangAnnotation

method), 451
addtoindex() (pynlpl.formats.folia.LemmaAnnotation

method), 462
addtoindex() (pynlpl.formats.folia.Linebreak method),

216
addtoindex() (pynlpl.formats.folia.List method), 229
addtoindex() (pynlpl.formats.folia.ListItem method), 242
addtoindex() (pynlpl.formats.folia.Metric method), 1043
addtoindex() (pynlpl.formats.folia.New method), 976
addtoindex() (pynlpl.formats.folia.Note method), 255
addtoindex() (pynlpl.formats.folia.Observation method),

565
addtoindex() (pynlpl.formats.folia.ObservationLayer

method), 694
addtoindex() (pynlpl.formats.folia.Original method), 987
addtoindex() (pynlpl.formats.folia.Paragraph method),

268
addtoindex() (pynlpl.formats.folia.Part method), 281
addtoindex() (pynlpl.formats.folia.PhonContent method),

507
addtoindex() (pynlpl.formats.folia.PosAnnotation

method), 440
addtoindex() (pynlpl.formats.folia.Predicate method),

577
addtoindex() (pynlpl.formats.folia.Quote method), 294
addtoindex() (pynlpl.formats.folia.Reference method),

307
addtoindex() (pynlpl.formats.folia.Row method), 320
addtoindex() (pynlpl.formats.folia.SemanticRole

method), 624
addtoindex() (pynlpl.formats.folia.SemanticRolesLayer

method), 741
addtoindex() (pynlpl.formats.folia.SenseAnnotation

method), 473

Index 1085

PyNLPl Documentation, Release 1.2.8

addtoindex() (pynlpl.formats.folia.Sentence method), 334
addtoindex() (pynlpl.formats.folia.Sentiment method),

589
addtoindex() (pynlpl.formats.folia.SentimentLayer

method), 706
addtoindex() (pynlpl.formats.folia.Statement method),

600
addtoindex() (pynlpl.formats.folia.StatementLayer

method), 718
addtoindex() (pynlpl.formats.folia.SubjectivityAnnotation

method), 484
addtoindex() (pynlpl.formats.folia.Suggestion method),

998
addtoindex() (pynlpl.formats.folia.SynsetFeature

method), 874
addtoindex() (pynlpl.formats.folia.SyntacticUnit

method), 612
addtoindex() (pynlpl.formats.folia.SyntaxLayer method),

730
addtoindex() (pynlpl.formats.folia.Table method), 348
addtoindex() (pynlpl.formats.folia.TableHead method),

374
addtoindex() (pynlpl.formats.folia.Term method), 361
addtoindex() (pynlpl.formats.folia.Text method), 387
addtoindex() (pynlpl.formats.folia.TextContent method),

496
addtoindex() (pynlpl.formats.folia.TextMarkupCorrection

method), 841
addtoindex() (pynlpl.formats.folia.TextMarkupError

method), 852
addtoindex() (pynlpl.formats.folia.TextMarkupGap

method), 809
addtoindex() (pynlpl.formats.folia.TextMarkupString

method), 820
addtoindex() (pynlpl.formats.folia.TextMarkupStyle

method), 830
addtoindex() (pynlpl.formats.folia.TimeSegment

method), 635
addtoindex() (pynlpl.formats.folia.TimingLayer method),

753
addtoindex() (pynlpl.formats.folia.Whitespace method),

400
addtoindex() (pynlpl.formats.folia.Word method), 414
alias() (pynlpl.formats.folia.Document method), 17
align() (pynlpl.formats.taggerdata.Taggerdata method),

1055
Alignment (class in pynlpl.formats.folia), 1006
AlignReference (class in pynlpl.formats.folia), 1018
AllowTokenAnnotation (class in pynlpl.formats.folia), 47
Alternative (class in pynlpl.formats.folia), 916
AlternativeLayers (class in pynlpl.formats.folia), 929
alternatives() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 75
alternatives() (pynlpl.formats.folia.AbstractStructureElement

method), 38
alternatives() (pynlpl.formats.folia.AllowTokenAnnotation

method), 48
alternatives() (pynlpl.formats.folia.Alternative method),

920
alternatives() (pynlpl.formats.folia.Cell method), 101
alternatives() (pynlpl.formats.folia.ChunkingLayer

method), 647
alternatives() (pynlpl.formats.folia.CoreferenceLayer

method), 659
alternatives() (pynlpl.formats.folia.Definition method),

114
alternatives() (pynlpl.formats.folia.DependenciesLayer

method), 671
alternatives() (pynlpl.formats.folia.Division method), 127
alternatives() (pynlpl.formats.folia.EntitiesLayer

method), 683
alternatives() (pynlpl.formats.folia.Entry method), 140
alternatives() (pynlpl.formats.folia.Event method), 153
alternatives() (pynlpl.formats.folia.Example method), 166
alternatives() (pynlpl.formats.folia.Figure method), 179
alternatives() (pynlpl.formats.folia.Head method), 203
alternatives() (pynlpl.formats.folia.Linebreak method),

216
alternatives() (pynlpl.formats.folia.List method), 229
alternatives() (pynlpl.formats.folia.ListItem method), 242
alternatives() (pynlpl.formats.folia.Note method), 255
alternatives() (pynlpl.formats.folia.ObservationLayer

method), 694
alternatives() (pynlpl.formats.folia.Paragraph method),

268
alternatives() (pynlpl.formats.folia.Part method), 281
alternatives() (pynlpl.formats.folia.Quote method), 294
alternatives() (pynlpl.formats.folia.Reference method),

307
alternatives() (pynlpl.formats.folia.Row method), 320
alternatives() (pynlpl.formats.folia.SemanticRolesLayer

method), 741
alternatives() (pynlpl.formats.folia.Sentence method),

334
alternatives() (pynlpl.formats.folia.SentimentLayer

method), 706
alternatives() (pynlpl.formats.folia.StatementLayer

method), 718
alternatives() (pynlpl.formats.folia.SyntaxLayer method),

730
alternatives() (pynlpl.formats.folia.Table method), 348
alternatives() (pynlpl.formats.folia.TableHead method),

374
alternatives() (pynlpl.formats.folia.Term method), 361
alternatives() (pynlpl.formats.folia.Text method), 387
alternatives() (pynlpl.formats.folia.TimingLayer method),

753
alternatives() (pynlpl.formats.folia.Whitespace method),

1086 Index

PyNLPl Documentation, Release 1.2.8

400
alternatives() (pynlpl.formats.folia.Word method), 414
ancestor() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 76
ancestor() (pynlpl.formats.folia.AbstractElement

method), 27
ancestor() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 53
ancestor() (pynlpl.formats.folia.AbstractStructureElement

method), 38
ancestor() (pynlpl.formats.folia.AbstractTextMarkup

method), 87
ancestor() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 64
ancestor() (pynlpl.formats.folia.ActorFeature method),

886
ancestor() (pynlpl.formats.folia.Alignment method), 1010
ancestor() (pynlpl.formats.folia.AlignReference method),

1021
ancestor() (pynlpl.formats.folia.Alternative method), 920
ancestor() (pynlpl.formats.folia.AlternativeLayers

method), 932
ancestor() (pynlpl.formats.folia.BegindatetimeFeature

method), 897
ancestor() (pynlpl.formats.folia.Cell method), 101
ancestor() (pynlpl.formats.folia.Chunk method), 519
ancestor() (pynlpl.formats.folia.ChunkingLayer method),

647
ancestor() (pynlpl.formats.folia.CoreferenceChain

method), 530
ancestor() (pynlpl.formats.folia.CoreferenceLayer

method), 659
ancestor() (pynlpl.formats.folia.CoreferenceLink

method), 765
ancestor() (pynlpl.formats.folia.Correction method), 945
ancestor() (pynlpl.formats.folia.Current method), 954
ancestor() (pynlpl.formats.folia.Definition method), 114
ancestor() (pynlpl.formats.folia.DependenciesLayer

method), 671
ancestor() (pynlpl.formats.folia.Dependency method),

542
ancestor() (pynlpl.formats.folia.DependencyDependent

method), 777
ancestor() (pynlpl.formats.folia.Description method),

1032
ancestor() (pynlpl.formats.folia.Division method), 127
ancestor() (pynlpl.formats.folia.DomainAnnotation

method), 429
ancestor() (pynlpl.formats.folia.EnddatetimeFeature

method), 908
ancestor() (pynlpl.formats.folia.EntitiesLayer method),

683
ancestor() (pynlpl.formats.folia.Entity method), 554
ancestor() (pynlpl.formats.folia.Entry method), 140

ancestor() (pynlpl.formats.folia.ErrorDetection method),
965

ancestor() (pynlpl.formats.folia.Event method), 153
ancestor() (pynlpl.formats.folia.Example method), 166
ancestor() (pynlpl.formats.folia.Feature method), 863
ancestor() (pynlpl.formats.folia.Figure method), 179
ancestor() (pynlpl.formats.folia.Gap method), 192
ancestor() (pynlpl.formats.folia.Head method), 203
ancestor() (pynlpl.formats.folia.Headspan method), 789
ancestor() (pynlpl.formats.folia.LangAnnotation

method), 451
ancestor() (pynlpl.formats.folia.LemmaAnnotation

method), 462
ancestor() (pynlpl.formats.folia.Linebreak method), 216
ancestor() (pynlpl.formats.folia.List method), 229
ancestor() (pynlpl.formats.folia.ListItem method), 242
ancestor() (pynlpl.formats.folia.Metric method), 1043
ancestor() (pynlpl.formats.folia.New method), 976
ancestor() (pynlpl.formats.folia.Note method), 255
ancestor() (pynlpl.formats.folia.Observation method),

565
ancestor() (pynlpl.formats.folia.ObservationLayer

method), 695
ancestor() (pynlpl.formats.folia.Original method), 987
ancestor() (pynlpl.formats.folia.Paragraph method), 268
ancestor() (pynlpl.formats.folia.Part method), 281
ancestor() (pynlpl.formats.folia.PhonContent method),

507
ancestor() (pynlpl.formats.folia.PosAnnotation method),

440
ancestor() (pynlpl.formats.folia.Predicate method), 577
ancestor() (pynlpl.formats.folia.Quote method), 294
ancestor() (pynlpl.formats.folia.Reference method), 307
ancestor() (pynlpl.formats.folia.Row method), 320
ancestor() (pynlpl.formats.folia.SemanticRole method),

624
ancestor() (pynlpl.formats.folia.SemanticRolesLayer

method), 742
ancestor() (pynlpl.formats.folia.SenseAnnotation

method), 473
ancestor() (pynlpl.formats.folia.Sentence method), 334
ancestor() (pynlpl.formats.folia.Sentiment method), 589
ancestor() (pynlpl.formats.folia.SentimentLayer method),

706
ancestor() (pynlpl.formats.folia.Statement method), 600
ancestor() (pynlpl.formats.folia.StatementLayer method),

718
ancestor() (pynlpl.formats.folia.SubjectivityAnnotation

method), 484
ancestor() (pynlpl.formats.folia.Suggestion method), 998
ancestor() (pynlpl.formats.folia.SynsetFeature method),

875
ancestor() (pynlpl.formats.folia.SyntacticUnit method),

612

Index 1087

PyNLPl Documentation, Release 1.2.8

ancestor() (pynlpl.formats.folia.SyntaxLayer method),
730

ancestor() (pynlpl.formats.folia.Table method), 348
ancestor() (pynlpl.formats.folia.TableHead method), 374
ancestor() (pynlpl.formats.folia.Term method), 361
ancestor() (pynlpl.formats.folia.Text method), 387
ancestor() (pynlpl.formats.folia.TextContent method),

496
ancestor() (pynlpl.formats.folia.TextMarkupCorrection

method), 841
ancestor() (pynlpl.formats.folia.TextMarkupError

method), 852
ancestor() (pynlpl.formats.folia.TextMarkupGap

method), 809
ancestor() (pynlpl.formats.folia.TextMarkupString

method), 820
ancestor() (pynlpl.formats.folia.TextMarkupStyle

method), 831
ancestor() (pynlpl.formats.folia.TimeSegment method),

635
ancestor() (pynlpl.formats.folia.TimingLayer method),

753
ancestor() (pynlpl.formats.folia.Whitespace method), 400
ancestor() (pynlpl.formats.folia.Word method), 414
ancestors() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 76
ancestors() (pynlpl.formats.folia.AbstractElement

method), 27
ancestors() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 53
ancestors() (pynlpl.formats.folia.AbstractStructureElement

method), 38
ancestors() (pynlpl.formats.folia.AbstractTextMarkup

method), 87
ancestors() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 64
ancestors() (pynlpl.formats.folia.ActorFeature method),

886
ancestors() (pynlpl.formats.folia.Alignment method),

1010
ancestors() (pynlpl.formats.folia.AlignReference

method), 1021
ancestors() (pynlpl.formats.folia.Alternative method),

920
ancestors() (pynlpl.formats.folia.AlternativeLayers

method), 932
ancestors() (pynlpl.formats.folia.BegindatetimeFeature

method), 897
ancestors() (pynlpl.formats.folia.Cell method), 102
ancestors() (pynlpl.formats.folia.Chunk method), 519
ancestors() (pynlpl.formats.folia.ChunkingLayer

method), 648
ancestors() (pynlpl.formats.folia.CoreferenceChain

method), 530

ancestors() (pynlpl.formats.folia.CoreferenceLayer
method), 659

ancestors() (pynlpl.formats.folia.CoreferenceLink
method), 765

ancestors() (pynlpl.formats.folia.Correction method), 945
ancestors() (pynlpl.formats.folia.Current method), 954
ancestors() (pynlpl.formats.folia.Definition method), 115
ancestors() (pynlpl.formats.folia.DependenciesLayer

method), 671
ancestors() (pynlpl.formats.folia.Dependency method),

542
ancestors() (pynlpl.formats.folia.DependencyDependent

method), 777
ancestors() (pynlpl.formats.folia.Description method),

1032
ancestors() (pynlpl.formats.folia.Division method), 128
ancestors() (pynlpl.formats.folia.DomainAnnotation

method), 430
ancestors() (pynlpl.formats.folia.EnddatetimeFeature

method), 908
ancestors() (pynlpl.formats.folia.EntitiesLayer method),

683
ancestors() (pynlpl.formats.folia.Entity method), 554
ancestors() (pynlpl.formats.folia.Entry method), 140
ancestors() (pynlpl.formats.folia.ErrorDetection method),

966
ancestors() (pynlpl.formats.folia.Event method), 154
ancestors() (pynlpl.formats.folia.Example method), 166
ancestors() (pynlpl.formats.folia.Feature method), 864
ancestors() (pynlpl.formats.folia.Figure method), 180
ancestors() (pynlpl.formats.folia.Gap method), 192
ancestors() (pynlpl.formats.folia.Head method), 204
ancestors() (pynlpl.formats.folia.Headspan method), 789
ancestors() (pynlpl.formats.folia.LangAnnotation

method), 452
ancestors() (pynlpl.formats.folia.LemmaAnnotation

method), 463
ancestors() (pynlpl.formats.folia.Linebreak method), 217
ancestors() (pynlpl.formats.folia.List method), 229
ancestors() (pynlpl.formats.folia.ListItem method), 242
ancestors() (pynlpl.formats.folia.Metric method), 1044
ancestors() (pynlpl.formats.folia.New method), 977
ancestors() (pynlpl.formats.folia.Note method), 255
ancestors() (pynlpl.formats.folia.Observation method),

565
ancestors() (pynlpl.formats.folia.ObservationLayer

method), 695
ancestors() (pynlpl.formats.folia.Original method), 988
ancestors() (pynlpl.formats.folia.Paragraph method), 269
ancestors() (pynlpl.formats.folia.Part method), 282
ancestors() (pynlpl.formats.folia.PhonContent method),

507
ancestors() (pynlpl.formats.folia.PosAnnotation method),

441

1088 Index

PyNLPl Documentation, Release 1.2.8

ancestors() (pynlpl.formats.folia.Predicate method), 577
ancestors() (pynlpl.formats.folia.Quote method), 294
ancestors() (pynlpl.formats.folia.Reference method), 308
ancestors() (pynlpl.formats.folia.Row method), 320
ancestors() (pynlpl.formats.folia.SemanticRole method),

624
ancestors() (pynlpl.formats.folia.SemanticRolesLayer

method), 742
ancestors() (pynlpl.formats.folia.SenseAnnotation

method), 474
ancestors() (pynlpl.formats.folia.Sentence method), 334
ancestors() (pynlpl.formats.folia.Sentiment method), 589
ancestors() (pynlpl.formats.folia.SentimentLayer

method), 707
ancestors() (pynlpl.formats.folia.Statement method), 600
ancestors() (pynlpl.formats.folia.StatementLayer

method), 718
ancestors() (pynlpl.formats.folia.SubjectivityAnnotation

method), 485
ancestors() (pynlpl.formats.folia.Suggestion method),

999
ancestors() (pynlpl.formats.folia.SynsetFeature method),

875
ancestors() (pynlpl.formats.folia.SyntacticUnit method),

612
ancestors() (pynlpl.formats.folia.SyntaxLayer method),

730
ancestors() (pynlpl.formats.folia.Table method), 348
ancestors() (pynlpl.formats.folia.TableHead method), 374
ancestors() (pynlpl.formats.folia.Term method), 361
ancestors() (pynlpl.formats.folia.Text method), 387
ancestors() (pynlpl.formats.folia.TextContent method),

496
ancestors() (pynlpl.formats.folia.TextMarkupCorrection

method), 841
ancestors() (pynlpl.formats.folia.TextMarkupError

method), 852
ancestors() (pynlpl.formats.folia.TextMarkupGap

method), 809
ancestors() (pynlpl.formats.folia.TextMarkupString

method), 820
ancestors() (pynlpl.formats.folia.TextMarkupStyle

method), 831
ancestors() (pynlpl.formats.folia.TimeSegment method),

635
ancestors() (pynlpl.formats.folia.TimingLayer method),

754
ancestors() (pynlpl.formats.folia.Whitespace method),

400
ancestors() (pynlpl.formats.folia.Word method), 414
annotation() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 76
annotation() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 53

annotation() (pynlpl.formats.folia.AbstractStructureElement
method), 39

annotation() (pynlpl.formats.folia.AllowTokenAnnotation
method), 48

annotation() (pynlpl.formats.folia.Alternative method),
920

annotation() (pynlpl.formats.folia.Cell method), 102
annotation() (pynlpl.formats.folia.Chunk method), 519
annotation() (pynlpl.formats.folia.ChunkingLayer

method), 648
annotation() (pynlpl.formats.folia.CoreferenceChain

method), 531
annotation() (pynlpl.formats.folia.CoreferenceLayer

method), 660
annotation() (pynlpl.formats.folia.CoreferenceLink

method), 765
annotation() (pynlpl.formats.folia.Definition method),

115
annotation() (pynlpl.formats.folia.DependenciesLayer

method), 671
annotation() (pynlpl.formats.folia.Dependency method),

542
annotation() (pynlpl.formats.folia.DependencyDependent

method), 777
annotation() (pynlpl.formats.folia.Division method), 128
annotation() (pynlpl.formats.folia.EntitiesLayer method),

683
annotation() (pynlpl.formats.folia.Entity method), 554
annotation() (pynlpl.formats.folia.Entry method), 141
annotation() (pynlpl.formats.folia.Event method), 154
annotation() (pynlpl.formats.folia.Example method), 167
annotation() (pynlpl.formats.folia.Figure method), 180
annotation() (pynlpl.formats.folia.Head method), 204
annotation() (pynlpl.formats.folia.Headspan method),

789
annotation() (pynlpl.formats.folia.Linebreak method),

217
annotation() (pynlpl.formats.folia.List method), 230
annotation() (pynlpl.formats.folia.ListItem method), 243
annotation() (pynlpl.formats.folia.Note method), 256
annotation() (pynlpl.formats.folia.Observation method),

566
annotation() (pynlpl.formats.folia.ObservationLayer

method), 695
annotation() (pynlpl.formats.folia.Paragraph method),

269
annotation() (pynlpl.formats.folia.Part method), 282
annotation() (pynlpl.formats.folia.Predicate method), 577
annotation() (pynlpl.formats.folia.Quote method), 295
annotation() (pynlpl.formats.folia.Reference method),

308
annotation() (pynlpl.formats.folia.Row method), 321
annotation() (pynlpl.formats.folia.SemanticRole method),

624

Index 1089

PyNLPl Documentation, Release 1.2.8

annotation() (pynlpl.formats.folia.SemanticRolesLayer
method), 742

annotation() (pynlpl.formats.folia.Sentence method), 335
annotation() (pynlpl.formats.folia.Sentiment method),

589
annotation() (pynlpl.formats.folia.SentimentLayer

method), 707
annotation() (pynlpl.formats.folia.Statement method),

600
annotation() (pynlpl.formats.folia.StatementLayer

method), 718
annotation() (pynlpl.formats.folia.SyntacticUnit method),

612
annotation() (pynlpl.formats.folia.SyntaxLayer method),

730
annotation() (pynlpl.formats.folia.Table method), 348
annotation() (pynlpl.formats.folia.TableHead method),

374
annotation() (pynlpl.formats.folia.Term method), 361
annotation() (pynlpl.formats.folia.Text method), 387
annotation() (pynlpl.formats.folia.TimeSegment method),

635
annotation() (pynlpl.formats.folia.TimingLayer method),

754
annotation() (pynlpl.formats.folia.Whitespace method),

400
annotation() (pynlpl.formats.folia.Word method), 415
annotations() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 76
annotations() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 53
annotations() (pynlpl.formats.folia.AbstractStructureElement

method), 39
annotations() (pynlpl.formats.folia.AllowTokenAnnotation

method), 49
annotations() (pynlpl.formats.folia.Alternative method),

921
annotations() (pynlpl.formats.folia.Cell method), 102
annotations() (pynlpl.formats.folia.Chunk method), 519
annotations() (pynlpl.formats.folia.ChunkingLayer

method), 648
annotations() (pynlpl.formats.folia.CoreferenceChain

method), 531
annotations() (pynlpl.formats.folia.CoreferenceLayer

method), 660
annotations() (pynlpl.formats.folia.CoreferenceLink

method), 765
annotations() (pynlpl.formats.folia.Definition method),

115
annotations() (pynlpl.formats.folia.DependenciesLayer

method), 671
annotations() (pynlpl.formats.folia.Dependency method),

542
annotations() (pynlpl.formats.folia.DependencyDependent

method), 777
annotations() (pynlpl.formats.folia.Division method), 128
annotations() (pynlpl.formats.folia.EntitiesLayer

method), 683
annotations() (pynlpl.formats.folia.Entity method), 554
annotations() (pynlpl.formats.folia.Entry method), 141
annotations() (pynlpl.formats.folia.Event method), 154
annotations() (pynlpl.formats.folia.Example method),

167
annotations() (pynlpl.formats.folia.Figure method), 180
annotations() (pynlpl.formats.folia.Head method), 204
annotations() (pynlpl.formats.folia.Headspan method),

789
annotations() (pynlpl.formats.folia.Linebreak method),

217
annotations() (pynlpl.formats.folia.List method), 230
annotations() (pynlpl.formats.folia.ListItem method), 243
annotations() (pynlpl.formats.folia.Note method), 256
annotations() (pynlpl.formats.folia.Observation method),

566
annotations() (pynlpl.formats.folia.ObservationLayer

method), 695
annotations() (pynlpl.formats.folia.Paragraph method),

269
annotations() (pynlpl.formats.folia.Part method), 282
annotations() (pynlpl.formats.folia.Predicate method),

577
annotations() (pynlpl.formats.folia.Quote method), 295
annotations() (pynlpl.formats.folia.Reference method),

308
annotations() (pynlpl.formats.folia.Row method), 321
annotations() (pynlpl.formats.folia.SemanticRole

method), 624
annotations() (pynlpl.formats.folia.SemanticRolesLayer

method), 742
annotations() (pynlpl.formats.folia.Sentence method),

335
annotations() (pynlpl.formats.folia.Sentiment method),

589
annotations() (pynlpl.formats.folia.SentimentLayer

method), 707
annotations() (pynlpl.formats.folia.Statement method),

601
annotations() (pynlpl.formats.folia.StatementLayer

method), 718
annotations() (pynlpl.formats.folia.SyntacticUnit

method), 612
annotations() (pynlpl.formats.folia.SyntaxLayer method),

730
annotations() (pynlpl.formats.folia.Table method), 349
annotations() (pynlpl.formats.folia.TableHead method),

375
annotations() (pynlpl.formats.folia.Term method), 362
annotations() (pynlpl.formats.folia.Text method), 388

1090 Index

PyNLPl Documentation, Release 1.2.8

annotations() (pynlpl.formats.folia.TimeSegment
method), 636

annotations() (pynlpl.formats.folia.TimingLayer
method), 754

annotations() (pynlpl.formats.folia.Whitespace method),
401

annotations() (pynlpl.formats.folia.Word method), 415
ANNOTATIONTYPE (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 74
ANNOTATIONTYPE (pynlpl.formats.folia.AbstractElement

attribute), 26
ANNOTATIONTYPE (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
ANNOTATIONTYPE (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
ANNOTATIONTYPE (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
ANNOTATIONTYPE (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
ANNOTATIONTYPE (pynlpl.formats.folia.ActorFeature

attribute), 884
ANNOTATIONTYPE (pynlpl.formats.folia.Alignment

attribute), 1009
ANNOTATIONTYPE (pynlpl.formats.folia.AlignReference

attribute), 1020
ANNOTATIONTYPE (pynlpl.formats.folia.Alternative

attribute), 919
ANNOTATIONTYPE (pynlpl.formats.folia.AlternativeLayers

attribute), 931
ANNOTATIONTYPE (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
ANNOTATIONTYPE (pynlpl.formats.folia.Cell at-

tribute), 100
ANNOTATIONTYPE (pynlpl.formats.folia.Chunk

attribute), 518
ANNOTATIONTYPE (pynlpl.formats.folia.ChunkingLayer

attribute), 646
ANNOTATIONTYPE (pynlpl.formats.folia.CoreferenceChain

attribute), 529
ANNOTATIONTYPE (pynlpl.formats.folia.CoreferenceLayer

attribute), 658
ANNOTATIONTYPE (pynlpl.formats.folia.CoreferenceLink

attribute), 764
ANNOTATIONTYPE (pynlpl.formats.folia.Correction

attribute), 944
ANNOTATIONTYPE (pynlpl.formats.folia.Current at-

tribute), 953
ANNOTATIONTYPE (pynlpl.formats.folia.Definition at-

tribute), 113
ANNOTATIONTYPE (pynlpl.formats.folia.DependenciesLayer

attribute), 670
ANNOTATIONTYPE (pynlpl.formats.folia.Dependency

attribute), 541
ANNOTATIONTYPE (pynlpl.formats.folia.DependencyDependent

attribute), 776
ANNOTATIONTYPE (pynlpl.formats.folia.Description

attribute), 1031
ANNOTATIONTYPE (pynlpl.formats.folia.Division at-

tribute), 126
ANNOTATIONTYPE (pynlpl.formats.folia.DomainAnnotation

attribute), 428
ANNOTATIONTYPE (pynlpl.formats.folia.EnddatetimeFeature

attribute), 907
ANNOTATIONTYPE (pynlpl.formats.folia.EntitiesLayer

attribute), 682
ANNOTATIONTYPE (pynlpl.formats.folia.Entity

attribute), 553
ANNOTATIONTYPE (pynlpl.formats.folia.Entry at-

tribute), 139
ANNOTATIONTYPE (pynlpl.formats.folia.ErrorDetection

attribute), 964
ANNOTATIONTYPE (pynlpl.formats.folia.Event at-

tribute), 152
ANNOTATIONTYPE (pynlpl.formats.folia.Example at-

tribute), 165
ANNOTATIONTYPE (pynlpl.formats.folia.Feature at-

tribute), 862
ANNOTATIONTYPE (pynlpl.formats.folia.Figure

attribute), 178
ANNOTATIONTYPE (pynlpl.formats.folia.Gap at-

tribute), 191
ANNOTATIONTYPE (pynlpl.formats.folia.Head at-

tribute), 202
ANNOTATIONTYPE (pynlpl.formats.folia.Headspan at-

tribute), 788
ANNOTATIONTYPE (pynlpl.formats.folia.LangAnnotation

attribute), 450
ANNOTATIONTYPE (pynlpl.formats.folia.LemmaAnnotation

attribute), 461
ANNOTATIONTYPE (pynlpl.formats.folia.Linebreak at-

tribute), 215
ANNOTATIONTYPE (pynlpl.formats.folia.List at-

tribute), 228
ANNOTATIONTYPE (pynlpl.formats.folia.ListItem at-

tribute), 241
ANNOTATIONTYPE (pynlpl.formats.folia.Metric

attribute), 1042
ANNOTATIONTYPE (pynlpl.formats.folia.New at-

tribute), 975
ANNOTATIONTYPE (pynlpl.formats.folia.Note at-

tribute), 254
ANNOTATIONTYPE (pynlpl.formats.folia.Observation

attribute), 564
ANNOTATIONTYPE (pynlpl.formats.folia.ObservationLayer

attribute), 693
ANNOTATIONTYPE (pynlpl.formats.folia.Original at-

tribute), 986
ANNOTATIONTYPE (pynlpl.formats.folia.Paragraph at-

Index 1091

PyNLPl Documentation, Release 1.2.8

tribute), 267
ANNOTATIONTYPE (pynlpl.formats.folia.Part at-

tribute), 280
ANNOTATIONTYPE (pynlpl.formats.folia.PhonContent

attribute), 505
ANNOTATIONTYPE (pynlpl.formats.folia.PosAnnotation

attribute), 439
ANNOTATIONTYPE (pynlpl.formats.folia.Predicate at-

tribute), 576
ANNOTATIONTYPE (pynlpl.formats.folia.Quote

attribute), 293
ANNOTATIONTYPE (pynlpl.formats.folia.Reference at-

tribute), 306
ANNOTATIONTYPE (pynlpl.formats.folia.Row at-

tribute), 319
ANNOTATIONTYPE (pynlpl.formats.folia.SemanticRole

attribute), 622
ANNOTATIONTYPE (pynlpl.formats.folia.SemanticRolesLayer

attribute), 740
ANNOTATIONTYPE (pynlpl.formats.folia.SenseAnnotation

attribute), 472
ANNOTATIONTYPE (pynlpl.formats.folia.Sentence at-

tribute), 332
ANNOTATIONTYPE (pynlpl.formats.folia.Sentiment at-

tribute), 587
ANNOTATIONTYPE (pynlpl.formats.folia.SentimentLayer

attribute), 705
ANNOTATIONTYPE (pynlpl.formats.folia.Statement at-

tribute), 599
ANNOTATIONTYPE (pynlpl.formats.folia.StatementLayer

attribute), 717
ANNOTATIONTYPE (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 483
ANNOTATIONTYPE (pynlpl.formats.folia.Suggestion

attribute), 997
ANNOTATIONTYPE (pynlpl.formats.folia.SynsetFeature

attribute), 873
ANNOTATIONTYPE (pynlpl.formats.folia.SyntacticUnit

attribute), 611
ANNOTATIONTYPE (pynlpl.formats.folia.SyntaxLayer

attribute), 729
ANNOTATIONTYPE (pynlpl.formats.folia.Table at-

tribute), 347
ANNOTATIONTYPE (pynlpl.formats.folia.TableHead

attribute), 373
ANNOTATIONTYPE (pynlpl.formats.folia.Term at-

tribute), 360
ANNOTATIONTYPE (pynlpl.formats.folia.Text at-

tribute), 386
ANNOTATIONTYPE (pynlpl.formats.folia.TextContent

attribute), 495
ANNOTATIONTYPE (pynlpl.formats.folia.TextMarkupCorrection

attribute), 840
ANNOTATIONTYPE (pynlpl.formats.folia.TextMarkupError

attribute), 851
ANNOTATIONTYPE (pynlpl.formats.folia.TextMarkupGap

attribute), 808
ANNOTATIONTYPE (pynlpl.formats.folia.TextMarkupString

attribute), 819
ANNOTATIONTYPE (pynlpl.formats.folia.TextMarkupStyle

attribute), 829
ANNOTATIONTYPE (pynlpl.formats.folia.TimeSegment

attribute), 634
ANNOTATIONTYPE (pynlpl.formats.folia.TimingLayer

attribute), 752
ANNOTATIONTYPE (pynlpl.formats.folia.Whitespace

attribute), 399
ANNOTATIONTYPE (pynlpl.formats.folia.Word at-

tribute), 412
append() (pynlpl.datatypes.FIFOQueue method), 5
append() (pynlpl.datatypes.PriorityQueue method), 6
append() (pynlpl.datatypes.Tree method), 6
append() (pynlpl.datatypes.Trie method), 6
append() (pynlpl.evaluation.ClassEvaluation method), 9
append() (pynlpl.evaluation.ExperimentPool method), 10
append() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 76
append() (pynlpl.formats.folia.AbstractElement method),

27
append() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 53
append() (pynlpl.formats.folia.AbstractStructureElement

method), 39
append() (pynlpl.formats.folia.AbstractTextMarkup

method), 87
append() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 64
append() (pynlpl.formats.folia.ActorFeature method),

886
append() (pynlpl.formats.folia.Alignment method), 1010
append() (pynlpl.formats.folia.AlignReference method),

1021
append() (pynlpl.formats.folia.Alternative method), 921
append() (pynlpl.formats.folia.AlternativeLayers

method), 932
append() (pynlpl.formats.folia.BegindatetimeFeature

method), 897
append() (pynlpl.formats.folia.Cell method), 103
append() (pynlpl.formats.folia.Chunk method), 519
append() (pynlpl.formats.folia.ChunkingLayer method),

648
append() (pynlpl.formats.folia.CoreferenceChain

method), 531
append() (pynlpl.formats.folia.CoreferenceLayer

method), 660
append() (pynlpl.formats.folia.CoreferenceLink method),

766
append() (pynlpl.formats.folia.Correction method), 945

1092 Index

PyNLPl Documentation, Release 1.2.8

append() (pynlpl.formats.folia.Current method), 955
append() (pynlpl.formats.folia.Definition method), 116
append() (pynlpl.formats.folia.DependenciesLayer

method), 672
append() (pynlpl.formats.folia.Dependency method), 543
append() (pynlpl.formats.folia.DependencyDependent

method), 777
append() (pynlpl.formats.folia.Description method), 1033
append() (pynlpl.formats.folia.Division method), 129
append() (pynlpl.formats.folia.Document method), 17
append() (pynlpl.formats.folia.DomainAnnotation

method), 430
append() (pynlpl.formats.folia.EnddatetimeFeature

method), 908
append() (pynlpl.formats.folia.EntitiesLayer method),

683
append() (pynlpl.formats.folia.Entity method), 554
append() (pynlpl.formats.folia.Entry method), 141
append() (pynlpl.formats.folia.ErrorDetection method),

966
append() (pynlpl.formats.folia.Event method), 155
append() (pynlpl.formats.folia.Example method), 167
append() (pynlpl.formats.folia.Feature method), 864
append() (pynlpl.formats.folia.Figure method), 181
append() (pynlpl.formats.folia.Gap method), 192
append() (pynlpl.formats.folia.Head method), 205
append() (pynlpl.formats.folia.Headspan method), 789
append() (pynlpl.formats.folia.LangAnnotation method),

452
append() (pynlpl.formats.folia.LemmaAnnotation

method), 463
append() (pynlpl.formats.folia.Linebreak method), 218
append() (pynlpl.formats.folia.List method), 230
append() (pynlpl.formats.folia.ListItem method), 243
append() (pynlpl.formats.folia.Metric method), 1044
append() (pynlpl.formats.folia.New method), 977
append() (pynlpl.formats.folia.Note method), 256
append() (pynlpl.formats.folia.Observation method), 566
append() (pynlpl.formats.folia.ObservationLayer

method), 695
append() (pynlpl.formats.folia.Original method), 988
append() (pynlpl.formats.folia.Paragraph method), 270
append() (pynlpl.formats.folia.Part method), 283
append() (pynlpl.formats.folia.PhonContent method), 507
append() (pynlpl.formats.folia.PosAnnotation method),

441
append() (pynlpl.formats.folia.Predicate method), 577
append() (pynlpl.formats.folia.Quote method), 295
append() (pynlpl.formats.folia.Reference method), 309
append() (pynlpl.formats.folia.Row method), 321
append() (pynlpl.formats.folia.SemanticRole method),

624
append() (pynlpl.formats.folia.SemanticRolesLayer

method), 742

append() (pynlpl.formats.folia.SenseAnnotation method),
474

append() (pynlpl.formats.folia.Sentence method), 335
append() (pynlpl.formats.folia.Sentiment method), 589
append() (pynlpl.formats.folia.SentimentLayer method),

707
append() (pynlpl.formats.folia.Statement method), 601
append() (pynlpl.formats.folia.StatementLayer method),

719
append() (pynlpl.formats.folia.SubjectivityAnnotation

method), 485
append() (pynlpl.formats.folia.Suggestion method), 999
append() (pynlpl.formats.folia.SynsetFeature method),

875
append() (pynlpl.formats.folia.SyntacticUnit method),

612
append() (pynlpl.formats.folia.SyntaxLayer method), 730
append() (pynlpl.formats.folia.Table method), 349
append() (pynlpl.formats.folia.TableHead method), 375
append() (pynlpl.formats.folia.Term method), 362
append() (pynlpl.formats.folia.Text method), 388
append() (pynlpl.formats.folia.TextContent method), 496
append() (pynlpl.formats.folia.TextMarkupCorrection

method), 842
append() (pynlpl.formats.folia.TextMarkupError

method), 852
append() (pynlpl.formats.folia.TextMarkupGap method),

810
append() (pynlpl.formats.folia.TextMarkupString

method), 820
append() (pynlpl.formats.folia.TextMarkupStyle

method), 831
append() (pynlpl.formats.folia.TimeSegment method),

636
append() (pynlpl.formats.folia.TimingLayer method), 754
append() (pynlpl.formats.folia.Whitespace method), 401
append() (pynlpl.formats.folia.Word method), 415
append() (pynlpl.lm.lm.SimpleLanguageModel method),

1057
append() (pynlpl.statistics.FrequencyList method), 1063
ARPALanguageModel (class in pynlpl.lm.lm), 1057
ARPALanguageModel.NgramsProbs (class in

pynlpl.lm.lm), 1057
auc() (in module pynlpl.evaluation), 10
auc() (pynlpl.evaluation.ClassEvaluation method), 9
AUTH (pynlpl.formats.folia.AbstractAnnotationLayer at-

tribute), 74
AUTH (pynlpl.formats.folia.AbstractElement attribute),

26
AUTH (pynlpl.formats.folia.AbstractSpanAnnotation at-

tribute), 52
AUTH (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
AUTH (pynlpl.formats.folia.AbstractTextMarkup at-

Index 1093

PyNLPl Documentation, Release 1.2.8

tribute), 86
AUTH (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
AUTH (pynlpl.formats.folia.ActorFeature attribute), 885
AUTH (pynlpl.formats.folia.Alignment attribute), 1009
AUTH (pynlpl.formats.folia.AlignReference attribute),

1020
AUTH (pynlpl.formats.folia.Alternative attribute), 919
AUTH (pynlpl.formats.folia.AlternativeLayers attribute),

931
AUTH (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
AUTH (pynlpl.formats.folia.Cell attribute), 100
AUTH (pynlpl.formats.folia.Chunk attribute), 518
AUTH (pynlpl.formats.folia.ChunkingLayer attribute),

646
AUTH (pynlpl.formats.folia.CoreferenceChain attribute),

529
AUTH (pynlpl.formats.folia.CoreferenceLayer attribute),

658
AUTH (pynlpl.formats.folia.CoreferenceLink attribute),

764
AUTH (pynlpl.formats.folia.Correction attribute), 944
AUTH (pynlpl.formats.folia.Current attribute), 953
AUTH (pynlpl.formats.folia.Definition attribute), 113
AUTH (pynlpl.formats.folia.DependenciesLayer at-

tribute), 670
AUTH (pynlpl.formats.folia.Dependency attribute), 541
AUTH (pynlpl.formats.folia.DependencyDependent at-

tribute), 776
AUTH (pynlpl.formats.folia.Description attribute), 1031
AUTH (pynlpl.formats.folia.Division attribute), 126
AUTH (pynlpl.formats.folia.DomainAnnotation at-

tribute), 428
AUTH (pynlpl.formats.folia.EnddatetimeFeature at-

tribute), 907
AUTH (pynlpl.formats.folia.EntitiesLayer attribute), 682
AUTH (pynlpl.formats.folia.Entity attribute), 553
AUTH (pynlpl.formats.folia.Entry attribute), 139
AUTH (pynlpl.formats.folia.ErrorDetection attribute),

964
AUTH (pynlpl.formats.folia.Event attribute), 152
AUTH (pynlpl.formats.folia.Example attribute), 165
AUTH (pynlpl.formats.folia.Feature attribute), 862
AUTH (pynlpl.formats.folia.Figure attribute), 178
AUTH (pynlpl.formats.folia.Gap attribute), 191
AUTH (pynlpl.formats.folia.Head attribute), 202
AUTH (pynlpl.formats.folia.Headspan attribute), 788
AUTH (pynlpl.formats.folia.LangAnnotation attribute),

450
AUTH (pynlpl.formats.folia.LemmaAnnotation at-

tribute), 461
AUTH (pynlpl.formats.folia.Linebreak attribute), 215
AUTH (pynlpl.formats.folia.List attribute), 228

AUTH (pynlpl.formats.folia.ListItem attribute), 241
AUTH (pynlpl.formats.folia.Metric attribute), 1042
AUTH (pynlpl.formats.folia.New attribute), 975
AUTH (pynlpl.formats.folia.Note attribute), 254
AUTH (pynlpl.formats.folia.Observation attribute), 564
AUTH (pynlpl.formats.folia.ObservationLayer attribute),

693
AUTH (pynlpl.formats.folia.Original attribute), 986
AUTH (pynlpl.formats.folia.Paragraph attribute), 267
AUTH (pynlpl.formats.folia.Part attribute), 280
AUTH (pynlpl.formats.folia.PhonContent attribute), 505
AUTH (pynlpl.formats.folia.PosAnnotation attribute),

439
AUTH (pynlpl.formats.folia.Predicate attribute), 576
AUTH (pynlpl.formats.folia.Quote attribute), 293
AUTH (pynlpl.formats.folia.Reference attribute), 306
AUTH (pynlpl.formats.folia.Row attribute), 319
AUTH (pynlpl.formats.folia.SemanticRole attribute), 622
AUTH (pynlpl.formats.folia.SemanticRolesLayer at-

tribute), 740
AUTH (pynlpl.formats.folia.SenseAnnotation attribute),

472
AUTH (pynlpl.formats.folia.Sentence attribute), 332
AUTH (pynlpl.formats.folia.Sentiment attribute), 587
AUTH (pynlpl.formats.folia.SentimentLayer attribute),

705
AUTH (pynlpl.formats.folia.Statement attribute), 599
AUTH (pynlpl.formats.folia.StatementLayer attribute),

717
AUTH (pynlpl.formats.folia.SubjectivityAnnotation at-

tribute), 483
AUTH (pynlpl.formats.folia.Suggestion attribute), 997
AUTH (pynlpl.formats.folia.SynsetFeature attribute), 873
AUTH (pynlpl.formats.folia.SyntacticUnit attribute), 611
AUTH (pynlpl.formats.folia.SyntaxLayer attribute), 729
AUTH (pynlpl.formats.folia.Table attribute), 347
AUTH (pynlpl.formats.folia.TableHead attribute), 373
AUTH (pynlpl.formats.folia.Term attribute), 360
AUTH (pynlpl.formats.folia.Text attribute), 386
AUTH (pynlpl.formats.folia.TextContent attribute), 495
AUTH (pynlpl.formats.folia.TextMarkupCorrection at-

tribute), 840
AUTH (pynlpl.formats.folia.TextMarkupError attribute),

851
AUTH (pynlpl.formats.folia.TextMarkupGap attribute),

808
AUTH (pynlpl.formats.folia.TextMarkupString attribute),

819
AUTH (pynlpl.formats.folia.TextMarkupStyle attribute),

829
AUTH (pynlpl.formats.folia.TimeSegment attribute), 634
AUTH (pynlpl.formats.folia.TimingLayer attribute), 752
AUTH (pynlpl.formats.folia.Whitespace attribute), 399
AUTH (pynlpl.formats.folia.Word attribute), 412

1094 Index

PyNLPl Documentation, Release 1.2.8

AUTO_GENERATE_ID (pynlpl.formats.folia.AbstractAnnotationLayer
attribute), 74

AUTO_GENERATE_ID (pynlpl.formats.folia.AbstractElement
attribute), 26

AUTO_GENERATE_ID (pynlpl.formats.folia.AbstractSpanAnnotation
attribute), 52

AUTO_GENERATE_ID (pynlpl.formats.folia.AbstractStructureElement
attribute), 37

AUTO_GENERATE_ID (pynlpl.formats.folia.AbstractTextMarkup
attribute), 86

AUTO_GENERATE_ID (pynlpl.formats.folia.AbstractTokenAnnotation
attribute), 63

AUTO_GENERATE_ID (pynlpl.formats.folia.ActorFeature
attribute), 885

AUTO_GENERATE_ID (pynlpl.formats.folia.Alignment
attribute), 1009

AUTO_GENERATE_ID (pynlpl.formats.folia.AlignReference
attribute), 1020

AUTO_GENERATE_ID (pynlpl.formats.folia.Alternative
attribute), 919

AUTO_GENERATE_ID (pynlpl.formats.folia.AlternativeLayers
attribute), 931

AUTO_GENERATE_ID (pynlpl.formats.folia.BegindatetimeFeature
attribute), 896

AUTO_GENERATE_ID (pynlpl.formats.folia.Cell
attribute), 100

AUTO_GENERATE_ID (pynlpl.formats.folia.Chunk at-
tribute), 518

AUTO_GENERATE_ID (pynlpl.formats.folia.ChunkingLayer
attribute), 646

AUTO_GENERATE_ID (pynlpl.formats.folia.CoreferenceChain
attribute), 529

AUTO_GENERATE_ID (pynlpl.formats.folia.CoreferenceLayer
attribute), 658

AUTO_GENERATE_ID (pynlpl.formats.folia.CoreferenceLink
attribute), 764

AUTO_GENERATE_ID (pynlpl.formats.folia.Correction
attribute), 944

AUTO_GENERATE_ID (pynlpl.formats.folia.Current at-
tribute), 953

AUTO_GENERATE_ID (pynlpl.formats.folia.Definition
attribute), 113

AUTO_GENERATE_ID (pynlpl.formats.folia.DependenciesLayer
attribute), 670

AUTO_GENERATE_ID (pynlpl.formats.folia.Dependency
attribute), 541

AUTO_GENERATE_ID (pynlpl.formats.folia.DependencyDependent
attribute), 776

AUTO_GENERATE_ID (pynlpl.formats.folia.Description
attribute), 1031

AUTO_GENERATE_ID (pynlpl.formats.folia.Division
attribute), 126

AUTO_GENERATE_ID (pynlpl.formats.folia.DomainAnnotation
attribute), 428

AUTO_GENERATE_ID (pynlpl.formats.folia.EnddatetimeFeature
attribute), 907

AUTO_GENERATE_ID (pynlpl.formats.folia.EntitiesLayer
attribute), 682

AUTO_GENERATE_ID (pynlpl.formats.folia.Entity at-
tribute), 553

AUTO_GENERATE_ID (pynlpl.formats.folia.Entry at-
tribute), 139

AUTO_GENERATE_ID (pynlpl.formats.folia.ErrorDetection
attribute), 964

AUTO_GENERATE_ID (pynlpl.formats.folia.Event at-
tribute), 152

AUTO_GENERATE_ID (pynlpl.formats.folia.Example
attribute), 165

AUTO_GENERATE_ID (pynlpl.formats.folia.Feature at-
tribute), 862

AUTO_GENERATE_ID (pynlpl.formats.folia.Figure at-
tribute), 178

AUTO_GENERATE_ID (pynlpl.formats.folia.Gap
attribute), 191

AUTO_GENERATE_ID (pynlpl.formats.folia.Head at-
tribute), 202

AUTO_GENERATE_ID (pynlpl.formats.folia.Headspan
attribute), 788

AUTO_GENERATE_ID (pynlpl.formats.folia.LangAnnotation
attribute), 450

AUTO_GENERATE_ID (pynlpl.formats.folia.LemmaAnnotation
attribute), 461

AUTO_GENERATE_ID (pynlpl.formats.folia.Linebreak
attribute), 215

AUTO_GENERATE_ID (pynlpl.formats.folia.List
attribute), 228

AUTO_GENERATE_ID (pynlpl.formats.folia.ListItem
attribute), 241

AUTO_GENERATE_ID (pynlpl.formats.folia.Metric at-
tribute), 1042

AUTO_GENERATE_ID (pynlpl.formats.folia.New at-
tribute), 975

AUTO_GENERATE_ID (pynlpl.formats.folia.Note at-
tribute), 254

AUTO_GENERATE_ID (pynlpl.formats.folia.Observation
attribute), 564

AUTO_GENERATE_ID (pynlpl.formats.folia.ObservationLayer
attribute), 693

AUTO_GENERATE_ID (pynlpl.formats.folia.Original
attribute), 986

AUTO_GENERATE_ID (pynlpl.formats.folia.Paragraph
attribute), 267

AUTO_GENERATE_ID (pynlpl.formats.folia.Part
attribute), 280

AUTO_GENERATE_ID (pynlpl.formats.folia.PhonContent
attribute), 505

AUTO_GENERATE_ID (pynlpl.formats.folia.PosAnnotation
attribute), 439

Index 1095

PyNLPl Documentation, Release 1.2.8

AUTO_GENERATE_ID (pynlpl.formats.folia.Predicate
attribute), 576

AUTO_GENERATE_ID (pynlpl.formats.folia.Quote at-
tribute), 293

AUTO_GENERATE_ID (pynlpl.formats.folia.Reference
attribute), 306

AUTO_GENERATE_ID (pynlpl.formats.folia.Row at-
tribute), 319

AUTO_GENERATE_ID (pynlpl.formats.folia.SemanticRole
attribute), 623

AUTO_GENERATE_ID (pynlpl.formats.folia.SemanticRolesLayer
attribute), 740

AUTO_GENERATE_ID (pynlpl.formats.folia.SenseAnnotation
attribute), 472

AUTO_GENERATE_ID (pynlpl.formats.folia.Sentence
attribute), 332

AUTO_GENERATE_ID (pynlpl.formats.folia.Sentiment
attribute), 588

AUTO_GENERATE_ID (pynlpl.formats.folia.SentimentLayer
attribute), 705

AUTO_GENERATE_ID (pynlpl.formats.folia.Statement
attribute), 599

AUTO_GENERATE_ID (pynlpl.formats.folia.StatementLayer
attribute), 717

AUTO_GENERATE_ID (pynlpl.formats.folia.SubjectivityAnnotation
attribute), 483

AUTO_GENERATE_ID (pynlpl.formats.folia.Suggestion
attribute), 997

AUTO_GENERATE_ID (pynlpl.formats.folia.SynsetFeature
attribute), 873

AUTO_GENERATE_ID (pynlpl.formats.folia.SyntacticUnit
attribute), 611

AUTO_GENERATE_ID (pynlpl.formats.folia.SyntaxLayer
attribute), 729

AUTO_GENERATE_ID (pynlpl.formats.folia.Table at-
tribute), 347

AUTO_GENERATE_ID (pynlpl.formats.folia.TableHead
attribute), 373

AUTO_GENERATE_ID (pynlpl.formats.folia.Term at-
tribute), 360

AUTO_GENERATE_ID (pynlpl.formats.folia.Text at-
tribute), 386

AUTO_GENERATE_ID (pynlpl.formats.folia.TextContent
attribute), 495

AUTO_GENERATE_ID (pynlpl.formats.folia.TextMarkupCorrection
attribute), 840

AUTO_GENERATE_ID (pynlpl.formats.folia.TextMarkupError
attribute), 851

AUTO_GENERATE_ID (pynlpl.formats.folia.TextMarkupGap
attribute), 808

AUTO_GENERATE_ID (pynlpl.formats.folia.TextMarkupString
attribute), 819

AUTO_GENERATE_ID (pynlpl.formats.folia.TextMarkupStyle
attribute), 830

AUTO_GENERATE_ID (pynlpl.formats.folia.TimeSegment
attribute), 634

AUTO_GENERATE_ID (pynlpl.formats.folia.TimingLayer
attribute), 752

AUTO_GENERATE_ID (pynlpl.formats.folia.Whitespace
attribute), 399

AUTO_GENERATE_ID (pynlpl.formats.folia.Word at-
tribute), 412

B
b() (in module pynlpl.common), 3
backoff() (pynlpl.lm.lm.ARPALanguageModel.NgramsProbs

method), 1057
BeamedBestFirstSearch (class in pynlpl.search), 1060
BeamSearch (class in pynlpl.search), 1060
BegindatetimeFeature (class in pynlpl.formats.folia), 893
BestFirstSearch (class in pynlpl.search), 1060
binary_search() (in module pynlpl.search), 1060
BreadthFirstSearch (class in pynlpl.search), 1060

C
calculate_overlap() (in module pynlpl.textprocessors),

1066
caption() (pynlpl.formats.folia.Figure method), 181
Cell (class in pynlpl.formats.folia), 98
Chunk (class in pynlpl.formats.folia), 515
ChunkingLayer (class in pynlpl.formats.folia), 644
ClassEvaluation (class in pynlpl.evaluation), 9
close() (pynlpl.formats.taggerdata.Taggerdata method),

1055
communicates() (pynlpl.statistics.MarkovChain method),

1063
compute() (pynlpl.evaluation.ClassEvaluation method), 9
compute() (pynlpl.evaluation.OrdinalEvaluation method),

10
ConfusionMatrix (class in pynlpl.evaluation), 10
confusionmatrix() (pynlpl.evaluation.ClassEvaluation

method), 9
content() (pynlpl.formats.folia.Gap method), 192
context() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 76
context() (pynlpl.formats.folia.AbstractElement method),

27
context() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 53
context() (pynlpl.formats.folia.AbstractStructureElement

method), 40
context() (pynlpl.formats.folia.AbstractTextMarkup

method), 87
context() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 64
context() (pynlpl.formats.folia.ActorFeature method),

886
context() (pynlpl.formats.folia.Alignment method), 1010

1096 Index

PyNLPl Documentation, Release 1.2.8

context() (pynlpl.formats.folia.AlignReference method),
1021

context() (pynlpl.formats.folia.Alternative method), 921
context() (pynlpl.formats.folia.AlternativeLayers

method), 932
context() (pynlpl.formats.folia.BegindatetimeFeature

method), 897
context() (pynlpl.formats.folia.Cell method), 103
context() (pynlpl.formats.folia.Chunk method), 519
context() (pynlpl.formats.folia.ChunkingLayer method),

648
context() (pynlpl.formats.folia.CoreferenceChain

method), 531
context() (pynlpl.formats.folia.CoreferenceLayer

method), 660
context() (pynlpl.formats.folia.CoreferenceLink method),

766
context() (pynlpl.formats.folia.Correction method), 945
context() (pynlpl.formats.folia.Current method), 955
context() (pynlpl.formats.folia.Definition method), 116
context() (pynlpl.formats.folia.DependenciesLayer

method), 672
context() (pynlpl.formats.folia.Dependency method), 543
context() (pynlpl.formats.folia.DependencyDependent

method), 777
context() (pynlpl.formats.folia.Description method), 1033
context() (pynlpl.formats.folia.Division method), 129
context() (pynlpl.formats.folia.DomainAnnotation

method), 430
context() (pynlpl.formats.folia.EnddatetimeFeature

method), 908
context() (pynlpl.formats.folia.EntitiesLayer method),

684
context() (pynlpl.formats.folia.Entity method), 554
context() (pynlpl.formats.folia.Entry method), 142
context() (pynlpl.formats.folia.ErrorDetection method),

966
context() (pynlpl.formats.folia.Event method), 155
context() (pynlpl.formats.folia.Example method), 168
context() (pynlpl.formats.folia.Feature method), 864
context() (pynlpl.formats.folia.Figure method), 181
context() (pynlpl.formats.folia.Gap method), 192
context() (pynlpl.formats.folia.Head method), 205
context() (pynlpl.formats.folia.Headspan method), 789
context() (pynlpl.formats.folia.LangAnnotation method),

452
context() (pynlpl.formats.folia.LemmaAnnotation

method), 463
context() (pynlpl.formats.folia.Linebreak method), 218
context() (pynlpl.formats.folia.List method), 231
context() (pynlpl.formats.folia.ListItem method), 244
context() (pynlpl.formats.folia.Metric method), 1044
context() (pynlpl.formats.folia.New method), 977
context() (pynlpl.formats.folia.Note method), 257

context() (pynlpl.formats.folia.Observation method), 566
context() (pynlpl.formats.folia.ObservationLayer

method), 695
context() (pynlpl.formats.folia.Original method), 988
context() (pynlpl.formats.folia.Paragraph method), 270
context() (pynlpl.formats.folia.Part method), 283
context() (pynlpl.formats.folia.PhonContent method),

507
context() (pynlpl.formats.folia.PosAnnotation method),

441
context() (pynlpl.formats.folia.Predicate method), 577
context() (pynlpl.formats.folia.Quote method), 296
context() (pynlpl.formats.folia.Reference method), 309
context() (pynlpl.formats.folia.Row method), 322
context() (pynlpl.formats.folia.SemanticRole method),

624
context() (pynlpl.formats.folia.SemanticRolesLayer

method), 742
context() (pynlpl.formats.folia.SenseAnnotation method),

474
context() (pynlpl.formats.folia.Sentence method), 336
context() (pynlpl.formats.folia.Sentiment method), 589
context() (pynlpl.formats.folia.SentimentLayer method),

707
context() (pynlpl.formats.folia.Statement method), 601
context() (pynlpl.formats.folia.StatementLayer method),

719
context() (pynlpl.formats.folia.SubjectivityAnnotation

method), 485
context() (pynlpl.formats.folia.Suggestion method), 999
context() (pynlpl.formats.folia.SynsetFeature method),

875
context() (pynlpl.formats.folia.SyntacticUnit method),

612
context() (pynlpl.formats.folia.SyntaxLayer method), 731
context() (pynlpl.formats.folia.Table method), 349
context() (pynlpl.formats.folia.TableHead method), 375
context() (pynlpl.formats.folia.Term method), 362
context() (pynlpl.formats.folia.Text method), 388
context() (pynlpl.formats.folia.TextContent method), 496
context() (pynlpl.formats.folia.TextMarkupCorrection

method), 842
context() (pynlpl.formats.folia.TextMarkupError

method), 852
context() (pynlpl.formats.folia.TextMarkupGap method),

810
context() (pynlpl.formats.folia.TextMarkupString

method), 820
context() (pynlpl.formats.folia.TextMarkupStyle

method), 831
context() (pynlpl.formats.folia.TimeSegment method),

636
context() (pynlpl.formats.folia.TimingLayer method),

754

Index 1097

PyNLPl Documentation, Release 1.2.8

context() (pynlpl.formats.folia.Whitespace method), 401
context() (pynlpl.formats.folia.Word method), 416
copy() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 76
copy() (pynlpl.formats.folia.AbstractElement method),

27
copy() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 53
copy() (pynlpl.formats.folia.AbstractStructureElement

method), 40
copy() (pynlpl.formats.folia.AbstractTextMarkup

method), 87
copy() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 65
copy() (pynlpl.formats.folia.ActorFeature method), 886
copy() (pynlpl.formats.folia.Alignment method), 1010
copy() (pynlpl.formats.folia.AlignReference method),

1021
copy() (pynlpl.formats.folia.Alternative method), 921
copy() (pynlpl.formats.folia.AlternativeLayers method),

932
copy() (pynlpl.formats.folia.BegindatetimeFeature

method), 897
copy() (pynlpl.formats.folia.Cell method), 103
copy() (pynlpl.formats.folia.Chunk method), 519
copy() (pynlpl.formats.folia.ChunkingLayer method),

648
copy() (pynlpl.formats.folia.CoreferenceChain method),

531
copy() (pynlpl.formats.folia.CoreferenceLayer method),

660
copy() (pynlpl.formats.folia.CoreferenceLink method),

766
copy() (pynlpl.formats.folia.Correction method), 945
copy() (pynlpl.formats.folia.Current method), 955
copy() (pynlpl.formats.folia.Definition method), 116
copy() (pynlpl.formats.folia.DependenciesLayer

method), 672
copy() (pynlpl.formats.folia.Dependency method), 543
copy() (pynlpl.formats.folia.DependencyDependent

method), 778
copy() (pynlpl.formats.folia.Description method), 1033
copy() (pynlpl.formats.folia.Division method), 129
copy() (pynlpl.formats.folia.DomainAnnotation method),

430
copy() (pynlpl.formats.folia.EnddatetimeFeature

method), 908
copy() (pynlpl.formats.folia.EntitiesLayer method), 684
copy() (pynlpl.formats.folia.Entity method), 554
copy() (pynlpl.formats.folia.Entry method), 142
copy() (pynlpl.formats.folia.ErrorDetection method), 966
copy() (pynlpl.formats.folia.Event method), 155
copy() (pynlpl.formats.folia.Example method), 168
copy() (pynlpl.formats.folia.Feature method), 864

copy() (pynlpl.formats.folia.Figure method), 181
copy() (pynlpl.formats.folia.Gap method), 192
copy() (pynlpl.formats.folia.Head method), 205
copy() (pynlpl.formats.folia.Headspan method), 789
copy() (pynlpl.formats.folia.LangAnnotation method),

452
copy() (pynlpl.formats.folia.LemmaAnnotation method),

463
copy() (pynlpl.formats.folia.Linebreak method), 218
copy() (pynlpl.formats.folia.List method), 231
copy() (pynlpl.formats.folia.ListItem method), 244
copy() (pynlpl.formats.folia.Metric method), 1044
copy() (pynlpl.formats.folia.New method), 977
copy() (pynlpl.formats.folia.Note method), 257
copy() (pynlpl.formats.folia.Observation method), 566
copy() (pynlpl.formats.folia.ObservationLayer method),

695
copy() (pynlpl.formats.folia.Original method), 988
copy() (pynlpl.formats.folia.Paragraph method), 270
copy() (pynlpl.formats.folia.Part method), 283
copy() (pynlpl.formats.folia.PhonContent method), 507
copy() (pynlpl.formats.folia.PosAnnotation method), 441
copy() (pynlpl.formats.folia.Predicate method), 578
copy() (pynlpl.formats.folia.Quote method), 296
copy() (pynlpl.formats.folia.Reference method), 309
copy() (pynlpl.formats.folia.Row method), 322
copy() (pynlpl.formats.folia.SemanticRole method), 624
copy() (pynlpl.formats.folia.SemanticRolesLayer

method), 742
copy() (pynlpl.formats.folia.SenseAnnotation method),

474
copy() (pynlpl.formats.folia.Sentence method), 336
copy() (pynlpl.formats.folia.Sentiment method), 589
copy() (pynlpl.formats.folia.SentimentLayer method),

707
copy() (pynlpl.formats.folia.Statement method), 601
copy() (pynlpl.formats.folia.StatementLayer method),

719
copy() (pynlpl.formats.folia.SubjectivityAnnotation

method), 485
copy() (pynlpl.formats.folia.Suggestion method), 999
copy() (pynlpl.formats.folia.SynsetFeature method), 875
copy() (pynlpl.formats.folia.SyntacticUnit method), 613
copy() (pynlpl.formats.folia.SyntaxLayer method), 731
copy() (pynlpl.formats.folia.Table method), 349
copy() (pynlpl.formats.folia.TableHead method), 375
copy() (pynlpl.formats.folia.Term method), 362
copy() (pynlpl.formats.folia.Text method), 388
copy() (pynlpl.formats.folia.TextContent method), 496
copy() (pynlpl.formats.folia.TextMarkupCorrection

method), 842
copy() (pynlpl.formats.folia.TextMarkupError method),

852

1098 Index

PyNLPl Documentation, Release 1.2.8

copy() (pynlpl.formats.folia.TextMarkupGap method),
810

copy() (pynlpl.formats.folia.TextMarkupString method),
820

copy() (pynlpl.formats.folia.TextMarkupStyle method),
831

copy() (pynlpl.formats.folia.TimeSegment method), 636
copy() (pynlpl.formats.folia.TimingLayer method), 754
copy() (pynlpl.formats.folia.Whitespace method), 401
copy() (pynlpl.formats.folia.Word method), 416
copychildren() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 76
copychildren() (pynlpl.formats.folia.AbstractElement

method), 27
copychildren() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 54
copychildren() (pynlpl.formats.folia.AbstractStructureElement

method), 40
copychildren() (pynlpl.formats.folia.AbstractTextMarkup

method), 88
copychildren() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 65
copychildren() (pynlpl.formats.folia.ActorFeature

method), 886
copychildren() (pynlpl.formats.folia.Alignment method),

1010
copychildren() (pynlpl.formats.folia.AlignReference

method), 1021
copychildren() (pynlpl.formats.folia.Alternative method),

921
copychildren() (pynlpl.formats.folia.AlternativeLayers

method), 933
copychildren() (pynlpl.formats.folia.BegindatetimeFeature

method), 897
copychildren() (pynlpl.formats.folia.Cell method), 103
copychildren() (pynlpl.formats.folia.Chunk method), 520
copychildren() (pynlpl.formats.folia.ChunkingLayer

method), 648
copychildren() (pynlpl.formats.folia.CoreferenceChain

method), 531
copychildren() (pynlpl.formats.folia.CoreferenceLayer

method), 660
copychildren() (pynlpl.formats.folia.CoreferenceLink

method), 766
copychildren() (pynlpl.formats.folia.Correction method),

945
copychildren() (pynlpl.formats.folia.Current method),

955
copychildren() (pynlpl.formats.folia.Definition method),

116
copychildren() (pynlpl.formats.folia.DependenciesLayer

method), 672
copychildren() (pynlpl.formats.folia.Dependency

method), 543

copychildren() (pynlpl.formats.folia.DependencyDependent
method), 778

copychildren() (pynlpl.formats.folia.Description
method), 1033

copychildren() (pynlpl.formats.folia.Division method),
129

copychildren() (pynlpl.formats.folia.DomainAnnotation
method), 430

copychildren() (pynlpl.formats.folia.EnddatetimeFeature
method), 908

copychildren() (pynlpl.formats.folia.EntitiesLayer
method), 684

copychildren() (pynlpl.formats.folia.Entity method), 554
copychildren() (pynlpl.formats.folia.Entry method), 142
copychildren() (pynlpl.formats.folia.ErrorDetection

method), 966
copychildren() (pynlpl.formats.folia.Event method), 155
copychildren() (pynlpl.formats.folia.Example method),

168
copychildren() (pynlpl.formats.folia.Feature method),

864
copychildren() (pynlpl.formats.folia.Figure method), 181
copychildren() (pynlpl.formats.folia.Gap method), 192
copychildren() (pynlpl.formats.folia.Head method), 205
copychildren() (pynlpl.formats.folia.Headspan method),

789
copychildren() (pynlpl.formats.folia.LangAnnotation

method), 452
copychildren() (pynlpl.formats.folia.LemmaAnnotation

method), 463
copychildren() (pynlpl.formats.folia.Linebreak method),

218
copychildren() (pynlpl.formats.folia.List method), 231
copychildren() (pynlpl.formats.folia.ListItem method),

244
copychildren() (pynlpl.formats.folia.Metric method),

1044
copychildren() (pynlpl.formats.folia.New method), 977
copychildren() (pynlpl.formats.folia.Note method), 257
copychildren() (pynlpl.formats.folia.Observation

method), 566
copychildren() (pynlpl.formats.folia.ObservationLayer

method), 696
copychildren() (pynlpl.formats.folia.Original method),

988
copychildren() (pynlpl.formats.folia.Paragraph method),

270
copychildren() (pynlpl.formats.folia.Part method), 283
copychildren() (pynlpl.formats.folia.PhonContent

method), 507
copychildren() (pynlpl.formats.folia.PosAnnotation

method), 441
copychildren() (pynlpl.formats.folia.Predicate method),

578

Index 1099

PyNLPl Documentation, Release 1.2.8

copychildren() (pynlpl.formats.folia.Quote method), 296
copychildren() (pynlpl.formats.folia.Reference method),

309
copychildren() (pynlpl.formats.folia.Row method), 322
copychildren() (pynlpl.formats.folia.SemanticRole

method), 624
copychildren() (pynlpl.formats.folia.SemanticRolesLayer

method), 743
copychildren() (pynlpl.formats.folia.SenseAnnotation

method), 474
copychildren() (pynlpl.formats.folia.Sentence method),

336
copychildren() (pynlpl.formats.folia.Sentiment method),

589
copychildren() (pynlpl.formats.folia.SentimentLayer

method), 707
copychildren() (pynlpl.formats.folia.Statement method),

601
copychildren() (pynlpl.formats.folia.StatementLayer

method), 719
copychildren() (pynlpl.formats.folia.SubjectivityAnnotation

method), 485
copychildren() (pynlpl.formats.folia.Suggestion method),

999
copychildren() (pynlpl.formats.folia.SynsetFeature

method), 875
copychildren() (pynlpl.formats.folia.SyntacticUnit

method), 613
copychildren() (pynlpl.formats.folia.SyntaxLayer

method), 731
copychildren() (pynlpl.formats.folia.Table method), 350
copychildren() (pynlpl.formats.folia.TableHead method),

376
copychildren() (pynlpl.formats.folia.Term method), 363
copychildren() (pynlpl.formats.folia.Text method), 389
copychildren() (pynlpl.formats.folia.TextContent

method), 497
copychildren() (pynlpl.formats.folia.TextMarkupCorrection

method), 842
copychildren() (pynlpl.formats.folia.TextMarkupError

method), 852
copychildren() (pynlpl.formats.folia.TextMarkupGap

method), 810
copychildren() (pynlpl.formats.folia.TextMarkupString

method), 820
copychildren() (pynlpl.formats.folia.TextMarkupStyle

method), 831
copychildren() (pynlpl.formats.folia.TimeSegment

method), 636
copychildren() (pynlpl.formats.folia.TimingLayer

method), 754
copychildren() (pynlpl.formats.folia.Whitespace

method), 402
copychildren() (pynlpl.formats.folia.Word method), 416

CoreferenceChain (class in pynlpl.formats.folia), 527
CoreferenceLayer (class in pynlpl.formats.folia), 656
CoreferenceLink (class in pynlpl.formats.folia), 762
Corpus (class in pynlpl.formats.sonar), 1054
CorpusDocument (class in pynlpl.formats.sonar), 1054
CorpusDocumentX (class in pynlpl.formats.sonar), 1054
CorpusFiles (class in pynlpl.formats.sonar), 1055
CorpusX (class in pynlpl.formats.sonar), 1055
correct() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 77
correct() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 54
correct() (pynlpl.formats.folia.AbstractStructureElement

method), 40
correct() (pynlpl.formats.folia.AllowTokenAnnotation

method), 49
correct() (pynlpl.formats.folia.Alternative method), 921
correct() (pynlpl.formats.folia.Cell method), 103
correct() (pynlpl.formats.folia.Chunk method), 520
correct() (pynlpl.formats.folia.ChunkingLayer method),

648
correct() (pynlpl.formats.folia.CoreferenceChain

method), 531
correct() (pynlpl.formats.folia.CoreferenceLayer

method), 660
correct() (pynlpl.formats.folia.CoreferenceLink method),

766
correct() (pynlpl.formats.folia.Correction method), 945
correct() (pynlpl.formats.folia.Current method), 955
correct() (pynlpl.formats.folia.Definition method), 116
correct() (pynlpl.formats.folia.DependenciesLayer

method), 672
correct() (pynlpl.formats.folia.Dependency method), 543
correct() (pynlpl.formats.folia.DependencyDependent

method), 778
correct() (pynlpl.formats.folia.Division method), 129
correct() (pynlpl.formats.folia.EntitiesLayer method),

684
correct() (pynlpl.formats.folia.Entity method), 555
correct() (pynlpl.formats.folia.Entry method), 142
correct() (pynlpl.formats.folia.Event method), 155
correct() (pynlpl.formats.folia.Example method), 168
correct() (pynlpl.formats.folia.Figure method), 181
correct() (pynlpl.formats.folia.Head method), 205
correct() (pynlpl.formats.folia.Headspan method), 790
correct() (pynlpl.formats.folia.Linebreak method), 218
correct() (pynlpl.formats.folia.List method), 231
correct() (pynlpl.formats.folia.ListItem method), 244
correct() (pynlpl.formats.folia.New method), 977
correct() (pynlpl.formats.folia.Note method), 257
correct() (pynlpl.formats.folia.Observation method), 566
correct() (pynlpl.formats.folia.ObservationLayer

method), 696
correct() (pynlpl.formats.folia.Paragraph method), 270

1100 Index

PyNLPl Documentation, Release 1.2.8

correct() (pynlpl.formats.folia.Part method), 283
correct() (pynlpl.formats.folia.Predicate method), 578
correct() (pynlpl.formats.folia.Quote method), 296
correct() (pynlpl.formats.folia.Reference method), 309
correct() (pynlpl.formats.folia.Row method), 322
correct() (pynlpl.formats.folia.SemanticRole method),

625
correct() (pynlpl.formats.folia.SemanticRolesLayer

method), 743
correct() (pynlpl.formats.folia.Sentence method), 336
correct() (pynlpl.formats.folia.Sentiment method), 590
correct() (pynlpl.formats.folia.SentimentLayer method),

707
correct() (pynlpl.formats.folia.Statement method), 601
correct() (pynlpl.formats.folia.StatementLayer method),

719
correct() (pynlpl.formats.folia.SyntacticUnit method),

613
correct() (pynlpl.formats.folia.SyntaxLayer method), 731
correct() (pynlpl.formats.folia.Table method), 350
correct() (pynlpl.formats.folia.TableHead method), 376
correct() (pynlpl.formats.folia.Term method), 363
correct() (pynlpl.formats.folia.Text method), 389
correct() (pynlpl.formats.folia.TimeSegment method),

636
correct() (pynlpl.formats.folia.TimingLayer method), 754
correct() (pynlpl.formats.folia.Whitespace method), 402
correct() (pynlpl.formats.folia.Word method), 416
Correction (class in pynlpl.formats.folia), 941
corrections() (pynlpl.formats.folia.Sentence method), 336
correctwords() (pynlpl.formats.folia.Sentence method),

336
count() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 77
count() (pynlpl.formats.folia.AbstractElement method),

27
count() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 54
count() (pynlpl.formats.folia.AbstractStructureElement

method), 40
count() (pynlpl.formats.folia.AbstractTextMarkup

method), 88
count() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 65
count() (pynlpl.formats.folia.ActorFeature method), 886
count() (pynlpl.formats.folia.Alignment method), 1010
count() (pynlpl.formats.folia.AlignReference method),

1022
count() (pynlpl.formats.folia.Alternative method), 922
count() (pynlpl.formats.folia.AlternativeLayers method),

933
count() (pynlpl.formats.folia.BegindatetimeFeature

method), 897
count() (pynlpl.formats.folia.Cell method), 103

count() (pynlpl.formats.folia.Chunk method), 520
count() (pynlpl.formats.folia.ChunkingLayer method),

648
count() (pynlpl.formats.folia.CoreferenceChain method),

531
count() (pynlpl.formats.folia.CoreferenceLayer method),

660
count() (pynlpl.formats.folia.CoreferenceLink method),

766
count() (pynlpl.formats.folia.Correction method), 945
count() (pynlpl.formats.folia.Current method), 955
count() (pynlpl.formats.folia.Definition method), 116
count() (pynlpl.formats.folia.DependenciesLayer

method), 672
count() (pynlpl.formats.folia.Dependency method), 543
count() (pynlpl.formats.folia.DependencyDependent

method), 778
count() (pynlpl.formats.folia.Description method), 1033
count() (pynlpl.formats.folia.Division method), 129
count() (pynlpl.formats.folia.Document method), 17
count() (pynlpl.formats.folia.DomainAnnotation

method), 430
count() (pynlpl.formats.folia.EnddatetimeFeature

method), 908
count() (pynlpl.formats.folia.EntitiesLayer method), 684
count() (pynlpl.formats.folia.Entity method), 555
count() (pynlpl.formats.folia.Entry method), 142
count() (pynlpl.formats.folia.ErrorDetection method),

966
count() (pynlpl.formats.folia.Event method), 155
count() (pynlpl.formats.folia.Example method), 168
count() (pynlpl.formats.folia.Feature method), 864
count() (pynlpl.formats.folia.Figure method), 181
count() (pynlpl.formats.folia.Gap method), 192
count() (pynlpl.formats.folia.Head method), 205
count() (pynlpl.formats.folia.Headspan method), 790
count() (pynlpl.formats.folia.LangAnnotation method),

452
count() (pynlpl.formats.folia.LemmaAnnotation method),

463
count() (pynlpl.formats.folia.Linebreak method), 218
count() (pynlpl.formats.folia.List method), 231
count() (pynlpl.formats.folia.ListItem method), 244
count() (pynlpl.formats.folia.Metric method), 1044
count() (pynlpl.formats.folia.New method), 977
count() (pynlpl.formats.folia.Note method), 257
count() (pynlpl.formats.folia.Observation method), 566
count() (pynlpl.formats.folia.ObservationLayer method),

696
count() (pynlpl.formats.folia.Original method), 988
count() (pynlpl.formats.folia.Paragraph method), 270
count() (pynlpl.formats.folia.Part method), 283
count() (pynlpl.formats.folia.PhonContent method), 507

Index 1101

PyNLPl Documentation, Release 1.2.8

count() (pynlpl.formats.folia.PosAnnotation method),
441

count() (pynlpl.formats.folia.Predicate method), 578
count() (pynlpl.formats.folia.Quote method), 296
count() (pynlpl.formats.folia.Reference method), 309
count() (pynlpl.formats.folia.Row method), 322
count() (pynlpl.formats.folia.SemanticRole method), 625
count() (pynlpl.formats.folia.SemanticRolesLayer

method), 743
count() (pynlpl.formats.folia.SenseAnnotation method),

474
count() (pynlpl.formats.folia.Sentence method), 336
count() (pynlpl.formats.folia.Sentiment method), 590
count() (pynlpl.formats.folia.SentimentLayer method),

707
count() (pynlpl.formats.folia.Statement method), 601
count() (pynlpl.formats.folia.StatementLayer method),

719
count() (pynlpl.formats.folia.SubjectivityAnnotation

method), 485
count() (pynlpl.formats.folia.Suggestion method), 999
count() (pynlpl.formats.folia.SynsetFeature method), 875
count() (pynlpl.formats.folia.SyntacticUnit method), 613
count() (pynlpl.formats.folia.SyntaxLayer method), 731
count() (pynlpl.formats.folia.Table method), 350
count() (pynlpl.formats.folia.TableHead method), 376
count() (pynlpl.formats.folia.Term method), 363
count() (pynlpl.formats.folia.Text method), 389
count() (pynlpl.formats.folia.TextContent method), 497
count() (pynlpl.formats.folia.TextMarkupCorrection

method), 842
count() (pynlpl.formats.folia.TextMarkupError method),

853
count() (pynlpl.formats.folia.TextMarkupGap method),

810
count() (pynlpl.formats.folia.TextMarkupString method),

821
count() (pynlpl.formats.folia.TextMarkupStyle method),

831
count() (pynlpl.formats.folia.TimeSegment method), 636
count() (pynlpl.formats.folia.TimingLayer method), 754
count() (pynlpl.formats.folia.Whitespace method), 402
count() (pynlpl.formats.folia.Word method), 416
count() (pynlpl.statistics.FrequencyList method), 1063
create() (pynlpl.formats.folia.Document method), 17
crude_tokenizer() (in module pynlpl.textprocessors),

1066
Current (class in pynlpl.formats.folia), 951
current() (pynlpl.formats.folia.Correction method), 946

D
date() (pynlpl.formats.folia.Document method), 17
declare() (pynlpl.formats.folia.Document method), 17
declared() (pynlpl.formats.folia.Document method), 18

deepvalidation() (pynlpl.formats.folia.AbstractAnnotationLayer
method), 77

deepvalidation() (pynlpl.formats.folia.AbstractElement
method), 27

deepvalidation() (pynlpl.formats.folia.AbstractSpanAnnotation
method), 54

deepvalidation() (pynlpl.formats.folia.AbstractStructureElement
method), 40

deepvalidation() (pynlpl.formats.folia.AbstractTextMarkup
method), 88

deepvalidation() (pynlpl.formats.folia.AbstractTokenAnnotation
method), 65

deepvalidation() (pynlpl.formats.folia.ActorFeature
method), 887

deepvalidation() (pynlpl.formats.folia.Alignment
method), 1010

deepvalidation() (pynlpl.formats.folia.AlignReference
method), 1022

deepvalidation() (pynlpl.formats.folia.Alternative
method), 922

deepvalidation() (pynlpl.formats.folia.AlternativeLayers
method), 933

deepvalidation() (pynlpl.formats.folia.BegindatetimeFeature
method), 898

deepvalidation() (pynlpl.formats.folia.Cell method), 103
deepvalidation() (pynlpl.formats.folia.Chunk method),

520
deepvalidation() (pynlpl.formats.folia.ChunkingLayer

method), 649
deepvalidation() (pynlpl.formats.folia.CoreferenceChain

method), 531
deepvalidation() (pynlpl.formats.folia.CoreferenceLayer

method), 660
deepvalidation() (pynlpl.formats.folia.CoreferenceLink

method), 766
deepvalidation() (pynlpl.formats.folia.Correction

method), 946
deepvalidation() (pynlpl.formats.folia.Current method),

955
deepvalidation() (pynlpl.formats.folia.Definition

method), 116
deepvalidation() (pynlpl.formats.folia.DependenciesLayer

method), 672
deepvalidation() (pynlpl.formats.folia.Dependency

method), 543
deepvalidation() (pynlpl.formats.folia.DependencyDependent

method), 778
deepvalidation() (pynlpl.formats.folia.Description

method), 1033
deepvalidation() (pynlpl.formats.folia.Division method),

129
deepvalidation() (pynlpl.formats.folia.DomainAnnotation

method), 430
deepvalidation() (pynlpl.formats.folia.EnddatetimeFeature

1102 Index

PyNLPl Documentation, Release 1.2.8

method), 909
deepvalidation() (pynlpl.formats.folia.EntitiesLayer

method), 684
deepvalidation() (pynlpl.formats.folia.Entity method),

555
deepvalidation() (pynlpl.formats.folia.Entry method), 142
deepvalidation() (pynlpl.formats.folia.ErrorDetection

method), 966
deepvalidation() (pynlpl.formats.folia.Event method),

155
deepvalidation() (pynlpl.formats.folia.Example method),

168
deepvalidation() (pynlpl.formats.folia.Feature method),

864
deepvalidation() (pynlpl.formats.folia.Figure method),

181
deepvalidation() (pynlpl.formats.folia.Gap method), 193
deepvalidation() (pynlpl.formats.folia.Head method), 205
deepvalidation() (pynlpl.formats.folia.Headspan method),

790
deepvalidation() (pynlpl.formats.folia.LangAnnotation

method), 452
deepvalidation() (pynlpl.formats.folia.LemmaAnnotation

method), 463
deepvalidation() (pynlpl.formats.folia.Linebreak

method), 218
deepvalidation() (pynlpl.formats.folia.List method), 231
deepvalidation() (pynlpl.formats.folia.ListItem method),

244
deepvalidation() (pynlpl.formats.folia.Metric method),

1044
deepvalidation() (pynlpl.formats.folia.New method), 977
deepvalidation() (pynlpl.formats.folia.Note method), 257
deepvalidation() (pynlpl.formats.folia.Observation

method), 566
deepvalidation() (pynlpl.formats.folia.ObservationLayer

method), 696
deepvalidation() (pynlpl.formats.folia.Original method),

988
deepvalidation() (pynlpl.formats.folia.Paragraph

method), 270
deepvalidation() (pynlpl.formats.folia.Part method), 283
deepvalidation() (pynlpl.formats.folia.PhonContent

method), 507
deepvalidation() (pynlpl.formats.folia.PosAnnotation

method), 441
deepvalidation() (pynlpl.formats.folia.Predicate method),

578
deepvalidation() (pynlpl.formats.folia.Quote method),

296
deepvalidation() (pynlpl.formats.folia.Reference

method), 309
deepvalidation() (pynlpl.formats.folia.Row method), 322
deepvalidation() (pynlpl.formats.folia.SemanticRole

method), 625
deepvalidation() (pynlpl.formats.folia.SemanticRolesLayer

method), 743
deepvalidation() (pynlpl.formats.folia.SenseAnnotation

method), 474
deepvalidation() (pynlpl.formats.folia.Sentence method),

336
deepvalidation() (pynlpl.formats.folia.Sentiment

method), 590
deepvalidation() (pynlpl.formats.folia.SentimentLayer

method), 707
deepvalidation() (pynlpl.formats.folia.Statement

method), 601
deepvalidation() (pynlpl.formats.folia.StatementLayer

method), 719
deepvalidation() (pynlpl.formats.folia.SubjectivityAnnotation

method), 485
deepvalidation() (pynlpl.formats.folia.Suggestion

method), 999
deepvalidation() (pynlpl.formats.folia.SynsetFeature

method), 875
deepvalidation() (pynlpl.formats.folia.SyntacticUnit

method), 613
deepvalidation() (pynlpl.formats.folia.SyntaxLayer

method), 731
deepvalidation() (pynlpl.formats.folia.Table method), 350
deepvalidation() (pynlpl.formats.folia.TableHead

method), 376
deepvalidation() (pynlpl.formats.folia.Term method), 363
deepvalidation() (pynlpl.formats.folia.Text method), 389
deepvalidation() (pynlpl.formats.folia.TextContent

method), 497
deepvalidation() (pynlpl.formats.folia.TextMarkupCorrection

method), 842
deepvalidation() (pynlpl.formats.folia.TextMarkupError

method), 853
deepvalidation() (pynlpl.formats.folia.TextMarkupGap

method), 810
deepvalidation() (pynlpl.formats.folia.TextMarkupString

method), 821
deepvalidation() (pynlpl.formats.folia.TextMarkupStyle

method), 831
deepvalidation() (pynlpl.formats.folia.TimeSegment

method), 636
deepvalidation() (pynlpl.formats.folia.TimingLayer

method), 754
deepvalidation() (pynlpl.formats.folia.Whitespace

method), 402
deepvalidation() (pynlpl.formats.folia.Word method), 416
defaultannotator() (pynlpl.formats.folia.Document

method), 18
defaultannotatortype() (pynlpl.formats.folia.Document

method), 18
defaultdatetime() (pynlpl.formats.folia.Document

Index 1103

PyNLPl Documentation, Release 1.2.8

method), 19
defaultparameters() (pynlpl.evaluation.AbstractExperiment

method), 9
defaultset() (pynlpl.formats.folia.Document method), 19
Definition (class in pynlpl.formats.folia), 111
delete() (pynlpl.evaluation.AbstractExperiment method),

9
deleteword() (pynlpl.formats.folia.Sentence method), 336
DependenciesLayer (class in pynlpl.formats.folia), 667
Dependency (class in pynlpl.formats.folia), 538
DependencyDependent (class in pynlpl.formats.folia),

773
dependent() (pynlpl.formats.folia.Dependency method),

543
depth() (pynlpl.datatypes.Trie method), 6
depth() (pynlpl.search.AbstractSearchState method),

1059
DepthFirstSearch (class in pynlpl.search), 1060
Description (class in pynlpl.formats.folia), 1029
description() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 77
description() (pynlpl.formats.folia.AbstractElement

method), 27
description() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 54
description() (pynlpl.formats.folia.AbstractStructureElement

method), 40
description() (pynlpl.formats.folia.AbstractTextMarkup

method), 88
description() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 65
description() (pynlpl.formats.folia.ActorFeature method),

887
description() (pynlpl.formats.folia.Alignment method),

1011
description() (pynlpl.formats.folia.AlignReference

method), 1022
description() (pynlpl.formats.folia.Alternative method),

922
description() (pynlpl.formats.folia.AlternativeLayers

method), 933
description() (pynlpl.formats.folia.BegindatetimeFeature

method), 898
description() (pynlpl.formats.folia.Cell method), 103
description() (pynlpl.formats.folia.Chunk method), 520
description() (pynlpl.formats.folia.ChunkingLayer

method), 649
description() (pynlpl.formats.folia.CoreferenceChain

method), 531
description() (pynlpl.formats.folia.CoreferenceLayer

method), 660
description() (pynlpl.formats.folia.CoreferenceLink

method), 766
description() (pynlpl.formats.folia.Correction method),

946
description() (pynlpl.formats.folia.Current method), 955
description() (pynlpl.formats.folia.Definition method),

116
description() (pynlpl.formats.folia.DependenciesLayer

method), 672
description() (pynlpl.formats.folia.Dependency method),

543
description() (pynlpl.formats.folia.DependencyDependent

method), 778
description() (pynlpl.formats.folia.Description method),

1033
description() (pynlpl.formats.folia.Division method), 129
description() (pynlpl.formats.folia.DomainAnnotation

method), 430
description() (pynlpl.formats.folia.EnddatetimeFeature

method), 909
description() (pynlpl.formats.folia.EntitiesLayer method),

684
description() (pynlpl.formats.folia.Entity method), 555
description() (pynlpl.formats.folia.Entry method), 142
description() (pynlpl.formats.folia.ErrorDetection

method), 966
description() (pynlpl.formats.folia.Event method), 155
description() (pynlpl.formats.folia.Example method), 168
description() (pynlpl.formats.folia.Feature method), 864
description() (pynlpl.formats.folia.Figure method), 181
description() (pynlpl.formats.folia.Gap method), 193
description() (pynlpl.formats.folia.Head method), 205
description() (pynlpl.formats.folia.Headspan method),

790
description() (pynlpl.formats.folia.LangAnnotation

method), 452
description() (pynlpl.formats.folia.LemmaAnnotation

method), 463
description() (pynlpl.formats.folia.Linebreak method),

218
description() (pynlpl.formats.folia.List method), 231
description() (pynlpl.formats.folia.ListItem method), 244
description() (pynlpl.formats.folia.Metric method), 1044
description() (pynlpl.formats.folia.New method), 977
description() (pynlpl.formats.folia.Note method), 257
description() (pynlpl.formats.folia.Observation method),

566
description() (pynlpl.formats.folia.ObservationLayer

method), 696
description() (pynlpl.formats.folia.Original method), 988
description() (pynlpl.formats.folia.Paragraph method),

270
description() (pynlpl.formats.folia.Part method), 283
description() (pynlpl.formats.folia.PhonContent method),

507
description() (pynlpl.formats.folia.PosAnnotation

method), 441

1104 Index

PyNLPl Documentation, Release 1.2.8

description() (pynlpl.formats.folia.Predicate method),
578

description() (pynlpl.formats.folia.Quote method), 296
description() (pynlpl.formats.folia.Reference method),

309
description() (pynlpl.formats.folia.Row method), 322
description() (pynlpl.formats.folia.SemanticRole

method), 625
description() (pynlpl.formats.folia.SemanticRolesLayer

method), 743
description() (pynlpl.formats.folia.SenseAnnotation

method), 474
description() (pynlpl.formats.folia.Sentence method), 336
description() (pynlpl.formats.folia.Sentiment method),

590
description() (pynlpl.formats.folia.SentimentLayer

method), 707
description() (pynlpl.formats.folia.Statement method),

601
description() (pynlpl.formats.folia.StatementLayer

method), 719
description() (pynlpl.formats.folia.SubjectivityAnnotation

method), 485
description() (pynlpl.formats.folia.Suggestion method),

999
description() (pynlpl.formats.folia.SynsetFeature

method), 875
description() (pynlpl.formats.folia.SyntacticUnit

method), 613
description() (pynlpl.formats.folia.SyntaxLayer method),

731
description() (pynlpl.formats.folia.Table method), 350
description() (pynlpl.formats.folia.TableHead method),

376
description() (pynlpl.formats.folia.Term method), 363
description() (pynlpl.formats.folia.Text method), 389
description() (pynlpl.formats.folia.TextContent method),

497
description() (pynlpl.formats.folia.TextMarkupCorrection

method), 842
description() (pynlpl.formats.folia.TextMarkupError

method), 853
description() (pynlpl.formats.folia.TextMarkupGap

method), 810
description() (pynlpl.formats.folia.TextMarkupString

method), 821
description() (pynlpl.formats.folia.TextMarkupStyle

method), 831
description() (pynlpl.formats.folia.TimeSegment

method), 636
description() (pynlpl.formats.folia.TimingLayer method),

754
description() (pynlpl.formats.folia.Whitespace method),

402

description() (pynlpl.formats.folia.Word method), 416
dict() (pynlpl.statistics.FrequencyList method), 1063
Distribution (class in pynlpl.statistics), 1062
Division (class in pynlpl.formats.folia), 123
division() (pynlpl.formats.folia.Sentence method), 336
division() (pynlpl.formats.folia.Word method), 416
Document (class in pynlpl.formats.folia), 14
domain() (pynlpl.formats.folia.Word method), 416
DomainAnnotation (class in pynlpl.formats.folia), 426
done() (pynlpl.evaluation.AbstractExperiment method), 9
dotproduct() (in module pynlpl.statistics), 1064
duration() (pynlpl.evaluation.AbstractExperiment

method), 9

E
EarlyEagerBeamSearch (class in pynlpl.search), 1060
EnddatetimeFeature (class in pynlpl.formats.folia), 904
EntitiesLayer (class in pynlpl.formats.folia), 679
Entity (class in pynlpl.formats.folia), 550
entropy() (pynlpl.statistics.Distribution method), 1062
Entry (class in pynlpl.formats.folia), 136
Enum() (in module pynlpl.common), 3
ErrorDetection (class in pynlpl.formats.folia), 962
Event (class in pynlpl.formats.folia), 149
Example (class in pynlpl.formats.folia), 162
expand() (pynlpl.search.AbstractSearchState method),

1060
ExperimentPool (class in pynlpl.evaluation), 10
extend() (pynlpl.datatypes.FIFOQueue method), 5
extend() (pynlpl.datatypes.Queue method), 6

F
feat() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 77
feat() (pynlpl.formats.folia.AbstractElement method), 28
feat() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 54
feat() (pynlpl.formats.folia.AbstractStructureElement

method), 40
feat() (pynlpl.formats.folia.AbstractTextMarkup method),

88
feat() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 65
feat() (pynlpl.formats.folia.ActorFeature method), 887
feat() (pynlpl.formats.folia.Alignment method), 1011
feat() (pynlpl.formats.folia.AlignReference method),

1022
feat() (pynlpl.formats.folia.Alternative method), 922
feat() (pynlpl.formats.folia.AlternativeLayers method),

933
feat() (pynlpl.formats.folia.BegindatetimeFeature

method), 898
feat() (pynlpl.formats.folia.Cell method), 103
feat() (pynlpl.formats.folia.Chunk method), 520

Index 1105

PyNLPl Documentation, Release 1.2.8

feat() (pynlpl.formats.folia.ChunkingLayer method), 649
feat() (pynlpl.formats.folia.CoreferenceChain method),

531
feat() (pynlpl.formats.folia.CoreferenceLayer method),

660
feat() (pynlpl.formats.folia.CoreferenceLink method),

766
feat() (pynlpl.formats.folia.Correction method), 946
feat() (pynlpl.formats.folia.Current method), 955
feat() (pynlpl.formats.folia.Definition method), 116
feat() (pynlpl.formats.folia.DependenciesLayer method),

672
feat() (pynlpl.formats.folia.Dependency method), 543
feat() (pynlpl.formats.folia.DependencyDependent

method), 778
feat() (pynlpl.formats.folia.Description method), 1033
feat() (pynlpl.formats.folia.Division method), 129
feat() (pynlpl.formats.folia.DomainAnnotation method),

430
feat() (pynlpl.formats.folia.EnddatetimeFeature method),

909
feat() (pynlpl.formats.folia.EntitiesLayer method), 684
feat() (pynlpl.formats.folia.Entity method), 555
feat() (pynlpl.formats.folia.Entry method), 142
feat() (pynlpl.formats.folia.ErrorDetection method), 966
feat() (pynlpl.formats.folia.Event method), 155
feat() (pynlpl.formats.folia.Example method), 168
feat() (pynlpl.formats.folia.Feature method), 864
feat() (pynlpl.formats.folia.Figure method), 181
feat() (pynlpl.formats.folia.Gap method), 193
feat() (pynlpl.formats.folia.Head method), 205
feat() (pynlpl.formats.folia.Headspan method), 790
feat() (pynlpl.formats.folia.LangAnnotation method), 452
feat() (pynlpl.formats.folia.LemmaAnnotation method),

463
feat() (pynlpl.formats.folia.Linebreak method), 218
feat() (pynlpl.formats.folia.List method), 231
feat() (pynlpl.formats.folia.ListItem method), 244
feat() (pynlpl.formats.folia.Metric method), 1044
feat() (pynlpl.formats.folia.New method), 977
feat() (pynlpl.formats.folia.Note method), 257
feat() (pynlpl.formats.folia.Observation method), 566
feat() (pynlpl.formats.folia.ObservationLayer method),

696
feat() (pynlpl.formats.folia.Original method), 988
feat() (pynlpl.formats.folia.Paragraph method), 270
feat() (pynlpl.formats.folia.Part method), 283
feat() (pynlpl.formats.folia.PhonContent method), 507
feat() (pynlpl.formats.folia.PosAnnotation method), 441
feat() (pynlpl.formats.folia.Predicate method), 578
feat() (pynlpl.formats.folia.Quote method), 296
feat() (pynlpl.formats.folia.Reference method), 309
feat() (pynlpl.formats.folia.Row method), 322
feat() (pynlpl.formats.folia.SemanticRole method), 625

feat() (pynlpl.formats.folia.SemanticRolesLayer method),
743

feat() (pynlpl.formats.folia.SenseAnnotation method),
474

feat() (pynlpl.formats.folia.Sentence method), 336
feat() (pynlpl.formats.folia.Sentiment method), 590
feat() (pynlpl.formats.folia.SentimentLayer method), 708
feat() (pynlpl.formats.folia.Statement method), 601
feat() (pynlpl.formats.folia.StatementLayer method), 719
feat() (pynlpl.formats.folia.SubjectivityAnnotation

method), 485
feat() (pynlpl.formats.folia.Suggestion method), 999
feat() (pynlpl.formats.folia.SynsetFeature method), 875
feat() (pynlpl.formats.folia.SyntacticUnit method), 613
feat() (pynlpl.formats.folia.SyntaxLayer method), 731
feat() (pynlpl.formats.folia.Table method), 350
feat() (pynlpl.formats.folia.TableHead method), 376
feat() (pynlpl.formats.folia.Term method), 363
feat() (pynlpl.formats.folia.Text method), 389
feat() (pynlpl.formats.folia.TextContent method), 497
feat() (pynlpl.formats.folia.TextMarkupCorrection

method), 842
feat() (pynlpl.formats.folia.TextMarkupError method),

853
feat() (pynlpl.formats.folia.TextMarkupGap method), 810
feat() (pynlpl.formats.folia.TextMarkupString method),

821
feat() (pynlpl.formats.folia.TextMarkupStyle method),

831
feat() (pynlpl.formats.folia.TimeSegment method), 636
feat() (pynlpl.formats.folia.TimingLayer method), 755
feat() (pynlpl.formats.folia.Whitespace method), 402
feat() (pynlpl.formats.folia.Word method), 416
Feature (class in pynlpl.formats.folia), 860
FIFOQueue (class in pynlpl.datatypes), 5
Figure (class in pynlpl.formats.folia), 175
filesampler() (in module pynlpl.evaluation), 11
find() (pynlpl.datatypes.Trie method), 6
find_keyword_in_context() (in module

pynlpl.textprocessors), 1066
findcorrectionhandling() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 77
findcorrectionhandling() (pynlpl.formats.folia.AbstractElement

method), 28
findcorrectionhandling() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 54
findcorrectionhandling() (pynlpl.formats.folia.AbstractStructureElement

method), 40
findcorrectionhandling() (pynlpl.formats.folia.AbstractTextMarkup

method), 88
findcorrectionhandling() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 65
findcorrectionhandling() (pynlpl.formats.folia.ActorFeature

method), 887

1106 Index

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling() (pynlpl.formats.folia.Alignment
method), 1011

findcorrectionhandling() (pynlpl.formats.folia.AlignReference
method), 1022

findcorrectionhandling() (pynlpl.formats.folia.Alternative
method), 922

findcorrectionhandling() (pynlpl.formats.folia.AlternativeLayers
method), 933

findcorrectionhandling() (pynlpl.formats.folia.BegindatetimeFeature
method), 898

findcorrectionhandling() (pynlpl.formats.folia.Cell
method), 103

findcorrectionhandling() (pynlpl.formats.folia.Chunk
method), 520

findcorrectionhandling() (pynlpl.formats.folia.ChunkingLayer
method), 649

findcorrectionhandling() (pynlpl.formats.folia.CoreferenceChain
method), 532

findcorrectionhandling() (pynlpl.formats.folia.CoreferenceLayer
method), 661

findcorrectionhandling() (pynlpl.formats.folia.CoreferenceLink
method), 766

findcorrectionhandling() (pynlpl.formats.folia.Correction
method), 946

findcorrectionhandling() (pynlpl.formats.folia.Current
method), 955

findcorrectionhandling() (pynlpl.formats.folia.Definition
method), 116

findcorrectionhandling() (pynlpl.formats.folia.DependenciesLayer
method), 672

findcorrectionhandling() (pynlpl.formats.folia.Dependency
method), 543

findcorrectionhandling() (pynlpl.formats.folia.DependencyDependent
method), 778

findcorrectionhandling() (pynlpl.formats.folia.Description
method), 1033

findcorrectionhandling() (pynlpl.formats.folia.Division
method), 129

findcorrectionhandling() (pynlpl.formats.folia.DomainAnnotation
method), 430

findcorrectionhandling() (pynlpl.formats.folia.EnddatetimeFeature
method), 909

findcorrectionhandling() (pynlpl.formats.folia.EntitiesLayer
method), 684

findcorrectionhandling() (pynlpl.formats.folia.Entity
method), 555

findcorrectionhandling() (pynlpl.formats.folia.Entry
method), 142

findcorrectionhandling() (pynlpl.formats.folia.ErrorDetection
method), 966

findcorrectionhandling() (pynlpl.formats.folia.Event
method), 155

findcorrectionhandling() (pynlpl.formats.folia.Example
method), 168

findcorrectionhandling() (pynlpl.formats.folia.Feature
method), 864

findcorrectionhandling() (pynlpl.formats.folia.Figure
method), 181

findcorrectionhandling() (pynlpl.formats.folia.Gap
method), 193

findcorrectionhandling() (pynlpl.formats.folia.Head
method), 205

findcorrectionhandling() (pynlpl.formats.folia.Headspan
method), 790

findcorrectionhandling() (pynlpl.formats.folia.LangAnnotation
method), 452

findcorrectionhandling() (pynlpl.formats.folia.LemmaAnnotation
method), 463

findcorrectionhandling() (pynlpl.formats.folia.Linebreak
method), 218

findcorrectionhandling() (pynlpl.formats.folia.List
method), 231

findcorrectionhandling() (pynlpl.formats.folia.ListItem
method), 244

findcorrectionhandling() (pynlpl.formats.folia.Metric
method), 1044

findcorrectionhandling() (pynlpl.formats.folia.New
method), 977

findcorrectionhandling() (pynlpl.formats.folia.Note
method), 257

findcorrectionhandling() (pynlpl.formats.folia.Observation
method), 567

findcorrectionhandling() (pynlpl.formats.folia.ObservationLayer
method), 696

findcorrectionhandling() (pynlpl.formats.folia.Original
method), 988

findcorrectionhandling() (pynlpl.formats.folia.Paragraph
method), 270

findcorrectionhandling() (pynlpl.formats.folia.Part
method), 283

findcorrectionhandling() (pynlpl.formats.folia.PhonContent
method), 508

findcorrectionhandling() (pynlpl.formats.folia.PosAnnotation
method), 441

findcorrectionhandling() (pynlpl.formats.folia.Predicate
method), 578

findcorrectionhandling() (pynlpl.formats.folia.Quote
method), 296

findcorrectionhandling() (pynlpl.formats.folia.Reference
method), 309

findcorrectionhandling() (pynlpl.formats.folia.Row
method), 322

findcorrectionhandling() (pynlpl.formats.folia.SemanticRole
method), 625

findcorrectionhandling() (pynlpl.formats.folia.SemanticRolesLayer
method), 743

findcorrectionhandling() (pynlpl.formats.folia.SenseAnnotation
method), 474

Index 1107

PyNLPl Documentation, Release 1.2.8

findcorrectionhandling() (pynlpl.formats.folia.Sentence
method), 337

findcorrectionhandling() (pynlpl.formats.folia.Sentiment
method), 590

findcorrectionhandling() (pynlpl.formats.folia.SentimentLayer
method), 708

findcorrectionhandling() (pynlpl.formats.folia.Statement
method), 602

findcorrectionhandling() (pynlpl.formats.folia.StatementLayer
method), 719

findcorrectionhandling() (pynlpl.formats.folia.SubjectivityAnnotation
method), 485

findcorrectionhandling() (pynlpl.formats.folia.Suggestion
method), 999

findcorrectionhandling() (pynlpl.formats.folia.SynsetFeature
method), 876

findcorrectionhandling() (pynlpl.formats.folia.SyntacticUnit
method), 613

findcorrectionhandling() (pynlpl.formats.folia.SyntaxLayer
method), 731

findcorrectionhandling() (pynlpl.formats.folia.Table
method), 350

findcorrectionhandling() (pynlpl.formats.folia.TableHead
method), 376

findcorrectionhandling() (pynlpl.formats.folia.Term
method), 363

findcorrectionhandling() (pynlpl.formats.folia.Text
method), 389

findcorrectionhandling() (pynlpl.formats.folia.TextContent
method), 497

findcorrectionhandling() (pynlpl.formats.folia.TextMarkupCorrection
method), 842

findcorrectionhandling() (pynlpl.formats.folia.TextMarkupError
method), 853

findcorrectionhandling() (pynlpl.formats.folia.TextMarkupGap
method), 810

findcorrectionhandling() (pynlpl.formats.folia.TextMarkupString
method), 821

findcorrectionhandling() (pynlpl.formats.folia.TextMarkupStyle
method), 832

findcorrectionhandling() (pynlpl.formats.folia.TimeSegment
method), 637

findcorrectionhandling() (pynlpl.formats.folia.TimingLayer
method), 755

findcorrectionhandling() (pynlpl.formats.folia.Whitespace
method), 402

findcorrectionhandling() (pynlpl.formats.folia.Word
method), 416

finddefaultreference() (pynlpl.formats.folia.PhonContent
method), 508

finddefaultreference() (pynlpl.formats.folia.TextContent
method), 497

findreplaceables() (pynlpl.formats.folia.AbstractAnnotationLayer
class method), 77

findreplaceables() (pynlpl.formats.folia.AbstractElement
class method), 28

findreplaceables() (pynlpl.formats.folia.AbstractSpanAnnotation
class method), 54

findreplaceables() (pynlpl.formats.folia.AbstractStructureElement
class method), 40

findreplaceables() (pynlpl.formats.folia.AbstractTextMarkup
class method), 88

findreplaceables() (pynlpl.formats.folia.AbstractTokenAnnotation
class method), 65

findreplaceables() (pynlpl.formats.folia.ActorFeature
class method), 887

findreplaceables() (pynlpl.formats.folia.Alignment class
method), 1011

findreplaceables() (pynlpl.formats.folia.AlignReference
class method), 1022

findreplaceables() (pynlpl.formats.folia.Alternative class
method), 922

findreplaceables() (pynlpl.formats.folia.AlternativeLayers
class method), 933

findreplaceables() (pynlpl.formats.folia.BegindatetimeFeature
class method), 898

findreplaceables() (pynlpl.formats.folia.Cell class
method), 104

findreplaceables() (pynlpl.formats.folia.Chunk class
method), 520

findreplaceables() (pynlpl.formats.folia.ChunkingLayer
class method), 649

findreplaceables() (pynlpl.formats.folia.CoreferenceChain
class method), 532

findreplaceables() (pynlpl.formats.folia.CoreferenceLayer
class method), 661

findreplaceables() (pynlpl.formats.folia.CoreferenceLink
class method), 767

findreplaceables() (pynlpl.formats.folia.Correction class
method), 946

findreplaceables() (pynlpl.formats.folia.Current class
method), 955

findreplaceables() (pynlpl.formats.folia.Definition class
method), 116

findreplaceables() (pynlpl.formats.folia.DependenciesLayer
class method), 672

findreplaceables() (pynlpl.formats.folia.Dependency
class method), 543

findreplaceables() (pynlpl.formats.folia.DependencyDependent
class method), 778

findreplaceables() (pynlpl.formats.folia.Description class
method), 1033

findreplaceables() (pynlpl.formats.folia.Division class
method), 129

findreplaceables() (pynlpl.formats.folia.DomainAnnotation
class method), 431

findreplaceables() (pynlpl.formats.folia.EnddatetimeFeature
class method), 909

1108 Index

PyNLPl Documentation, Release 1.2.8

findreplaceables() (pynlpl.formats.folia.EntitiesLayer
class method), 684

findreplaceables() (pynlpl.formats.folia.Entity class
method), 555

findreplaceables() (pynlpl.formats.folia.Entry class
method), 142

findreplaceables() (pynlpl.formats.folia.ErrorDetection
class method), 967

findreplaceables() (pynlpl.formats.folia.Event class
method), 155

findreplaceables() (pynlpl.formats.folia.Example class
method), 168

findreplaceables() (pynlpl.formats.folia.Feature class
method), 865

findreplaceables() (pynlpl.formats.folia.Figure class
method), 181

findreplaceables() (pynlpl.formats.folia.Gap class
method), 193

findreplaceables() (pynlpl.formats.folia.Head class
method), 205

findreplaceables() (pynlpl.formats.folia.Headspan class
method), 790

findreplaceables() (pynlpl.formats.folia.LangAnnotation
class method), 453

findreplaceables() (pynlpl.formats.folia.LemmaAnnotation
class method), 464

findreplaceables() (pynlpl.formats.folia.Linebreak class
method), 218

findreplaceables() (pynlpl.formats.folia.List class
method), 231

findreplaceables() (pynlpl.formats.folia.ListItem class
method), 244

findreplaceables() (pynlpl.formats.folia.Metric class
method), 1045

findreplaceables() (pynlpl.formats.folia.New class
method), 978

findreplaceables() (pynlpl.formats.folia.Note class
method), 257

findreplaceables() (pynlpl.formats.folia.Observation class
method), 567

findreplaceables() (pynlpl.formats.folia.ObservationLayer
class method), 696

findreplaceables() (pynlpl.formats.folia.Original class
method), 989

findreplaceables() (pynlpl.formats.folia.Paragraph class
method), 270

findreplaceables() (pynlpl.formats.folia.Part class
method), 283

findreplaceables() (pynlpl.formats.folia.PhonContent
class method), 508

findreplaceables() (pynlpl.formats.folia.PosAnnotation
class method), 442

findreplaceables() (pynlpl.formats.folia.Predicate class
method), 578

findreplaceables() (pynlpl.formats.folia.Quote class
method), 296

findreplaceables() (pynlpl.formats.folia.Reference class
method), 309

findreplaceables() (pynlpl.formats.folia.Row class
method), 322

findreplaceables() (pynlpl.formats.folia.SemanticRole
class method), 625

findreplaceables() (pynlpl.formats.folia.SemanticRolesLayer
class method), 743

findreplaceables() (pynlpl.formats.folia.SenseAnnotation
class method), 475

findreplaceables() (pynlpl.formats.folia.Sentence class
method), 337

findreplaceables() (pynlpl.formats.folia.Sentiment class
method), 590

findreplaceables() (pynlpl.formats.folia.SentimentLayer
class method), 708

findreplaceables() (pynlpl.formats.folia.Statement class
method), 602

findreplaceables() (pynlpl.formats.folia.StatementLayer
class method), 719

findreplaceables() (pynlpl.formats.folia.SubjectivityAnnotation
class method), 486

findreplaceables() (pynlpl.formats.folia.Suggestion class
method), 1000

findreplaceables() (pynlpl.formats.folia.SynsetFeature
class method), 876

findreplaceables() (pynlpl.formats.folia.SyntacticUnit
class method), 613

findreplaceables() (pynlpl.formats.folia.SyntaxLayer
class method), 731

findreplaceables() (pynlpl.formats.folia.Table class
method), 350

findreplaceables() (pynlpl.formats.folia.TableHead class
method), 376

findreplaceables() (pynlpl.formats.folia.Term class
method), 363

findreplaceables() (pynlpl.formats.folia.Text class
method), 389

findreplaceables() (pynlpl.formats.folia.TextContent class
method), 497

findreplaceables() (pynlpl.formats.folia.TextMarkupCorrection
class method), 842

findreplaceables() (pynlpl.formats.folia.TextMarkupError
class method), 853

findreplaceables() (pynlpl.formats.folia.TextMarkupGap
class method), 810

findreplaceables() (pynlpl.formats.folia.TextMarkupString
class method), 821

findreplaceables() (pynlpl.formats.folia.TextMarkupStyle
class method), 832

findreplaceables() (pynlpl.formats.folia.TimeSegment
class method), 637

Index 1109

PyNLPl Documentation, Release 1.2.8

findreplaceables() (pynlpl.formats.folia.TimingLayer
class method), 755

findreplaceables() (pynlpl.formats.folia.Whitespace class
method), 402

findreplaceables() (pynlpl.formats.folia.Word class
method), 416

findspan() (pynlpl.formats.folia.AbstractAnnotationLayer
method), 77

findspan() (pynlpl.formats.folia.ChunkingLayer method),
649

findspan() (pynlpl.formats.folia.CoreferenceLayer
method), 661

findspan() (pynlpl.formats.folia.DependenciesLayer
method), 673

findspan() (pynlpl.formats.folia.EntitiesLayer method),
684

findspan() (pynlpl.formats.folia.ObservationLayer
method), 696

findspan() (pynlpl.formats.folia.SemanticRolesLayer
method), 743

findspan() (pynlpl.formats.folia.SentimentLayer method),
708

findspan() (pynlpl.formats.folia.StatementLayer method),
720

findspan() (pynlpl.formats.folia.SyntaxLayer method),
731

findspan() (pynlpl.formats.folia.TimingLayer method),
755

findspans() (pynlpl.formats.folia.Word method), 417
findwords() (pynlpl.formats.folia.Document method), 19
findwords() (pynlpl.formats.folia.Reader method), 805
fp_rate() (pynlpl.evaluation.ClassEvaluation method), 9
FrequencyList (class in pynlpl.statistics), 1062
fromstring() (pynlpl.datatypes.Pattern static method), 5
fscore() (pynlpl.evaluation.ClassEvaluation method), 9

G
Gap (class in pynlpl.formats.folia), 188
generate_id() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 77
generate_id() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 54
generate_id() (pynlpl.formats.folia.AbstractStructureElement

method), 40
generate_id() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 65
generate_id() (pynlpl.formats.folia.Alternative method),

922
generate_id() (pynlpl.formats.folia.Cell method), 104
generate_id() (pynlpl.formats.folia.Chunk method), 520
generate_id() (pynlpl.formats.folia.ChunkingLayer

method), 649
generate_id() (pynlpl.formats.folia.CoreferenceChain

method), 532

generate_id() (pynlpl.formats.folia.CoreferenceLayer
method), 661

generate_id() (pynlpl.formats.folia.CoreferenceLink
method), 767

generate_id() (pynlpl.formats.folia.Correction method),
946

generate_id() (pynlpl.formats.folia.Current method), 955
generate_id() (pynlpl.formats.folia.Definition method),

117
generate_id() (pynlpl.formats.folia.DependenciesLayer

method), 673
generate_id() (pynlpl.formats.folia.Dependency method),

544
generate_id() (pynlpl.formats.folia.DependencyDependent

method), 778
generate_id() (pynlpl.formats.folia.Division method), 129
generate_id() (pynlpl.formats.folia.DomainAnnotation

method), 431
generate_id() (pynlpl.formats.folia.EntitiesLayer

method), 685
generate_id() (pynlpl.formats.folia.Entity method), 555
generate_id() (pynlpl.formats.folia.Entry method), 142
generate_id() (pynlpl.formats.folia.ErrorDetection

method), 967
generate_id() (pynlpl.formats.folia.Event method), 155
generate_id() (pynlpl.formats.folia.Example method),

168
generate_id() (pynlpl.formats.folia.Figure method), 182
generate_id() (pynlpl.formats.folia.Head method), 206
generate_id() (pynlpl.formats.folia.Headspan method),

790
generate_id() (pynlpl.formats.folia.LangAnnotation

method), 453
generate_id() (pynlpl.formats.folia.LemmaAnnotation

method), 464
generate_id() (pynlpl.formats.folia.Linebreak method),

219
generate_id() (pynlpl.formats.folia.List method), 231
generate_id() (pynlpl.formats.folia.ListItem method), 244
generate_id() (pynlpl.formats.folia.New method), 978
generate_id() (pynlpl.formats.folia.Note method), 257
generate_id() (pynlpl.formats.folia.Observation method),

567
generate_id() (pynlpl.formats.folia.ObservationLayer

method), 696
generate_id() (pynlpl.formats.folia.Original method), 989
generate_id() (pynlpl.formats.folia.Paragraph method),

270
generate_id() (pynlpl.formats.folia.Part method), 283
generate_id() (pynlpl.formats.folia.PosAnnotation

method), 442
generate_id() (pynlpl.formats.folia.Predicate method),

578
generate_id() (pynlpl.formats.folia.Quote method), 296

1110 Index

PyNLPl Documentation, Release 1.2.8

generate_id() (pynlpl.formats.folia.Reference method),
309

generate_id() (pynlpl.formats.folia.Row method), 322
generate_id() (pynlpl.formats.folia.SemanticRole

method), 625
generate_id() (pynlpl.formats.folia.SemanticRolesLayer

method), 743
generate_id() (pynlpl.formats.folia.SenseAnnotation

method), 475
generate_id() (pynlpl.formats.folia.Sentence method),

337
generate_id() (pynlpl.formats.folia.Sentiment method),

590
generate_id() (pynlpl.formats.folia.SentimentLayer

method), 708
generate_id() (pynlpl.formats.folia.Statement method),

602
generate_id() (pynlpl.formats.folia.StatementLayer

method), 720
generate_id() (pynlpl.formats.folia.SubjectivityAnnotation

method), 486
generate_id() (pynlpl.formats.folia.Suggestion method),

1000
generate_id() (pynlpl.formats.folia.SyntacticUnit

method), 613
generate_id() (pynlpl.formats.folia.SyntaxLayer method),

732
generate_id() (pynlpl.formats.folia.Table method), 350
generate_id() (pynlpl.formats.folia.TableHead method),

376
generate_id() (pynlpl.formats.folia.Term method), 363
generate_id() (pynlpl.formats.folia.Text method), 389
generate_id() (pynlpl.formats.folia.TimeSegment

method), 637
generate_id() (pynlpl.formats.folia.TimingLayer

method), 755
generate_id() (pynlpl.formats.folia.Whitespace method),

402
generate_id() (pynlpl.formats.folia.Word method), 417
getalignedtarget() (pynlpl.formats.giza.GizaSentenceAlignment

method), 1053
getcorrection() (pynlpl.formats.folia.Word method), 417
getcorrections() (pynlpl.formats.folia.Word method), 417
getindex() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 77
getindex() (pynlpl.formats.folia.AbstractElement

method), 28
getindex() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 54
getindex() (pynlpl.formats.folia.AbstractStructureElement

method), 40
getindex() (pynlpl.formats.folia.AbstractTextMarkup

method), 88
getindex() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 65
getindex() (pynlpl.formats.folia.ActorFeature method),

887
getindex() (pynlpl.formats.folia.Alignment method),

1011
getindex() (pynlpl.formats.folia.AlignReference method),

1022
getindex() (pynlpl.formats.folia.Alternative method), 922
getindex() (pynlpl.formats.folia.AlternativeLayers

method), 933
getindex() (pynlpl.formats.folia.BegindatetimeFeature

method), 898
getindex() (pynlpl.formats.folia.Cell method), 104
getindex() (pynlpl.formats.folia.Chunk method), 520
getindex() (pynlpl.formats.folia.ChunkingLayer method),

649
getindex() (pynlpl.formats.folia.CoreferenceChain

method), 532
getindex() (pynlpl.formats.folia.CoreferenceLayer

method), 661
getindex() (pynlpl.formats.folia.CoreferenceLink

method), 767
getindex() (pynlpl.formats.folia.Correction method), 946
getindex() (pynlpl.formats.folia.Current method), 956
getindex() (pynlpl.formats.folia.Definition method), 117
getindex() (pynlpl.formats.folia.DependenciesLayer

method), 673
getindex() (pynlpl.formats.folia.Dependency method),

544
getindex() (pynlpl.formats.folia.DependencyDependent

method), 778
getindex() (pynlpl.formats.folia.Description method),

1034
getindex() (pynlpl.formats.folia.Division method), 130
getindex() (pynlpl.formats.folia.DomainAnnotation

method), 431
getindex() (pynlpl.formats.folia.EnddatetimeFeature

method), 909
getindex() (pynlpl.formats.folia.EntitiesLayer method),

685
getindex() (pynlpl.formats.folia.Entity method), 555
getindex() (pynlpl.formats.folia.Entry method), 142
getindex() (pynlpl.formats.folia.ErrorDetection method),

967
getindex() (pynlpl.formats.folia.Event method), 156
getindex() (pynlpl.formats.folia.Example method), 168
getindex() (pynlpl.formats.folia.Feature method), 865
getindex() (pynlpl.formats.folia.Figure method), 182
getindex() (pynlpl.formats.folia.Gap method), 193
getindex() (pynlpl.formats.folia.Head method), 206
getindex() (pynlpl.formats.folia.Headspan method), 790
getindex() (pynlpl.formats.folia.LangAnnotation

method), 453
getindex() (pynlpl.formats.folia.LemmaAnnotation

Index 1111

PyNLPl Documentation, Release 1.2.8

method), 464
getindex() (pynlpl.formats.folia.Linebreak method), 219
getindex() (pynlpl.formats.folia.List method), 231
getindex() (pynlpl.formats.folia.ListItem method), 244
getindex() (pynlpl.formats.folia.Metric method), 1045
getindex() (pynlpl.formats.folia.New method), 978
getindex() (pynlpl.formats.folia.Note method), 257
getindex() (pynlpl.formats.folia.Observation method),

567
getindex() (pynlpl.formats.folia.ObservationLayer

method), 696
getindex() (pynlpl.formats.folia.Original method), 989
getindex() (pynlpl.formats.folia.Paragraph method), 271
getindex() (pynlpl.formats.folia.Part method), 284
getindex() (pynlpl.formats.folia.PhonContent method),

508
getindex() (pynlpl.formats.folia.PosAnnotation method),

442
getindex() (pynlpl.formats.folia.Predicate method), 578
getindex() (pynlpl.formats.folia.Quote method), 296
getindex() (pynlpl.formats.folia.Reference method), 310
getindex() (pynlpl.formats.folia.Row method), 322
getindex() (pynlpl.formats.folia.SemanticRole method),

625
getindex() (pynlpl.formats.folia.SemanticRolesLayer

method), 743
getindex() (pynlpl.formats.folia.SenseAnnotation

method), 475
getindex() (pynlpl.formats.folia.Sentence method), 337
getindex() (pynlpl.formats.folia.Sentiment method), 590
getindex() (pynlpl.formats.folia.SentimentLayer method),

708
getindex() (pynlpl.formats.folia.Statement method), 602
getindex() (pynlpl.formats.folia.StatementLayer method),

720
getindex() (pynlpl.formats.folia.SubjectivityAnnotation

method), 486
getindex() (pynlpl.formats.folia.Suggestion method),

1000
getindex() (pynlpl.formats.folia.SynsetFeature method),

876
getindex() (pynlpl.formats.folia.SyntacticUnit method),

613
getindex() (pynlpl.formats.folia.SyntaxLayer method),

732
getindex() (pynlpl.formats.folia.Table method), 350
getindex() (pynlpl.formats.folia.TableHead method), 376
getindex() (pynlpl.formats.folia.Term method), 363
getindex() (pynlpl.formats.folia.Text method), 389
getindex() (pynlpl.formats.folia.TextContent method),

497
getindex() (pynlpl.formats.folia.TextMarkupCorrection

method), 842
getindex() (pynlpl.formats.folia.TextMarkupError

method), 853
getindex() (pynlpl.formats.folia.TextMarkupGap

method), 810
getindex() (pynlpl.formats.folia.TextMarkupString

method), 821
getindex() (pynlpl.formats.folia.TextMarkupStyle

method), 832
getindex() (pynlpl.formats.folia.TimeSegment method),

637
getindex() (pynlpl.formats.folia.TimingLayer method),

755
getindex() (pynlpl.formats.folia.Whitespace method), 402
getindex() (pynlpl.formats.folia.Word method), 417
getmetadata() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 77
getmetadata() (pynlpl.formats.folia.AbstractElement

method), 28
getmetadata() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 54
getmetadata() (pynlpl.formats.folia.AbstractStructureElement

method), 41
getmetadata() (pynlpl.formats.folia.AbstractTextMarkup

method), 88
getmetadata() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 65
getmetadata() (pynlpl.formats.folia.ActorFeature

method), 887
getmetadata() (pynlpl.formats.folia.Alignment method),

1011
getmetadata() (pynlpl.formats.folia.AlignReference

method), 1022
getmetadata() (pynlpl.formats.folia.Alternative method),

922
getmetadata() (pynlpl.formats.folia.AlternativeLayers

method), 933
getmetadata() (pynlpl.formats.folia.BegindatetimeFeature

method), 898
getmetadata() (pynlpl.formats.folia.Cell method), 104
getmetadata() (pynlpl.formats.folia.Chunk method), 520
getmetadata() (pynlpl.formats.folia.ChunkingLayer

method), 649
getmetadata() (pynlpl.formats.folia.CoreferenceChain

method), 532
getmetadata() (pynlpl.formats.folia.CoreferenceLayer

method), 661
getmetadata() (pynlpl.formats.folia.CoreferenceLink

method), 767
getmetadata() (pynlpl.formats.folia.Correction method),

946
getmetadata() (pynlpl.formats.folia.Current method), 956
getmetadata() (pynlpl.formats.folia.Definition method),

117
getmetadata() (pynlpl.formats.folia.DependenciesLayer

method), 673

1112 Index

PyNLPl Documentation, Release 1.2.8

getmetadata() (pynlpl.formats.folia.Dependency method),
544

getmetadata() (pynlpl.formats.folia.DependencyDependent
method), 778

getmetadata() (pynlpl.formats.folia.Description method),
1034

getmetadata() (pynlpl.formats.folia.Division method),
130

getmetadata() (pynlpl.formats.folia.DomainAnnotation
method), 431

getmetadata() (pynlpl.formats.folia.EnddatetimeFeature
method), 909

getmetadata() (pynlpl.formats.folia.EntitiesLayer
method), 685

getmetadata() (pynlpl.formats.folia.Entity method), 555
getmetadata() (pynlpl.formats.folia.Entry method), 143
getmetadata() (pynlpl.formats.folia.ErrorDetection

method), 967
getmetadata() (pynlpl.formats.folia.Event method), 156
getmetadata() (pynlpl.formats.folia.Example method),

169
getmetadata() (pynlpl.formats.folia.Feature method), 865
getmetadata() (pynlpl.formats.folia.Figure method), 182
getmetadata() (pynlpl.formats.folia.Gap method), 193
getmetadata() (pynlpl.formats.folia.Head method), 206
getmetadata() (pynlpl.formats.folia.Headspan method),

790
getmetadata() (pynlpl.formats.folia.LangAnnotation

method), 453
getmetadata() (pynlpl.formats.folia.LemmaAnnotation

method), 464
getmetadata() (pynlpl.formats.folia.Linebreak method),

219
getmetadata() (pynlpl.formats.folia.List method), 232
getmetadata() (pynlpl.formats.folia.ListItem method),

245
getmetadata() (pynlpl.formats.folia.Metric method), 1045
getmetadata() (pynlpl.formats.folia.New method), 978
getmetadata() (pynlpl.formats.folia.Note method), 258
getmetadata() (pynlpl.formats.folia.Observation method),

567
getmetadata() (pynlpl.formats.folia.ObservationLayer

method), 696
getmetadata() (pynlpl.formats.folia.Original method),

989
getmetadata() (pynlpl.formats.folia.Paragraph method),

271
getmetadata() (pynlpl.formats.folia.Part method), 284
getmetadata() (pynlpl.formats.folia.PhonContent

method), 508
getmetadata() (pynlpl.formats.folia.PosAnnotation

method), 442
getmetadata() (pynlpl.formats.folia.Predicate method),

578

getmetadata() (pynlpl.formats.folia.Quote method), 297
getmetadata() (pynlpl.formats.folia.Reference method),

310
getmetadata() (pynlpl.formats.folia.Row method), 323
getmetadata() (pynlpl.formats.folia.SemanticRole

method), 625
getmetadata() (pynlpl.formats.folia.SemanticRolesLayer

method), 743
getmetadata() (pynlpl.formats.folia.SenseAnnotation

method), 475
getmetadata() (pynlpl.formats.folia.Sentence method),

337
getmetadata() (pynlpl.formats.folia.Sentiment method),

590
getmetadata() (pynlpl.formats.folia.SentimentLayer

method), 708
getmetadata() (pynlpl.formats.folia.Statement method),

602
getmetadata() (pynlpl.formats.folia.StatementLayer

method), 720
getmetadata() (pynlpl.formats.folia.SubjectivityAnnotation

method), 486
getmetadata() (pynlpl.formats.folia.Suggestion method),

1000
getmetadata() (pynlpl.formats.folia.SynsetFeature

method), 876
getmetadata() (pynlpl.formats.folia.SyntacticUnit

method), 613
getmetadata() (pynlpl.formats.folia.SyntaxLayer

method), 732
getmetadata() (pynlpl.formats.folia.Table method), 350
getmetadata() (pynlpl.formats.folia.TableHead method),

376
getmetadata() (pynlpl.formats.folia.Term method), 363
getmetadata() (pynlpl.formats.folia.Text method), 389
getmetadata() (pynlpl.formats.folia.TextContent method),

497
getmetadata() (pynlpl.formats.folia.TextMarkupCorrection

method), 842
getmetadata() (pynlpl.formats.folia.TextMarkupError

method), 853
getmetadata() (pynlpl.formats.folia.TextMarkupGap

method), 810
getmetadata() (pynlpl.formats.folia.TextMarkupString

method), 821
getmetadata() (pynlpl.formats.folia.TextMarkupStyle

method), 832
getmetadata() (pynlpl.formats.folia.TimeSegment

method), 637
getmetadata() (pynlpl.formats.folia.TimingLayer

method), 755
getmetadata() (pynlpl.formats.folia.Whitespace method),

402
getmetadata() (pynlpl.formats.folia.Word method), 417

Index 1113

PyNLPl Documentation, Release 1.2.8

getreference() (pynlpl.formats.folia.PhonContent
method), 508

getreference() (pynlpl.formats.folia.TextContent
method), 497

gettextdelimiter() (pynlpl.formats.folia.AbstractAnnotationLayer
method), 77

gettextdelimiter() (pynlpl.formats.folia.AbstractElement
method), 28

gettextdelimiter() (pynlpl.formats.folia.AbstractSpanAnnotation
method), 54

gettextdelimiter() (pynlpl.formats.folia.AbstractStructureElement
method), 41

gettextdelimiter() (pynlpl.formats.folia.AbstractTextMarkup
method), 88

gettextdelimiter() (pynlpl.formats.folia.AbstractTokenAnnotation
method), 66

gettextdelimiter() (pynlpl.formats.folia.ActorFeature
method), 887

gettextdelimiter() (pynlpl.formats.folia.Alignment
method), 1011

gettextdelimiter() (pynlpl.formats.folia.AlignReference
method), 1022

gettextdelimiter() (pynlpl.formats.folia.Alternative
method), 922

gettextdelimiter() (pynlpl.formats.folia.AlternativeLayers
method), 933

gettextdelimiter() (pynlpl.formats.folia.BegindatetimeFeature
method), 898

gettextdelimiter() (pynlpl.formats.folia.Cell method), 104
gettextdelimiter() (pynlpl.formats.folia.Chunk method),

520
gettextdelimiter() (pynlpl.formats.folia.ChunkingLayer

method), 649
gettextdelimiter() (pynlpl.formats.folia.CoreferenceChain

method), 532
gettextdelimiter() (pynlpl.formats.folia.CoreferenceLayer

method), 661
gettextdelimiter() (pynlpl.formats.folia.CoreferenceLink

method), 767
gettextdelimiter() (pynlpl.formats.folia.Correction

method), 946
gettextdelimiter() (pynlpl.formats.folia.Current method),

956
gettextdelimiter() (pynlpl.formats.folia.Definition

method), 117
gettextdelimiter() (pynlpl.formats.folia.DependenciesLayer

method), 673
gettextdelimiter() (pynlpl.formats.folia.Dependency

method), 544
gettextdelimiter() (pynlpl.formats.folia.DependencyDependent

method), 779
gettextdelimiter() (pynlpl.formats.folia.Description

method), 1034
gettextdelimiter() (pynlpl.formats.folia.Division method),

130
gettextdelimiter() (pynlpl.formats.folia.DomainAnnotation

method), 431
gettextdelimiter() (pynlpl.formats.folia.EnddatetimeFeature

method), 909
gettextdelimiter() (pynlpl.formats.folia.EntitiesLayer

method), 685
gettextdelimiter() (pynlpl.formats.folia.Entity method),

555
gettextdelimiter() (pynlpl.formats.folia.Entry method),

143
gettextdelimiter() (pynlpl.formats.folia.ErrorDetection

method), 967
gettextdelimiter() (pynlpl.formats.folia.Event method),

156
gettextdelimiter() (pynlpl.formats.folia.Example

method), 169
gettextdelimiter() (pynlpl.formats.folia.Feature method),

865
gettextdelimiter() (pynlpl.formats.folia.Figure method),

182
gettextdelimiter() (pynlpl.formats.folia.Gap method), 193
gettextdelimiter() (pynlpl.formats.folia.Head method),

206
gettextdelimiter() (pynlpl.formats.folia.Headspan

method), 790
gettextdelimiter() (pynlpl.formats.folia.LangAnnotation

method), 453
gettextdelimiter() (pynlpl.formats.folia.LemmaAnnotation

method), 464
gettextdelimiter() (pynlpl.formats.folia.Linebreak

method), 219
gettextdelimiter() (pynlpl.formats.folia.List method), 232
gettextdelimiter() (pynlpl.formats.folia.ListItem method),

245
gettextdelimiter() (pynlpl.formats.folia.Metric method),

1045
gettextdelimiter() (pynlpl.formats.folia.New method),

978
gettextdelimiter() (pynlpl.formats.folia.Note method),

258
gettextdelimiter() (pynlpl.formats.folia.Observation

method), 567
gettextdelimiter() (pynlpl.formats.folia.ObservationLayer

method), 696
gettextdelimiter() (pynlpl.formats.folia.Original method),

989
gettextdelimiter() (pynlpl.formats.folia.Paragraph

method), 271
gettextdelimiter() (pynlpl.formats.folia.Part method), 284
gettextdelimiter() (pynlpl.formats.folia.PhonContent

method), 508
gettextdelimiter() (pynlpl.formats.folia.PosAnnotation

method), 442

1114 Index

PyNLPl Documentation, Release 1.2.8

gettextdelimiter() (pynlpl.formats.folia.Predicate
method), 579

gettextdelimiter() (pynlpl.formats.folia.Quote method),
297

gettextdelimiter() (pynlpl.formats.folia.Reference
method), 310

gettextdelimiter() (pynlpl.formats.folia.Row method),
323

gettextdelimiter() (pynlpl.formats.folia.SemanticRole
method), 625

gettextdelimiter() (pynlpl.formats.folia.SemanticRolesLayer
method), 743

gettextdelimiter() (pynlpl.formats.folia.SenseAnnotation
method), 475

gettextdelimiter() (pynlpl.formats.folia.Sentence
method), 337

gettextdelimiter() (pynlpl.formats.folia.Sentiment
method), 590

gettextdelimiter() (pynlpl.formats.folia.SentimentLayer
method), 708

gettextdelimiter() (pynlpl.formats.folia.Statement
method), 602

gettextdelimiter() (pynlpl.formats.folia.StatementLayer
method), 720

gettextdelimiter() (pynlpl.formats.folia.SubjectivityAnnotation
method), 486

gettextdelimiter() (pynlpl.formats.folia.Suggestion
method), 1000

gettextdelimiter() (pynlpl.formats.folia.SynsetFeature
method), 876

gettextdelimiter() (pynlpl.formats.folia.SyntacticUnit
method), 614

gettextdelimiter() (pynlpl.formats.folia.SyntaxLayer
method), 732

gettextdelimiter() (pynlpl.formats.folia.Table method),
350

gettextdelimiter() (pynlpl.formats.folia.TableHead
method), 376

gettextdelimiter() (pynlpl.formats.folia.Term method),
363

gettextdelimiter() (pynlpl.formats.folia.Text method), 389
gettextdelimiter() (pynlpl.formats.folia.TextContent

method), 497
gettextdelimiter() (pynlpl.formats.folia.TextMarkupCorrection

method), 843
gettextdelimiter() (pynlpl.formats.folia.TextMarkupError

method), 853
gettextdelimiter() (pynlpl.formats.folia.TextMarkupGap

method), 811
gettextdelimiter() (pynlpl.formats.folia.TextMarkupString

method), 821
gettextdelimiter() (pynlpl.formats.folia.TextMarkupStyle

method), 832
gettextdelimiter() (pynlpl.formats.folia.TimeSegment

method), 637
gettextdelimiter() (pynlpl.formats.folia.TimingLayer

method), 755
gettextdelimiter() (pynlpl.formats.folia.Whitespace

method), 402
gettextdelimiter() (pynlpl.formats.folia.Word method),

417
GizaModel (class in pynlpl.formats.giza), 1053
GizaSentenceAlignment (class in pynlpl.formats.giza),

1053

H
hasannotation() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 77
hasannotation() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 54
hasannotation() (pynlpl.formats.folia.AbstractStructureElement

method), 41
hasannotation() (pynlpl.formats.folia.AllowTokenAnnotation

method), 49
hasannotation() (pynlpl.formats.folia.Alternative

method), 922
hasannotation() (pynlpl.formats.folia.Cell method), 104
hasannotation() (pynlpl.formats.folia.Chunk method),

520
hasannotation() (pynlpl.formats.folia.ChunkingLayer

method), 649
hasannotation() (pynlpl.formats.folia.CoreferenceChain

method), 532
hasannotation() (pynlpl.formats.folia.CoreferenceLayer

method), 661
hasannotation() (pynlpl.formats.folia.CoreferenceLink

method), 767
hasannotation() (pynlpl.formats.folia.Definition method),

117
hasannotation() (pynlpl.formats.folia.DependenciesLayer

method), 673
hasannotation() (pynlpl.formats.folia.Dependency

method), 544
hasannotation() (pynlpl.formats.folia.DependencyDependent

method), 779
hasannotation() (pynlpl.formats.folia.Division method),

130
hasannotation() (pynlpl.formats.folia.EntitiesLayer

method), 685
hasannotation() (pynlpl.formats.folia.Entity method), 555
hasannotation() (pynlpl.formats.folia.Entry method), 143
hasannotation() (pynlpl.formats.folia.Event method), 156
hasannotation() (pynlpl.formats.folia.Example method),

169
hasannotation() (pynlpl.formats.folia.Figure method),

182
hasannotation() (pynlpl.formats.folia.Head method), 206

Index 1115

PyNLPl Documentation, Release 1.2.8

hasannotation() (pynlpl.formats.folia.Headspan method),
790

hasannotation() (pynlpl.formats.folia.Linebreak method),
219

hasannotation() (pynlpl.formats.folia.List method), 232
hasannotation() (pynlpl.formats.folia.ListItem method),

245
hasannotation() (pynlpl.formats.folia.Note method), 258
hasannotation() (pynlpl.formats.folia.Observation

method), 567
hasannotation() (pynlpl.formats.folia.ObservationLayer

method), 696
hasannotation() (pynlpl.formats.folia.Paragraph method),

271
hasannotation() (pynlpl.formats.folia.Part method), 284
hasannotation() (pynlpl.formats.folia.Predicate method),

579
hasannotation() (pynlpl.formats.folia.Quote method), 297
hasannotation() (pynlpl.formats.folia.Reference method),

310
hasannotation() (pynlpl.formats.folia.Row method), 323
hasannotation() (pynlpl.formats.folia.SemanticRole

method), 625
hasannotation() (pynlpl.formats.folia.SemanticRolesLayer

method), 743
hasannotation() (pynlpl.formats.folia.Sentence method),

337
hasannotation() (pynlpl.formats.folia.Sentiment method),

590
hasannotation() (pynlpl.formats.folia.SentimentLayer

method), 708
hasannotation() (pynlpl.formats.folia.Statement method),

602
hasannotation() (pynlpl.formats.folia.StatementLayer

method), 720
hasannotation() (pynlpl.formats.folia.SyntacticUnit

method), 614
hasannotation() (pynlpl.formats.folia.SyntaxLayer

method), 732
hasannotation() (pynlpl.formats.folia.Table method), 350
hasannotation() (pynlpl.formats.folia.TableHead

method), 376
hasannotation() (pynlpl.formats.folia.Term method), 363
hasannotation() (pynlpl.formats.folia.Text method), 390
hasannotation() (pynlpl.formats.folia.TimeSegment

method), 637
hasannotation() (pynlpl.formats.folia.TimingLayer

method), 755
hasannotation() (pynlpl.formats.folia.Whitespace

method), 403
hasannotation() (pynlpl.formats.folia.Word method), 417
hasannotationlayer() (pynlpl.formats.folia.AbstractStructureElement

method), 41
hasannotationlayer() (pynlpl.formats.folia.Cell method),

104
hasannotationlayer() (pynlpl.formats.folia.Definition

method), 117
hasannotationlayer() (pynlpl.formats.folia.Division

method), 130
hasannotationlayer() (pynlpl.formats.folia.Entry method),

143
hasannotationlayer() (pynlpl.formats.folia.Event

method), 156
hasannotationlayer() (pynlpl.formats.folia.Example

method), 169
hasannotationlayer() (pynlpl.formats.folia.Figure

method), 182
hasannotationlayer() (pynlpl.formats.folia.Head method),

206
hasannotationlayer() (pynlpl.formats.folia.Linebreak

method), 219
hasannotationlayer() (pynlpl.formats.folia.List method),

232
hasannotationlayer() (pynlpl.formats.folia.ListItem

method), 245
hasannotationlayer() (pynlpl.formats.folia.Note method),

258
hasannotationlayer() (pynlpl.formats.folia.Paragraph

method), 271
hasannotationlayer() (pynlpl.formats.folia.Part method),

284
hasannotationlayer() (pynlpl.formats.folia.Quote

method), 297
hasannotationlayer() (pynlpl.formats.folia.Reference

method), 310
hasannotationlayer() (pynlpl.formats.folia.Row method),

323
hasannotationlayer() (pynlpl.formats.folia.Sentence

method), 337
hasannotationlayer() (pynlpl.formats.folia.Table method),

351
hasannotationlayer() (pynlpl.formats.folia.TableHead

method), 377
hasannotationlayer() (pynlpl.formats.folia.Term method),

364
hasannotationlayer() (pynlpl.formats.folia.Text method),

390
hasannotationlayer() (pynlpl.formats.folia.Whitespace

method), 403
hasannotationlayer() (pynlpl.formats.folia.Word method),

417
hascurrent() (pynlpl.formats.folia.Correction method),

946
hasnew() (pynlpl.formats.folia.Correction method), 946
hasoriginal() (pynlpl.formats.folia.Correction method),

946
hasphon() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 78

1116 Index

PyNLPl Documentation, Release 1.2.8

hasphon() (pynlpl.formats.folia.AbstractElement
method), 28

hasphon() (pynlpl.formats.folia.AbstractSpanAnnotation
method), 55

hasphon() (pynlpl.formats.folia.AbstractStructureElement
method), 41

hasphon() (pynlpl.formats.folia.AbstractTextMarkup
method), 88

hasphon() (pynlpl.formats.folia.AbstractTokenAnnotation
method), 66

hasphon() (pynlpl.formats.folia.ActorFeature method),
887

hasphon() (pynlpl.formats.folia.Alignment method), 1011
hasphon() (pynlpl.formats.folia.AlignReference method),

1022
hasphon() (pynlpl.formats.folia.Alternative method), 922
hasphon() (pynlpl.formats.folia.AlternativeLayers

method), 933
hasphon() (pynlpl.formats.folia.BegindatetimeFeature

method), 898
hasphon() (pynlpl.formats.folia.Cell method), 104
hasphon() (pynlpl.formats.folia.Chunk method), 521
hasphon() (pynlpl.formats.folia.ChunkingLayer method),

649
hasphon() (pynlpl.formats.folia.CoreferenceChain

method), 532
hasphon() (pynlpl.formats.folia.CoreferenceLayer

method), 661
hasphon() (pynlpl.formats.folia.CoreferenceLink

method), 767
hasphon() (pynlpl.formats.folia.Correction method), 947
hasphon() (pynlpl.formats.folia.Current method), 956
hasphon() (pynlpl.formats.folia.Definition method), 117
hasphon() (pynlpl.formats.folia.DependenciesLayer

method), 673
hasphon() (pynlpl.formats.folia.Dependency method),

544
hasphon() (pynlpl.formats.folia.DependencyDependent

method), 779
hasphon() (pynlpl.formats.folia.Description method),

1034
hasphon() (pynlpl.formats.folia.Division method), 130
hasphon() (pynlpl.formats.folia.DomainAnnotation

method), 431
hasphon() (pynlpl.formats.folia.EnddatetimeFeature

method), 909
hasphon() (pynlpl.formats.folia.EntitiesLayer method),

685
hasphon() (pynlpl.formats.folia.Entity method), 555
hasphon() (pynlpl.formats.folia.Entry method), 143
hasphon() (pynlpl.formats.folia.ErrorDetection method),

967
hasphon() (pynlpl.formats.folia.Event method), 156
hasphon() (pynlpl.formats.folia.Example method), 169

hasphon() (pynlpl.formats.folia.Feature method), 865
hasphon() (pynlpl.formats.folia.Figure method), 182
hasphon() (pynlpl.formats.folia.Gap method), 193
hasphon() (pynlpl.formats.folia.Head method), 206
hasphon() (pynlpl.formats.folia.Headspan method), 790
hasphon() (pynlpl.formats.folia.LangAnnotation

method), 453
hasphon() (pynlpl.formats.folia.LemmaAnnotation

method), 464
hasphon() (pynlpl.formats.folia.Linebreak method), 219
hasphon() (pynlpl.formats.folia.List method), 232
hasphon() (pynlpl.formats.folia.ListItem method), 245
hasphon() (pynlpl.formats.folia.Metric method), 1045
hasphon() (pynlpl.formats.folia.New method), 978
hasphon() (pynlpl.formats.folia.Note method), 258
hasphon() (pynlpl.formats.folia.Observation method),

567
hasphon() (pynlpl.formats.folia.ObservationLayer

method), 697
hasphon() (pynlpl.formats.folia.Original method), 989
hasphon() (pynlpl.formats.folia.Paragraph method), 271
hasphon() (pynlpl.formats.folia.Part method), 284
hasphon() (pynlpl.formats.folia.PhonContent method),

508
hasphon() (pynlpl.formats.folia.PosAnnotation method),

442
hasphon() (pynlpl.formats.folia.Predicate method), 579
hasphon() (pynlpl.formats.folia.Quote method), 297
hasphon() (pynlpl.formats.folia.Reference method), 310
hasphon() (pynlpl.formats.folia.Row method), 323
hasphon() (pynlpl.formats.folia.SemanticRole method),

625
hasphon() (pynlpl.formats.folia.SemanticRolesLayer

method), 744
hasphon() (pynlpl.formats.folia.SenseAnnotation

method), 475
hasphon() (pynlpl.formats.folia.Sentence method), 337
hasphon() (pynlpl.formats.folia.Sentiment method), 590
hasphon() (pynlpl.formats.folia.SentimentLayer method),

708
hasphon() (pynlpl.formats.folia.Statement method), 602
hasphon() (pynlpl.formats.folia.StatementLayer method),

720
hasphon() (pynlpl.formats.folia.SubjectivityAnnotation

method), 486
hasphon() (pynlpl.formats.folia.Suggestion method),

1000
hasphon() (pynlpl.formats.folia.SynsetFeature method),

876
hasphon() (pynlpl.formats.folia.SyntacticUnit method),

614
hasphon() (pynlpl.formats.folia.SyntaxLayer method),

732
hasphon() (pynlpl.formats.folia.Table method), 351

Index 1117

PyNLPl Documentation, Release 1.2.8

hasphon() (pynlpl.formats.folia.TableHead method), 377
hasphon() (pynlpl.formats.folia.Term method), 364
hasphon() (pynlpl.formats.folia.Text method), 390
hasphon() (pynlpl.formats.folia.TextContent method),

498
hasphon() (pynlpl.formats.folia.TextMarkupCorrection

method), 843
hasphon() (pynlpl.formats.folia.TextMarkupError

method), 853
hasphon() (pynlpl.formats.folia.TextMarkupGap

method), 811
hasphon() (pynlpl.formats.folia.TextMarkupString

method), 821
hasphon() (pynlpl.formats.folia.TextMarkupStyle

method), 832
hasphon() (pynlpl.formats.folia.TimeSegment method),

637
hasphon() (pynlpl.formats.folia.TimingLayer method),

755
hasphon() (pynlpl.formats.folia.Whitespace method), 403
hasphon() (pynlpl.formats.folia.Word method), 417
hassuggestions() (pynlpl.formats.folia.Correction

method), 947
hastext() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 78
hastext() (pynlpl.formats.folia.AbstractElement method),

28
hastext() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 55
hastext() (pynlpl.formats.folia.AbstractStructureElement

method), 41
hastext() (pynlpl.formats.folia.AbstractTextMarkup

method), 89
hastext() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 66
hastext() (pynlpl.formats.folia.ActorFeature method), 888
hastext() (pynlpl.formats.folia.Alignment method), 1011
hastext() (pynlpl.formats.folia.AlignReference method),

1023
hastext() (pynlpl.formats.folia.Alternative method), 923
hastext() (pynlpl.formats.folia.AlternativeLayers

method), 934
hastext() (pynlpl.formats.folia.BegindatetimeFeature

method), 899
hastext() (pynlpl.formats.folia.Cell method), 104
hastext() (pynlpl.formats.folia.Chunk method), 521
hastext() (pynlpl.formats.folia.ChunkingLayer method),

650
hastext() (pynlpl.formats.folia.CoreferenceChain

method), 532
hastext() (pynlpl.formats.folia.CoreferenceLayer

method), 662
hastext() (pynlpl.formats.folia.CoreferenceLink method),

767

hastext() (pynlpl.formats.folia.Correction method), 947
hastext() (pynlpl.formats.folia.Current method), 956
hastext() (pynlpl.formats.folia.Definition method), 117
hastext() (pynlpl.formats.folia.DependenciesLayer

method), 673
hastext() (pynlpl.formats.folia.Dependency method), 544
hastext() (pynlpl.formats.folia.DependencyDependent

method), 779
hastext() (pynlpl.formats.folia.Description method), 1034
hastext() (pynlpl.formats.folia.Division method), 130
hastext() (pynlpl.formats.folia.DomainAnnotation

method), 431
hastext() (pynlpl.formats.folia.EnddatetimeFeature

method), 910
hastext() (pynlpl.formats.folia.EntitiesLayer method),

685
hastext() (pynlpl.formats.folia.Entity method), 556
hastext() (pynlpl.formats.folia.Entry method), 143
hastext() (pynlpl.formats.folia.ErrorDetection method),

967
hastext() (pynlpl.formats.folia.Event method), 156
hastext() (pynlpl.formats.folia.Example method), 169
hastext() (pynlpl.formats.folia.Feature method), 865
hastext() (pynlpl.formats.folia.Figure method), 182
hastext() (pynlpl.formats.folia.Gap method), 194
hastext() (pynlpl.formats.folia.Head method), 206
hastext() (pynlpl.formats.folia.Headspan method), 791
hastext() (pynlpl.formats.folia.LangAnnotation method),

453
hastext() (pynlpl.formats.folia.LemmaAnnotation

method), 464
hastext() (pynlpl.formats.folia.Linebreak method), 219
hastext() (pynlpl.formats.folia.List method), 232
hastext() (pynlpl.formats.folia.ListItem method), 245
hastext() (pynlpl.formats.folia.Metric method), 1045
hastext() (pynlpl.formats.folia.New method), 978
hastext() (pynlpl.formats.folia.Note method), 258
hastext() (pynlpl.formats.folia.Observation method), 567
hastext() (pynlpl.formats.folia.ObservationLayer

method), 697
hastext() (pynlpl.formats.folia.Original method), 989
hastext() (pynlpl.formats.folia.Paragraph method), 271
hastext() (pynlpl.formats.folia.Part method), 284
hastext() (pynlpl.formats.folia.PhonContent method), 508
hastext() (pynlpl.formats.folia.PosAnnotation method),

442
hastext() (pynlpl.formats.folia.Predicate method), 579
hastext() (pynlpl.formats.folia.Quote method), 297
hastext() (pynlpl.formats.folia.Reference method), 310
hastext() (pynlpl.formats.folia.Row method), 323
hastext() (pynlpl.formats.folia.SemanticRole method),

626
hastext() (pynlpl.formats.folia.SemanticRolesLayer

method), 744

1118 Index

PyNLPl Documentation, Release 1.2.8

hastext() (pynlpl.formats.folia.SenseAnnotation method),
475

hastext() (pynlpl.formats.folia.Sentence method), 337
hastext() (pynlpl.formats.folia.Sentiment method), 591
hastext() (pynlpl.formats.folia.SentimentLayer method),

709
hastext() (pynlpl.formats.folia.Statement method), 602
hastext() (pynlpl.formats.folia.StatementLayer method),

720
hastext() (pynlpl.formats.folia.SubjectivityAnnotation

method), 486
hastext() (pynlpl.formats.folia.Suggestion method), 1000
hastext() (pynlpl.formats.folia.SynsetFeature method),

876
hastext() (pynlpl.formats.folia.SyntacticUnit method),

614
hastext() (pynlpl.formats.folia.SyntaxLayer method), 732
hastext() (pynlpl.formats.folia.Table method), 351
hastext() (pynlpl.formats.folia.TableHead method), 377
hastext() (pynlpl.formats.folia.Term method), 364
hastext() (pynlpl.formats.folia.Text method), 390
hastext() (pynlpl.formats.folia.TextContent method), 498
hastext() (pynlpl.formats.folia.TextMarkupCorrection

method), 843
hastext() (pynlpl.formats.folia.TextMarkupError

method), 854
hastext() (pynlpl.formats.folia.TextMarkupGap method),

811
hastext() (pynlpl.formats.folia.TextMarkupString

method), 822
hastext() (pynlpl.formats.folia.TextMarkupStyle method),

832
hastext() (pynlpl.formats.folia.TimeSegment method),

637
hastext() (pynlpl.formats.folia.TimingLayer method), 756
hastext() (pynlpl.formats.folia.Whitespace method), 403
hastext() (pynlpl.formats.folia.Word method), 418
Head (class in pynlpl.formats.folia), 200
head() (pynlpl.formats.folia.Dependency method), 544
head() (pynlpl.formats.folia.Division method), 130
Headspan (class in pynlpl.formats.folia), 785
HiddenMarkovModel (class in pynlpl.statistics), 1063
HillClimbingSearch (class in pynlpl.search), 1060
histogram() (in module pynlpl.statistics), 1064

I
incorrection() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 78
incorrection() (pynlpl.formats.folia.AbstractElement

method), 29
incorrection() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 55
incorrection() (pynlpl.formats.folia.AbstractStructureElement

method), 41

incorrection() (pynlpl.formats.folia.AbstractTextMarkup
method), 89

incorrection() (pynlpl.formats.folia.AbstractTokenAnnotation
method), 66

incorrection() (pynlpl.formats.folia.ActorFeature
method), 888

incorrection() (pynlpl.formats.folia.Alignment method),
1012

incorrection() (pynlpl.formats.folia.AlignReference
method), 1023

incorrection() (pynlpl.formats.folia.Alternative method),
923

incorrection() (pynlpl.formats.folia.AlternativeLayers
method), 934

incorrection() (pynlpl.formats.folia.BegindatetimeFeature
method), 899

incorrection() (pynlpl.formats.folia.Cell method), 105
incorrection() (pynlpl.formats.folia.Chunk method), 521
incorrection() (pynlpl.formats.folia.ChunkingLayer

method), 650
incorrection() (pynlpl.formats.folia.CoreferenceChain

method), 533
incorrection() (pynlpl.formats.folia.CoreferenceLayer

method), 662
incorrection() (pynlpl.formats.folia.CoreferenceLink

method), 768
incorrection() (pynlpl.formats.folia.Correction method),

947
incorrection() (pynlpl.formats.folia.Current method), 956
incorrection() (pynlpl.formats.folia.Definition method),

118
incorrection() (pynlpl.formats.folia.DependenciesLayer

method), 674
incorrection() (pynlpl.formats.folia.Dependency method),

545
incorrection() (pynlpl.formats.folia.DependencyDependent

method), 779
incorrection() (pynlpl.formats.folia.Description method),

1034
incorrection() (pynlpl.formats.folia.Division method),

131
incorrection() (pynlpl.formats.folia.DomainAnnotation

method), 431
incorrection() (pynlpl.formats.folia.EnddatetimeFeature

method), 910
incorrection() (pynlpl.formats.folia.EntitiesLayer

method), 686
incorrection() (pynlpl.formats.folia.Entity method), 556
incorrection() (pynlpl.formats.folia.Entry method), 143
incorrection() (pynlpl.formats.folia.ErrorDetection

method), 967
incorrection() (pynlpl.formats.folia.Event method), 156
incorrection() (pynlpl.formats.folia.Example method),

169

Index 1119

PyNLPl Documentation, Release 1.2.8

incorrection() (pynlpl.formats.folia.Feature method), 865
incorrection() (pynlpl.formats.folia.Figure method), 183
incorrection() (pynlpl.formats.folia.Gap method), 194
incorrection() (pynlpl.formats.folia.Head method), 207
incorrection() (pynlpl.formats.folia.Headspan method),

791
incorrection() (pynlpl.formats.folia.LangAnnotation

method), 453
incorrection() (pynlpl.formats.folia.LemmaAnnotation

method), 464
incorrection() (pynlpl.formats.folia.Linebreak method),

220
incorrection() (pynlpl.formats.folia.List method), 232
incorrection() (pynlpl.formats.folia.ListItem method),

245
incorrection() (pynlpl.formats.folia.Metric method), 1045
incorrection() (pynlpl.formats.folia.New method), 978
incorrection() (pynlpl.formats.folia.Note method), 258
incorrection() (pynlpl.formats.folia.Observation method),

568
incorrection() (pynlpl.formats.folia.ObservationLayer

method), 697
incorrection() (pynlpl.formats.folia.Original method),

989
incorrection() (pynlpl.formats.folia.Paragraph method),

271
incorrection() (pynlpl.formats.folia.Part method), 284
incorrection() (pynlpl.formats.folia.PhonContent

method), 509
incorrection() (pynlpl.formats.folia.PosAnnotation

method), 442
incorrection() (pynlpl.formats.folia.Predicate method),

579
incorrection() (pynlpl.formats.folia.Quote method), 297
incorrection() (pynlpl.formats.folia.Reference method),

310
incorrection() (pynlpl.formats.folia.Row method), 323
incorrection() (pynlpl.formats.folia.SemanticRole

method), 626
incorrection() (pynlpl.formats.folia.SemanticRolesLayer

method), 744
incorrection() (pynlpl.formats.folia.SenseAnnotation

method), 475
incorrection() (pynlpl.formats.folia.Sentence method),

338
incorrection() (pynlpl.formats.folia.Sentiment method),

591
incorrection() (pynlpl.formats.folia.SentimentLayer

method), 709
incorrection() (pynlpl.formats.folia.Statement method),

603
incorrection() (pynlpl.formats.folia.StatementLayer

method), 721
incorrection() (pynlpl.formats.folia.SubjectivityAnnotation

method), 486
incorrection() (pynlpl.formats.folia.Suggestion method),

1000
incorrection() (pynlpl.formats.folia.SynsetFeature

method), 877
incorrection() (pynlpl.formats.folia.SyntacticUnit

method), 614
incorrection() (pynlpl.formats.folia.SyntaxLayer

method), 733
incorrection() (pynlpl.formats.folia.Table method), 351
incorrection() (pynlpl.formats.folia.TableHead method),

377
incorrection() (pynlpl.formats.folia.Term method), 364
incorrection() (pynlpl.formats.folia.Text method), 390
incorrection() (pynlpl.formats.folia.TextContent method),

498
incorrection() (pynlpl.formats.folia.TextMarkupCorrection

method), 843
incorrection() (pynlpl.formats.folia.TextMarkupError

method), 854
incorrection() (pynlpl.formats.folia.TextMarkupGap

method), 811
incorrection() (pynlpl.formats.folia.TextMarkupString

method), 822
incorrection() (pynlpl.formats.folia.TextMarkupStyle

method), 833
incorrection() (pynlpl.formats.folia.TimeSegment

method), 638
incorrection() (pynlpl.formats.folia.TimingLayer

method), 756
incorrection() (pynlpl.formats.folia.Whitespace method),

403
incorrection() (pynlpl.formats.folia.Word method), 418
information() (pynlpl.statistics.Distribution method),

1062
initdoc() (pynlpl.formats.folia.Reader method), 805
insert() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 78
insert() (pynlpl.formats.folia.AbstractElement method),

29
insert() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 55
insert() (pynlpl.formats.folia.AbstractStructureElement

method), 42
insert() (pynlpl.formats.folia.AbstractTextMarkup

method), 89
insert() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 66
insert() (pynlpl.formats.folia.ActorFeature method), 888
insert() (pynlpl.formats.folia.Alignment method), 1012
insert() (pynlpl.formats.folia.AlignReference method),

1023
insert() (pynlpl.formats.folia.Alternative method), 923
insert() (pynlpl.formats.folia.AlternativeLayers method),

1120 Index

PyNLPl Documentation, Release 1.2.8

934
insert() (pynlpl.formats.folia.BegindatetimeFeature

method), 899
insert() (pynlpl.formats.folia.Cell method), 105
insert() (pynlpl.formats.folia.Chunk method), 521
insert() (pynlpl.formats.folia.ChunkingLayer method),

650
insert() (pynlpl.formats.folia.CoreferenceChain method),

533
insert() (pynlpl.formats.folia.CoreferenceLayer method),

662
insert() (pynlpl.formats.folia.CoreferenceLink method),

768
insert() (pynlpl.formats.folia.Correction method), 947
insert() (pynlpl.formats.folia.Current method), 956
insert() (pynlpl.formats.folia.Definition method), 118
insert() (pynlpl.formats.folia.DependenciesLayer

method), 674
insert() (pynlpl.formats.folia.Dependency method), 545
insert() (pynlpl.formats.folia.DependencyDependent

method), 779
insert() (pynlpl.formats.folia.Description method), 1034
insert() (pynlpl.formats.folia.Division method), 131
insert() (pynlpl.formats.folia.DomainAnnotation

method), 432
insert() (pynlpl.formats.folia.EnddatetimeFeature

method), 910
insert() (pynlpl.formats.folia.EntitiesLayer method), 686
insert() (pynlpl.formats.folia.Entity method), 556
insert() (pynlpl.formats.folia.Entry method), 144
insert() (pynlpl.formats.folia.ErrorDetection method),

968
insert() (pynlpl.formats.folia.Event method), 157
insert() (pynlpl.formats.folia.Example method), 170
insert() (pynlpl.formats.folia.Feature method), 866
insert() (pynlpl.formats.folia.Figure method), 183
insert() (pynlpl.formats.folia.Gap method), 194
insert() (pynlpl.formats.folia.Head method), 207
insert() (pynlpl.formats.folia.Headspan method), 791
insert() (pynlpl.formats.folia.LangAnnotation method),

454
insert() (pynlpl.formats.folia.LemmaAnnotation method),

465
insert() (pynlpl.formats.folia.Linebreak method), 220
insert() (pynlpl.formats.folia.List method), 233
insert() (pynlpl.formats.folia.ListItem method), 246
insert() (pynlpl.formats.folia.Metric method), 1046
insert() (pynlpl.formats.folia.New method), 979
insert() (pynlpl.formats.folia.Note method), 259
insert() (pynlpl.formats.folia.Observation method), 568
insert() (pynlpl.formats.folia.ObservationLayer method),

697
insert() (pynlpl.formats.folia.Original method), 990
insert() (pynlpl.formats.folia.Paragraph method), 272

insert() (pynlpl.formats.folia.Part method), 285
insert() (pynlpl.formats.folia.PhonContent method), 509
insert() (pynlpl.formats.folia.PosAnnotation method),

443
insert() (pynlpl.formats.folia.Predicate method), 579
insert() (pynlpl.formats.folia.Quote method), 298
insert() (pynlpl.formats.folia.Reference method), 311
insert() (pynlpl.formats.folia.Row method), 324
insert() (pynlpl.formats.folia.SemanticRole method), 626
insert() (pynlpl.formats.folia.SemanticRolesLayer

method), 744
insert() (pynlpl.formats.folia.SenseAnnotation method),

476
insert() (pynlpl.formats.folia.Sentence method), 338
insert() (pynlpl.formats.folia.Sentiment method), 591
insert() (pynlpl.formats.folia.SentimentLayer method),

709
insert() (pynlpl.formats.folia.Statement method), 603
insert() (pynlpl.formats.folia.StatementLayer method),

721
insert() (pynlpl.formats.folia.SubjectivityAnnotation

method), 487
insert() (pynlpl.formats.folia.Suggestion method), 1001
insert() (pynlpl.formats.folia.SynsetFeature method), 877
insert() (pynlpl.formats.folia.SyntacticUnit method), 614
insert() (pynlpl.formats.folia.SyntaxLayer method), 733
insert() (pynlpl.formats.folia.Table method), 351
insert() (pynlpl.formats.folia.TableHead method), 377
insert() (pynlpl.formats.folia.Term method), 364
insert() (pynlpl.formats.folia.Text method), 390
insert() (pynlpl.formats.folia.TextContent method), 498
insert() (pynlpl.formats.folia.TextMarkupCorrection

method), 843
insert() (pynlpl.formats.folia.TextMarkupError method),

854
insert() (pynlpl.formats.folia.TextMarkupGap method),

811
insert() (pynlpl.formats.folia.TextMarkupString method),

822
insert() (pynlpl.formats.folia.TextMarkupStyle method),

833
insert() (pynlpl.formats.folia.TimeSegment method), 638
insert() (pynlpl.formats.folia.TimingLayer method), 756
insert() (pynlpl.formats.folia.Whitespace method), 403
insert() (pynlpl.formats.folia.Word method), 418
insertword() (pynlpl.formats.folia.Sentence method), 338
insertwordleft() (pynlpl.formats.folia.Sentence method),

338
intersect() (pynlpl.formats.giza.GizaSentenceAlignment

method), 1053
IntersectionAlignment (class in pynlpl.formats.giza),

1053
InvalidFeatureException, 1053
InvalidTagException, 1053

Index 1121

PyNLPl Documentation, Release 1.2.8

is_end_of_sentence() (in module pynlpl.textprocessors),
1066

isstring() (in module pynlpl.common), 3
items() (pynlpl.datatypes.PatternMap method), 5
items() (pynlpl.datatypes.Trie method), 6
items() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 78
items() (pynlpl.formats.folia.AbstractElement method),

29
items() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 55
items() (pynlpl.formats.folia.AbstractStructureElement

method), 42
items() (pynlpl.formats.folia.AbstractTextMarkup

method), 89
items() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 66
items() (pynlpl.formats.folia.ActorFeature method), 888
items() (pynlpl.formats.folia.Alignment method), 1012
items() (pynlpl.formats.folia.AlignReference method),

1023
items() (pynlpl.formats.folia.Alternative method), 923
items() (pynlpl.formats.folia.AlternativeLayers method),

934
items() (pynlpl.formats.folia.BegindatetimeFeature

method), 899
items() (pynlpl.formats.folia.Cell method), 105
items() (pynlpl.formats.folia.Chunk method), 521
items() (pynlpl.formats.folia.ChunkingLayer method),

650
items() (pynlpl.formats.folia.CoreferenceChain method),

533
items() (pynlpl.formats.folia.CoreferenceLayer method),

662
items() (pynlpl.formats.folia.CoreferenceLink method),

768
items() (pynlpl.formats.folia.Correction method), 947
items() (pynlpl.formats.folia.Current method), 956
items() (pynlpl.formats.folia.Definition method), 118
items() (pynlpl.formats.folia.DependenciesLayer

method), 674
items() (pynlpl.formats.folia.Dependency method), 545
items() (pynlpl.formats.folia.DependencyDependent

method), 779
items() (pynlpl.formats.folia.Description method), 1034
items() (pynlpl.formats.folia.Division method), 131
items() (pynlpl.formats.folia.Document method), 19
items() (pynlpl.formats.folia.DomainAnnotation

method), 432
items() (pynlpl.formats.folia.EnddatetimeFeature

method), 910
items() (pynlpl.formats.folia.EntitiesLayer method), 686
items() (pynlpl.formats.folia.Entity method), 556
items() (pynlpl.formats.folia.Entry method), 144

items() (pynlpl.formats.folia.ErrorDetection method),
968

items() (pynlpl.formats.folia.Event method), 157
items() (pynlpl.formats.folia.Example method), 170
items() (pynlpl.formats.folia.Feature method), 866
items() (pynlpl.formats.folia.Figure method), 183
items() (pynlpl.formats.folia.Gap method), 194
items() (pynlpl.formats.folia.Head method), 207
items() (pynlpl.formats.folia.Headspan method), 791
items() (pynlpl.formats.folia.LangAnnotation method),

454
items() (pynlpl.formats.folia.LemmaAnnotation method),

465
items() (pynlpl.formats.folia.Linebreak method), 220
items() (pynlpl.formats.folia.List method), 233
items() (pynlpl.formats.folia.ListItem method), 246
items() (pynlpl.formats.folia.Metric method), 1046
items() (pynlpl.formats.folia.New method), 979
items() (pynlpl.formats.folia.Note method), 259
items() (pynlpl.formats.folia.Observation method), 568
items() (pynlpl.formats.folia.ObservationLayer method),

697
items() (pynlpl.formats.folia.Original method), 990
items() (pynlpl.formats.folia.Paragraph method), 272
items() (pynlpl.formats.folia.Part method), 285
items() (pynlpl.formats.folia.PhonContent method), 509
items() (pynlpl.formats.folia.PosAnnotation method), 443
items() (pynlpl.formats.folia.Predicate method), 579
items() (pynlpl.formats.folia.Quote method), 298
items() (pynlpl.formats.folia.Reference method), 311
items() (pynlpl.formats.folia.Row method), 324
items() (pynlpl.formats.folia.SemanticRole method), 626
items() (pynlpl.formats.folia.SemanticRolesLayer

method), 744
items() (pynlpl.formats.folia.SenseAnnotation method),

476
items() (pynlpl.formats.folia.Sentence method), 338
items() (pynlpl.formats.folia.Sentiment method), 591
items() (pynlpl.formats.folia.SentimentLayer method),

709
items() (pynlpl.formats.folia.Statement method), 603
items() (pynlpl.formats.folia.StatementLayer method),

721
items() (pynlpl.formats.folia.SubjectivityAnnotation

method), 487
items() (pynlpl.formats.folia.Suggestion method), 1001
items() (pynlpl.formats.folia.SynsetFeature method), 877
items() (pynlpl.formats.folia.SyntacticUnit method), 614
items() (pynlpl.formats.folia.SyntaxLayer method), 733
items() (pynlpl.formats.folia.Table method), 351
items() (pynlpl.formats.folia.TableHead method), 377
items() (pynlpl.formats.folia.Term method), 364
items() (pynlpl.formats.folia.Text method), 390
items() (pynlpl.formats.folia.TextContent method), 498

1122 Index

PyNLPl Documentation, Release 1.2.8

items() (pynlpl.formats.folia.TextMarkupCorrection
method), 843

items() (pynlpl.formats.folia.TextMarkupError method),
854

items() (pynlpl.formats.folia.TextMarkupGap method),
811

items() (pynlpl.formats.folia.TextMarkupString method),
822

items() (pynlpl.formats.folia.TextMarkupStyle method),
833

items() (pynlpl.formats.folia.TimeSegment method), 638
items() (pynlpl.formats.folia.TimingLayer method), 756
items() (pynlpl.formats.folia.Whitespace method), 403
items() (pynlpl.formats.folia.Word method), 418
items() (pynlpl.statistics.Distribution method), 1062
items() (pynlpl.statistics.FrequencyList method), 1063
IterativeDeepening (class in pynlpl.search), 1060
iterbytes() (pynlpl.datatypes.Pattern method), 5

J
json() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 78
json() (pynlpl.formats.folia.AbstractElement method), 29
json() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 55
json() (pynlpl.formats.folia.AbstractStructureElement

method), 42
json() (pynlpl.formats.folia.AbstractTextMarkup

method), 89
json() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 66
json() (pynlpl.formats.folia.ActorFeature method), 888
json() (pynlpl.formats.folia.Alignment method), 1012
json() (pynlpl.formats.folia.AlignReference method),

1023
json() (pynlpl.formats.folia.Alternative method), 923
json() (pynlpl.formats.folia.AlternativeLayers method),

934
json() (pynlpl.formats.folia.BegindatetimeFeature

method), 899
json() (pynlpl.formats.folia.Cell method), 105
json() (pynlpl.formats.folia.Chunk method), 521
json() (pynlpl.formats.folia.ChunkingLayer method), 650
json() (pynlpl.formats.folia.CoreferenceChain method),

533
json() (pynlpl.formats.folia.CoreferenceLayer method),

662
json() (pynlpl.formats.folia.CoreferenceLink method),

768
json() (pynlpl.formats.folia.Correction method), 947
json() (pynlpl.formats.folia.Current method), 956
json() (pynlpl.formats.folia.Definition method), 118
json() (pynlpl.formats.folia.DependenciesLayer method),

674

json() (pynlpl.formats.folia.Dependency method), 545
json() (pynlpl.formats.folia.DependencyDependent

method), 779
json() (pynlpl.formats.folia.Description method), 1035
json() (pynlpl.formats.folia.Division method), 131
json() (pynlpl.formats.folia.Document method), 19
json() (pynlpl.formats.folia.DomainAnnotation method),

432
json() (pynlpl.formats.folia.EnddatetimeFeature method),

910
json() (pynlpl.formats.folia.EntitiesLayer method), 686
json() (pynlpl.formats.folia.Entity method), 556
json() (pynlpl.formats.folia.Entry method), 144
json() (pynlpl.formats.folia.ErrorDetection method), 968
json() (pynlpl.formats.folia.Event method), 157
json() (pynlpl.formats.folia.Example method), 170
json() (pynlpl.formats.folia.Feature method), 866
json() (pynlpl.formats.folia.Figure method), 183
json() (pynlpl.formats.folia.Gap method), 194
json() (pynlpl.formats.folia.Head method), 207
json() (pynlpl.formats.folia.Headspan method), 791
json() (pynlpl.formats.folia.LangAnnotation method),

454
json() (pynlpl.formats.folia.LemmaAnnotation method),

465
json() (pynlpl.formats.folia.Linebreak method), 220
json() (pynlpl.formats.folia.List method), 233
json() (pynlpl.formats.folia.ListItem method), 246
json() (pynlpl.formats.folia.Metric method), 1046
json() (pynlpl.formats.folia.New method), 979
json() (pynlpl.formats.folia.Note method), 259
json() (pynlpl.formats.folia.Observation method), 568
json() (pynlpl.formats.folia.ObservationLayer method),

697
json() (pynlpl.formats.folia.Original method), 990
json() (pynlpl.formats.folia.Paragraph method), 272
json() (pynlpl.formats.folia.Part method), 285
json() (pynlpl.formats.folia.PhonContent method), 509
json() (pynlpl.formats.folia.PosAnnotation method), 443
json() (pynlpl.formats.folia.Predicate method), 579
json() (pynlpl.formats.folia.Quote method), 298
json() (pynlpl.formats.folia.Reference method), 311
json() (pynlpl.formats.folia.Row method), 324
json() (pynlpl.formats.folia.SemanticRole method), 626
json() (pynlpl.formats.folia.SemanticRolesLayer

method), 744
json() (pynlpl.formats.folia.SenseAnnotation method),

476
json() (pynlpl.formats.folia.Sentence method), 338
json() (pynlpl.formats.folia.Sentiment method), 591
json() (pynlpl.formats.folia.SentimentLayer method), 709
json() (pynlpl.formats.folia.Statement method), 603
json() (pynlpl.formats.folia.StatementLayer method), 721

Index 1123

PyNLPl Documentation, Release 1.2.8

json() (pynlpl.formats.folia.SubjectivityAnnotation
method), 487

json() (pynlpl.formats.folia.Suggestion method), 1001
json() (pynlpl.formats.folia.SynsetFeature method), 877
json() (pynlpl.formats.folia.SyntacticUnit method), 614
json() (pynlpl.formats.folia.SyntaxLayer method), 733
json() (pynlpl.formats.folia.Table method), 351
json() (pynlpl.formats.folia.TableHead method), 377
json() (pynlpl.formats.folia.Term method), 364
json() (pynlpl.formats.folia.Text method), 390
json() (pynlpl.formats.folia.TextContent method), 498
json() (pynlpl.formats.folia.TextMarkupCorrection

method), 843
json() (pynlpl.formats.folia.TextMarkupError method),

854
json() (pynlpl.formats.folia.TextMarkupGap method),

811
json() (pynlpl.formats.folia.TextMarkupString method),

822
json() (pynlpl.formats.folia.TextMarkupStyle method),

833
json() (pynlpl.formats.folia.TimeSegment method), 638
json() (pynlpl.formats.folia.TimingLayer method), 756
json() (pynlpl.formats.folia.Whitespace method), 403
json() (pynlpl.formats.folia.Word method), 418
jsondeclarations() (pynlpl.formats.folia.Document

method), 19

K
keys() (pynlpl.statistics.Distribution method), 1062

L
LABEL (pynlpl.formats.folia.ActorFeature attribute),

885
LABEL (pynlpl.formats.folia.Alignment attribute), 1009
LABEL (pynlpl.formats.folia.Alternative attribute), 919
LABEL (pynlpl.formats.folia.AlternativeLayers at-

tribute), 931
LABEL (pynlpl.formats.folia.BegindatetimeFeature at-

tribute), 896
LABEL (pynlpl.formats.folia.Cell attribute), 100
LABEL (pynlpl.formats.folia.Chunk attribute), 518
LABEL (pynlpl.formats.folia.CoreferenceChain at-

tribute), 529
LABEL (pynlpl.formats.folia.CoreferenceLink attribute),

764
LABEL (pynlpl.formats.folia.Correction attribute), 944
LABEL (pynlpl.formats.folia.Definition attribute), 113
LABEL (pynlpl.formats.folia.Dependency attribute), 541
LABEL (pynlpl.formats.folia.DependencyDependent at-

tribute), 776
LABEL (pynlpl.formats.folia.Description attribute), 1031
LABEL (pynlpl.formats.folia.Division attribute), 126

LABEL (pynlpl.formats.folia.DomainAnnotation at-
tribute), 428

LABEL (pynlpl.formats.folia.EnddatetimeFeature at-
tribute), 907

LABEL (pynlpl.formats.folia.Entity attribute), 553
LABEL (pynlpl.formats.folia.Entry attribute), 139
LABEL (pynlpl.formats.folia.ErrorDetection attribute),

964
LABEL (pynlpl.formats.folia.Event attribute), 152
LABEL (pynlpl.formats.folia.Example attribute), 165
LABEL (pynlpl.formats.folia.Feature attribute), 862
LABEL (pynlpl.formats.folia.Figure attribute), 178
LABEL (pynlpl.formats.folia.Gap attribute), 191
LABEL (pynlpl.formats.folia.Head attribute), 202
LABEL (pynlpl.formats.folia.Headspan attribute), 788
LABEL (pynlpl.formats.folia.LangAnnotation attribute),

450
LABEL (pynlpl.formats.folia.LemmaAnnotation at-

tribute), 461
LABEL (pynlpl.formats.folia.Linebreak attribute), 215
LABEL (pynlpl.formats.folia.List attribute), 228
LABEL (pynlpl.formats.folia.ListItem attribute), 241
LABEL (pynlpl.formats.folia.Metric attribute), 1042
LABEL (pynlpl.formats.folia.Note attribute), 254
LABEL (pynlpl.formats.folia.Observation attribute), 564
LABEL (pynlpl.formats.folia.Paragraph attribute), 267
LABEL (pynlpl.formats.folia.Part attribute), 280
LABEL (pynlpl.formats.folia.PhonContent attribute), 505
LABEL (pynlpl.formats.folia.PosAnnotation attribute),

439
LABEL (pynlpl.formats.folia.Predicate attribute), 576
LABEL (pynlpl.formats.folia.Quote attribute), 293
LABEL (pynlpl.formats.folia.Reference attribute), 306
LABEL (pynlpl.formats.folia.Row attribute), 319
LABEL (pynlpl.formats.folia.SemanticRole attribute),

623
LABEL (pynlpl.formats.folia.SenseAnnotation attribute),

472
LABEL (pynlpl.formats.folia.Sentence attribute), 332
LABEL (pynlpl.formats.folia.Sentiment attribute), 588
LABEL (pynlpl.formats.folia.Statement attribute), 599
LABEL (pynlpl.formats.folia.SubjectivityAnnotation at-

tribute), 483
LABEL (pynlpl.formats.folia.SynsetFeature attribute),

873
LABEL (pynlpl.formats.folia.SyntacticUnit attribute),

611
LABEL (pynlpl.formats.folia.Table attribute), 347
LABEL (pynlpl.formats.folia.TableHead attribute), 373
LABEL (pynlpl.formats.folia.Term attribute), 360
LABEL (pynlpl.formats.folia.Text attribute), 386
LABEL (pynlpl.formats.folia.TextContent attribute), 495
LABEL (pynlpl.formats.folia.TimeSegment attribute),

634

1124 Index

PyNLPl Documentation, Release 1.2.8

LABEL (pynlpl.formats.folia.Whitespace attribute), 399
LABEL (pynlpl.formats.folia.Word attribute), 412
LangAnnotation (class in pynlpl.formats.folia), 448
language() (pynlpl.formats.folia.Document method), 19
layers() (pynlpl.formats.folia.AbstractStructureElement

method), 42
layers() (pynlpl.formats.folia.Cell method), 105
layers() (pynlpl.formats.folia.Definition method), 118
layers() (pynlpl.formats.folia.Division method), 131
layers() (pynlpl.formats.folia.Entry method), 144
layers() (pynlpl.formats.folia.Event method), 157
layers() (pynlpl.formats.folia.Example method), 170
layers() (pynlpl.formats.folia.Figure method), 183
layers() (pynlpl.formats.folia.Head method), 207
layers() (pynlpl.formats.folia.Linebreak method), 220
layers() (pynlpl.formats.folia.List method), 233
layers() (pynlpl.formats.folia.ListItem method), 246
layers() (pynlpl.formats.folia.Note method), 259
layers() (pynlpl.formats.folia.Paragraph method), 272
layers() (pynlpl.formats.folia.Part method), 285
layers() (pynlpl.formats.folia.Quote method), 298
layers() (pynlpl.formats.folia.Reference method), 311
layers() (pynlpl.formats.folia.Row method), 324
layers() (pynlpl.formats.folia.Sentence method), 338
layers() (pynlpl.formats.folia.Table method), 352
layers() (pynlpl.formats.folia.TableHead method), 378
layers() (pynlpl.formats.folia.Term method), 365
layers() (pynlpl.formats.folia.Text method), 391
layers() (pynlpl.formats.folia.Whitespace method), 404
layers() (pynlpl.formats.folia.Word method), 418
leaf() (pynlpl.datatypes.Tree method), 6
leaf() (pynlpl.datatypes.Trie method), 6
leftcontext() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 79
leftcontext() (pynlpl.formats.folia.AbstractElement

method), 29
leftcontext() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 56
leftcontext() (pynlpl.formats.folia.AbstractStructureElement

method), 42
leftcontext() (pynlpl.formats.folia.AbstractTextMarkup

method), 89
leftcontext() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 67
leftcontext() (pynlpl.formats.folia.ActorFeature method),

888
leftcontext() (pynlpl.formats.folia.Alignment method),

1012
leftcontext() (pynlpl.formats.folia.AlignReference

method), 1023
leftcontext() (pynlpl.formats.folia.Alternative method),

923
leftcontext() (pynlpl.formats.folia.AlternativeLayers

method), 934

leftcontext() (pynlpl.formats.folia.BegindatetimeFeature
method), 899

leftcontext() (pynlpl.formats.folia.Cell method), 105
leftcontext() (pynlpl.formats.folia.Chunk method), 522
leftcontext() (pynlpl.formats.folia.ChunkingLayer

method), 650
leftcontext() (pynlpl.formats.folia.CoreferenceChain

method), 533
leftcontext() (pynlpl.formats.folia.CoreferenceLayer

method), 662
leftcontext() (pynlpl.formats.folia.CoreferenceLink

method), 768
leftcontext() (pynlpl.formats.folia.Correction method),

947
leftcontext() (pynlpl.formats.folia.Current method), 957
leftcontext() (pynlpl.formats.folia.Definition method),

118
leftcontext() (pynlpl.formats.folia.DependenciesLayer

method), 674
leftcontext() (pynlpl.formats.folia.Dependency method),

545
leftcontext() (pynlpl.formats.folia.DependencyDependent

method), 780
leftcontext() (pynlpl.formats.folia.Description method),

1035
leftcontext() (pynlpl.formats.folia.Division method), 131
leftcontext() (pynlpl.formats.folia.DomainAnnotation

method), 432
leftcontext() (pynlpl.formats.folia.EnddatetimeFeature

method), 910
leftcontext() (pynlpl.formats.folia.EntitiesLayer method),

686
leftcontext() (pynlpl.formats.folia.Entity method), 556
leftcontext() (pynlpl.formats.folia.Entry method), 144
leftcontext() (pynlpl.formats.folia.ErrorDetection

method), 968
leftcontext() (pynlpl.formats.folia.Event method), 157
leftcontext() (pynlpl.formats.folia.Example method), 170
leftcontext() (pynlpl.formats.folia.Feature method), 866
leftcontext() (pynlpl.formats.folia.Figure method), 183
leftcontext() (pynlpl.formats.folia.Gap method), 194
leftcontext() (pynlpl.formats.folia.Head method), 207
leftcontext() (pynlpl.formats.folia.Headspan method),

791
leftcontext() (pynlpl.formats.folia.LangAnnotation

method), 454
leftcontext() (pynlpl.formats.folia.LemmaAnnotation

method), 465
leftcontext() (pynlpl.formats.folia.Linebreak method),

220
leftcontext() (pynlpl.formats.folia.List method), 233
leftcontext() (pynlpl.formats.folia.ListItem method), 246
leftcontext() (pynlpl.formats.folia.Metric method), 1046
leftcontext() (pynlpl.formats.folia.New method), 979

Index 1125

PyNLPl Documentation, Release 1.2.8

leftcontext() (pynlpl.formats.folia.Note method), 259
leftcontext() (pynlpl.formats.folia.Observation method),

568
leftcontext() (pynlpl.formats.folia.ObservationLayer

method), 698
leftcontext() (pynlpl.formats.folia.Original method), 990
leftcontext() (pynlpl.formats.folia.Paragraph method),

272
leftcontext() (pynlpl.formats.folia.Part method), 285
leftcontext() (pynlpl.formats.folia.PhonContent method),

509
leftcontext() (pynlpl.formats.folia.PosAnnotation

method), 443
leftcontext() (pynlpl.formats.folia.Predicate method), 580
leftcontext() (pynlpl.formats.folia.Quote method), 298
leftcontext() (pynlpl.formats.folia.Reference method),

311
leftcontext() (pynlpl.formats.folia.Row method), 324
leftcontext() (pynlpl.formats.folia.SemanticRole

method), 626
leftcontext() (pynlpl.formats.folia.SemanticRolesLayer

method), 745
leftcontext() (pynlpl.formats.folia.SenseAnnotation

method), 476
leftcontext() (pynlpl.formats.folia.Sentence method), 338
leftcontext() (pynlpl.formats.folia.Sentiment method),

591
leftcontext() (pynlpl.formats.folia.SentimentLayer

method), 709
leftcontext() (pynlpl.formats.folia.Statement method),

603
leftcontext() (pynlpl.formats.folia.StatementLayer

method), 721
leftcontext() (pynlpl.formats.folia.SubjectivityAnnotation

method), 487
leftcontext() (pynlpl.formats.folia.Suggestion method),

1001
leftcontext() (pynlpl.formats.folia.SynsetFeature

method), 877
leftcontext() (pynlpl.formats.folia.SyntacticUnit method),

615
leftcontext() (pynlpl.formats.folia.SyntaxLayer method),

733
leftcontext() (pynlpl.formats.folia.Table method), 352
leftcontext() (pynlpl.formats.folia.TableHead method),

378
leftcontext() (pynlpl.formats.folia.Term method), 365
leftcontext() (pynlpl.formats.folia.Text method), 391
leftcontext() (pynlpl.formats.folia.TextContent method),

498
leftcontext() (pynlpl.formats.folia.TextMarkupCorrection

method), 843
leftcontext() (pynlpl.formats.folia.TextMarkupError

method), 854

leftcontext() (pynlpl.formats.folia.TextMarkupGap
method), 811

leftcontext() (pynlpl.formats.folia.TextMarkupString
method), 822

leftcontext() (pynlpl.formats.folia.TextMarkupStyle
method), 833

leftcontext() (pynlpl.formats.folia.TimeSegment method),
638

leftcontext() (pynlpl.formats.folia.TimingLayer method),
756

leftcontext() (pynlpl.formats.folia.Whitespace method),
404

leftcontext() (pynlpl.formats.folia.Word method), 418
lemma() (pynlpl.formats.folia.Word method), 418
LemmaAnnotation (class in pynlpl.formats.folia), 459
levenshtein() (in module pynlpl.statistics), 1064
license() (pynlpl.formats.folia.Document method), 19
Linebreak (class in pynlpl.formats.folia), 212
List (class in pynlpl.formats.folia), 225
ListItem (class in pynlpl.formats.folia), 238
LMClient (class in pynlpl.lm.client), 1058
load() (pynlpl.formats.folia.Document method), 19
load() (pynlpl.lm.lm.SimpleLanguageModel method),

1057
load() (pynlpl.statistics.FrequencyList method), 1063
log() (in module pynlpl.common), 3
log2() (in module pynlpl.statistics), 1064
logscore() (pynlpl.lm.srilm.SRILM method), 1057

M
mae() (in module pynlpl.evaluation), 11
mae() (pynlpl.evaluation.OrdinalEvaluation method), 10
MarkovChain (class in pynlpl.statistics), 1063
maxentropy() (pynlpl.statistics.Distribution method),

1062
mean() (in module pynlpl.statistics), 1064
median() (in module pynlpl.statistics), 1064
mergewords() (pynlpl.formats.folia.Sentence method),

338
Metric (class in pynlpl.formats.folia), 1040
mode() (in module pynlpl.statistics), 1064
mode() (pynlpl.statistics.Distribution method), 1062
mode() (pynlpl.statistics.FrequencyList method), 1063
morpheme() (pynlpl.formats.folia.Word method), 418
morphemes() (pynlpl.formats.folia.Word method), 418
MultiWindower (class in pynlpl.textprocessors), 1066
MultiWordAlignment (class in pynlpl.formats.giza), 1053

N
New (class in pynlpl.formats.folia), 973
new() (pynlpl.formats.folia.Correction method), 947
next() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 79
next() (pynlpl.formats.folia.AbstractElement method), 29

1126 Index

PyNLPl Documentation, Release 1.2.8

next() (pynlpl.formats.folia.AbstractSpanAnnotation
method), 56

next() (pynlpl.formats.folia.AbstractStructureElement
method), 42

next() (pynlpl.formats.folia.AbstractTextMarkup
method), 89

next() (pynlpl.formats.folia.AbstractTokenAnnotation
method), 67

next() (pynlpl.formats.folia.ActorFeature method), 888
next() (pynlpl.formats.folia.Alignment method), 1012
next() (pynlpl.formats.folia.AlignReference method),

1023
next() (pynlpl.formats.folia.Alternative method), 923
next() (pynlpl.formats.folia.AlternativeLayers method),

935
next() (pynlpl.formats.folia.BegindatetimeFeature

method), 899
next() (pynlpl.formats.folia.Cell method), 105
next() (pynlpl.formats.folia.Chunk method), 522
next() (pynlpl.formats.folia.ChunkingLayer method), 650
next() (pynlpl.formats.folia.CoreferenceChain method),

533
next() (pynlpl.formats.folia.CoreferenceLayer method),

662
next() (pynlpl.formats.folia.CoreferenceLink method),

768
next() (pynlpl.formats.folia.Correction method), 947
next() (pynlpl.formats.folia.Current method), 957
next() (pynlpl.formats.folia.Definition method), 118
next() (pynlpl.formats.folia.DependenciesLayer method),

674
next() (pynlpl.formats.folia.Dependency method), 545
next() (pynlpl.formats.folia.DependencyDependent

method), 780
next() (pynlpl.formats.folia.Description method), 1035
next() (pynlpl.formats.folia.Division method), 131
next() (pynlpl.formats.folia.DomainAnnotation method),

432
next() (pynlpl.formats.folia.EnddatetimeFeature method),

910
next() (pynlpl.formats.folia.EntitiesLayer method), 686
next() (pynlpl.formats.folia.Entity method), 556
next() (pynlpl.formats.folia.Entry method), 144
next() (pynlpl.formats.folia.ErrorDetection method), 968
next() (pynlpl.formats.folia.Event method), 157
next() (pynlpl.formats.folia.Example method), 170
next() (pynlpl.formats.folia.Feature method), 866
next() (pynlpl.formats.folia.Figure method), 183
next() (pynlpl.formats.folia.Gap method), 194
next() (pynlpl.formats.folia.Head method), 207
next() (pynlpl.formats.folia.Headspan method), 791
next() (pynlpl.formats.folia.LangAnnotation method),

454
next() (pynlpl.formats.folia.LemmaAnnotation method),

465
next() (pynlpl.formats.folia.Linebreak method), 220
next() (pynlpl.formats.folia.List method), 233
next() (pynlpl.formats.folia.ListItem method), 246
next() (pynlpl.formats.folia.Metric method), 1046
next() (pynlpl.formats.folia.New method), 979
next() (pynlpl.formats.folia.Note method), 259
next() (pynlpl.formats.folia.Observation method), 568
next() (pynlpl.formats.folia.ObservationLayer method),

698
next() (pynlpl.formats.folia.Original method), 990
next() (pynlpl.formats.folia.Paragraph method), 272
next() (pynlpl.formats.folia.Part method), 285
next() (pynlpl.formats.folia.PhonContent method), 509
next() (pynlpl.formats.folia.PosAnnotation method), 443
next() (pynlpl.formats.folia.Predicate method), 580
next() (pynlpl.formats.folia.Quote method), 298
next() (pynlpl.formats.folia.Reference method), 311
next() (pynlpl.formats.folia.Row method), 324
next() (pynlpl.formats.folia.SemanticRole method), 626
next() (pynlpl.formats.folia.SemanticRolesLayer

method), 745
next() (pynlpl.formats.folia.SenseAnnotation method),

476
next() (pynlpl.formats.folia.Sentence method), 339
next() (pynlpl.formats.folia.Sentiment method), 591
next() (pynlpl.formats.folia.SentimentLayer method), 709
next() (pynlpl.formats.folia.Statement method), 603
next() (pynlpl.formats.folia.StatementLayer method), 721
next() (pynlpl.formats.folia.SubjectivityAnnotation

method), 487
next() (pynlpl.formats.folia.Suggestion method), 1001
next() (pynlpl.formats.folia.SynsetFeature method), 877
next() (pynlpl.formats.folia.SyntacticUnit method), 615
next() (pynlpl.formats.folia.SyntaxLayer method), 733
next() (pynlpl.formats.folia.Table method), 352
next() (pynlpl.formats.folia.TableHead method), 378
next() (pynlpl.formats.folia.Term method), 365
next() (pynlpl.formats.folia.Text method), 391
next() (pynlpl.formats.folia.TextContent method), 498
next() (pynlpl.formats.folia.TextMarkupCorrection

method), 844
next() (pynlpl.formats.folia.TextMarkupError method),

854
next() (pynlpl.formats.folia.TextMarkupGap method),

812
next() (pynlpl.formats.folia.TextMarkupString method),

822
next() (pynlpl.formats.folia.TextMarkupStyle method),

833
next() (pynlpl.formats.folia.TimeSegment method), 638
next() (pynlpl.formats.folia.TimingLayer method), 756
next() (pynlpl.formats.folia.Whitespace method), 404
next() (pynlpl.formats.folia.Word method), 419

Index 1127

PyNLPl Documentation, Release 1.2.8

next() (pynlpl.formats.taggerdata.Taggerdata method),
1055

normalize() (in module pynlpl.statistics), 1064
Note (class in pynlpl.formats.folia), 251
ns() (in module pynlpl.formats.sonar), 1055

O
Observation (class in pynlpl.formats.folia), 562
ObservationLayer (class in pynlpl.formats.folia), 691
OCCURRENCES (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 74
OCCURRENCES (pynlpl.formats.folia.AbstractElement

attribute), 26
OCCURRENCES (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
OCCURRENCES (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
OCCURRENCES (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
OCCURRENCES (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
OCCURRENCES (pynlpl.formats.folia.ActorFeature at-

tribute), 885
OCCURRENCES (pynlpl.formats.folia.Alignment

attribute), 1009
OCCURRENCES (pynlpl.formats.folia.AlignReference

attribute), 1020
OCCURRENCES (pynlpl.formats.folia.Alternative at-

tribute), 919
OCCURRENCES (pynlpl.formats.folia.AlternativeLayers

attribute), 931
OCCURRENCES (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
OCCURRENCES (pynlpl.formats.folia.Cell attribute),

100
OCCURRENCES (pynlpl.formats.folia.Chunk attribute),

518
OCCURRENCES (pynlpl.formats.folia.ChunkingLayer

attribute), 646
OCCURRENCES (pynlpl.formats.folia.CoreferenceChain

attribute), 529
OCCURRENCES (pynlpl.formats.folia.CoreferenceLayer

attribute), 658
OCCURRENCES (pynlpl.formats.folia.CoreferenceLink

attribute), 764
OCCURRENCES (pynlpl.formats.folia.Correction

attribute), 944
OCCURRENCES (pynlpl.formats.folia.Current at-

tribute), 953
OCCURRENCES (pynlpl.formats.folia.Definition

attribute), 113
OCCURRENCES (pynlpl.formats.folia.DependenciesLayer

attribute), 670

OCCURRENCES (pynlpl.formats.folia.Dependency at-
tribute), 541

OCCURRENCES (pynlpl.formats.folia.DependencyDependent
attribute), 776

OCCURRENCES (pynlpl.formats.folia.Description at-
tribute), 1031

OCCURRENCES (pynlpl.formats.folia.Division at-
tribute), 126

OCCURRENCES (pynlpl.formats.folia.DomainAnnotation
attribute), 428

OCCURRENCES (pynlpl.formats.folia.EnddatetimeFeature
attribute), 907

OCCURRENCES (pynlpl.formats.folia.EntitiesLayer at-
tribute), 682

OCCURRENCES (pynlpl.formats.folia.Entity attribute),
553

OCCURRENCES (pynlpl.formats.folia.Entry attribute),
139

OCCURRENCES (pynlpl.formats.folia.ErrorDetection
attribute), 964

OCCURRENCES (pynlpl.formats.folia.Event attribute),
152

OCCURRENCES (pynlpl.formats.folia.Example at-
tribute), 165

OCCURRENCES (pynlpl.formats.folia.Feature at-
tribute), 862

OCCURRENCES (pynlpl.formats.folia.Figure attribute),
178

OCCURRENCES (pynlpl.formats.folia.Gap attribute),
191

OCCURRENCES (pynlpl.formats.folia.Head attribute),
202

OCCURRENCES (pynlpl.formats.folia.Headspan at-
tribute), 788

OCCURRENCES (pynlpl.formats.folia.LangAnnotation
attribute), 450

OCCURRENCES (pynlpl.formats.folia.LemmaAnnotation
attribute), 461

OCCURRENCES (pynlpl.formats.folia.Linebreak
attribute), 215

OCCURRENCES (pynlpl.formats.folia.List attribute),
228

OCCURRENCES (pynlpl.formats.folia.ListItem at-
tribute), 241

OCCURRENCES (pynlpl.formats.folia.Metric attribute),
1042

OCCURRENCES (pynlpl.formats.folia.New attribute),
975

OCCURRENCES (pynlpl.formats.folia.Note attribute),
254

OCCURRENCES (pynlpl.formats.folia.Observation at-
tribute), 564

OCCURRENCES (pynlpl.formats.folia.ObservationLayer
attribute), 693

1128 Index

PyNLPl Documentation, Release 1.2.8

OCCURRENCES (pynlpl.formats.folia.Original at-
tribute), 986

OCCURRENCES (pynlpl.formats.folia.Paragraph
attribute), 267

OCCURRENCES (pynlpl.formats.folia.Part attribute),
280

OCCURRENCES (pynlpl.formats.folia.PhonContent at-
tribute), 505

OCCURRENCES (pynlpl.formats.folia.PosAnnotation
attribute), 439

OCCURRENCES (pynlpl.formats.folia.Predicate at-
tribute), 576

OCCURRENCES (pynlpl.formats.folia.Quote attribute),
293

OCCURRENCES (pynlpl.formats.folia.Reference
attribute), 306

OCCURRENCES (pynlpl.formats.folia.Row attribute),
319

OCCURRENCES (pynlpl.formats.folia.SemanticRole at-
tribute), 623

OCCURRENCES (pynlpl.formats.folia.SemanticRolesLayer
attribute), 740

OCCURRENCES (pynlpl.formats.folia.SenseAnnotation
attribute), 472

OCCURRENCES (pynlpl.formats.folia.Sentence at-
tribute), 332

OCCURRENCES (pynlpl.formats.folia.Sentiment
attribute), 588

OCCURRENCES (pynlpl.formats.folia.SentimentLayer
attribute), 705

OCCURRENCES (pynlpl.formats.folia.Statement at-
tribute), 599

OCCURRENCES (pynlpl.formats.folia.StatementLayer
attribute), 717

OCCURRENCES (pynlpl.formats.folia.SubjectivityAnnotation
attribute), 483

OCCURRENCES (pynlpl.formats.folia.Suggestion at-
tribute), 997

OCCURRENCES (pynlpl.formats.folia.SynsetFeature at-
tribute), 873

OCCURRENCES (pynlpl.formats.folia.SyntacticUnit at-
tribute), 611

OCCURRENCES (pynlpl.formats.folia.SyntaxLayer at-
tribute), 729

OCCURRENCES (pynlpl.formats.folia.Table attribute),
347

OCCURRENCES (pynlpl.formats.folia.TableHead
attribute), 373

OCCURRENCES (pynlpl.formats.folia.Term attribute),
360

OCCURRENCES (pynlpl.formats.folia.Text attribute),
386

OCCURRENCES (pynlpl.formats.folia.TextContent at-
tribute), 495

OCCURRENCES (pynlpl.formats.folia.TextMarkupCorrection
attribute), 840

OCCURRENCES (pynlpl.formats.folia.TextMarkupError
attribute), 851

OCCURRENCES (pynlpl.formats.folia.TextMarkupGap
attribute), 808

OCCURRENCES (pynlpl.formats.folia.TextMarkupString
attribute), 819

OCCURRENCES (pynlpl.formats.folia.TextMarkupStyle
attribute), 830

OCCURRENCES (pynlpl.formats.folia.TimeSegment at-
tribute), 634

OCCURRENCES (pynlpl.formats.folia.TimingLayer at-
tribute), 752

OCCURRENCES (pynlpl.formats.folia.Whitespace at-
tribute), 399

OCCURRENCES (pynlpl.formats.folia.Word attribute),
413

OCCURRENCES_PER_SET
(pynlpl.formats.folia.AbstractAnnotationLayer
attribute), 74

OCCURRENCES_PER_SET
(pynlpl.formats.folia.AbstractElement at-
tribute), 26

OCCURRENCES_PER_SET
(pynlpl.formats.folia.AbstractSpanAnnotation
attribute), 52

OCCURRENCES_PER_SET
(pynlpl.formats.folia.AbstractStructureElement
attribute), 37

OCCURRENCES_PER_SET
(pynlpl.formats.folia.AbstractTextMarkup
attribute), 86

OCCURRENCES_PER_SET
(pynlpl.formats.folia.AbstractTokenAnnotation
attribute), 63

OCCURRENCES_PER_SET
(pynlpl.formats.folia.ActorFeature attribute),
885

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Alignment attribute),
1009

OCCURRENCES_PER_SET
(pynlpl.formats.folia.AlignReference attribute),
1020

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Alternative attribute),
919

OCCURRENCES_PER_SET
(pynlpl.formats.folia.AlternativeLayers at-
tribute), 931

OCCURRENCES_PER_SET
(pynlpl.formats.folia.BegindatetimeFeature
attribute), 896

Index 1129

PyNLPl Documentation, Release 1.2.8

OCCURRENCES_PER_SET (pynlpl.formats.folia.Cell
attribute), 100

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Chunk attribute), 518

OCCURRENCES_PER_SET
(pynlpl.formats.folia.ChunkingLayer attribute),
646

OCCURRENCES_PER_SET
(pynlpl.formats.folia.CoreferenceChain at-
tribute), 529

OCCURRENCES_PER_SET
(pynlpl.formats.folia.CoreferenceLayer at-
tribute), 658

OCCURRENCES_PER_SET
(pynlpl.formats.folia.CoreferenceLink at-
tribute), 764

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Correction attribute),
944

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Current attribute), 953

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Definition attribute),
113

OCCURRENCES_PER_SET
(pynlpl.formats.folia.DependenciesLayer
attribute), 670

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Dependency attribute),
541

OCCURRENCES_PER_SET
(pynlpl.formats.folia.DependencyDependent
attribute), 776

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Description attribute),
1031

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Division attribute),
126

OCCURRENCES_PER_SET
(pynlpl.formats.folia.DomainAnnotation
attribute), 428

OCCURRENCES_PER_SET
(pynlpl.formats.folia.EnddatetimeFeature
attribute), 907

OCCURRENCES_PER_SET
(pynlpl.formats.folia.EntitiesLayer attribute),
682

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Entity attribute), 553

OCCURRENCES_PER_SET (pynlpl.formats.folia.Entry
attribute), 139

OCCURRENCES_PER_SET
(pynlpl.formats.folia.ErrorDetection attribute),

964
OCCURRENCES_PER_SET (pynlpl.formats.folia.Event

attribute), 152
OCCURRENCES_PER_SET

(pynlpl.formats.folia.Example attribute),
165

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Feature attribute), 862

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Figure attribute), 178

OCCURRENCES_PER_SET (pynlpl.formats.folia.Gap
attribute), 191

OCCURRENCES_PER_SET (pynlpl.formats.folia.Head
attribute), 202

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Headspan attribute),
788

OCCURRENCES_PER_SET
(pynlpl.formats.folia.LangAnnotation at-
tribute), 450

OCCURRENCES_PER_SET
(pynlpl.formats.folia.LemmaAnnotation at-
tribute), 461

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Linebreak attribute),
215

OCCURRENCES_PER_SET (pynlpl.formats.folia.List
attribute), 228

OCCURRENCES_PER_SET
(pynlpl.formats.folia.ListItem attribute),
241

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Metric attribute), 1042

OCCURRENCES_PER_SET (pynlpl.formats.folia.New
attribute), 975

OCCURRENCES_PER_SET (pynlpl.formats.folia.Note
attribute), 254

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Observation attribute),
564

OCCURRENCES_PER_SET
(pynlpl.formats.folia.ObservationLayer at-
tribute), 694

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Original attribute),
986

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Paragraph attribute),
267

OCCURRENCES_PER_SET (pynlpl.formats.folia.Part
attribute), 280

OCCURRENCES_PER_SET
(pynlpl.formats.folia.PhonContent attribute),
505

1130 Index

PyNLPl Documentation, Release 1.2.8

OCCURRENCES_PER_SET
(pynlpl.formats.folia.PosAnnotation attribute),
439

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Predicate attribute),
576

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Quote attribute), 293

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Reference attribute),
306

OCCURRENCES_PER_SET (pynlpl.formats.folia.Row
attribute), 319

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SemanticRole attribute),
623

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SemanticRolesLayer
attribute), 741

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SenseAnnotation at-
tribute), 472

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Sentence attribute),
332

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Sentiment attribute),
588

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SentimentLayer at-
tribute), 705

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Statement attribute),
599

OCCURRENCES_PER_SET
(pynlpl.formats.folia.StatementLayer attribute),
717

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SubjectivityAnnotation
attribute), 483

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Suggestion attribute),
997

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SynsetFeature attribute),
873

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SyntacticUnit attribute),
611

OCCURRENCES_PER_SET
(pynlpl.formats.folia.SyntaxLayer attribute),
729

OCCURRENCES_PER_SET (pynlpl.formats.folia.Table
attribute), 347

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TableHead attribute),
373

OCCURRENCES_PER_SET (pynlpl.formats.folia.Term
attribute), 360

OCCURRENCES_PER_SET (pynlpl.formats.folia.Text
attribute), 386

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TextContent attribute),
495

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TextMarkupCorrection
attribute), 840

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TextMarkupError at-
tribute), 851

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TextMarkupGap at-
tribute), 808

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TextMarkupString at-
tribute), 819

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TextMarkupStyle at-
tribute), 830

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TimeSegment attribute),
634

OCCURRENCES_PER_SET
(pynlpl.formats.folia.TimingLayer attribute),
752

OCCURRENCES_PER_SET
(pynlpl.formats.folia.Whitespace attribute),
399

OCCURRENCES_PER_SET (pynlpl.formats.folia.Word
attribute), 413

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AbstractAnnotationLayer
attribute), 74

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AbstractElement
attribute), 26

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AbstractSpanAnnotation
attribute), 52

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AbstractStructureElement
attribute), 37

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AbstractTextMarkup
attribute), 86

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AbstractTokenAnnotation
attribute), 63

OPTIONAL_ATTRIBS (pynlpl.formats.folia.ActorFeature
attribute), 885

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Alignment
attribute), 1009

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AlignReference
attribute), 1020

Index 1131

PyNLPl Documentation, Release 1.2.8

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Alternative
attribute), 919

OPTIONAL_ATTRIBS (pynlpl.formats.folia.AlternativeLayers
attribute), 931

OPTIONAL_ATTRIBS (pynlpl.formats.folia.BegindatetimeFeature
attribute), 896

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Cell at-
tribute), 100

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Chunk at-
tribute), 518

OPTIONAL_ATTRIBS (pynlpl.formats.folia.ChunkingLayer
attribute), 646

OPTIONAL_ATTRIBS (pynlpl.formats.folia.CoreferenceChain
attribute), 529

OPTIONAL_ATTRIBS (pynlpl.formats.folia.CoreferenceLayer
attribute), 658

OPTIONAL_ATTRIBS (pynlpl.formats.folia.CoreferenceLink
attribute), 764

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Correction
attribute), 944

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Current at-
tribute), 953

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Definition
attribute), 113

OPTIONAL_ATTRIBS (pynlpl.formats.folia.DependenciesLayer
attribute), 670

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Dependency
attribute), 541

OPTIONAL_ATTRIBS (pynlpl.formats.folia.DependencyDependent
attribute), 776

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Description
attribute), 1031

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Division at-
tribute), 126

OPTIONAL_ATTRIBS (pynlpl.formats.folia.DomainAnnotation
attribute), 428

OPTIONAL_ATTRIBS (pynlpl.formats.folia.EnddatetimeFeature
attribute), 907

OPTIONAL_ATTRIBS (pynlpl.formats.folia.EntitiesLayer
attribute), 682

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Entity at-
tribute), 553

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Entry at-
tribute), 139

OPTIONAL_ATTRIBS (pynlpl.formats.folia.ErrorDetection
attribute), 964

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Event at-
tribute), 152

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Example
attribute), 165

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Feature at-
tribute), 862

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Figure at-
tribute), 178

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Gap at-
tribute), 191

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Head at-
tribute), 202

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Headspan
attribute), 788

OPTIONAL_ATTRIBS (pynlpl.formats.folia.LangAnnotation
attribute), 450

OPTIONAL_ATTRIBS (pynlpl.formats.folia.LemmaAnnotation
attribute), 461

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Linebreak
attribute), 215

OPTIONAL_ATTRIBS (pynlpl.formats.folia.List at-
tribute), 228

OPTIONAL_ATTRIBS (pynlpl.formats.folia.ListItem at-
tribute), 241

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Metric at-
tribute), 1042

OPTIONAL_ATTRIBS (pynlpl.formats.folia.New
attribute), 975

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Note
attribute), 254

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Observation
attribute), 564

OPTIONAL_ATTRIBS (pynlpl.formats.folia.ObservationLayer
attribute), 694

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Original at-
tribute), 986

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Paragraph
attribute), 267

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Part at-
tribute), 280

OPTIONAL_ATTRIBS (pynlpl.formats.folia.PhonContent
attribute), 506

OPTIONAL_ATTRIBS (pynlpl.formats.folia.PosAnnotation
attribute), 439

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Predicate
attribute), 576

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Quote at-
tribute), 293

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Reference
attribute), 306

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Row
attribute), 319

OPTIONAL_ATTRIBS (pynlpl.formats.folia.SemanticRole
attribute), 623

OPTIONAL_ATTRIBS (pynlpl.formats.folia.SemanticRolesLayer
attribute), 741

OPTIONAL_ATTRIBS (pynlpl.formats.folia.SenseAnnotation
attribute), 472

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Sentence
attribute), 332

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Sentiment
attribute), 588

1132 Index

PyNLPl Documentation, Release 1.2.8

OPTIONAL_ATTRIBS (pynlpl.formats.folia.SentimentLayer
attribute), 705

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Statement
attribute), 599

OPTIONAL_ATTRIBS (pynlpl.formats.folia.StatementLayer
attribute), 717

OPTIONAL_ATTRIBS (pynlpl.formats.folia.SubjectivityAnnotation
attribute), 483

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Suggestion
attribute), 997

OPTIONAL_ATTRIBS (pynlpl.formats.folia.SynsetFeature
attribute), 873

OPTIONAL_ATTRIBS (pynlpl.formats.folia.SyntacticUnit
attribute), 611

OPTIONAL_ATTRIBS (pynlpl.formats.folia.SyntaxLayer
attribute), 729

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Table at-
tribute), 347

OPTIONAL_ATTRIBS (pynlpl.formats.folia.TableHead
attribute), 373

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Term at-
tribute), 360

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Text at-
tribute), 386

OPTIONAL_ATTRIBS (pynlpl.formats.folia.TextContent
attribute), 495

OPTIONAL_ATTRIBS (pynlpl.formats.folia.TextMarkupCorrection
attribute), 840

OPTIONAL_ATTRIBS (pynlpl.formats.folia.TextMarkupError
attribute), 851

OPTIONAL_ATTRIBS (pynlpl.formats.folia.TextMarkupGap
attribute), 808

OPTIONAL_ATTRIBS (pynlpl.formats.folia.TextMarkupString
attribute), 819

OPTIONAL_ATTRIBS (pynlpl.formats.folia.TextMarkupStyle
attribute), 830

OPTIONAL_ATTRIBS (pynlpl.formats.folia.TimeSegment
attribute), 634

OPTIONAL_ATTRIBS (pynlpl.formats.folia.TimingLayer
attribute), 752

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Whitespace
attribute), 399

OPTIONAL_ATTRIBS (pynlpl.formats.folia.Word at-
tribute), 413

OrdinalEvaluation (class in pynlpl.evaluation), 10
Original (class in pynlpl.formats.folia), 984
original() (pynlpl.formats.folia.Correction method), 947
originaltext() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 79
originaltext() (pynlpl.formats.folia.AbstractElement

method), 29
originaltext() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 56
originaltext() (pynlpl.formats.folia.AbstractStructureElement

method), 42
originaltext() (pynlpl.formats.folia.AbstractTextMarkup

method), 90
originaltext() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 67
originaltext() (pynlpl.formats.folia.ActorFeature

method), 888
originaltext() (pynlpl.formats.folia.Alignment method),

1012
originaltext() (pynlpl.formats.folia.AlignReference

method), 1024
originaltext() (pynlpl.formats.folia.Alternative method),

924
originaltext() (pynlpl.formats.folia.AlternativeLayers

method), 935
originaltext() (pynlpl.formats.folia.BegindatetimeFeature

method), 899
originaltext() (pynlpl.formats.folia.Cell method), 105
originaltext() (pynlpl.formats.folia.Chunk method), 522
originaltext() (pynlpl.formats.folia.ChunkingLayer

method), 651
originaltext() (pynlpl.formats.folia.CoreferenceChain

method), 533
originaltext() (pynlpl.formats.folia.CoreferenceLayer

method), 662
originaltext() (pynlpl.formats.folia.CoreferenceLink

method), 768
originaltext() (pynlpl.formats.folia.Correction method),

948
originaltext() (pynlpl.formats.folia.Current method), 957
originaltext() (pynlpl.formats.folia.Definition method),

118
originaltext() (pynlpl.formats.folia.DependenciesLayer

method), 674
originaltext() (pynlpl.formats.folia.Dependency method),

545
originaltext() (pynlpl.formats.folia.DependencyDependent

method), 780
originaltext() (pynlpl.formats.folia.Description method),

1035
originaltext() (pynlpl.formats.folia.Division method), 131
originaltext() (pynlpl.formats.folia.DomainAnnotation

method), 432
originaltext() (pynlpl.formats.folia.EnddatetimeFeature

method), 910
originaltext() (pynlpl.formats.folia.EntitiesLayer

method), 686
originaltext() (pynlpl.formats.folia.Entity method), 557
originaltext() (pynlpl.formats.folia.Entry method), 144
originaltext() (pynlpl.formats.folia.ErrorDetection

method), 968
originaltext() (pynlpl.formats.folia.Event method), 157
originaltext() (pynlpl.formats.folia.Example method),

170

Index 1133

PyNLPl Documentation, Release 1.2.8

originaltext() (pynlpl.formats.folia.Feature method), 866
originaltext() (pynlpl.formats.folia.Figure method), 183
originaltext() (pynlpl.formats.folia.Gap method), 194
originaltext() (pynlpl.formats.folia.Head method), 207
originaltext() (pynlpl.formats.folia.Headspan method),

792
originaltext() (pynlpl.formats.folia.LangAnnotation

method), 454
originaltext() (pynlpl.formats.folia.LemmaAnnotation

method), 465
originaltext() (pynlpl.formats.folia.Linebreak method),

220
originaltext() (pynlpl.formats.folia.List method), 233
originaltext() (pynlpl.formats.folia.ListItem method), 246
originaltext() (pynlpl.formats.folia.Metric method), 1046
originaltext() (pynlpl.formats.folia.New method), 979
originaltext() (pynlpl.formats.folia.Note method), 259
originaltext() (pynlpl.formats.folia.Observation method),

568
originaltext() (pynlpl.formats.folia.ObservationLayer

method), 698
originaltext() (pynlpl.formats.folia.Original method), 990
originaltext() (pynlpl.formats.folia.Paragraph method),

272
originaltext() (pynlpl.formats.folia.Part method), 285
originaltext() (pynlpl.formats.folia.PhonContent method),

509
originaltext() (pynlpl.formats.folia.PosAnnotation

method), 443
originaltext() (pynlpl.formats.folia.Predicate method),

580
originaltext() (pynlpl.formats.folia.Quote method), 298
originaltext() (pynlpl.formats.folia.Reference method),

311
originaltext() (pynlpl.formats.folia.Row method), 324
originaltext() (pynlpl.formats.folia.SemanticRole

method), 627
originaltext() (pynlpl.formats.folia.SemanticRolesLayer

method), 745
originaltext() (pynlpl.formats.folia.SenseAnnotation

method), 476
originaltext() (pynlpl.formats.folia.Sentence method),

339
originaltext() (pynlpl.formats.folia.Sentiment method),

592
originaltext() (pynlpl.formats.folia.SentimentLayer

method), 710
originaltext() (pynlpl.formats.folia.Statement method),

603
originaltext() (pynlpl.formats.folia.StatementLayer

method), 721
originaltext() (pynlpl.formats.folia.SubjectivityAnnotation

method), 487
originaltext() (pynlpl.formats.folia.Suggestion method),

1001
originaltext() (pynlpl.formats.folia.SynsetFeature

method), 877
originaltext() (pynlpl.formats.folia.SyntacticUnit

method), 615
originaltext() (pynlpl.formats.folia.SyntaxLayer method),

733
originaltext() (pynlpl.formats.folia.Table method), 352
originaltext() (pynlpl.formats.folia.TableHead method),

378
originaltext() (pynlpl.formats.folia.Term method), 365
originaltext() (pynlpl.formats.folia.Text method), 391
originaltext() (pynlpl.formats.folia.TextContent method),

499
originaltext() (pynlpl.formats.folia.TextMarkupCorrection

method), 844
originaltext() (pynlpl.formats.folia.TextMarkupError

method), 854
originaltext() (pynlpl.formats.folia.TextMarkupGap

method), 812
originaltext() (pynlpl.formats.folia.TextMarkupString

method), 822
originaltext() (pynlpl.formats.folia.TextMarkupStyle

method), 833
originaltext() (pynlpl.formats.folia.TimeSegment

method), 638
originaltext() (pynlpl.formats.folia.TimingLayer method),

757
originaltext() (pynlpl.formats.folia.Whitespace method),

404
originaltext() (pynlpl.formats.folia.Word method), 419
output() (pynlpl.statistics.Distribution method), 1062
output() (pynlpl.statistics.FrequencyList method), 1063
outputmetrics() (pynlpl.evaluation.ClassEvaluation

method), 10

P
p() (pynlpl.statistics.FrequencyList method), 1063
p() (pynlpl.statistics.MarkovChain method), 1063
Paragraph (class in pynlpl.formats.folia), 264
paragraph() (pynlpl.formats.folia.Sentence method), 339
paragraph() (pynlpl.formats.folia.Word method), 419
paragraphs() (pynlpl.formats.folia.AbstractStructureElement

method), 42
paragraphs() (pynlpl.formats.folia.Cell method), 105
paragraphs() (pynlpl.formats.folia.Definition method),

118
paragraphs() (pynlpl.formats.folia.Division method), 131
paragraphs() (pynlpl.formats.folia.Document method), 19
paragraphs() (pynlpl.formats.folia.Entry method), 144
paragraphs() (pynlpl.formats.folia.Event method), 157
paragraphs() (pynlpl.formats.folia.Example method), 170
paragraphs() (pynlpl.formats.folia.Figure method), 183
paragraphs() (pynlpl.formats.folia.Head method), 207

1134 Index

PyNLPl Documentation, Release 1.2.8

paragraphs() (pynlpl.formats.folia.Linebreak method),
220

paragraphs() (pynlpl.formats.folia.List method), 233
paragraphs() (pynlpl.formats.folia.ListItem method), 246
paragraphs() (pynlpl.formats.folia.Note method), 259
paragraphs() (pynlpl.formats.folia.Paragraph method),

272
paragraphs() (pynlpl.formats.folia.Part method), 285
paragraphs() (pynlpl.formats.folia.Quote method), 298
paragraphs() (pynlpl.formats.folia.Reference method),

311
paragraphs() (pynlpl.formats.folia.Row method), 324
paragraphs() (pynlpl.formats.folia.Sentence method), 339
paragraphs() (pynlpl.formats.folia.Table method), 352
paragraphs() (pynlpl.formats.folia.TableHead method),

378
paragraphs() (pynlpl.formats.folia.Term method), 365
paragraphs() (pynlpl.formats.folia.Text method), 391
paragraphs() (pynlpl.formats.folia.Whitespace method),

404
paragraphs() (pynlpl.formats.folia.Word method), 419
paragraphs() (pynlpl.formats.sonar.CorpusDocument

method), 1054
paragraphs() (pynlpl.formats.sonar.CorpusDocumentX

method), 1054
ParamSearch (class in pynlpl.evaluation), 10
parse() (pynlpl.formats.fql.Query method), 803
parse_cgn_postag() (in module pynlpl.formats.cgn), 1053
parseAlignment() (in module pynlpl.formats.giza), 1054
parseDistribution() (pynlpl.formats.timbl.TimblOutput

method), 1055
parsemetadata() (pynlpl.formats.folia.Document

method), 20
parsesubmetadata() (pynlpl.formats.folia.Document

method), 20
parsexml() (pynlpl.formats.folia.AbstractAnnotationLayer

class method), 79
parsexml() (pynlpl.formats.folia.AbstractElement class

method), 29
parsexml() (pynlpl.formats.folia.AbstractSpanAnnotation

class method), 56
parsexml() (pynlpl.formats.folia.AbstractStructureElement

class method), 42
parsexml() (pynlpl.formats.folia.AbstractTextMarkup

class method), 90
parsexml() (pynlpl.formats.folia.AbstractTokenAnnotation

class method), 67
parsexml() (pynlpl.formats.folia.ActorFeature class

method), 889
parsexml() (pynlpl.formats.folia.Alignment class

method), 1012
parsexml() (pynlpl.formats.folia.AlignReference class

method), 1024
parsexml() (pynlpl.formats.folia.Alternative class

method), 924
parsexml() (pynlpl.formats.folia.AlternativeLayers class

method), 935
parsexml() (pynlpl.formats.folia.BegindatetimeFeature

class method), 900
parsexml() (pynlpl.formats.folia.Cell class method), 105
parsexml() (pynlpl.formats.folia.Chunk class method),

522
parsexml() (pynlpl.formats.folia.ChunkingLayer class

method), 651
parsexml() (pynlpl.formats.folia.CoreferenceChain class

method), 533
parsexml() (pynlpl.formats.folia.CoreferenceLayer class

method), 663
parsexml() (pynlpl.formats.folia.CoreferenceLink class

method), 768
parsexml() (pynlpl.formats.folia.Correction class

method), 948
parsexml() (pynlpl.formats.folia.Current class method),

957
parsexml() (pynlpl.formats.folia.Definition class method),

118
parsexml() (pynlpl.formats.folia.DependenciesLayer

class method), 674
parsexml() (pynlpl.formats.folia.Dependency class

method), 545
parsexml() (pynlpl.formats.folia.DependencyDependent

class method), 780
parsexml() (pynlpl.formats.folia.Description class

method), 1035
parsexml() (pynlpl.formats.folia.Division class method),

131
parsexml() (pynlpl.formats.folia.Document method), 20
parsexml() (pynlpl.formats.folia.DomainAnnotation class

method), 432
parsexml() (pynlpl.formats.folia.EnddatetimeFeature

class method), 911
parsexml() (pynlpl.formats.folia.EntitiesLayer class

method), 686
parsexml() (pynlpl.formats.folia.Entity class method),

557
parsexml() (pynlpl.formats.folia.Entry class method), 144
parsexml() (pynlpl.formats.folia.ErrorDetection class

method), 968
parsexml() (pynlpl.formats.folia.Event class method), 157
parsexml() (pynlpl.formats.folia.Example class method),

170
parsexml() (pynlpl.formats.folia.Feature class method),

866
parsexml() (pynlpl.formats.folia.Figure class method),

183
parsexml() (pynlpl.formats.folia.Gap class method), 195
parsexml() (pynlpl.formats.folia.Head class method), 207
parsexml() (pynlpl.formats.folia.Headspan class method),

Index 1135

PyNLPl Documentation, Release 1.2.8

792
parsexml() (pynlpl.formats.folia.LangAnnotation class

method), 454
parsexml() (pynlpl.formats.folia.LemmaAnnotation class

method), 465
parsexml() (pynlpl.formats.folia.Linebreak class method),

220
parsexml() (pynlpl.formats.folia.List class method), 233
parsexml() (pynlpl.formats.folia.ListItem class method),

246
parsexml() (pynlpl.formats.folia.Metric class method),

1046
parsexml() (pynlpl.formats.folia.New class method), 979
parsexml() (pynlpl.formats.folia.Note class method), 259
parsexml() (pynlpl.formats.folia.Observation class

method), 568
parsexml() (pynlpl.formats.folia.ObservationLayer class

method), 698
parsexml() (pynlpl.formats.folia.Original class method),

990
parsexml() (pynlpl.formats.folia.Paragraph class method),

272
parsexml() (pynlpl.formats.folia.Part class method), 285
parsexml() (pynlpl.formats.folia.PhonContent class

method), 509
parsexml() (pynlpl.formats.folia.PosAnnotation class

method), 443
parsexml() (pynlpl.formats.folia.Predicate class method),

580
parsexml() (pynlpl.formats.folia.Quote class method),

298
parsexml() (pynlpl.formats.folia.Reference class method),

311
parsexml() (pynlpl.formats.folia.Row class method), 324
parsexml() (pynlpl.formats.folia.SemanticRole class

method), 627
parsexml() (pynlpl.formats.folia.SemanticRolesLayer

class method), 745
parsexml() (pynlpl.formats.folia.SenseAnnotation class

method), 476
parsexml() (pynlpl.formats.folia.Sentence class method),

339
parsexml() (pynlpl.formats.folia.Sentiment class method),

592
parsexml() (pynlpl.formats.folia.SentimentLayer class

method), 710
parsexml() (pynlpl.formats.folia.Statement class method),

603
parsexml() (pynlpl.formats.folia.StatementLayer class

method), 721
parsexml() (pynlpl.formats.folia.SubjectivityAnnotation

class method), 487
parsexml() (pynlpl.formats.folia.Suggestion class

method), 1001

parsexml() (pynlpl.formats.folia.SynsetFeature class
method), 877

parsexml() (pynlpl.formats.folia.SyntacticUnit class
method), 615

parsexml() (pynlpl.formats.folia.SyntaxLayer class
method), 733

parsexml() (pynlpl.formats.folia.Table class method), 352
parsexml() (pynlpl.formats.folia.TableHead class

method), 378
parsexml() (pynlpl.formats.folia.Term class method), 365
parsexml() (pynlpl.formats.folia.Text class method), 391
parsexml() (pynlpl.formats.folia.TextContent class

method), 499
parsexml() (pynlpl.formats.folia.TextMarkupCorrection

class method), 844
parsexml() (pynlpl.formats.folia.TextMarkupError class

method), 855
parsexml() (pynlpl.formats.folia.TextMarkupGap class

method), 812
parsexml() (pynlpl.formats.folia.TextMarkupString class

method), 823
parsexml() (pynlpl.formats.folia.TextMarkupStyle class

method), 833
parsexml() (pynlpl.formats.folia.TimeSegment class

method), 638
parsexml() (pynlpl.formats.folia.TimingLayer class

method), 757
parsexml() (pynlpl.formats.folia.Whitespace class

method), 404
parsexml() (pynlpl.formats.folia.Word class method), 419
parsexmldeclarations() (pynlpl.formats.folia.Document

method), 20
Part (class in pynlpl.formats.folia), 277
path() (pynlpl.datatypes.Trie method), 7
path() (pynlpl.search.AbstractSearchState method), 1060
pathcost() (pynlpl.search.AbstractSearchState method),

1060
Pattern (class in pynlpl.datatypes), 5
PatternMap (class in pynlpl.datatypes), 5
PatternSet (class in pynlpl.datatypes), 5
pendingvalidation() (pynlpl.formats.folia.Document

method), 20
perplexity() (pynlpl.statistics.Distribution method), 1062
phon() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 79
phon() (pynlpl.formats.folia.AbstractElement method),

30
phon() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 56
phon() (pynlpl.formats.folia.AbstractStructureElement

method), 42
phon() (pynlpl.formats.folia.AbstractTextMarkup

method), 90
phon() (pynlpl.formats.folia.AbstractTokenAnnotation

1136 Index

PyNLPl Documentation, Release 1.2.8

method), 67
phon() (pynlpl.formats.folia.ActorFeature method), 889
phon() (pynlpl.formats.folia.Alignment method), 1013
phon() (pynlpl.formats.folia.AlignReference method),

1024
phon() (pynlpl.formats.folia.Alternative method), 924
phon() (pynlpl.formats.folia.AlternativeLayers method),

935
phon() (pynlpl.formats.folia.BegindatetimeFeature

method), 900
phon() (pynlpl.formats.folia.Cell method), 106
phon() (pynlpl.formats.folia.Chunk method), 522
phon() (pynlpl.formats.folia.ChunkingLayer method),

651
phon() (pynlpl.formats.folia.CoreferenceChain method),

534
phon() (pynlpl.formats.folia.CoreferenceLayer method),

663
phon() (pynlpl.formats.folia.CoreferenceLink method),

768
phon() (pynlpl.formats.folia.Correction method), 948
phon() (pynlpl.formats.folia.Current method), 957
phon() (pynlpl.formats.folia.Definition method), 119
phon() (pynlpl.formats.folia.DependenciesLayer

method), 674
phon() (pynlpl.formats.folia.Dependency method), 545
phon() (pynlpl.formats.folia.DependencyDependent

method), 780
phon() (pynlpl.formats.folia.Description method), 1035
phon() (pynlpl.formats.folia.Division method), 131
phon() (pynlpl.formats.folia.DomainAnnotation method),

432
phon() (pynlpl.formats.folia.EnddatetimeFeature

method), 911
phon() (pynlpl.formats.folia.EntitiesLayer method), 686
phon() (pynlpl.formats.folia.Entity method), 557
phon() (pynlpl.formats.folia.Entry method), 144
phon() (pynlpl.formats.folia.ErrorDetection method), 968
phon() (pynlpl.formats.folia.Event method), 157
phon() (pynlpl.formats.folia.Example method), 170
phon() (pynlpl.formats.folia.Feature method), 866
phon() (pynlpl.formats.folia.Figure method), 184
phon() (pynlpl.formats.folia.Gap method), 195
phon() (pynlpl.formats.folia.Head method), 208
phon() (pynlpl.formats.folia.Headspan method), 792
phon() (pynlpl.formats.folia.LangAnnotation method),

454
phon() (pynlpl.formats.folia.LemmaAnnotation method),

465
phon() (pynlpl.formats.folia.Linebreak method), 220
phon() (pynlpl.formats.folia.List method), 233
phon() (pynlpl.formats.folia.ListItem method), 246
phon() (pynlpl.formats.folia.Metric method), 1046
phon() (pynlpl.formats.folia.New method), 979

phon() (pynlpl.formats.folia.Note method), 259
phon() (pynlpl.formats.folia.Observation method), 569
phon() (pynlpl.formats.folia.ObservationLayer method),

698
phon() (pynlpl.formats.folia.Original method), 990
phon() (pynlpl.formats.folia.Paragraph method), 272
phon() (pynlpl.formats.folia.Part method), 285
phon() (pynlpl.formats.folia.PhonContent method), 509
phon() (pynlpl.formats.folia.PosAnnotation method), 443
phon() (pynlpl.formats.folia.Predicate method), 580
phon() (pynlpl.formats.folia.Quote method), 298
phon() (pynlpl.formats.folia.Reference method), 311
phon() (pynlpl.formats.folia.Row method), 324
phon() (pynlpl.formats.folia.SemanticRole method), 627
phon() (pynlpl.formats.folia.SemanticRolesLayer

method), 745
phon() (pynlpl.formats.folia.SenseAnnotation method),

476
phon() (pynlpl.formats.folia.Sentence method), 339
phon() (pynlpl.formats.folia.Sentiment method), 592
phon() (pynlpl.formats.folia.SentimentLayer method),

710
phon() (pynlpl.formats.folia.Statement method), 603
phon() (pynlpl.formats.folia.StatementLayer method),

721
phon() (pynlpl.formats.folia.SubjectivityAnnotation

method), 487
phon() (pynlpl.formats.folia.Suggestion method), 1001
phon() (pynlpl.formats.folia.SynsetFeature method), 877
phon() (pynlpl.formats.folia.SyntacticUnit method), 615
phon() (pynlpl.formats.folia.SyntaxLayer method), 733
phon() (pynlpl.formats.folia.Table method), 352
phon() (pynlpl.formats.folia.TableHead method), 378
phon() (pynlpl.formats.folia.Term method), 365
phon() (pynlpl.formats.folia.Text method), 391
phon() (pynlpl.formats.folia.TextContent method), 499
phon() (pynlpl.formats.folia.TextMarkupCorrection

method), 844
phon() (pynlpl.formats.folia.TextMarkupError method),

855
phon() (pynlpl.formats.folia.TextMarkupGap method),

812
phon() (pynlpl.formats.folia.TextMarkupString method),

823
phon() (pynlpl.formats.folia.TextMarkupStyle method),

833
phon() (pynlpl.formats.folia.TimeSegment method), 638
phon() (pynlpl.formats.folia.TimingLayer method), 757
phon() (pynlpl.formats.folia.Whitespace method), 404
phon() (pynlpl.formats.folia.Word method), 419
PHONCONTAINER (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 74
PHONCONTAINER (pynlpl.formats.folia.AbstractElement

attribute), 26

Index 1137

PyNLPl Documentation, Release 1.2.8

PHONCONTAINER (pynlpl.formats.folia.AbstractSpanAnnotation
attribute), 52

PHONCONTAINER (pynlpl.formats.folia.AbstractStructureElement
attribute), 37

PHONCONTAINER (pynlpl.formats.folia.AbstractTextMarkup
attribute), 86

PHONCONTAINER (pynlpl.formats.folia.AbstractTokenAnnotation
attribute), 63

PHONCONTAINER (pynlpl.formats.folia.ActorFeature
attribute), 885

PHONCONTAINER (pynlpl.formats.folia.Alignment at-
tribute), 1009

PHONCONTAINER (pynlpl.formats.folia.AlignReference
attribute), 1020

PHONCONTAINER (pynlpl.formats.folia.Alternative at-
tribute), 919

PHONCONTAINER (pynlpl.formats.folia.AlternativeLayers
attribute), 931

PHONCONTAINER (pynlpl.formats.folia.BegindatetimeFeature
attribute), 896

PHONCONTAINER (pynlpl.formats.folia.Cell attribute),
100

PHONCONTAINER (pynlpl.formats.folia.Chunk at-
tribute), 518

PHONCONTAINER (pynlpl.formats.folia.ChunkingLayer
attribute), 646

PHONCONTAINER (pynlpl.formats.folia.CoreferenceChain
attribute), 529

PHONCONTAINER (pynlpl.formats.folia.CoreferenceLayer
attribute), 658

PHONCONTAINER (pynlpl.formats.folia.CoreferenceLink
attribute), 764

PHONCONTAINER (pynlpl.formats.folia.Correction at-
tribute), 944

PHONCONTAINER (pynlpl.formats.folia.Current
attribute), 953

PHONCONTAINER (pynlpl.formats.folia.Definition at-
tribute), 113

PHONCONTAINER (pynlpl.formats.folia.DependenciesLayer
attribute), 670

PHONCONTAINER (pynlpl.formats.folia.Dependency
attribute), 541

PHONCONTAINER (pynlpl.formats.folia.DependencyDependent
attribute), 776

PHONCONTAINER (pynlpl.formats.folia.Description
attribute), 1031

PHONCONTAINER (pynlpl.formats.folia.Division at-
tribute), 126

PHONCONTAINER (pynlpl.formats.folia.DomainAnnotation
attribute), 428

PHONCONTAINER (pynlpl.formats.folia.EnddatetimeFeature
attribute), 907

PHONCONTAINER (pynlpl.formats.folia.EntitiesLayer
attribute), 682

PHONCONTAINER (pynlpl.formats.folia.Entity at-
tribute), 553

PHONCONTAINER (pynlpl.formats.folia.Entry at-
tribute), 139

PHONCONTAINER (pynlpl.formats.folia.ErrorDetection
attribute), 964

PHONCONTAINER (pynlpl.formats.folia.Event at-
tribute), 152

PHONCONTAINER (pynlpl.formats.folia.Example at-
tribute), 165

PHONCONTAINER (pynlpl.formats.folia.Feature
attribute), 862

PHONCONTAINER (pynlpl.formats.folia.Figure at-
tribute), 178

PHONCONTAINER (pynlpl.formats.folia.Gap attribute),
191

PHONCONTAINER (pynlpl.formats.folia.Head at-
tribute), 202

PHONCONTAINER (pynlpl.formats.folia.Headspan at-
tribute), 788

PHONCONTAINER (pynlpl.formats.folia.LangAnnotation
attribute), 450

PHONCONTAINER (pynlpl.formats.folia.LemmaAnnotation
attribute), 461

PHONCONTAINER (pynlpl.formats.folia.Linebreak at-
tribute), 215

PHONCONTAINER (pynlpl.formats.folia.List attribute),
228

PHONCONTAINER (pynlpl.formats.folia.ListItem at-
tribute), 241

PHONCONTAINER (pynlpl.formats.folia.Metric at-
tribute), 1042

PHONCONTAINER (pynlpl.formats.folia.New at-
tribute), 975

PHONCONTAINER (pynlpl.formats.folia.Note at-
tribute), 254

PHONCONTAINER (pynlpl.formats.folia.Observation
attribute), 564

PHONCONTAINER (pynlpl.formats.folia.ObservationLayer
attribute), 694

PHONCONTAINER (pynlpl.formats.folia.Original at-
tribute), 986

PHONCONTAINER (pynlpl.formats.folia.Paragraph at-
tribute), 267

PHONCONTAINER (pynlpl.formats.folia.Part attribute),
280

PHONCONTAINER (pynlpl.formats.folia.PhonContent
attribute), 506

PHONCONTAINER (pynlpl.formats.folia.PosAnnotation
attribute), 439

PHONCONTAINER (pynlpl.formats.folia.Predicate at-
tribute), 576

PHONCONTAINER (pynlpl.formats.folia.Quote at-
tribute), 293

1138 Index

PyNLPl Documentation, Release 1.2.8

PHONCONTAINER (pynlpl.formats.folia.Reference at-
tribute), 306

PHONCONTAINER (pynlpl.formats.folia.Row at-
tribute), 319

PHONCONTAINER (pynlpl.formats.folia.SemanticRole
attribute), 623

PHONCONTAINER (pynlpl.formats.folia.SemanticRolesLayer
attribute), 741

PHONCONTAINER (pynlpl.formats.folia.SenseAnnotation
attribute), 472

PHONCONTAINER (pynlpl.formats.folia.Sentence at-
tribute), 333

PHONCONTAINER (pynlpl.formats.folia.Sentiment at-
tribute), 588

PHONCONTAINER (pynlpl.formats.folia.SentimentLayer
attribute), 705

PHONCONTAINER (pynlpl.formats.folia.Statement at-
tribute), 599

PHONCONTAINER (pynlpl.formats.folia.StatementLayer
attribute), 717

PHONCONTAINER (pynlpl.formats.folia.SubjectivityAnnotation
attribute), 483

PHONCONTAINER (pynlpl.formats.folia.Suggestion at-
tribute), 997

PHONCONTAINER (pynlpl.formats.folia.SynsetFeature
attribute), 873

PHONCONTAINER (pynlpl.formats.folia.SyntacticUnit
attribute), 611

PHONCONTAINER (pynlpl.formats.folia.SyntaxLayer
attribute), 729

PHONCONTAINER (pynlpl.formats.folia.Table at-
tribute), 347

PHONCONTAINER (pynlpl.formats.folia.TableHead at-
tribute), 373

PHONCONTAINER (pynlpl.formats.folia.Term at-
tribute), 360

PHONCONTAINER (pynlpl.formats.folia.Text attribute),
386

PHONCONTAINER (pynlpl.formats.folia.TextContent
attribute), 495

PHONCONTAINER (pynlpl.formats.folia.TextMarkupCorrection
attribute), 840

PHONCONTAINER (pynlpl.formats.folia.TextMarkupError
attribute), 851

PHONCONTAINER (pynlpl.formats.folia.TextMarkupGap
attribute), 808

PHONCONTAINER (pynlpl.formats.folia.TextMarkupString
attribute), 819

PHONCONTAINER (pynlpl.formats.folia.TextMarkupStyle
attribute), 830

PHONCONTAINER (pynlpl.formats.folia.TimeSegment
attribute), 634

PHONCONTAINER (pynlpl.formats.folia.TimingLayer
attribute), 752

PHONCONTAINER (pynlpl.formats.folia.Whitespace
attribute), 399

PHONCONTAINER (pynlpl.formats.folia.Word at-
tribute), 413

PhonContent (class in pynlpl.formats.folia), 503
phoncontent() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 80
phoncontent() (pynlpl.formats.folia.AbstractElement

method), 30
phoncontent() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 57
phoncontent() (pynlpl.formats.folia.AbstractStructureElement

method), 43
phoncontent() (pynlpl.formats.folia.AbstractTextMarkup

method), 91
phoncontent() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 68
phoncontent() (pynlpl.formats.folia.ActorFeature

method), 889
phoncontent() (pynlpl.formats.folia.Alignment method),

1013
phoncontent() (pynlpl.formats.folia.AlignReference

method), 1025
phoncontent() (pynlpl.formats.folia.Alternative method),

925
phoncontent() (pynlpl.formats.folia.AlternativeLayers

method), 936
phoncontent() (pynlpl.formats.folia.BegindatetimeFeature

method), 900
phoncontent() (pynlpl.formats.folia.Cell method), 106
phoncontent() (pynlpl.formats.folia.Chunk method), 523
phoncontent() (pynlpl.formats.folia.ChunkingLayer

method), 652
phoncontent() (pynlpl.formats.folia.CoreferenceChain

method), 534
phoncontent() (pynlpl.formats.folia.CoreferenceLayer

method), 663
phoncontent() (pynlpl.formats.folia.CoreferenceLink

method), 769
phoncontent() (pynlpl.formats.folia.Correction method),

948
phoncontent() (pynlpl.formats.folia.Current method), 958
phoncontent() (pynlpl.formats.folia.Definition method),

119
phoncontent() (pynlpl.formats.folia.DependenciesLayer

method), 675
phoncontent() (pynlpl.formats.folia.Dependency

method), 546
phoncontent() (pynlpl.formats.folia.DependencyDependent

method), 781
phoncontent() (pynlpl.formats.folia.Description method),

1036
phoncontent() (pynlpl.formats.folia.Division method),

132

Index 1139

PyNLPl Documentation, Release 1.2.8

phoncontent() (pynlpl.formats.folia.DomainAnnotation
method), 433

phoncontent() (pynlpl.formats.folia.EnddatetimeFeature
method), 911

phoncontent() (pynlpl.formats.folia.EntitiesLayer
method), 687

phoncontent() (pynlpl.formats.folia.Entity method), 558
phoncontent() (pynlpl.formats.folia.Entry method), 145
phoncontent() (pynlpl.formats.folia.ErrorDetection

method), 969
phoncontent() (pynlpl.formats.folia.Event method), 158
phoncontent() (pynlpl.formats.folia.Example method),

171
phoncontent() (pynlpl.formats.folia.Feature method), 867
phoncontent() (pynlpl.formats.folia.Figure method), 184
phoncontent() (pynlpl.formats.folia.Gap method), 195
phoncontent() (pynlpl.formats.folia.Head method), 208
phoncontent() (pynlpl.formats.folia.Headspan method),

793
phoncontent() (pynlpl.formats.folia.LangAnnotation

method), 455
phoncontent() (pynlpl.formats.folia.LemmaAnnotation

method), 466
phoncontent() (pynlpl.formats.folia.Linebreak method),

221
phoncontent() (pynlpl.formats.folia.List method), 234
phoncontent() (pynlpl.formats.folia.ListItem method),

247
phoncontent() (pynlpl.formats.folia.Metric method), 1047
phoncontent() (pynlpl.formats.folia.New method), 980
phoncontent() (pynlpl.formats.folia.Note method), 260
phoncontent() (pynlpl.formats.folia.Observation method),

569
phoncontent() (pynlpl.formats.folia.ObservationLayer

method), 699
phoncontent() (pynlpl.formats.folia.Original method),

991
phoncontent() (pynlpl.formats.folia.Paragraph method),

273
phoncontent() (pynlpl.formats.folia.Part method), 286
phoncontent() (pynlpl.formats.folia.PhonContent

method), 509
phoncontent() (pynlpl.formats.folia.PosAnnotation

method), 444
phoncontent() (pynlpl.formats.folia.Predicate method),

581
phoncontent() (pynlpl.formats.folia.Quote method), 299
phoncontent() (pynlpl.formats.folia.Reference method),

312
phoncontent() (pynlpl.formats.folia.Row method), 325
phoncontent() (pynlpl.formats.folia.SemanticRole

method), 628
phoncontent() (pynlpl.formats.folia.SemanticRolesLayer

method), 746

phoncontent() (pynlpl.formats.folia.SenseAnnotation
method), 477

phoncontent() (pynlpl.formats.folia.Sentence method),
340

phoncontent() (pynlpl.formats.folia.Sentiment method),
593

phoncontent() (pynlpl.formats.folia.SentimentLayer
method), 710

phoncontent() (pynlpl.formats.folia.Statement method),
604

phoncontent() (pynlpl.formats.folia.StatementLayer
method), 722

phoncontent() (pynlpl.formats.folia.SubjectivityAnnotation
method), 488

phoncontent() (pynlpl.formats.folia.Suggestion method),
1002

phoncontent() (pynlpl.formats.folia.SynsetFeature
method), 878

phoncontent() (pynlpl.formats.folia.SyntacticUnit
method), 616

phoncontent() (pynlpl.formats.folia.SyntaxLayer
method), 734

phoncontent() (pynlpl.formats.folia.Table method), 353
phoncontent() (pynlpl.formats.folia.TableHead method),

379
phoncontent() (pynlpl.formats.folia.Term method), 366
phoncontent() (pynlpl.formats.folia.Text method), 392
phoncontent() (pynlpl.formats.folia.TextContent

method), 499
phoncontent() (pynlpl.formats.folia.TextMarkupCorrection

method), 845
phoncontent() (pynlpl.formats.folia.TextMarkupError

method), 855
phoncontent() (pynlpl.formats.folia.TextMarkupGap

method), 813
phoncontent() (pynlpl.formats.folia.TextMarkupString

method), 823
phoncontent() (pynlpl.formats.folia.TextMarkupStyle

method), 834
phoncontent() (pynlpl.formats.folia.TimeSegment

method), 639
phoncontent() (pynlpl.formats.folia.TimingLayer

method), 757
phoncontent() (pynlpl.formats.folia.Whitespace method),

405
phoncontent() (pynlpl.formats.folia.Word method), 420
phoneme() (pynlpl.formats.folia.Word method), 420
phonemes() (pynlpl.formats.folia.Word method), 420
PhraseTable (class in pynlpl.formats.moses), 1054
PhraseTableClient (class in pynlpl.formats.moses), 1054
poll() (pynlpl.evaluation.ExperimentPool method), 10
pop() (pynlpl.datatypes.FIFOQueue method), 5
pop() (pynlpl.datatypes.PriorityQueue method), 6
pos() (pynlpl.formats.folia.Word method), 420

1140 Index

PyNLPl Documentation, Release 1.2.8

PosAnnotation (class in pynlpl.formats.folia), 437
poslog() (pynlpl.statistics.Distribution method), 1062
postappend() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 80
postappend() (pynlpl.formats.folia.AbstractElement

method), 31
postappend() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 57
postappend() (pynlpl.formats.folia.AbstractStructureElement

method), 44
postappend() (pynlpl.formats.folia.AbstractTextMarkup

method), 91
postappend() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 68
postappend() (pynlpl.formats.folia.ActorFeature method),

890
postappend() (pynlpl.formats.folia.Alignment method),

1014
postappend() (pynlpl.formats.folia.AlignReference

method), 1025
postappend() (pynlpl.formats.folia.Alternative method),

925
postappend() (pynlpl.formats.folia.AlternativeLayers

method), 936
postappend() (pynlpl.formats.folia.BegindatetimeFeature

method), 901
postappend() (pynlpl.formats.folia.Cell method), 107
postappend() (pynlpl.formats.folia.Chunk method), 523
postappend() (pynlpl.formats.folia.ChunkingLayer

method), 652
postappend() (pynlpl.formats.folia.CoreferenceChain

method), 535
postappend() (pynlpl.formats.folia.CoreferenceLayer

method), 664
postappend() (pynlpl.formats.folia.CoreferenceLink

method), 769
postappend() (pynlpl.formats.folia.Correction method),

948
postappend() (pynlpl.formats.folia.Current method), 958
postappend() (pynlpl.formats.folia.Definition method),

120
postappend() (pynlpl.formats.folia.DependenciesLayer

method), 676
postappend() (pynlpl.formats.folia.Dependency method),

546
postappend() (pynlpl.formats.folia.DependencyDependent

method), 781
postappend() (pynlpl.formats.folia.Description method),

1036
postappend() (pynlpl.formats.folia.Division method), 133
postappend() (pynlpl.formats.folia.DomainAnnotation

method), 433
postappend() (pynlpl.formats.folia.EnddatetimeFeature

method), 912

postappend() (pynlpl.formats.folia.EntitiesLayer
method), 687

postappend() (pynlpl.formats.folia.Entity method), 558
postappend() (pynlpl.formats.folia.Entry method), 146
postappend() (pynlpl.formats.folia.ErrorDetection

method), 969
postappend() (pynlpl.formats.folia.Event method), 159
postappend() (pynlpl.formats.folia.Example method), 172
postappend() (pynlpl.formats.folia.Feature method), 867
postappend() (pynlpl.formats.folia.Figure method), 185
postappend() (pynlpl.formats.folia.Gap method), 196
postappend() (pynlpl.formats.folia.Head method), 209
postappend() (pynlpl.formats.folia.Headspan method),

793
postappend() (pynlpl.formats.folia.LangAnnotation

method), 455
postappend() (pynlpl.formats.folia.LemmaAnnotation

method), 466
postappend() (pynlpl.formats.folia.Linebreak method),

221
postappend() (pynlpl.formats.folia.List method), 235
postappend() (pynlpl.formats.folia.ListItem method), 248
postappend() (pynlpl.formats.folia.Metric method), 1047
postappend() (pynlpl.formats.folia.New method), 980
postappend() (pynlpl.formats.folia.Note method), 261
postappend() (pynlpl.formats.folia.Observation method),

570
postappend() (pynlpl.formats.folia.ObservationLayer

method), 699
postappend() (pynlpl.formats.folia.Original method), 991
postappend() (pynlpl.formats.folia.Paragraph method),

274
postappend() (pynlpl.formats.folia.Part method), 287
postappend() (pynlpl.formats.folia.PhonContent method),

510
postappend() (pynlpl.formats.folia.PosAnnotation

method), 444
postappend() (pynlpl.formats.folia.Predicate method),

581
postappend() (pynlpl.formats.folia.Quote method), 300
postappend() (pynlpl.formats.folia.Reference method),

313
postappend() (pynlpl.formats.folia.Row method), 326
postappend() (pynlpl.formats.folia.SemanticRole

method), 628
postappend() (pynlpl.formats.folia.SemanticRolesLayer

method), 746
postappend() (pynlpl.formats.folia.SenseAnnotation

method), 477
postappend() (pynlpl.formats.folia.Sentence method),

340
postappend() (pynlpl.formats.folia.Sentiment method),

593
postappend() (pynlpl.formats.folia.SentimentLayer

Index 1141

PyNLPl Documentation, Release 1.2.8

method), 711
postappend() (pynlpl.formats.folia.Statement method),

605
postappend() (pynlpl.formats.folia.StatementLayer

method), 723
postappend() (pynlpl.formats.folia.SubjectivityAnnotation

method), 488
postappend() (pynlpl.formats.folia.Suggestion method),

1002
postappend() (pynlpl.formats.folia.SynsetFeature

method), 879
postappend() (pynlpl.formats.folia.SyntacticUnit

method), 616
postappend() (pynlpl.formats.folia.SyntaxLayer method),

734
postappend() (pynlpl.formats.folia.Table method), 353
postappend() (pynlpl.formats.folia.TableHead method),

379
postappend() (pynlpl.formats.folia.Term method), 366
postappend() (pynlpl.formats.folia.Text method), 392
postappend() (pynlpl.formats.folia.TextContent method),

500
postappend() (pynlpl.formats.folia.TextMarkupCorrection

method), 845
postappend() (pynlpl.formats.folia.TextMarkupError

method), 856
postappend() (pynlpl.formats.folia.TextMarkupGap

method), 813
postappend() (pynlpl.formats.folia.TextMarkupString

method), 824
postappend() (pynlpl.formats.folia.TextMarkupStyle

method), 834
postappend() (pynlpl.formats.folia.TimeSegment

method), 640
postappend() (pynlpl.formats.folia.TimingLayer method),

758
postappend() (pynlpl.formats.folia.Whitespace method),

405
postappend() (pynlpl.formats.folia.Word method), 420
precision() (pynlpl.evaluation.ClassEvaluation method),

10
Predicate (class in pynlpl.formats.folia), 573
previous() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 80
previous() (pynlpl.formats.folia.AbstractElement

method), 31
previous() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 57
previous() (pynlpl.formats.folia.AbstractStructureElement

method), 44
previous() (pynlpl.formats.folia.AbstractTextMarkup

method), 91
previous() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 68

previous() (pynlpl.formats.folia.ActorFeature method),
890

previous() (pynlpl.formats.folia.Alignment method),
1014

previous() (pynlpl.formats.folia.AlignReference method),
1025

previous() (pynlpl.formats.folia.Alternative method), 925
previous() (pynlpl.formats.folia.AlternativeLayers

method), 936
previous() (pynlpl.formats.folia.BegindatetimeFeature

method), 901
previous() (pynlpl.formats.folia.Cell method), 107
previous() (pynlpl.formats.folia.Chunk method), 523
previous() (pynlpl.formats.folia.ChunkingLayer method),

652
previous() (pynlpl.formats.folia.CoreferenceChain

method), 535
previous() (pynlpl.formats.folia.CoreferenceLayer

method), 664
previous() (pynlpl.formats.folia.CoreferenceLink

method), 770
previous() (pynlpl.formats.folia.Correction method), 948
previous() (pynlpl.formats.folia.Current method), 958
previous() (pynlpl.formats.folia.Definition method), 120
previous() (pynlpl.formats.folia.DependenciesLayer

method), 676
previous() (pynlpl.formats.folia.Dependency method),

547
previous() (pynlpl.formats.folia.DependencyDependent

method), 781
previous() (pynlpl.formats.folia.Description method),

1036
previous() (pynlpl.formats.folia.Division method), 133
previous() (pynlpl.formats.folia.DomainAnnotation

method), 433
previous() (pynlpl.formats.folia.EnddatetimeFeature

method), 912
previous() (pynlpl.formats.folia.EntitiesLayer method),

687
previous() (pynlpl.formats.folia.Entity method), 558
previous() (pynlpl.formats.folia.Entry method), 146
previous() (pynlpl.formats.folia.ErrorDetection method),

969
previous() (pynlpl.formats.folia.Event method), 159
previous() (pynlpl.formats.folia.Example method), 172
previous() (pynlpl.formats.folia.Feature method), 867
previous() (pynlpl.formats.folia.Figure method), 185
previous() (pynlpl.formats.folia.Gap method), 196
previous() (pynlpl.formats.folia.Head method), 209
previous() (pynlpl.formats.folia.Headspan method), 793
previous() (pynlpl.formats.folia.LangAnnotation

method), 455
previous() (pynlpl.formats.folia.LemmaAnnotation

method), 466

1142 Index

PyNLPl Documentation, Release 1.2.8

previous() (pynlpl.formats.folia.Linebreak method), 222
previous() (pynlpl.formats.folia.List method), 235
previous() (pynlpl.formats.folia.ListItem method), 248
previous() (pynlpl.formats.folia.Metric method), 1047
previous() (pynlpl.formats.folia.New method), 980
previous() (pynlpl.formats.folia.Note method), 261
previous() (pynlpl.formats.folia.Observation method),

570
previous() (pynlpl.formats.folia.ObservationLayer

method), 699
previous() (pynlpl.formats.folia.Original method), 991
previous() (pynlpl.formats.folia.Paragraph method), 274
previous() (pynlpl.formats.folia.Part method), 287
previous() (pynlpl.formats.folia.PhonContent method),

510
previous() (pynlpl.formats.folia.PosAnnotation method),

444
previous() (pynlpl.formats.folia.Predicate method), 581
previous() (pynlpl.formats.folia.Quote method), 300
previous() (pynlpl.formats.folia.Reference method), 313
previous() (pynlpl.formats.folia.Row method), 326
previous() (pynlpl.formats.folia.SemanticRole method),

628
previous() (pynlpl.formats.folia.SemanticRolesLayer

method), 746
previous() (pynlpl.formats.folia.SenseAnnotation

method), 477
previous() (pynlpl.formats.folia.Sentence method), 340
previous() (pynlpl.formats.folia.Sentiment method), 593
previous() (pynlpl.formats.folia.SentimentLayer method),

711
previous() (pynlpl.formats.folia.Statement method), 605
previous() (pynlpl.formats.folia.StatementLayer method),

723
previous() (pynlpl.formats.folia.SubjectivityAnnotation

method), 488
previous() (pynlpl.formats.folia.Suggestion method),

1002
previous() (pynlpl.formats.folia.SynsetFeature method),

879
previous() (pynlpl.formats.folia.SyntacticUnit method),

616
previous() (pynlpl.formats.folia.SyntaxLayer method),

734
previous() (pynlpl.formats.folia.Table method), 353
previous() (pynlpl.formats.folia.TableHead method), 379
previous() (pynlpl.formats.folia.Term method), 366
previous() (pynlpl.formats.folia.Text method), 392
previous() (pynlpl.formats.folia.TextContent method),

500
previous() (pynlpl.formats.folia.TextMarkupCorrection

method), 845
previous() (pynlpl.formats.folia.TextMarkupError

method), 856

previous() (pynlpl.formats.folia.TextMarkupGap
method), 813

previous() (pynlpl.formats.folia.TextMarkupString
method), 824

previous() (pynlpl.formats.folia.TextMarkupStyle
method), 834

previous() (pynlpl.formats.folia.TimeSegment method),
640

previous() (pynlpl.formats.folia.TimingLayer method),
758

previous() (pynlpl.formats.folia.Whitespace method), 405
previous() (pynlpl.formats.folia.Word method), 420
PRIMARYELEMENT (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
PRIMARYELEMENT (pynlpl.formats.folia.AbstractElement

attribute), 26
PRIMARYELEMENT (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
PRIMARYELEMENT (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
PRIMARYELEMENT (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
PRIMARYELEMENT (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
PRIMARYELEMENT (pynlpl.formats.folia.ActorFeature

attribute), 885
PRIMARYELEMENT (pynlpl.formats.folia.Alignment

attribute), 1009
PRIMARYELEMENT (pynlpl.formats.folia.AlignReference

attribute), 1020
PRIMARYELEMENT (pynlpl.formats.folia.Alternative

attribute), 919
PRIMARYELEMENT (pynlpl.formats.folia.AlternativeLayers

attribute), 931
PRIMARYELEMENT (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
PRIMARYELEMENT (pynlpl.formats.folia.Cell at-

tribute), 100
PRIMARYELEMENT (pynlpl.formats.folia.Chunk at-

tribute), 518
PRIMARYELEMENT (pynlpl.formats.folia.ChunkingLayer

attribute), 646
PRIMARYELEMENT (pynlpl.formats.folia.CoreferenceChain

attribute), 529
PRIMARYELEMENT (pynlpl.formats.folia.CoreferenceLayer

attribute), 658
PRIMARYELEMENT (pynlpl.formats.folia.CoreferenceLink

attribute), 764
PRIMARYELEMENT (pynlpl.formats.folia.Correction

attribute), 944
PRIMARYELEMENT (pynlpl.formats.folia.Current at-

tribute), 953
PRIMARYELEMENT (pynlpl.formats.folia.Definition

attribute), 113

Index 1143

PyNLPl Documentation, Release 1.2.8

PRIMARYELEMENT (pynlpl.formats.folia.DependenciesLayer
attribute), 670

PRIMARYELEMENT (pynlpl.formats.folia.Dependency
attribute), 541

PRIMARYELEMENT (pynlpl.formats.folia.DependencyDependent
attribute), 776

PRIMARYELEMENT (pynlpl.formats.folia.Description
attribute), 1031

PRIMARYELEMENT (pynlpl.formats.folia.Division at-
tribute), 126

PRIMARYELEMENT (pynlpl.formats.folia.DomainAnnotation
attribute), 428

PRIMARYELEMENT (pynlpl.formats.folia.EnddatetimeFeature
attribute), 907

PRIMARYELEMENT (pynlpl.formats.folia.EntitiesLayer
attribute), 682

PRIMARYELEMENT (pynlpl.formats.folia.Entity
attribute), 553

PRIMARYELEMENT (pynlpl.formats.folia.Entry
attribute), 139

PRIMARYELEMENT (pynlpl.formats.folia.ErrorDetection
attribute), 964

PRIMARYELEMENT (pynlpl.formats.folia.Event
attribute), 152

PRIMARYELEMENT (pynlpl.formats.folia.Example at-
tribute), 165

PRIMARYELEMENT (pynlpl.formats.folia.Feature at-
tribute), 862

PRIMARYELEMENT (pynlpl.formats.folia.Figure at-
tribute), 178

PRIMARYELEMENT (pynlpl.formats.folia.Gap at-
tribute), 191

PRIMARYELEMENT (pynlpl.formats.folia.Head at-
tribute), 202

PRIMARYELEMENT (pynlpl.formats.folia.Headspan
attribute), 788

PRIMARYELEMENT (pynlpl.formats.folia.LangAnnotation
attribute), 450

PRIMARYELEMENT (pynlpl.formats.folia.LemmaAnnotation
attribute), 461

PRIMARYELEMENT (pynlpl.formats.folia.Linebreak
attribute), 215

PRIMARYELEMENT (pynlpl.formats.folia.List at-
tribute), 228

PRIMARYELEMENT (pynlpl.formats.folia.ListItem at-
tribute), 241

PRIMARYELEMENT (pynlpl.formats.folia.Metric at-
tribute), 1042

PRIMARYELEMENT (pynlpl.formats.folia.New at-
tribute), 975

PRIMARYELEMENT (pynlpl.formats.folia.Note at-
tribute), 254

PRIMARYELEMENT (pynlpl.formats.folia.Observation
attribute), 564

PRIMARYELEMENT (pynlpl.formats.folia.ObservationLayer
attribute), 694

PRIMARYELEMENT (pynlpl.formats.folia.Original at-
tribute), 986

PRIMARYELEMENT (pynlpl.formats.folia.Paragraph
attribute), 267

PRIMARYELEMENT (pynlpl.formats.folia.Part at-
tribute), 280

PRIMARYELEMENT (pynlpl.formats.folia.PhonContent
attribute), 506

PRIMARYELEMENT (pynlpl.formats.folia.PosAnnotation
attribute), 439

PRIMARYELEMENT (pynlpl.formats.folia.Predicate at-
tribute), 576

PRIMARYELEMENT (pynlpl.formats.folia.Quote
attribute), 293

PRIMARYELEMENT (pynlpl.formats.folia.Reference
attribute), 306

PRIMARYELEMENT (pynlpl.formats.folia.Row at-
tribute), 319

PRIMARYELEMENT (pynlpl.formats.folia.SemanticRole
attribute), 623

PRIMARYELEMENT (pynlpl.formats.folia.SemanticRolesLayer
attribute), 741

PRIMARYELEMENT (pynlpl.formats.folia.SenseAnnotation
attribute), 472

PRIMARYELEMENT (pynlpl.formats.folia.Sentence at-
tribute), 333

PRIMARYELEMENT (pynlpl.formats.folia.Sentiment
attribute), 588

PRIMARYELEMENT (pynlpl.formats.folia.SentimentLayer
attribute), 705

PRIMARYELEMENT (pynlpl.formats.folia.Statement
attribute), 599

PRIMARYELEMENT (pynlpl.formats.folia.StatementLayer
attribute), 717

PRIMARYELEMENT (pynlpl.formats.folia.SubjectivityAnnotation
attribute), 483

PRIMARYELEMENT (pynlpl.formats.folia.Suggestion
attribute), 997

PRIMARYELEMENT (pynlpl.formats.folia.SynsetFeature
attribute), 873

PRIMARYELEMENT (pynlpl.formats.folia.SyntacticUnit
attribute), 611

PRIMARYELEMENT (pynlpl.formats.folia.SyntaxLayer
attribute), 729

PRIMARYELEMENT (pynlpl.formats.folia.Table
attribute), 347

PRIMARYELEMENT (pynlpl.formats.folia.TableHead
attribute), 373

PRIMARYELEMENT (pynlpl.formats.folia.Term at-
tribute), 360

PRIMARYELEMENT (pynlpl.formats.folia.Text at-
tribute), 386

1144 Index

PyNLPl Documentation, Release 1.2.8

PRIMARYELEMENT (pynlpl.formats.folia.TextContent
attribute), 495

PRIMARYELEMENT (pynlpl.formats.folia.TextMarkupCorrection
attribute), 840

PRIMARYELEMENT (pynlpl.formats.folia.TextMarkupError
attribute), 851

PRIMARYELEMENT (pynlpl.formats.folia.TextMarkupGap
attribute), 808

PRIMARYELEMENT (pynlpl.formats.folia.TextMarkupString
attribute), 819

PRIMARYELEMENT (pynlpl.formats.folia.TextMarkupStyle
attribute), 830

PRIMARYELEMENT (pynlpl.formats.folia.TimeSegment
attribute), 634

PRIMARYELEMENT (pynlpl.formats.folia.TimingLayer
attribute), 752

PRIMARYELEMENT (pynlpl.formats.folia.Whitespace
attribute), 399

PRIMARYELEMENT (pynlpl.formats.folia.Word
attribute), 413

print_dptable() (pynlpl.statistics.HiddenMarkovModel
method), 1063

PRINTABLE (pynlpl.formats.folia.AbstractAnnotationLayer
attribute), 75

PRINTABLE (pynlpl.formats.folia.AbstractElement at-
tribute), 26

PRINTABLE (pynlpl.formats.folia.AbstractSpanAnnotation
attribute), 52

PRINTABLE (pynlpl.formats.folia.AbstractStructureElement
attribute), 37

PRINTABLE (pynlpl.formats.folia.AbstractTextMarkup
attribute), 86

PRINTABLE (pynlpl.formats.folia.AbstractTokenAnnotation
attribute), 63

PRINTABLE (pynlpl.formats.folia.ActorFeature at-
tribute), 885

PRINTABLE (pynlpl.formats.folia.Alignment attribute),
1009

PRINTABLE (pynlpl.formats.folia.AlignReference at-
tribute), 1020

PRINTABLE (pynlpl.formats.folia.Alternative attribute),
919

PRINTABLE (pynlpl.formats.folia.AlternativeLayers at-
tribute), 931

PRINTABLE (pynlpl.formats.folia.BegindatetimeFeature
attribute), 896

PRINTABLE (pynlpl.formats.folia.Cell attribute), 100
PRINTABLE (pynlpl.formats.folia.Chunk attribute), 518
PRINTABLE (pynlpl.formats.folia.ChunkingLayer at-

tribute), 646
PRINTABLE (pynlpl.formats.folia.CoreferenceChain at-

tribute), 529
PRINTABLE (pynlpl.formats.folia.CoreferenceLayer at-

tribute), 658

PRINTABLE (pynlpl.formats.folia.CoreferenceLink at-
tribute), 764

PRINTABLE (pynlpl.formats.folia.Correction attribute),
944

PRINTABLE (pynlpl.formats.folia.Current attribute), 953
PRINTABLE (pynlpl.formats.folia.Definition attribute),

113
PRINTABLE (pynlpl.formats.folia.DependenciesLayer

attribute), 670
PRINTABLE (pynlpl.formats.folia.Dependency at-

tribute), 541
PRINTABLE (pynlpl.formats.folia.DependencyDependent

attribute), 776
PRINTABLE (pynlpl.formats.folia.Description attribute),

1031
PRINTABLE (pynlpl.formats.folia.Division attribute),

126
PRINTABLE (pynlpl.formats.folia.DomainAnnotation

attribute), 428
PRINTABLE (pynlpl.formats.folia.EnddatetimeFeature

attribute), 907
PRINTABLE (pynlpl.formats.folia.EntitiesLayer at-

tribute), 682
PRINTABLE (pynlpl.formats.folia.Entity attribute), 553
PRINTABLE (pynlpl.formats.folia.Entry attribute), 139
PRINTABLE (pynlpl.formats.folia.ErrorDetection

attribute), 964
PRINTABLE (pynlpl.formats.folia.Event attribute), 152
PRINTABLE (pynlpl.formats.folia.Example attribute),

165
PRINTABLE (pynlpl.formats.folia.Feature attribute), 862
PRINTABLE (pynlpl.formats.folia.Figure attribute), 178
PRINTABLE (pynlpl.formats.folia.Gap attribute), 191
PRINTABLE (pynlpl.formats.folia.Head attribute), 202
PRINTABLE (pynlpl.formats.folia.Headspan attribute),

788
PRINTABLE (pynlpl.formats.folia.LangAnnotation at-

tribute), 451
PRINTABLE (pynlpl.formats.folia.LemmaAnnotation at-

tribute), 462
PRINTABLE (pynlpl.formats.folia.Linebreak attribute),

215
PRINTABLE (pynlpl.formats.folia.List attribute), 228
PRINTABLE (pynlpl.formats.folia.ListItem attribute),

241
PRINTABLE (pynlpl.formats.folia.Metric attribute),

1042
PRINTABLE (pynlpl.formats.folia.New attribute), 975
PRINTABLE (pynlpl.formats.folia.Note attribute), 254
PRINTABLE (pynlpl.formats.folia.Observation at-

tribute), 564
PRINTABLE (pynlpl.formats.folia.ObservationLayer at-

tribute), 694
PRINTABLE (pynlpl.formats.folia.Original attribute),

Index 1145

PyNLPl Documentation, Release 1.2.8

986
PRINTABLE (pynlpl.formats.folia.Paragraph attribute),

267
PRINTABLE (pynlpl.formats.folia.Part attribute), 280
PRINTABLE (pynlpl.formats.folia.PhonContent at-

tribute), 506
PRINTABLE (pynlpl.formats.folia.PosAnnotation

attribute), 440
PRINTABLE (pynlpl.formats.folia.Predicate attribute),

576
PRINTABLE (pynlpl.formats.folia.Quote attribute), 293
PRINTABLE (pynlpl.formats.folia.Reference attribute),

306
PRINTABLE (pynlpl.formats.folia.Row attribute), 319
PRINTABLE (pynlpl.formats.folia.SemanticRole at-

tribute), 623
PRINTABLE (pynlpl.formats.folia.SemanticRolesLayer

attribute), 741
PRINTABLE (pynlpl.formats.folia.SenseAnnotation at-

tribute), 473
PRINTABLE (pynlpl.formats.folia.Sentence attribute),

333
PRINTABLE (pynlpl.formats.folia.Sentiment attribute),

588
PRINTABLE (pynlpl.formats.folia.SentimentLayer at-

tribute), 705
PRINTABLE (pynlpl.formats.folia.Statement attribute),

599
PRINTABLE (pynlpl.formats.folia.StatementLayer at-

tribute), 717
PRINTABLE (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 484
PRINTABLE (pynlpl.formats.folia.Suggestion attribute),

997
PRINTABLE (pynlpl.formats.folia.SynsetFeature at-

tribute), 874
PRINTABLE (pynlpl.formats.folia.SyntacticUnit at-

tribute), 611
PRINTABLE (pynlpl.formats.folia.SyntaxLayer at-

tribute), 729
PRINTABLE (pynlpl.formats.folia.Table attribute), 347
PRINTABLE (pynlpl.formats.folia.TableHead attribute),

373
PRINTABLE (pynlpl.formats.folia.Term attribute), 360
PRINTABLE (pynlpl.formats.folia.Text attribute), 386
PRINTABLE (pynlpl.formats.folia.TextContent at-

tribute), 495
PRINTABLE (pynlpl.formats.folia.TextMarkupCorrection

attribute), 840
PRINTABLE (pynlpl.formats.folia.TextMarkupError at-

tribute), 851
PRINTABLE (pynlpl.formats.folia.TextMarkupGap at-

tribute), 808
PRINTABLE (pynlpl.formats.folia.TextMarkupString at-

tribute), 819
PRINTABLE (pynlpl.formats.folia.TextMarkupStyle at-

tribute), 830
PRINTABLE (pynlpl.formats.folia.TimeSegment at-

tribute), 634
PRINTABLE (pynlpl.formats.folia.TimingLayer at-

tribute), 752
PRINTABLE (pynlpl.formats.folia.Whitespace attribute),

399
PRINTABLE (pynlpl.formats.folia.Word attribute), 413
PriorityQueue (class in pynlpl.datatypes), 5
prob() (pynlpl.lm.lm.ARPALanguageModel.NgramsProbs

method), 1057
ProcessFailed, 10
product() (in module pynlpl.statistics), 1064
prune() (pynlpl.datatypes.PriorityQueue method), 6
prune() (pynlpl.search.AbstractSearch method), 1059
prune() (pynlpl.search.BeamedBestFirstSearch method),

1060
prune() (pynlpl.search.EarlyEagerBeamSearch method),

1060
prune() (pynlpl.search.StochasticBeamSearch method),

1060
prunebyscore() (pynlpl.datatypes.PriorityQueue method),

6
publisher() (pynlpl.formats.folia.Document method), 20
pynlpl.common (module), 3
pynlpl.datatypes (module), 5
pynlpl.evaluation (module), 9
pynlpl.formats.cgn (module), 1053
pynlpl.formats.folia (module), 11
pynlpl.formats.giza (module), 1053
pynlpl.formats.moses (module), 1054
pynlpl.formats.sonar (module), 1054
pynlpl.formats.taggerdata (module), 1055
pynlpl.formats.timbl (module), 1055
pynlpl.lm.client (module), 1058
pynlpl.lm.lm (module), 1057
pynlpl.lm.srilm (module), 1057
pynlpl.search (module), 1059
pynlpl.statistics (module), 1062
pynlpl.textprocessors (module), 1066

Q
Query (class in pynlpl.formats.fql), 802
Queue (class in pynlpl.datatypes), 6
Quote (class in pynlpl.formats.folia), 290

R
randomprune() (pynlpl.datatypes.PriorityQueue method),

6
Reader (class in pynlpl.formats.folia), 804
recall() (pynlpl.evaluation.ClassEvaluation method), 10
reducible() (pynlpl.statistics.MarkovChain method), 1063

1146 Index

PyNLPl Documentation, Release 1.2.8

Reference (class in pynlpl.formats.folia), 303
ReflowText (class in pynlpl.textprocessors), 1066
relaxng() (pynlpl.formats.folia.AbstractAnnotationLayer

class method), 80
relaxng() (pynlpl.formats.folia.AbstractElement class

method), 31
relaxng() (pynlpl.formats.folia.AbstractSpanAnnotation

class method), 57
relaxng() (pynlpl.formats.folia.AbstractStructureElement

class method), 44
relaxng() (pynlpl.formats.folia.AbstractTextMarkup class

method), 91
relaxng() (pynlpl.formats.folia.AbstractTokenAnnotation

class method), 68
relaxng() (pynlpl.formats.folia.ActorFeature class

method), 890
relaxng() (pynlpl.formats.folia.Alignment class method),

1014
relaxng() (pynlpl.formats.folia.AlignReference class

method), 1025
relaxng() (pynlpl.formats.folia.Alternative class method),

925
relaxng() (pynlpl.formats.folia.AlternativeLayers class

method), 936
relaxng() (pynlpl.formats.folia.BegindatetimeFeature

class method), 901
relaxng() (pynlpl.formats.folia.Cell class method), 107
relaxng() (pynlpl.formats.folia.Chunk class method), 523
relaxng() (pynlpl.formats.folia.ChunkingLayer class

method), 652
relaxng() (pynlpl.formats.folia.CoreferenceChain class

method), 535
relaxng() (pynlpl.formats.folia.CoreferenceLayer class

method), 664
relaxng() (pynlpl.formats.folia.CoreferenceLink class

method), 770
relaxng() (pynlpl.formats.folia.Correction class method),

948
relaxng() (pynlpl.formats.folia.Current class method),

959
relaxng() (pynlpl.formats.folia.Definition class method),

120
relaxng() (pynlpl.formats.folia.DependenciesLayer class

method), 676
relaxng() (pynlpl.formats.folia.Dependency class

method), 547
relaxng() (pynlpl.formats.folia.DependencyDependent

class method), 782
relaxng() (pynlpl.formats.folia.Description class method),

1037
relaxng() (pynlpl.formats.folia.Division class method),

133
relaxng() (pynlpl.formats.folia.DomainAnnotation class

method), 434

relaxng() (pynlpl.formats.folia.EnddatetimeFeature class
method), 912

relaxng() (pynlpl.formats.folia.EntitiesLayer class
method), 688

relaxng() (pynlpl.formats.folia.Entity class method), 558
relaxng() (pynlpl.formats.folia.Entry class method), 146
relaxng() (pynlpl.formats.folia.ErrorDetection class

method), 970
relaxng() (pynlpl.formats.folia.Event class method), 159
relaxng() (pynlpl.formats.folia.Example class method),

172
relaxng() (pynlpl.formats.folia.Feature class method), 868
relaxng() (pynlpl.formats.folia.Figure class method), 185
relaxng() (pynlpl.formats.folia.Gap class method), 196
relaxng() (pynlpl.formats.folia.Head class method), 209
relaxng() (pynlpl.formats.folia.Headspan class method),

793
relaxng() (pynlpl.formats.folia.LangAnnotation class

method), 456
relaxng() (pynlpl.formats.folia.LemmaAnnotation class

method), 467
relaxng() (pynlpl.formats.folia.Linebreak class method),

222
relaxng() (pynlpl.formats.folia.List class method), 235
relaxng() (pynlpl.formats.folia.ListItem class method),

248
relaxng() (pynlpl.formats.folia.Metric class method),

1048
relaxng() (pynlpl.formats.folia.New class method), 981
relaxng() (pynlpl.formats.folia.Note class method), 261
relaxng() (pynlpl.formats.folia.Observation class

method), 570
relaxng() (pynlpl.formats.folia.ObservationLayer class

method), 699
relaxng() (pynlpl.formats.folia.Original class method),

992
relaxng() (pynlpl.formats.folia.Paragraph class method),

274
relaxng() (pynlpl.formats.folia.Part class method), 287
relaxng() (pynlpl.formats.folia.PhonContent class

method), 510
relaxng() (pynlpl.formats.folia.PosAnnotation class

method), 445
relaxng() (pynlpl.formats.folia.Predicate class method),

582
relaxng() (pynlpl.formats.folia.Quote class method), 300
relaxng() (pynlpl.formats.folia.Reference class method),

313
relaxng() (pynlpl.formats.folia.Row class method), 326
relaxng() (pynlpl.formats.folia.SemanticRole class

method), 628
relaxng() (pynlpl.formats.folia.SemanticRolesLayer class

method), 746
relaxng() (pynlpl.formats.folia.SenseAnnotation class

Index 1147

PyNLPl Documentation, Release 1.2.8

method), 478
relaxng() (pynlpl.formats.folia.Sentence class method),

341
relaxng() (pynlpl.formats.folia.Sentiment class method),

593
relaxng() (pynlpl.formats.folia.SentimentLayer class

method), 711
relaxng() (pynlpl.formats.folia.Statement class method),

605
relaxng() (pynlpl.formats.folia.StatementLayer class

method), 723
relaxng() (pynlpl.formats.folia.SubjectivityAnnotation

class method), 489
relaxng() (pynlpl.formats.folia.Suggestion class method),

1003
relaxng() (pynlpl.formats.folia.SynsetFeature class

method), 879
relaxng() (pynlpl.formats.folia.SyntacticUnit class

method), 617
relaxng() (pynlpl.formats.folia.SyntaxLayer class

method), 735
relaxng() (pynlpl.formats.folia.Table class method), 354
relaxng() (pynlpl.formats.folia.TableHead class method),

380
relaxng() (pynlpl.formats.folia.Term class method), 367
relaxng() (pynlpl.formats.folia.Text class method), 393
relaxng() (pynlpl.formats.folia.TextContent class

method), 500
relaxng() (pynlpl.formats.folia.TextMarkupCorrection

class method), 845
relaxng() (pynlpl.formats.folia.TextMarkupError class

method), 856
relaxng() (pynlpl.formats.folia.TextMarkupGap class

method), 813
relaxng() (pynlpl.formats.folia.TextMarkupString class

method), 824
relaxng() (pynlpl.formats.folia.TextMarkupStyle class

method), 835
relaxng() (pynlpl.formats.folia.TimeSegment class

method), 640
relaxng() (pynlpl.formats.folia.TimingLayer class

method), 758
relaxng() (pynlpl.formats.folia.Whitespace class method),

406
relaxng() (pynlpl.formats.folia.Word class method), 421
remove() (pynlpl.datatypes.PatternSet method), 5
remove() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 80
remove() (pynlpl.formats.folia.AbstractElement method),

31
remove() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 57
remove() (pynlpl.formats.folia.AbstractStructureElement

method), 44

remove() (pynlpl.formats.folia.AbstractTextMarkup
method), 91

remove() (pynlpl.formats.folia.AbstractTokenAnnotation
method), 69

remove() (pynlpl.formats.folia.ActorFeature method),
890

remove() (pynlpl.formats.folia.Alignment method), 1014
remove() (pynlpl.formats.folia.AlignReference method),

1025
remove() (pynlpl.formats.folia.Alternative method), 925
remove() (pynlpl.formats.folia.AlternativeLayers

method), 936
remove() (pynlpl.formats.folia.BegindatetimeFeature

method), 901
remove() (pynlpl.formats.folia.Cell method), 107
remove() (pynlpl.formats.folia.Chunk method), 523
remove() (pynlpl.formats.folia.ChunkingLayer method),

652
remove() (pynlpl.formats.folia.CoreferenceChain

method), 535
remove() (pynlpl.formats.folia.CoreferenceLayer

method), 664
remove() (pynlpl.formats.folia.CoreferenceLink method),

770
remove() (pynlpl.formats.folia.Correction method), 948
remove() (pynlpl.formats.folia.Current method), 959
remove() (pynlpl.formats.folia.Definition method), 120
remove() (pynlpl.formats.folia.DependenciesLayer

method), 676
remove() (pynlpl.formats.folia.Dependency method), 547
remove() (pynlpl.formats.folia.DependencyDependent

method), 782
remove() (pynlpl.formats.folia.Description method), 1037
remove() (pynlpl.formats.folia.Division method), 133
remove() (pynlpl.formats.folia.DomainAnnotation

method), 434
remove() (pynlpl.formats.folia.EnddatetimeFeature

method), 912
remove() (pynlpl.formats.folia.EntitiesLayer method),

688
remove() (pynlpl.formats.folia.Entity method), 558
remove() (pynlpl.formats.folia.Entry method), 146
remove() (pynlpl.formats.folia.ErrorDetection method),

970
remove() (pynlpl.formats.folia.Event method), 159
remove() (pynlpl.formats.folia.Example method), 172
remove() (pynlpl.formats.folia.Feature method), 868
remove() (pynlpl.formats.folia.Figure method), 185
remove() (pynlpl.formats.folia.Gap method), 196
remove() (pynlpl.formats.folia.Head method), 209
remove() (pynlpl.formats.folia.Headspan method), 793
remove() (pynlpl.formats.folia.LangAnnotation method),

456
remove() (pynlpl.formats.folia.LemmaAnnotation

1148 Index

PyNLPl Documentation, Release 1.2.8

method), 467
remove() (pynlpl.formats.folia.Linebreak method), 222
remove() (pynlpl.formats.folia.List method), 235
remove() (pynlpl.formats.folia.ListItem method), 248
remove() (pynlpl.formats.folia.Metric method), 1048
remove() (pynlpl.formats.folia.New method), 981
remove() (pynlpl.formats.folia.Note method), 261
remove() (pynlpl.formats.folia.Observation method), 570
remove() (pynlpl.formats.folia.ObservationLayer

method), 699
remove() (pynlpl.formats.folia.Original method), 992
remove() (pynlpl.formats.folia.Paragraph method), 274
remove() (pynlpl.formats.folia.Part method), 287
remove() (pynlpl.formats.folia.PhonContent method),

510
remove() (pynlpl.formats.folia.PosAnnotation method),

445
remove() (pynlpl.formats.folia.Predicate method), 582
remove() (pynlpl.formats.folia.Quote method), 300
remove() (pynlpl.formats.folia.Reference method), 313
remove() (pynlpl.formats.folia.Row method), 326
remove() (pynlpl.formats.folia.SemanticRole method),

628
remove() (pynlpl.formats.folia.SemanticRolesLayer

method), 746
remove() (pynlpl.formats.folia.SenseAnnotation method),

478
remove() (pynlpl.formats.folia.Sentence method), 341
remove() (pynlpl.formats.folia.Sentiment method), 593
remove() (pynlpl.formats.folia.SentimentLayer method),

711
remove() (pynlpl.formats.folia.Statement method), 605
remove() (pynlpl.formats.folia.StatementLayer method),

723
remove() (pynlpl.formats.folia.SubjectivityAnnotation

method), 489
remove() (pynlpl.formats.folia.Suggestion method), 1003
remove() (pynlpl.formats.folia.SynsetFeature method),

879
remove() (pynlpl.formats.folia.SyntacticUnit method),

617
remove() (pynlpl.formats.folia.SyntaxLayer method), 735
remove() (pynlpl.formats.folia.Table method), 354
remove() (pynlpl.formats.folia.TableHead method), 380
remove() (pynlpl.formats.folia.Term method), 367
remove() (pynlpl.formats.folia.Text method), 393
remove() (pynlpl.formats.folia.TextContent method), 500
remove() (pynlpl.formats.folia.TextMarkupCorrection

method), 845
remove() (pynlpl.formats.folia.TextMarkupError

method), 856
remove() (pynlpl.formats.folia.TextMarkupGap method),

813

remove() (pynlpl.formats.folia.TextMarkupString
method), 824

remove() (pynlpl.formats.folia.TextMarkupStyle
method), 835

remove() (pynlpl.formats.folia.TimeSegment method),
640

remove() (pynlpl.formats.folia.TimingLayer method),
758

remove() (pynlpl.formats.folia.Whitespace method), 406
remove() (pynlpl.formats.folia.Word method), 421
replace() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 81
replace() (pynlpl.formats.folia.AbstractElement method),

31
replace() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 58
replace() (pynlpl.formats.folia.AbstractStructureElement

method), 44
replace() (pynlpl.formats.folia.AbstractTextMarkup

method), 91
replace() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 69
replace() (pynlpl.formats.folia.ActorFeature method),

890
replace() (pynlpl.formats.folia.Alignment method), 1014
replace() (pynlpl.formats.folia.AlignReference method),

1025
replace() (pynlpl.formats.folia.Alternative method), 925
replace() (pynlpl.formats.folia.AlternativeLayers

method), 937
replace() (pynlpl.formats.folia.BegindatetimeFeature

method), 901
replace() (pynlpl.formats.folia.Cell method), 107
replace() (pynlpl.formats.folia.Chunk method), 524
replace() (pynlpl.formats.folia.ChunkingLayer method),

652
replace() (pynlpl.formats.folia.CoreferenceChain

method), 535
replace() (pynlpl.formats.folia.CoreferenceLayer

method), 664
replace() (pynlpl.formats.folia.CoreferenceLink method),

770
replace() (pynlpl.formats.folia.Correction method), 948
replace() (pynlpl.formats.folia.Current method), 959
replace() (pynlpl.formats.folia.Definition method), 120
replace() (pynlpl.formats.folia.DependenciesLayer

method), 676
replace() (pynlpl.formats.folia.Dependency method), 547
replace() (pynlpl.formats.folia.DependencyDependent

method), 782
replace() (pynlpl.formats.folia.Description method), 1037
replace() (pynlpl.formats.folia.Division method), 133
replace() (pynlpl.formats.folia.DomainAnnotation

method), 434

Index 1149

PyNLPl Documentation, Release 1.2.8

replace() (pynlpl.formats.folia.EnddatetimeFeature
method), 912

replace() (pynlpl.formats.folia.EntitiesLayer method),
688

replace() (pynlpl.formats.folia.Entity method), 558
replace() (pynlpl.formats.folia.Entry method), 146
replace() (pynlpl.formats.folia.ErrorDetection method),

970
replace() (pynlpl.formats.folia.Event method), 159
replace() (pynlpl.formats.folia.Example method), 172
replace() (pynlpl.formats.folia.Feature method), 868
replace() (pynlpl.formats.folia.Figure method), 185
replace() (pynlpl.formats.folia.Gap method), 196
replace() (pynlpl.formats.folia.Head method), 209
replace() (pynlpl.formats.folia.Headspan method), 793
replace() (pynlpl.formats.folia.LangAnnotation method),

456
replace() (pynlpl.formats.folia.LemmaAnnotation

method), 467
replace() (pynlpl.formats.folia.Linebreak method), 222
replace() (pynlpl.formats.folia.List method), 235
replace() (pynlpl.formats.folia.ListItem method), 248
replace() (pynlpl.formats.folia.Metric method), 1048
replace() (pynlpl.formats.folia.New method), 981
replace() (pynlpl.formats.folia.Note method), 261
replace() (pynlpl.formats.folia.Observation method), 570
replace() (pynlpl.formats.folia.ObservationLayer

method), 700
replace() (pynlpl.formats.folia.Original method), 992
replace() (pynlpl.formats.folia.Paragraph method), 274
replace() (pynlpl.formats.folia.Part method), 287
replace() (pynlpl.formats.folia.PhonContent method), 510
replace() (pynlpl.formats.folia.PosAnnotation method),

445
replace() (pynlpl.formats.folia.Predicate method), 582
replace() (pynlpl.formats.folia.Quote method), 300
replace() (pynlpl.formats.folia.Reference method), 313
replace() (pynlpl.formats.folia.Row method), 326
replace() (pynlpl.formats.folia.SemanticRole method),

628
replace() (pynlpl.formats.folia.SemanticRolesLayer

method), 747
replace() (pynlpl.formats.folia.SenseAnnotation method),

478
replace() (pynlpl.formats.folia.Sentence method), 341
replace() (pynlpl.formats.folia.Sentiment method), 593
replace() (pynlpl.formats.folia.SentimentLayer method),

711
replace() (pynlpl.formats.folia.Statement method), 605
replace() (pynlpl.formats.folia.StatementLayer method),

723
replace() (pynlpl.formats.folia.SubjectivityAnnotation

method), 489
replace() (pynlpl.formats.folia.Suggestion method), 1003

replace() (pynlpl.formats.folia.SynsetFeature method),
879

replace() (pynlpl.formats.folia.SyntacticUnit method),
617

replace() (pynlpl.formats.folia.SyntaxLayer method), 735
replace() (pynlpl.formats.folia.Table method), 354
replace() (pynlpl.formats.folia.TableHead method), 380
replace() (pynlpl.formats.folia.Term method), 367
replace() (pynlpl.formats.folia.Text method), 393
replace() (pynlpl.formats.folia.TextContent method), 500
replace() (pynlpl.formats.folia.TextMarkupCorrection

method), 845
replace() (pynlpl.formats.folia.TextMarkupError

method), 856
replace() (pynlpl.formats.folia.TextMarkupGap method),

813
replace() (pynlpl.formats.folia.TextMarkupString

method), 824
replace() (pynlpl.formats.folia.TextMarkupStyle

method), 835
replace() (pynlpl.formats.folia.TimeSegment method),

640
replace() (pynlpl.formats.folia.TimingLayer method), 758
replace() (pynlpl.formats.folia.Whitespace method), 406
replace() (pynlpl.formats.folia.Word method), 421
REQUIRED_ATTRIBS (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
REQUIRED_ATTRIBS (pynlpl.formats.folia.AbstractElement

attribute), 26
REQUIRED_ATTRIBS (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
REQUIRED_ATTRIBS (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
REQUIRED_ATTRIBS (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
REQUIRED_ATTRIBS (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
REQUIRED_ATTRIBS (pynlpl.formats.folia.ActorFeature

attribute), 885
REQUIRED_ATTRIBS (pynlpl.formats.folia.Alignment

attribute), 1009
REQUIRED_ATTRIBS (pynlpl.formats.folia.AlignReference

attribute), 1020
REQUIRED_ATTRIBS (pynlpl.formats.folia.Alternative

attribute), 919
REQUIRED_ATTRIBS (pynlpl.formats.folia.AlternativeLayers

attribute), 931
REQUIRED_ATTRIBS (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
REQUIRED_ATTRIBS (pynlpl.formats.folia.Cell at-

tribute), 100
REQUIRED_ATTRIBS (pynlpl.formats.folia.Chunk at-

tribute), 518
REQUIRED_ATTRIBS (pynlpl.formats.folia.ChunkingLayer

1150 Index

PyNLPl Documentation, Release 1.2.8

attribute), 646
REQUIRED_ATTRIBS (pynlpl.formats.folia.CoreferenceChain

attribute), 529
REQUIRED_ATTRIBS (pynlpl.formats.folia.CoreferenceLayer

attribute), 658
REQUIRED_ATTRIBS (pynlpl.formats.folia.CoreferenceLink

attribute), 764
REQUIRED_ATTRIBS (pynlpl.formats.folia.Correction

attribute), 944
REQUIRED_ATTRIBS (pynlpl.formats.folia.Current at-

tribute), 953
REQUIRED_ATTRIBS (pynlpl.formats.folia.Definition

attribute), 113
REQUIRED_ATTRIBS (pynlpl.formats.folia.DependenciesLayer

attribute), 670
REQUIRED_ATTRIBS (pynlpl.formats.folia.Dependency

attribute), 541
REQUIRED_ATTRIBS (pynlpl.formats.folia.DependencyDependent

attribute), 776
REQUIRED_ATTRIBS (pynlpl.formats.folia.Description

attribute), 1031
REQUIRED_ATTRIBS (pynlpl.formats.folia.Division at-

tribute), 126
REQUIRED_ATTRIBS (pynlpl.formats.folia.DomainAnnotation

attribute), 428
REQUIRED_ATTRIBS (pynlpl.formats.folia.EnddatetimeFeature

attribute), 907
REQUIRED_ATTRIBS (pynlpl.formats.folia.EntitiesLayer

attribute), 682
REQUIRED_ATTRIBS (pynlpl.formats.folia.Entity at-

tribute), 553
REQUIRED_ATTRIBS (pynlpl.formats.folia.Entry at-

tribute), 139
REQUIRED_ATTRIBS (pynlpl.formats.folia.ErrorDetection

attribute), 964
REQUIRED_ATTRIBS (pynlpl.formats.folia.Event at-

tribute), 152
REQUIRED_ATTRIBS (pynlpl.formats.folia.Example

attribute), 165
REQUIRED_ATTRIBS (pynlpl.formats.folia.Feature at-

tribute), 862
REQUIRED_ATTRIBS (pynlpl.formats.folia.Figure at-

tribute), 178
REQUIRED_ATTRIBS (pynlpl.formats.folia.Gap at-

tribute), 191
REQUIRED_ATTRIBS (pynlpl.formats.folia.Head at-

tribute), 202
REQUIRED_ATTRIBS (pynlpl.formats.folia.Headspan

attribute), 788
REQUIRED_ATTRIBS (pynlpl.formats.folia.LangAnnotation

attribute), 451
REQUIRED_ATTRIBS (pynlpl.formats.folia.LemmaAnnotation

attribute), 462
REQUIRED_ATTRIBS (pynlpl.formats.folia.Linebreak

attribute), 215
REQUIRED_ATTRIBS (pynlpl.formats.folia.List at-

tribute), 228
REQUIRED_ATTRIBS (pynlpl.formats.folia.ListItem at-

tribute), 241
REQUIRED_ATTRIBS (pynlpl.formats.folia.Metric at-

tribute), 1042
REQUIRED_ATTRIBS (pynlpl.formats.folia.New

attribute), 976
REQUIRED_ATTRIBS (pynlpl.formats.folia.Note

attribute), 254
REQUIRED_ATTRIBS (pynlpl.formats.folia.Observation

attribute), 564
REQUIRED_ATTRIBS (pynlpl.formats.folia.ObservationLayer

attribute), 694
REQUIRED_ATTRIBS (pynlpl.formats.folia.Original at-

tribute), 987
REQUIRED_ATTRIBS (pynlpl.formats.folia.Paragraph

attribute), 267
REQUIRED_ATTRIBS (pynlpl.formats.folia.Part at-

tribute), 280
REQUIRED_ATTRIBS (pynlpl.formats.folia.PhonContent

attribute), 506
REQUIRED_ATTRIBS (pynlpl.formats.folia.PosAnnotation

attribute), 440
REQUIRED_ATTRIBS (pynlpl.formats.folia.Predicate

attribute), 576
REQUIRED_ATTRIBS (pynlpl.formats.folia.Quote at-

tribute), 293
REQUIRED_ATTRIBS (pynlpl.formats.folia.Reference

attribute), 306
REQUIRED_ATTRIBS (pynlpl.formats.folia.Row

attribute), 319
REQUIRED_ATTRIBS (pynlpl.formats.folia.SemanticRole

attribute), 623
REQUIRED_ATTRIBS (pynlpl.formats.folia.SemanticRolesLayer

attribute), 741
REQUIRED_ATTRIBS (pynlpl.formats.folia.SenseAnnotation

attribute), 473
REQUIRED_ATTRIBS (pynlpl.formats.folia.Sentence

attribute), 333
REQUIRED_ATTRIBS (pynlpl.formats.folia.Sentiment

attribute), 588
REQUIRED_ATTRIBS (pynlpl.formats.folia.SentimentLayer

attribute), 705
REQUIRED_ATTRIBS (pynlpl.formats.folia.Statement

attribute), 599
REQUIRED_ATTRIBS (pynlpl.formats.folia.StatementLayer

attribute), 717
REQUIRED_ATTRIBS (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 484
REQUIRED_ATTRIBS (pynlpl.formats.folia.Suggestion

attribute), 998
REQUIRED_ATTRIBS (pynlpl.formats.folia.SynsetFeature

Index 1151

PyNLPl Documentation, Release 1.2.8

attribute), 874
REQUIRED_ATTRIBS (pynlpl.formats.folia.SyntacticUnit

attribute), 611
REQUIRED_ATTRIBS (pynlpl.formats.folia.SyntaxLayer

attribute), 729
REQUIRED_ATTRIBS (pynlpl.formats.folia.Table at-

tribute), 347
REQUIRED_ATTRIBS (pynlpl.formats.folia.TableHead

attribute), 373
REQUIRED_ATTRIBS (pynlpl.formats.folia.Term at-

tribute), 360
REQUIRED_ATTRIBS (pynlpl.formats.folia.Text

attribute), 386
REQUIRED_ATTRIBS (pynlpl.formats.folia.TextContent

attribute), 495
REQUIRED_ATTRIBS (pynlpl.formats.folia.TextMarkupCorrection

attribute), 840
REQUIRED_ATTRIBS (pynlpl.formats.folia.TextMarkupError

attribute), 851
REQUIRED_ATTRIBS (pynlpl.formats.folia.TextMarkupGap

attribute), 808
REQUIRED_ATTRIBS (pynlpl.formats.folia.TextMarkupString

attribute), 819
REQUIRED_ATTRIBS (pynlpl.formats.folia.TextMarkupStyle

attribute), 830
REQUIRED_ATTRIBS (pynlpl.formats.folia.TimeSegment

attribute), 634
REQUIRED_ATTRIBS (pynlpl.formats.folia.TimingLayer

attribute), 752
REQUIRED_ATTRIBS (pynlpl.formats.folia.Whitespace

attribute), 399
REQUIRED_ATTRIBS (pynlpl.formats.folia.Word at-

tribute), 413
REQUIRED_DATA (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
REQUIRED_DATA (pynlpl.formats.folia.AbstractElement

attribute), 26
REQUIRED_DATA (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
REQUIRED_DATA (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
REQUIRED_DATA (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
REQUIRED_DATA (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
REQUIRED_DATA (pynlpl.formats.folia.ActorFeature

attribute), 885
REQUIRED_DATA (pynlpl.formats.folia.Alignment at-

tribute), 1009
REQUIRED_DATA (pynlpl.formats.folia.AlignReference

attribute), 1020
REQUIRED_DATA (pynlpl.formats.folia.Alternative at-

tribute), 919
REQUIRED_DATA (pynlpl.formats.folia.AlternativeLayers

attribute), 931
REQUIRED_DATA (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
REQUIRED_DATA (pynlpl.formats.folia.Cell attribute),

100
REQUIRED_DATA (pynlpl.formats.folia.Chunk at-

tribute), 518
REQUIRED_DATA (pynlpl.formats.folia.ChunkingLayer

attribute), 646
REQUIRED_DATA (pynlpl.formats.folia.CoreferenceChain

attribute), 530
REQUIRED_DATA (pynlpl.formats.folia.CoreferenceLayer

attribute), 658
REQUIRED_DATA (pynlpl.formats.folia.CoreferenceLink

attribute), 764
REQUIRED_DATA (pynlpl.formats.folia.Correction at-

tribute), 944
REQUIRED_DATA (pynlpl.formats.folia.Current at-

tribute), 953
REQUIRED_DATA (pynlpl.formats.folia.Definition at-

tribute), 113
REQUIRED_DATA (pynlpl.formats.folia.DependenciesLayer

attribute), 670
REQUIRED_DATA (pynlpl.formats.folia.Dependency

attribute), 541
REQUIRED_DATA (pynlpl.formats.folia.DependencyDependent

attribute), 776
REQUIRED_DATA (pynlpl.formats.folia.Description at-

tribute), 1031
REQUIRED_DATA (pynlpl.formats.folia.Division

attribute), 126
REQUIRED_DATA (pynlpl.formats.folia.DomainAnnotation

attribute), 429
REQUIRED_DATA (pynlpl.formats.folia.EnddatetimeFeature

attribute), 907
REQUIRED_DATA (pynlpl.formats.folia.EntitiesLayer

attribute), 682
REQUIRED_DATA (pynlpl.formats.folia.Entity at-

tribute), 553
REQUIRED_DATA (pynlpl.formats.folia.Entry at-

tribute), 139
REQUIRED_DATA (pynlpl.formats.folia.ErrorDetection

attribute), 965
REQUIRED_DATA (pynlpl.formats.folia.Event at-

tribute), 152
REQUIRED_DATA (pynlpl.formats.folia.Example at-

tribute), 165
REQUIRED_DATA (pynlpl.formats.folia.Feature at-

tribute), 862
REQUIRED_DATA (pynlpl.formats.folia.Figure at-

tribute), 178
REQUIRED_DATA (pynlpl.formats.folia.Gap attribute),

191
REQUIRED_DATA (pynlpl.formats.folia.Head attribute),

1152 Index

PyNLPl Documentation, Release 1.2.8

202
REQUIRED_DATA (pynlpl.formats.folia.Headspan at-

tribute), 788
REQUIRED_DATA (pynlpl.formats.folia.LangAnnotation

attribute), 451
REQUIRED_DATA (pynlpl.formats.folia.LemmaAnnotation

attribute), 462
REQUIRED_DATA (pynlpl.formats.folia.Linebreak at-

tribute), 215
REQUIRED_DATA (pynlpl.formats.folia.List attribute),

228
REQUIRED_DATA (pynlpl.formats.folia.ListItem

attribute), 241
REQUIRED_DATA (pynlpl.formats.folia.Metric at-

tribute), 1043
REQUIRED_DATA (pynlpl.formats.folia.New attribute),

976
REQUIRED_DATA (pynlpl.formats.folia.Note attribute),

254
REQUIRED_DATA (pynlpl.formats.folia.Observation at-

tribute), 564
REQUIRED_DATA (pynlpl.formats.folia.ObservationLayer

attribute), 694
REQUIRED_DATA (pynlpl.formats.folia.Original

attribute), 987
REQUIRED_DATA (pynlpl.formats.folia.Paragraph at-

tribute), 267
REQUIRED_DATA (pynlpl.formats.folia.Part attribute),

280
REQUIRED_DATA (pynlpl.formats.folia.PhonContent

attribute), 506
REQUIRED_DATA (pynlpl.formats.folia.PosAnnotation

attribute), 440
REQUIRED_DATA (pynlpl.formats.folia.Predicate at-

tribute), 576
REQUIRED_DATA (pynlpl.formats.folia.Quote at-

tribute), 293
REQUIRED_DATA (pynlpl.formats.folia.Reference at-

tribute), 306
REQUIRED_DATA (pynlpl.formats.folia.Row attribute),

319
REQUIRED_DATA (pynlpl.formats.folia.SemanticRole

attribute), 623
REQUIRED_DATA (pynlpl.formats.folia.SemanticRolesLayer

attribute), 741
REQUIRED_DATA (pynlpl.formats.folia.SenseAnnotation

attribute), 473
REQUIRED_DATA (pynlpl.formats.folia.Sentence at-

tribute), 333
REQUIRED_DATA (pynlpl.formats.folia.Sentiment at-

tribute), 588
REQUIRED_DATA (pynlpl.formats.folia.SentimentLayer

attribute), 705
REQUIRED_DATA (pynlpl.formats.folia.Statement at-

tribute), 599
REQUIRED_DATA (pynlpl.formats.folia.StatementLayer

attribute), 717
REQUIRED_DATA (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 484
REQUIRED_DATA (pynlpl.formats.folia.Suggestion at-

tribute), 998
REQUIRED_DATA (pynlpl.formats.folia.SynsetFeature

attribute), 874
REQUIRED_DATA (pynlpl.formats.folia.SyntacticUnit

attribute), 611
REQUIRED_DATA (pynlpl.formats.folia.SyntaxLayer

attribute), 729
REQUIRED_DATA (pynlpl.formats.folia.Table at-

tribute), 347
REQUIRED_DATA (pynlpl.formats.folia.TableHead at-

tribute), 373
REQUIRED_DATA (pynlpl.formats.folia.Term attribute),

360
REQUIRED_DATA (pynlpl.formats.folia.Text attribute),

386
REQUIRED_DATA (pynlpl.formats.folia.TextContent at-

tribute), 495
REQUIRED_DATA (pynlpl.formats.folia.TextMarkupCorrection

attribute), 840
REQUIRED_DATA (pynlpl.formats.folia.TextMarkupError

attribute), 851
REQUIRED_DATA (pynlpl.formats.folia.TextMarkupGap

attribute), 808
REQUIRED_DATA (pynlpl.formats.folia.TextMarkupString

attribute), 819
REQUIRED_DATA (pynlpl.formats.folia.TextMarkupStyle

attribute), 830
REQUIRED_DATA (pynlpl.formats.folia.TimeSegment

attribute), 634
REQUIRED_DATA (pynlpl.formats.folia.TimingLayer

attribute), 752
REQUIRED_DATA (pynlpl.formats.folia.Whitespace at-

tribute), 399
REQUIRED_DATA (pynlpl.formats.folia.Word at-

tribute), 413
reset() (pynlpl.formats.giza.IntersectionAlignment

method), 1053
reset() (pynlpl.formats.giza.MultiWordAlignment

method), 1053
reset() (pynlpl.formats.giza.WordAlignment method),

1054
reset() (pynlpl.formats.taggerdata.Taggerdata method),

1055
reset() (pynlpl.search.AbstractSearch method), 1059
resolve() (pynlpl.formats.folia.AbstractTextMarkup

method), 92
resolve() (pynlpl.formats.folia.Alignment method), 1014
resolve() (pynlpl.formats.folia.AlignReference method),

Index 1153

PyNLPl Documentation, Release 1.2.8

1026
resolve() (pynlpl.formats.folia.Linebreak method), 222
resolve() (pynlpl.formats.folia.Reference method), 313
resolve() (pynlpl.formats.folia.TextMarkupCorrection

method), 846
resolve() (pynlpl.formats.folia.TextMarkupError

method), 856
resolve() (pynlpl.formats.folia.TextMarkupGap method),

814
resolve() (pynlpl.formats.folia.TextMarkupString

method), 824
resolve() (pynlpl.formats.folia.TextMarkupStyle

method), 835
resolveword() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 81
resolveword() (pynlpl.formats.folia.AbstractElement

method), 31
resolveword() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 58
resolveword() (pynlpl.formats.folia.AbstractStructureElement

method), 44
resolveword() (pynlpl.formats.folia.AbstractTextMarkup

method), 92
resolveword() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 69
resolveword() (pynlpl.formats.folia.ActorFeature

method), 890
resolveword() (pynlpl.formats.folia.Alignment method),

1014
resolveword() (pynlpl.formats.folia.AlignReference

method), 1026
resolveword() (pynlpl.formats.folia.Alternative method),

926
resolveword() (pynlpl.formats.folia.AlternativeLayers

method), 937
resolveword() (pynlpl.formats.folia.BegindatetimeFeature

method), 901
resolveword() (pynlpl.formats.folia.Cell method), 107
resolveword() (pynlpl.formats.folia.Chunk method), 524
resolveword() (pynlpl.formats.folia.ChunkingLayer

method), 653
resolveword() (pynlpl.formats.folia.CoreferenceChain

method), 535
resolveword() (pynlpl.formats.folia.CoreferenceLayer

method), 664
resolveword() (pynlpl.formats.folia.CoreferenceLink

method), 770
resolveword() (pynlpl.formats.folia.Correction method),

949
resolveword() (pynlpl.formats.folia.Current method), 959
resolveword() (pynlpl.formats.folia.Definition method),

120
resolveword() (pynlpl.formats.folia.DependenciesLayer

method), 676

resolveword() (pynlpl.formats.folia.Dependency
method), 547

resolveword() (pynlpl.formats.folia.DependencyDependent
method), 782

resolveword() (pynlpl.formats.folia.Description method),
1037

resolveword() (pynlpl.formats.folia.Division method),
133

resolveword() (pynlpl.formats.folia.DomainAnnotation
method), 434

resolveword() (pynlpl.formats.folia.EnddatetimeFeature
method), 912

resolveword() (pynlpl.formats.folia.EntitiesLayer
method), 688

resolveword() (pynlpl.formats.folia.Entity method), 559
resolveword() (pynlpl.formats.folia.Entry method), 146
resolveword() (pynlpl.formats.folia.ErrorDetection

method), 970
resolveword() (pynlpl.formats.folia.Event method), 159
resolveword() (pynlpl.formats.folia.Example method),

172
resolveword() (pynlpl.formats.folia.Feature method), 868
resolveword() (pynlpl.formats.folia.Figure method), 185
resolveword() (pynlpl.formats.folia.Gap method), 196
resolveword() (pynlpl.formats.folia.Head method), 209
resolveword() (pynlpl.formats.folia.Headspan method),

794
resolveword() (pynlpl.formats.folia.LangAnnotation

method), 456
resolveword() (pynlpl.formats.folia.LemmaAnnotation

method), 467
resolveword() (pynlpl.formats.folia.Linebreak method),

222
resolveword() (pynlpl.formats.folia.List method), 235
resolveword() (pynlpl.formats.folia.ListItem method),

248
resolveword() (pynlpl.formats.folia.Metric method), 1048
resolveword() (pynlpl.formats.folia.New method), 981
resolveword() (pynlpl.formats.folia.Note method), 261
resolveword() (pynlpl.formats.folia.Observation method),

570
resolveword() (pynlpl.formats.folia.ObservationLayer

method), 700
resolveword() (pynlpl.formats.folia.Original method),

992
resolveword() (pynlpl.formats.folia.Paragraph method),

274
resolveword() (pynlpl.formats.folia.Part method), 287
resolveword() (pynlpl.formats.folia.PhonContent

method), 510
resolveword() (pynlpl.formats.folia.PosAnnotation

method), 445
resolveword() (pynlpl.formats.folia.Predicate method),

582

1154 Index

PyNLPl Documentation, Release 1.2.8

resolveword() (pynlpl.formats.folia.Quote method), 300
resolveword() (pynlpl.formats.folia.Reference method),

313
resolveword() (pynlpl.formats.folia.Row method), 326
resolveword() (pynlpl.formats.folia.SemanticRole

method), 629
resolveword() (pynlpl.formats.folia.SemanticRolesLayer

method), 747
resolveword() (pynlpl.formats.folia.SenseAnnotation

method), 478
resolveword() (pynlpl.formats.folia.Sentence method),

341
resolveword() (pynlpl.formats.folia.Sentiment method),

594
resolveword() (pynlpl.formats.folia.SentimentLayer

method), 711
resolveword() (pynlpl.formats.folia.Statement method),

605
resolveword() (pynlpl.formats.folia.StatementLayer

method), 723
resolveword() (pynlpl.formats.folia.SubjectivityAnnotation

method), 489
resolveword() (pynlpl.formats.folia.Suggestion method),

1003
resolveword() (pynlpl.formats.folia.SynsetFeature

method), 879
resolveword() (pynlpl.formats.folia.SyntacticUnit

method), 617
resolveword() (pynlpl.formats.folia.SyntaxLayer

method), 735
resolveword() (pynlpl.formats.folia.Table method), 354
resolveword() (pynlpl.formats.folia.TableHead method),

380
resolveword() (pynlpl.formats.folia.Term method), 367
resolveword() (pynlpl.formats.folia.Text method), 393
resolveword() (pynlpl.formats.folia.TextContent method),

500
resolveword() (pynlpl.formats.folia.TextMarkupCorrection

method), 846
resolveword() (pynlpl.formats.folia.TextMarkupError

method), 856
resolveword() (pynlpl.formats.folia.TextMarkupGap

method), 814
resolveword() (pynlpl.formats.folia.TextMarkupString

method), 824
resolveword() (pynlpl.formats.folia.TextMarkupStyle

method), 835
resolveword() (pynlpl.formats.folia.TimeSegment

method), 640
resolveword() (pynlpl.formats.folia.TimingLayer

method), 758
resolveword() (pynlpl.formats.folia.Whitespace method),

406
resolveword() (pynlpl.formats.folia.Word method), 421

rightcontext() (pynlpl.formats.folia.AbstractAnnotationLayer
method), 81

rightcontext() (pynlpl.formats.folia.AbstractElement
method), 31

rightcontext() (pynlpl.formats.folia.AbstractSpanAnnotation
method), 58

rightcontext() (pynlpl.formats.folia.AbstractStructureElement
method), 44

rightcontext() (pynlpl.formats.folia.AbstractTextMarkup
method), 92

rightcontext() (pynlpl.formats.folia.AbstractTokenAnnotation
method), 69

rightcontext() (pynlpl.formats.folia.ActorFeature
method), 890

rightcontext() (pynlpl.formats.folia.Alignment method),
1014

rightcontext() (pynlpl.formats.folia.AlignReference
method), 1026

rightcontext() (pynlpl.formats.folia.Alternative method),
926

rightcontext() (pynlpl.formats.folia.AlternativeLayers
method), 937

rightcontext() (pynlpl.formats.folia.BegindatetimeFeature
method), 901

rightcontext() (pynlpl.formats.folia.Cell method), 107
rightcontext() (pynlpl.formats.folia.Chunk method), 524
rightcontext() (pynlpl.formats.folia.ChunkingLayer

method), 653
rightcontext() (pynlpl.formats.folia.CoreferenceChain

method), 535
rightcontext() (pynlpl.formats.folia.CoreferenceLayer

method), 664
rightcontext() (pynlpl.formats.folia.CoreferenceLink

method), 770
rightcontext() (pynlpl.formats.folia.Correction method),

949
rightcontext() (pynlpl.formats.folia.Current method), 959
rightcontext() (pynlpl.formats.folia.Definition method),

120
rightcontext() (pynlpl.formats.folia.DependenciesLayer

method), 676
rightcontext() (pynlpl.formats.folia.Dependency method),

547
rightcontext() (pynlpl.formats.folia.DependencyDependent

method), 782
rightcontext() (pynlpl.formats.folia.Description method),

1037
rightcontext() (pynlpl.formats.folia.Division method),

133
rightcontext() (pynlpl.formats.folia.DomainAnnotation

method), 434
rightcontext() (pynlpl.formats.folia.EnddatetimeFeature

method), 912
rightcontext() (pynlpl.formats.folia.EntitiesLayer

Index 1155

PyNLPl Documentation, Release 1.2.8

method), 688
rightcontext() (pynlpl.formats.folia.Entity method), 559
rightcontext() (pynlpl.formats.folia.Entry method), 146
rightcontext() (pynlpl.formats.folia.ErrorDetection

method), 970
rightcontext() (pynlpl.formats.folia.Event method), 159
rightcontext() (pynlpl.formats.folia.Example method),

172
rightcontext() (pynlpl.formats.folia.Feature method), 868
rightcontext() (pynlpl.formats.folia.Figure method), 185
rightcontext() (pynlpl.formats.folia.Gap method), 196
rightcontext() (pynlpl.formats.folia.Head method), 209
rightcontext() (pynlpl.formats.folia.Headspan method),

794
rightcontext() (pynlpl.formats.folia.LangAnnotation

method), 456
rightcontext() (pynlpl.formats.folia.LemmaAnnotation

method), 467
rightcontext() (pynlpl.formats.folia.Linebreak method),

222
rightcontext() (pynlpl.formats.folia.List method), 235
rightcontext() (pynlpl.formats.folia.ListItem method),

248
rightcontext() (pynlpl.formats.folia.Metric method), 1048
rightcontext() (pynlpl.formats.folia.New method), 981
rightcontext() (pynlpl.formats.folia.Note method), 261
rightcontext() (pynlpl.formats.folia.Observation method),

570
rightcontext() (pynlpl.formats.folia.ObservationLayer

method), 700
rightcontext() (pynlpl.formats.folia.Original method),

992
rightcontext() (pynlpl.formats.folia.Paragraph method),

274
rightcontext() (pynlpl.formats.folia.Part method), 287
rightcontext() (pynlpl.formats.folia.PhonContent

method), 511
rightcontext() (pynlpl.formats.folia.PosAnnotation

method), 445
rightcontext() (pynlpl.formats.folia.Predicate method),

582
rightcontext() (pynlpl.formats.folia.Quote method), 300
rightcontext() (pynlpl.formats.folia.Reference method),

313
rightcontext() (pynlpl.formats.folia.Row method), 326
rightcontext() (pynlpl.formats.folia.SemanticRole

method), 629
rightcontext() (pynlpl.formats.folia.SemanticRolesLayer

method), 747
rightcontext() (pynlpl.formats.folia.SenseAnnotation

method), 478
rightcontext() (pynlpl.formats.folia.Sentence method),

341
rightcontext() (pynlpl.formats.folia.Sentiment method),

594
rightcontext() (pynlpl.formats.folia.SentimentLayer

method), 711
rightcontext() (pynlpl.formats.folia.Statement method),

605
rightcontext() (pynlpl.formats.folia.StatementLayer

method), 723
rightcontext() (pynlpl.formats.folia.SubjectivityAnnotation

method), 489
rightcontext() (pynlpl.formats.folia.Suggestion method),

1003
rightcontext() (pynlpl.formats.folia.SynsetFeature

method), 879
rightcontext() (pynlpl.formats.folia.SyntacticUnit

method), 617
rightcontext() (pynlpl.formats.folia.SyntaxLayer

method), 735
rightcontext() (pynlpl.formats.folia.Table method), 354
rightcontext() (pynlpl.formats.folia.TableHead method),

380
rightcontext() (pynlpl.formats.folia.Term method), 367
rightcontext() (pynlpl.formats.folia.Text method), 393
rightcontext() (pynlpl.formats.folia.TextContent method),

501
rightcontext() (pynlpl.formats.folia.TextMarkupCorrection

method), 846
rightcontext() (pynlpl.formats.folia.TextMarkupError

method), 856
rightcontext() (pynlpl.formats.folia.TextMarkupGap

method), 814
rightcontext() (pynlpl.formats.folia.TextMarkupString

method), 824
rightcontext() (pynlpl.formats.folia.TextMarkupStyle

method), 835
rightcontext() (pynlpl.formats.folia.TimeSegment

method), 640
rightcontext() (pynlpl.formats.folia.TimingLayer

method), 758
rightcontext() (pynlpl.formats.folia.Whitespace method),

406
rightcontext() (pynlpl.formats.folia.Word method), 421
rmse() (in module pynlpl.evaluation), 11
rmse() (pynlpl.evaluation.OrdinalEvaluation method), 10
root() (pynlpl.datatypes.Trie method), 7
Row (class in pynlpl.formats.folia), 316
run() (pynlpl.evaluation.AbstractExperiment method), 9
run() (pynlpl.evaluation.ExperimentPool method), 10

S
sample() (pynlpl.evaluation.AbstractExperiment

method), 9
save() (pynlpl.formats.folia.Document method), 20
save() (pynlpl.formats.sonar.CorpusDocumentX method),

1054

1156 Index

PyNLPl Documentation, Release 1.2.8

save() (pynlpl.lm.lm.SimpleLanguageModel method),
1057

save() (pynlpl.statistics.FrequencyList method), 1063
score() (pynlpl.datatypes.PriorityQueue method), 6
score() (pynlpl.evaluation.AbstractExperiment method),

9
score() (pynlpl.lm.lm.ARPALanguageModel method),

1057
score() (pynlpl.search.AbstractSearchState method), 1060
scoresentence() (pynlpl.lm.client.LMClient method),

1058
scoresentence() (pynlpl.lm.lm.SimpleLanguageModel

method), 1057
scoresentence() (pynlpl.lm.srilm.SRILM method), 1057
scoreword() (pynlpl.lm.lm.ARPALanguageModel

method), 1057
searchall() (pynlpl.search.AbstractSearch method), 1059
searchbest() (pynlpl.evaluation.WPSParamSearch

method), 10
searchbest() (pynlpl.search.AbstractSearch method),

1059
searchfirst() (pynlpl.search.AbstractSearch method), 1059
searchlast() (pynlpl.search.AbstractSearch method), 1059
searchtop() (pynlpl.search.AbstractSearch method), 1059
select() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 81
select() (pynlpl.formats.folia.AbstractElement method),

31
select() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 58
select() (pynlpl.formats.folia.AbstractStructureElement

method), 44
select() (pynlpl.formats.folia.AbstractTextMarkup

method), 92
select() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 69
select() (pynlpl.formats.folia.ActorFeature method), 890
select() (pynlpl.formats.folia.Alignment method), 1014
select() (pynlpl.formats.folia.AlignReference method),

1026
select() (pynlpl.formats.folia.Alternative method), 926
select() (pynlpl.formats.folia.AlternativeLayers method),

937
select() (pynlpl.formats.folia.BegindatetimeFeature

method), 901
select() (pynlpl.formats.folia.Cell method), 107
select() (pynlpl.formats.folia.Chunk method), 524
select() (pynlpl.formats.folia.ChunkingLayer method),

653
select() (pynlpl.formats.folia.CoreferenceChain method),

535
select() (pynlpl.formats.folia.CoreferenceLayer method),

664
select() (pynlpl.formats.folia.CoreferenceLink method),

770
select() (pynlpl.formats.folia.Correction method), 949
select() (pynlpl.formats.folia.Current method), 959
select() (pynlpl.formats.folia.Definition method), 120
select() (pynlpl.formats.folia.DependenciesLayer

method), 676
select() (pynlpl.formats.folia.Dependency method), 547
select() (pynlpl.formats.folia.DependencyDependent

method), 782
select() (pynlpl.formats.folia.Description method), 1037
select() (pynlpl.formats.folia.Division method), 133
select() (pynlpl.formats.folia.Document method), 20
select() (pynlpl.formats.folia.DomainAnnotation

method), 434
select() (pynlpl.formats.folia.EnddatetimeFeature

method), 912
select() (pynlpl.formats.folia.EntitiesLayer method), 688
select() (pynlpl.formats.folia.Entity method), 559
select() (pynlpl.formats.folia.Entry method), 146
select() (pynlpl.formats.folia.ErrorDetection method),

970
select() (pynlpl.formats.folia.Event method), 159
select() (pynlpl.formats.folia.Example method), 172
select() (pynlpl.formats.folia.Feature method), 868
select() (pynlpl.formats.folia.Figure method), 185
select() (pynlpl.formats.folia.Gap method), 196
select() (pynlpl.formats.folia.Head method), 209
select() (pynlpl.formats.folia.Headspan method), 794
select() (pynlpl.formats.folia.LangAnnotation method),

456
select() (pynlpl.formats.folia.LemmaAnnotation method),

467
select() (pynlpl.formats.folia.Linebreak method), 222
select() (pynlpl.formats.folia.List method), 235
select() (pynlpl.formats.folia.ListItem method), 248
select() (pynlpl.formats.folia.Metric method), 1048
select() (pynlpl.formats.folia.New method), 981
select() (pynlpl.formats.folia.Note method), 261
select() (pynlpl.formats.folia.Observation method), 570
select() (pynlpl.formats.folia.ObservationLayer method),

700
select() (pynlpl.formats.folia.Original method), 992
select() (pynlpl.formats.folia.Paragraph method), 274
select() (pynlpl.formats.folia.Part method), 287
select() (pynlpl.formats.folia.PhonContent method), 511
select() (pynlpl.formats.folia.PosAnnotation method),

445
select() (pynlpl.formats.folia.Predicate method), 582
select() (pynlpl.formats.folia.Quote method), 300
select() (pynlpl.formats.folia.Reference method), 313
select() (pynlpl.formats.folia.Row method), 326
select() (pynlpl.formats.folia.SemanticRole method), 629
select() (pynlpl.formats.folia.SemanticRolesLayer

method), 747

Index 1157

PyNLPl Documentation, Release 1.2.8

select() (pynlpl.formats.folia.SenseAnnotation method),
478

select() (pynlpl.formats.folia.Sentence method), 341
select() (pynlpl.formats.folia.Sentiment method), 594
select() (pynlpl.formats.folia.SentimentLayer method),

712
select() (pynlpl.formats.folia.Statement method), 605
select() (pynlpl.formats.folia.StatementLayer method),

723
select() (pynlpl.formats.folia.SubjectivityAnnotation

method), 489
select() (pynlpl.formats.folia.Suggestion method), 1003
select() (pynlpl.formats.folia.SynsetFeature method), 879
select() (pynlpl.formats.folia.SyntacticUnit method), 617
select() (pynlpl.formats.folia.SyntaxLayer method), 735
select() (pynlpl.formats.folia.Table method), 354
select() (pynlpl.formats.folia.TableHead method), 380
select() (pynlpl.formats.folia.Term method), 367
select() (pynlpl.formats.folia.Text method), 393
select() (pynlpl.formats.folia.TextContent method), 501
select() (pynlpl.formats.folia.TextMarkupCorrection

method), 846
select() (pynlpl.formats.folia.TextMarkupError method),

856
select() (pynlpl.formats.folia.TextMarkupGap method),

814
select() (pynlpl.formats.folia.TextMarkupString method),

824
select() (pynlpl.formats.folia.TextMarkupStyle method),

835
select() (pynlpl.formats.folia.TimeSegment method), 640
select() (pynlpl.formats.folia.TimingLayer method), 759
select() (pynlpl.formats.folia.Whitespace method), 406
select() (pynlpl.formats.folia.Word method), 421
SemanticRole (class in pynlpl.formats.folia), 620
SemanticRolesLayer (class in pynlpl.formats.folia), 738
sense() (pynlpl.formats.folia.Word method), 422
SenseAnnotation (class in pynlpl.formats.folia), 470
Sentence (class in pynlpl.formats.folia), 329
sentence() (pynlpl.formats.folia.Word method), 422
sentences() (pynlpl.formats.folia.AbstractStructureElement

method), 45
sentences() (pynlpl.formats.folia.Cell method), 108
sentences() (pynlpl.formats.folia.Definition method), 121
sentences() (pynlpl.formats.folia.Division method), 134
sentences() (pynlpl.formats.folia.Document method), 20
sentences() (pynlpl.formats.folia.Entry method), 147
sentences() (pynlpl.formats.folia.Event method), 160
sentences() (pynlpl.formats.folia.Example method), 173
sentences() (pynlpl.formats.folia.Figure method), 186
sentences() (pynlpl.formats.folia.Head method), 210
sentences() (pynlpl.formats.folia.Linebreak method), 223
sentences() (pynlpl.formats.folia.List method), 236
sentences() (pynlpl.formats.folia.ListItem method), 249

sentences() (pynlpl.formats.folia.Note method), 262
sentences() (pynlpl.formats.folia.Paragraph method), 275
sentences() (pynlpl.formats.folia.Part method), 288
sentences() (pynlpl.formats.folia.Quote method), 301
sentences() (pynlpl.formats.folia.Reference method), 314
sentences() (pynlpl.formats.folia.Row method), 327
sentences() (pynlpl.formats.folia.Sentence method), 341
sentences() (pynlpl.formats.folia.Table method), 355
sentences() (pynlpl.formats.folia.TableHead method), 381
sentences() (pynlpl.formats.folia.Term method), 368
sentences() (pynlpl.formats.folia.Text method), 394
sentences() (pynlpl.formats.folia.Whitespace method),

407
sentences() (pynlpl.formats.folia.Word method), 422
sentences() (pynlpl.formats.sonar.CorpusDocument

method), 1054
sentences() (pynlpl.formats.sonar.CorpusDocumentX

method), 1054
Sentiment (class in pynlpl.formats.folia), 585
SentimentLayer (class in pynlpl.formats.folia), 703
sequence() (pynlpl.datatypes.Trie method), 7
setdoc() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 81
setdoc() (pynlpl.formats.folia.AbstractElement method),

32
setdoc() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 58
setdoc() (pynlpl.formats.folia.AbstractStructureElement

method), 45
setdoc() (pynlpl.formats.folia.AbstractTextMarkup

method), 92
setdoc() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 69
setdoc() (pynlpl.formats.folia.ActorFeature method), 891
setdoc() (pynlpl.formats.folia.Alignment method), 1015
setdoc() (pynlpl.formats.folia.AlignReference method),

1026
setdoc() (pynlpl.formats.folia.Alternative method), 926
setdoc() (pynlpl.formats.folia.AlternativeLayers method),

937
setdoc() (pynlpl.formats.folia.BegindatetimeFeature

method), 902
setdoc() (pynlpl.formats.folia.Cell method), 108
setdoc() (pynlpl.formats.folia.Chunk method), 524
setdoc() (pynlpl.formats.folia.ChunkingLayer method),

653
setdoc() (pynlpl.formats.folia.CoreferenceChain method),

536
setdoc() (pynlpl.formats.folia.CoreferenceLayer method),

665
setdoc() (pynlpl.formats.folia.CoreferenceLink method),

771
setdoc() (pynlpl.formats.folia.Correction method), 949
setdoc() (pynlpl.formats.folia.Current method), 960

1158 Index

PyNLPl Documentation, Release 1.2.8

setdoc() (pynlpl.formats.folia.Definition method), 121
setdoc() (pynlpl.formats.folia.DependenciesLayer

method), 677
setdoc() (pynlpl.formats.folia.Dependency method), 548
setdoc() (pynlpl.formats.folia.DependencyDependent

method), 783
setdoc() (pynlpl.formats.folia.Description method), 1038
setdoc() (pynlpl.formats.folia.Division method), 134
setdoc() (pynlpl.formats.folia.DomainAnnotation

method), 435
setdoc() (pynlpl.formats.folia.EnddatetimeFeature

method), 913
setdoc() (pynlpl.formats.folia.EntitiesLayer method), 689
setdoc() (pynlpl.formats.folia.Entity method), 559
setdoc() (pynlpl.formats.folia.Entry method), 147
setdoc() (pynlpl.formats.folia.ErrorDetection method),

971
setdoc() (pynlpl.formats.folia.Event method), 160
setdoc() (pynlpl.formats.folia.Example method), 173
setdoc() (pynlpl.formats.folia.Feature method), 869
setdoc() (pynlpl.formats.folia.Figure method), 186
setdoc() (pynlpl.formats.folia.Gap method), 197
setdoc() (pynlpl.formats.folia.Head method), 210
setdoc() (pynlpl.formats.folia.Headspan method), 794
setdoc() (pynlpl.formats.folia.LangAnnotation method),

457
setdoc() (pynlpl.formats.folia.LemmaAnnotation

method), 468
setdoc() (pynlpl.formats.folia.Linebreak method), 223
setdoc() (pynlpl.formats.folia.List method), 236
setdoc() (pynlpl.formats.folia.ListItem method), 249
setdoc() (pynlpl.formats.folia.Metric method), 1049
setdoc() (pynlpl.formats.folia.New method), 982
setdoc() (pynlpl.formats.folia.Note method), 262
setdoc() (pynlpl.formats.folia.Observation method), 571
setdoc() (pynlpl.formats.folia.ObservationLayer method),

700
setdoc() (pynlpl.formats.folia.Original method), 993
setdoc() (pynlpl.formats.folia.Paragraph method), 275
setdoc() (pynlpl.formats.folia.Part method), 288
setdoc() (pynlpl.formats.folia.PhonContent method), 511
setdoc() (pynlpl.formats.folia.PosAnnotation method),

446
setdoc() (pynlpl.formats.folia.Predicate method), 583
setdoc() (pynlpl.formats.folia.Quote method), 301
setdoc() (pynlpl.formats.folia.Reference method), 314
setdoc() (pynlpl.formats.folia.Row method), 327
setdoc() (pynlpl.formats.folia.SemanticRole method),

629
setdoc() (pynlpl.formats.folia.SemanticRolesLayer

method), 747
setdoc() (pynlpl.formats.folia.SenseAnnotation method),

479
setdoc() (pynlpl.formats.folia.Sentence method), 342

setdoc() (pynlpl.formats.folia.Sentiment method), 594
setdoc() (pynlpl.formats.folia.SentimentLayer method),

712
setdoc() (pynlpl.formats.folia.Statement method), 606
setdoc() (pynlpl.formats.folia.StatementLayer method),

724
setdoc() (pynlpl.formats.folia.SubjectivityAnnotation

method), 490
setdoc() (pynlpl.formats.folia.Suggestion method), 1004
setdoc() (pynlpl.formats.folia.SynsetFeature method),

880
setdoc() (pynlpl.formats.folia.SyntacticUnit method), 618
setdoc() (pynlpl.formats.folia.SyntaxLayer method), 736
setdoc() (pynlpl.formats.folia.Table method), 355
setdoc() (pynlpl.formats.folia.TableHead method), 381
setdoc() (pynlpl.formats.folia.Term method), 368
setdoc() (pynlpl.formats.folia.Text method), 394
setdoc() (pynlpl.formats.folia.TextContent method), 501
setdoc() (pynlpl.formats.folia.TextMarkupCorrection

method), 846
setdoc() (pynlpl.formats.folia.TextMarkupError method),

857
setdoc() (pynlpl.formats.folia.TextMarkupGap method),

814
setdoc() (pynlpl.formats.folia.TextMarkupString

method), 825
setdoc() (pynlpl.formats.folia.TextMarkupStyle method),

836
setdoc() (pynlpl.formats.folia.TimeSegment method), 641
setdoc() (pynlpl.formats.folia.TimingLayer method), 759
setdoc() (pynlpl.formats.folia.Whitespace method), 407
setdoc() (pynlpl.formats.folia.Word method), 422
setdocument() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 81
setdocument() (pynlpl.formats.folia.AbstractElement

method), 32
setdocument() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 58
setdocument() (pynlpl.formats.folia.AbstractStructureElement

method), 45
setdocument() (pynlpl.formats.folia.AbstractTextMarkup

method), 92
setdocument() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 69
setdocument() (pynlpl.formats.folia.ActorFeature

method), 891
setdocument() (pynlpl.formats.folia.Alignment method),

1015
setdocument() (pynlpl.formats.folia.AlignReference

method), 1026
setdocument() (pynlpl.formats.folia.Alternative method),

926
setdocument() (pynlpl.formats.folia.AlternativeLayers

method), 937

Index 1159

PyNLPl Documentation, Release 1.2.8

setdocument() (pynlpl.formats.folia.BegindatetimeFeature
method), 902

setdocument() (pynlpl.formats.folia.Cell method), 108
setdocument() (pynlpl.formats.folia.Chunk method), 524
setdocument() (pynlpl.formats.folia.ChunkingLayer

method), 653
setdocument() (pynlpl.formats.folia.CoreferenceChain

method), 536
setdocument() (pynlpl.formats.folia.CoreferenceLayer

method), 665
setdocument() (pynlpl.formats.folia.CoreferenceLink

method), 771
setdocument() (pynlpl.formats.folia.Correction method),

949
setdocument() (pynlpl.formats.folia.Current method), 960
setdocument() (pynlpl.formats.folia.Definition method),

121
setdocument() (pynlpl.formats.folia.DependenciesLayer

method), 677
setdocument() (pynlpl.formats.folia.Dependency

method), 548
setdocument() (pynlpl.formats.folia.DependencyDependent

method), 783
setdocument() (pynlpl.formats.folia.Description method),

1038
setdocument() (pynlpl.formats.folia.Division method),

134
setdocument() (pynlpl.formats.folia.DomainAnnotation

method), 435
setdocument() (pynlpl.formats.folia.EnddatetimeFeature

method), 913
setdocument() (pynlpl.formats.folia.EntitiesLayer

method), 689
setdocument() (pynlpl.formats.folia.Entity method), 559
setdocument() (pynlpl.formats.folia.Entry method), 147
setdocument() (pynlpl.formats.folia.ErrorDetection

method), 971
setdocument() (pynlpl.formats.folia.Event method), 160
setdocument() (pynlpl.formats.folia.Example method),

173
setdocument() (pynlpl.formats.folia.Feature method), 869
setdocument() (pynlpl.formats.folia.Figure method), 186
setdocument() (pynlpl.formats.folia.Gap method), 197
setdocument() (pynlpl.formats.folia.Head method), 210
setdocument() (pynlpl.formats.folia.Headspan method),

794
setdocument() (pynlpl.formats.folia.LangAnnotation

method), 457
setdocument() (pynlpl.formats.folia.LemmaAnnotation

method), 468
setdocument() (pynlpl.formats.folia.Linebreak method),

223
setdocument() (pynlpl.formats.folia.List method), 236
setdocument() (pynlpl.formats.folia.ListItem method),

249
setdocument() (pynlpl.formats.folia.Metric method),

1049
setdocument() (pynlpl.formats.folia.New method), 982
setdocument() (pynlpl.formats.folia.Note method), 262
setdocument() (pynlpl.formats.folia.Observation

method), 571
setdocument() (pynlpl.formats.folia.ObservationLayer

method), 700
setdocument() (pynlpl.formats.folia.Original method),

993
setdocument() (pynlpl.formats.folia.Paragraph method),

275
setdocument() (pynlpl.formats.folia.Part method), 288
setdocument() (pynlpl.formats.folia.PhonContent

method), 511
setdocument() (pynlpl.formats.folia.PosAnnotation

method), 446
setdocument() (pynlpl.formats.folia.Predicate method),

583
setdocument() (pynlpl.formats.folia.Quote method), 301
setdocument() (pynlpl.formats.folia.Reference method),

314
setdocument() (pynlpl.formats.folia.Row method), 327
setdocument() (pynlpl.formats.folia.SemanticRole

method), 629
setdocument() (pynlpl.formats.folia.SemanticRolesLayer

method), 747
setdocument() (pynlpl.formats.folia.SenseAnnotation

method), 479
setdocument() (pynlpl.formats.folia.Sentence method),

342
setdocument() (pynlpl.formats.folia.Sentiment method),

594
setdocument() (pynlpl.formats.folia.SentimentLayer

method), 712
setdocument() (pynlpl.formats.folia.Statement method),

606
setdocument() (pynlpl.formats.folia.StatementLayer

method), 724
setdocument() (pynlpl.formats.folia.SubjectivityAnnotation

method), 490
setdocument() (pynlpl.formats.folia.Suggestion method),

1004
setdocument() (pynlpl.formats.folia.SynsetFeature

method), 880
setdocument() (pynlpl.formats.folia.SyntacticUnit

method), 618
setdocument() (pynlpl.formats.folia.SyntaxLayer

method), 736
setdocument() (pynlpl.formats.folia.Table method), 355
setdocument() (pynlpl.formats.folia.TableHead method),

381
setdocument() (pynlpl.formats.folia.Term method), 368

1160 Index

PyNLPl Documentation, Release 1.2.8

setdocument() (pynlpl.formats.folia.Text method), 394
setdocument() (pynlpl.formats.folia.TextContent

method), 501
setdocument() (pynlpl.formats.folia.TextMarkupCorrection

method), 846
setdocument() (pynlpl.formats.folia.TextMarkupError

method), 857
setdocument() (pynlpl.formats.folia.TextMarkupGap

method), 814
setdocument() (pynlpl.formats.folia.TextMarkupString

method), 825
setdocument() (pynlpl.formats.folia.TextMarkupStyle

method), 836
setdocument() (pynlpl.formats.folia.TimeSegment

method), 641
setdocument() (pynlpl.formats.folia.TimingLayer

method), 759
setdocument() (pynlpl.formats.folia.Whitespace method),

407
setdocument() (pynlpl.formats.folia.Word method), 422
setemission() (pynlpl.statistics.HiddenMarkovModel

method), 1063
setimdi() (pynlpl.formats.folia.Document method), 20
SETONLY (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
SETONLY (pynlpl.formats.folia.AbstractElement at-

tribute), 26
SETONLY (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
SETONLY (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
SETONLY (pynlpl.formats.folia.AbstractTextMarkup at-

tribute), 86
SETONLY (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
SETONLY (pynlpl.formats.folia.ActorFeature attribute),

885
SETONLY (pynlpl.formats.folia.Alignment attribute),

1009
SETONLY (pynlpl.formats.folia.AlignReference at-

tribute), 1020
SETONLY (pynlpl.formats.folia.Alternative attribute),

919
SETONLY (pynlpl.formats.folia.AlternativeLayers at-

tribute), 931
SETONLY (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
SETONLY (pynlpl.formats.folia.Cell attribute), 100
SETONLY (pynlpl.formats.folia.Chunk attribute), 518
SETONLY (pynlpl.formats.folia.ChunkingLayer at-

tribute), 647
SETONLY (pynlpl.formats.folia.CoreferenceChain at-

tribute), 530
SETONLY (pynlpl.formats.folia.CoreferenceLayer at-

tribute), 658
SETONLY (pynlpl.formats.folia.CoreferenceLink at-

tribute), 764
SETONLY (pynlpl.formats.folia.Correction attribute),

944
SETONLY (pynlpl.formats.folia.Current attribute), 953
SETONLY (pynlpl.formats.folia.Definition attribute), 113
SETONLY (pynlpl.formats.folia.DependenciesLayer at-

tribute), 670
SETONLY (pynlpl.formats.folia.Dependency attribute),

541
SETONLY (pynlpl.formats.folia.DependencyDependent

attribute), 776
SETONLY (pynlpl.formats.folia.Description attribute),

1031
SETONLY (pynlpl.formats.folia.Division attribute), 126
SETONLY (pynlpl.formats.folia.DomainAnnotation at-

tribute), 429
SETONLY (pynlpl.formats.folia.EnddatetimeFeature at-

tribute), 907
SETONLY (pynlpl.formats.folia.EntitiesLayer attribute),

682
SETONLY (pynlpl.formats.folia.Entity attribute), 553
SETONLY (pynlpl.formats.folia.Entry attribute), 139
SETONLY (pynlpl.formats.folia.ErrorDetection at-

tribute), 965
SETONLY (pynlpl.formats.folia.Event attribute), 152
SETONLY (pynlpl.formats.folia.Example attribute), 165
SETONLY (pynlpl.formats.folia.Feature attribute), 862
SETONLY (pynlpl.formats.folia.Figure attribute), 178
SETONLY (pynlpl.formats.folia.Gap attribute), 191
SETONLY (pynlpl.formats.folia.Head attribute), 202
SETONLY (pynlpl.formats.folia.Headspan attribute), 788
SETONLY (pynlpl.formats.folia.LangAnnotation at-

tribute), 451
SETONLY (pynlpl.formats.folia.LemmaAnnotation at-

tribute), 462
SETONLY (pynlpl.formats.folia.Linebreak attribute), 215
SETONLY (pynlpl.formats.folia.List attribute), 228
SETONLY (pynlpl.formats.folia.ListItem attribute), 241
SETONLY (pynlpl.formats.folia.Metric attribute), 1043
SETONLY (pynlpl.formats.folia.New attribute), 976
SETONLY (pynlpl.formats.folia.Note attribute), 254
SETONLY (pynlpl.formats.folia.Observation attribute),

564
SETONLY (pynlpl.formats.folia.ObservationLayer at-

tribute), 694
SETONLY (pynlpl.formats.folia.Original attribute), 987
SETONLY (pynlpl.formats.folia.Paragraph attribute), 267
SETONLY (pynlpl.formats.folia.Part attribute), 280
SETONLY (pynlpl.formats.folia.PhonContent attribute),

506
SETONLY (pynlpl.formats.folia.PosAnnotation at-

tribute), 440

Index 1161

PyNLPl Documentation, Release 1.2.8

SETONLY (pynlpl.formats.folia.Predicate attribute), 576
SETONLY (pynlpl.formats.folia.Quote attribute), 293
SETONLY (pynlpl.formats.folia.Reference attribute), 306
SETONLY (pynlpl.formats.folia.Row attribute), 319
SETONLY (pynlpl.formats.folia.SemanticRole attribute),

623
SETONLY (pynlpl.formats.folia.SemanticRolesLayer at-

tribute), 741
SETONLY (pynlpl.formats.folia.SenseAnnotation at-

tribute), 473
SETONLY (pynlpl.formats.folia.Sentence attribute), 333
SETONLY (pynlpl.formats.folia.Sentiment attribute), 588
SETONLY (pynlpl.formats.folia.SentimentLayer at-

tribute), 705
SETONLY (pynlpl.formats.folia.Statement attribute), 599
SETONLY (pynlpl.formats.folia.StatementLayer at-

tribute), 717
SETONLY (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 484
SETONLY (pynlpl.formats.folia.Suggestion attribute),

998
SETONLY (pynlpl.formats.folia.SynsetFeature attribute),

874
SETONLY (pynlpl.formats.folia.SyntacticUnit attribute),

611
SETONLY (pynlpl.formats.folia.SyntaxLayer attribute),

729
SETONLY (pynlpl.formats.folia.Table attribute), 347
SETONLY (pynlpl.formats.folia.TableHead attribute),

373
SETONLY (pynlpl.formats.folia.Term attribute), 360
SETONLY (pynlpl.formats.folia.Text attribute), 386
SETONLY (pynlpl.formats.folia.TextContent attribute),

495
SETONLY (pynlpl.formats.folia.TextMarkupCorrection

attribute), 840
SETONLY (pynlpl.formats.folia.TextMarkupError

attribute), 851
SETONLY (pynlpl.formats.folia.TextMarkupGap at-

tribute), 808
SETONLY (pynlpl.formats.folia.TextMarkupString at-

tribute), 819
SETONLY (pynlpl.formats.folia.TextMarkupStyle

attribute), 830
SETONLY (pynlpl.formats.folia.TimeSegment attribute),

634
SETONLY (pynlpl.formats.folia.TimingLayer attribute),

752
SETONLY (pynlpl.formats.folia.Whitespace attribute),

399
SETONLY (pynlpl.formats.folia.Word attribute), 413
setparents() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 81
setparents() (pynlpl.formats.folia.AbstractElement

method), 32
setparents() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 58
setparents() (pynlpl.formats.folia.AbstractStructureElement

method), 45
setparents() (pynlpl.formats.folia.AbstractTextMarkup

method), 92
setparents() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 70
setparents() (pynlpl.formats.folia.ActorFeature method),

891
setparents() (pynlpl.formats.folia.Alignment method),

1015
setparents() (pynlpl.formats.folia.AlignReference

method), 1026
setparents() (pynlpl.formats.folia.Alternative method),

926
setparents() (pynlpl.formats.folia.AlternativeLayers

method), 937
setparents() (pynlpl.formats.folia.BegindatetimeFeature

method), 902
setparents() (pynlpl.formats.folia.Cell method), 108
setparents() (pynlpl.formats.folia.Chunk method), 524
setparents() (pynlpl.formats.folia.ChunkingLayer

method), 653
setparents() (pynlpl.formats.folia.CoreferenceChain

method), 536
setparents() (pynlpl.formats.folia.CoreferenceLayer

method), 665
setparents() (pynlpl.formats.folia.CoreferenceLink

method), 771
setparents() (pynlpl.formats.folia.Correction method),

949
setparents() (pynlpl.formats.folia.Current method), 960
setparents() (pynlpl.formats.folia.Definition method), 121
setparents() (pynlpl.formats.folia.DependenciesLayer

method), 677
setparents() (pynlpl.formats.folia.Dependency method),

548
setparents() (pynlpl.formats.folia.DependencyDependent

method), 783
setparents() (pynlpl.formats.folia.Description method),

1038
setparents() (pynlpl.formats.folia.Division method), 134
setparents() (pynlpl.formats.folia.DomainAnnotation

method), 435
setparents() (pynlpl.formats.folia.EnddatetimeFeature

method), 913
setparents() (pynlpl.formats.folia.EntitiesLayer method),

689
setparents() (pynlpl.formats.folia.Entity method), 559
setparents() (pynlpl.formats.folia.Entry method), 147
setparents() (pynlpl.formats.folia.ErrorDetection

method), 971

1162 Index

PyNLPl Documentation, Release 1.2.8

setparents() (pynlpl.formats.folia.Event method), 160
setparents() (pynlpl.formats.folia.Example method), 173
setparents() (pynlpl.formats.folia.Feature method), 869
setparents() (pynlpl.formats.folia.Figure method), 186
setparents() (pynlpl.formats.folia.Gap method), 197
setparents() (pynlpl.formats.folia.Head method), 210
setparents() (pynlpl.formats.folia.Headspan method), 794
setparents() (pynlpl.formats.folia.LangAnnotation

method), 457
setparents() (pynlpl.formats.folia.LemmaAnnotation

method), 468
setparents() (pynlpl.formats.folia.Linebreak method), 223
setparents() (pynlpl.formats.folia.List method), 236
setparents() (pynlpl.formats.folia.ListItem method), 249
setparents() (pynlpl.formats.folia.Metric method), 1049
setparents() (pynlpl.formats.folia.New method), 982
setparents() (pynlpl.formats.folia.Note method), 262
setparents() (pynlpl.formats.folia.Observation method),

571
setparents() (pynlpl.formats.folia.ObservationLayer

method), 700
setparents() (pynlpl.formats.folia.Original method), 993
setparents() (pynlpl.formats.folia.Paragraph method), 275
setparents() (pynlpl.formats.folia.Part method), 288
setparents() (pynlpl.formats.folia.PhonContent method),

511
setparents() (pynlpl.formats.folia.PosAnnotation

method), 446
setparents() (pynlpl.formats.folia.Predicate method), 583
setparents() (pynlpl.formats.folia.Quote method), 301
setparents() (pynlpl.formats.folia.Reference method), 314
setparents() (pynlpl.formats.folia.Row method), 327
setparents() (pynlpl.formats.folia.SemanticRole method),

629
setparents() (pynlpl.formats.folia.SemanticRolesLayer

method), 747
setparents() (pynlpl.formats.folia.SenseAnnotation

method), 479
setparents() (pynlpl.formats.folia.Sentence method), 342
setparents() (pynlpl.formats.folia.Sentiment method), 594
setparents() (pynlpl.formats.folia.SentimentLayer

method), 712
setparents() (pynlpl.formats.folia.Statement method), 606
setparents() (pynlpl.formats.folia.StatementLayer

method), 724
setparents() (pynlpl.formats.folia.SubjectivityAnnotation

method), 490
setparents() (pynlpl.formats.folia.Suggestion method),

1004
setparents() (pynlpl.formats.folia.SynsetFeature method),

880
setparents() (pynlpl.formats.folia.SyntacticUnit method),

618
setparents() (pynlpl.formats.folia.SyntaxLayer method),

736
setparents() (pynlpl.formats.folia.Table method), 355
setparents() (pynlpl.formats.folia.TableHead method),

381
setparents() (pynlpl.formats.folia.Term method), 368
setparents() (pynlpl.formats.folia.Text method), 394
setparents() (pynlpl.formats.folia.TextContent method),

501
setparents() (pynlpl.formats.folia.TextMarkupCorrection

method), 846
setparents() (pynlpl.formats.folia.TextMarkupError

method), 857
setparents() (pynlpl.formats.folia.TextMarkupGap

method), 814
setparents() (pynlpl.formats.folia.TextMarkupString

method), 825
setparents() (pynlpl.formats.folia.TextMarkupStyle

method), 836
setparents() (pynlpl.formats.folia.TimeSegment method),

641
setparents() (pynlpl.formats.folia.TimingLayer method),

759
setparents() (pynlpl.formats.folia.Whitespace method),

407
setparents() (pynlpl.formats.folia.Word method), 422
setphon() (pynlpl.formats.folia.PhonContent method),

511
setspan() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 59
setspan() (pynlpl.formats.folia.Chunk method), 525
setspan() (pynlpl.formats.folia.CoreferenceChain

method), 536
setspan() (pynlpl.formats.folia.CoreferenceLink method),

771
setspan() (pynlpl.formats.folia.Dependency method), 548
setspan() (pynlpl.formats.folia.DependencyDependent

method), 783
setspan() (pynlpl.formats.folia.Entity method), 559
setspan() (pynlpl.formats.folia.Headspan method), 794
setspan() (pynlpl.formats.folia.Observation method), 571
setspan() (pynlpl.formats.folia.Predicate method), 583
setspan() (pynlpl.formats.folia.SemanticRole method),

629
setspan() (pynlpl.formats.folia.Sentiment method), 594
setspan() (pynlpl.formats.folia.Statement method), 606
setspan() (pynlpl.formats.folia.SyntacticUnit method),

618
setspan() (pynlpl.formats.folia.TimeSegment method),

641
settext() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 82
settext() (pynlpl.formats.folia.AbstractElement method),

32
settext() (pynlpl.formats.folia.AbstractSpanAnnotation

Index 1163

PyNLPl Documentation, Release 1.2.8

method), 59
settext() (pynlpl.formats.folia.AbstractStructureElement

method), 45
settext() (pynlpl.formats.folia.AbstractTextMarkup

method), 92
settext() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 70
settext() (pynlpl.formats.folia.ActorFeature method), 891
settext() (pynlpl.formats.folia.Alignment method), 1015
settext() (pynlpl.formats.folia.AlignReference method),

1026
settext() (pynlpl.formats.folia.Alternative method), 926
settext() (pynlpl.formats.folia.AlternativeLayers method),

938
settext() (pynlpl.formats.folia.BegindatetimeFeature

method), 902
settext() (pynlpl.formats.folia.Cell method), 108
settext() (pynlpl.formats.folia.Chunk method), 525
settext() (pynlpl.formats.folia.ChunkingLayer method),

653
settext() (pynlpl.formats.folia.CoreferenceChain

method), 536
settext() (pynlpl.formats.folia.CoreferenceLayer method),

665
settext() (pynlpl.formats.folia.CoreferenceLink method),

771
settext() (pynlpl.formats.folia.Correction method), 949
settext() (pynlpl.formats.folia.Current method), 960
settext() (pynlpl.formats.folia.Definition method), 121
settext() (pynlpl.formats.folia.DependenciesLayer

method), 677
settext() (pynlpl.formats.folia.Dependency method), 548
settext() (pynlpl.formats.folia.DependencyDependent

method), 783
settext() (pynlpl.formats.folia.Description method), 1038
settext() (pynlpl.formats.folia.Division method), 134
settext() (pynlpl.formats.folia.DomainAnnotation

method), 435
settext() (pynlpl.formats.folia.EnddatetimeFeature

method), 913
settext() (pynlpl.formats.folia.EntitiesLayer method), 689
settext() (pynlpl.formats.folia.Entity method), 559
settext() (pynlpl.formats.folia.Entry method), 147
settext() (pynlpl.formats.folia.ErrorDetection method),

971
settext() (pynlpl.formats.folia.Event method), 160
settext() (pynlpl.formats.folia.Example method), 173
settext() (pynlpl.formats.folia.Feature method), 869
settext() (pynlpl.formats.folia.Figure method), 186
settext() (pynlpl.formats.folia.Gap method), 197
settext() (pynlpl.formats.folia.Head method), 210
settext() (pynlpl.formats.folia.Headspan method), 794
settext() (pynlpl.formats.folia.LangAnnotation method),

457

settext() (pynlpl.formats.folia.LemmaAnnotation
method), 468

settext() (pynlpl.formats.folia.Linebreak method), 223
settext() (pynlpl.formats.folia.List method), 236
settext() (pynlpl.formats.folia.ListItem method), 249
settext() (pynlpl.formats.folia.Metric method), 1049
settext() (pynlpl.formats.folia.New method), 982
settext() (pynlpl.formats.folia.Note method), 262
settext() (pynlpl.formats.folia.Observation method), 571
settext() (pynlpl.formats.folia.ObservationLayer method),

701
settext() (pynlpl.formats.folia.Original method), 993
settext() (pynlpl.formats.folia.Paragraph method), 275
settext() (pynlpl.formats.folia.Part method), 288
settext() (pynlpl.formats.folia.PhonContent method), 511
settext() (pynlpl.formats.folia.PosAnnotation method),

446
settext() (pynlpl.formats.folia.Predicate method), 583
settext() (pynlpl.formats.folia.Quote method), 301
settext() (pynlpl.formats.folia.Reference method), 314
settext() (pynlpl.formats.folia.Row method), 327
settext() (pynlpl.formats.folia.SemanticRole method),

629
settext() (pynlpl.formats.folia.SemanticRolesLayer

method), 748
settext() (pynlpl.formats.folia.SenseAnnotation method),

479
settext() (pynlpl.formats.folia.Sentence method), 342
settext() (pynlpl.formats.folia.Sentiment method), 594
settext() (pynlpl.formats.folia.SentimentLayer method),

712
settext() (pynlpl.formats.folia.Statement method), 606
settext() (pynlpl.formats.folia.StatementLayer method),

724
settext() (pynlpl.formats.folia.SubjectivityAnnotation

method), 490
settext() (pynlpl.formats.folia.Suggestion method), 1004
settext() (pynlpl.formats.folia.SynsetFeature method),

880
settext() (pynlpl.formats.folia.SyntacticUnit method), 618
settext() (pynlpl.formats.folia.SyntaxLayer method), 736
settext() (pynlpl.formats.folia.Table method), 355
settext() (pynlpl.formats.folia.TableHead method), 381
settext() (pynlpl.formats.folia.Term method), 368
settext() (pynlpl.formats.folia.Text method), 394
settext() (pynlpl.formats.folia.TextContent method), 501
settext() (pynlpl.formats.folia.TextMarkupCorrection

method), 847
settext() (pynlpl.formats.folia.TextMarkupError method),

857
settext() (pynlpl.formats.folia.TextMarkupGap method),

815
settext() (pynlpl.formats.folia.TextMarkupString

method), 825

1164 Index

PyNLPl Documentation, Release 1.2.8

settext() (pynlpl.formats.folia.TextMarkupStyle method),
836

settext() (pynlpl.formats.folia.TimeSegment method),
641

settext() (pynlpl.formats.folia.TimingLayer method), 759
settext() (pynlpl.formats.folia.Whitespace method), 407
settext() (pynlpl.formats.folia.Word method), 422
settransitions() (pynlpl.statistics.MarkovChain method),

1063
SimpleLanguageModel (class in pynlpl.lm.lm), 1057
size() (pynlpl.datatypes.Trie method), 7
size() (pynlpl.statistics.MarkovChain method), 1064
SPEAKABLE (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
SPEAKABLE (pynlpl.formats.folia.AbstractElement at-

tribute), 26
SPEAKABLE (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
SPEAKABLE (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
SPEAKABLE (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
SPEAKABLE (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
SPEAKABLE (pynlpl.formats.folia.ActorFeature at-

tribute), 885
SPEAKABLE (pynlpl.formats.folia.Alignment attribute),

1009
SPEAKABLE (pynlpl.formats.folia.AlignReference at-

tribute), 1020
SPEAKABLE (pynlpl.formats.folia.Alternative at-

tribute), 919
SPEAKABLE (pynlpl.formats.folia.AlternativeLayers at-

tribute), 931
SPEAKABLE (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
SPEAKABLE (pynlpl.formats.folia.Cell attribute), 100
SPEAKABLE (pynlpl.formats.folia.Chunk attribute), 518
SPEAKABLE (pynlpl.formats.folia.ChunkingLayer at-

tribute), 647
SPEAKABLE (pynlpl.formats.folia.CoreferenceChain

attribute), 530
SPEAKABLE (pynlpl.formats.folia.CoreferenceLayer at-

tribute), 658
SPEAKABLE (pynlpl.formats.folia.CoreferenceLink at-

tribute), 764
SPEAKABLE (pynlpl.formats.folia.Correction attribute),

944
SPEAKABLE (pynlpl.formats.folia.Current attribute),

953
SPEAKABLE (pynlpl.formats.folia.Definition attribute),

113
SPEAKABLE (pynlpl.formats.folia.DependenciesLayer

attribute), 670

SPEAKABLE (pynlpl.formats.folia.Dependency at-
tribute), 541

SPEAKABLE (pynlpl.formats.folia.DependencyDependent
attribute), 776

SPEAKABLE (pynlpl.formats.folia.Description at-
tribute), 1032

SPEAKABLE (pynlpl.formats.folia.Division attribute),
126

SPEAKABLE (pynlpl.formats.folia.DomainAnnotation
attribute), 429

SPEAKABLE (pynlpl.formats.folia.EnddatetimeFeature
attribute), 907

SPEAKABLE (pynlpl.formats.folia.EntitiesLayer at-
tribute), 682

SPEAKABLE (pynlpl.formats.folia.Entity attribute), 553
SPEAKABLE (pynlpl.formats.folia.Entry attribute), 139
SPEAKABLE (pynlpl.formats.folia.ErrorDetection at-

tribute), 965
SPEAKABLE (pynlpl.formats.folia.Event attribute), 152
SPEAKABLE (pynlpl.formats.folia.Example attribute),

165
SPEAKABLE (pynlpl.formats.folia.Feature attribute),

862
SPEAKABLE (pynlpl.formats.folia.Figure attribute), 178
SPEAKABLE (pynlpl.formats.folia.Gap attribute), 191
SPEAKABLE (pynlpl.formats.folia.Head attribute), 202
SPEAKABLE (pynlpl.formats.folia.Headspan attribute),

788
SPEAKABLE (pynlpl.formats.folia.LangAnnotation at-

tribute), 451
SPEAKABLE (pynlpl.formats.folia.LemmaAnnotation

attribute), 462
SPEAKABLE (pynlpl.formats.folia.Linebreak attribute),

215
SPEAKABLE (pynlpl.formats.folia.List attribute), 228
SPEAKABLE (pynlpl.formats.folia.ListItem attribute),

241
SPEAKABLE (pynlpl.formats.folia.Metric attribute),

1043
SPEAKABLE (pynlpl.formats.folia.New attribute), 976
SPEAKABLE (pynlpl.formats.folia.Note attribute), 254
SPEAKABLE (pynlpl.formats.folia.Observation at-

tribute), 564
SPEAKABLE (pynlpl.formats.folia.ObservationLayer at-

tribute), 694
SPEAKABLE (pynlpl.formats.folia.Original attribute),

987
SPEAKABLE (pynlpl.formats.folia.Paragraph attribute),

267
SPEAKABLE (pynlpl.formats.folia.Part attribute), 280
SPEAKABLE (pynlpl.formats.folia.PhonContent at-

tribute), 506
SPEAKABLE (pynlpl.formats.folia.PosAnnotation at-

tribute), 440

Index 1165

PyNLPl Documentation, Release 1.2.8

SPEAKABLE (pynlpl.formats.folia.Predicate attribute),
576

SPEAKABLE (pynlpl.formats.folia.Quote attribute), 293
SPEAKABLE (pynlpl.formats.folia.Reference attribute),

306
SPEAKABLE (pynlpl.formats.folia.Row attribute), 319
SPEAKABLE (pynlpl.formats.folia.SemanticRole

attribute), 623
SPEAKABLE (pynlpl.formats.folia.SemanticRolesLayer

attribute), 741
SPEAKABLE (pynlpl.formats.folia.SenseAnnotation at-

tribute), 473
SPEAKABLE (pynlpl.formats.folia.Sentence attribute),

333
SPEAKABLE (pynlpl.formats.folia.Sentiment attribute),

588
SPEAKABLE (pynlpl.formats.folia.SentimentLayer at-

tribute), 705
SPEAKABLE (pynlpl.formats.folia.Statement attribute),

599
SPEAKABLE (pynlpl.formats.folia.StatementLayer at-

tribute), 717
SPEAKABLE (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 484
SPEAKABLE (pynlpl.formats.folia.Suggestion at-

tribute), 998
SPEAKABLE (pynlpl.formats.folia.SynsetFeature

attribute), 874
SPEAKABLE (pynlpl.formats.folia.SyntacticUnit at-

tribute), 611
SPEAKABLE (pynlpl.formats.folia.SyntaxLayer at-

tribute), 729
SPEAKABLE (pynlpl.formats.folia.Table attribute), 347
SPEAKABLE (pynlpl.formats.folia.TableHead attribute),

373
SPEAKABLE (pynlpl.formats.folia.Term attribute), 360
SPEAKABLE (pynlpl.formats.folia.Text attribute), 386
SPEAKABLE (pynlpl.formats.folia.TextContent at-

tribute), 495
SPEAKABLE (pynlpl.formats.folia.TextMarkupCorrection

attribute), 840
SPEAKABLE (pynlpl.formats.folia.TextMarkupError at-

tribute), 851
SPEAKABLE (pynlpl.formats.folia.TextMarkupGap at-

tribute), 808
SPEAKABLE (pynlpl.formats.folia.TextMarkupString

attribute), 819
SPEAKABLE (pynlpl.formats.folia.TextMarkupStyle at-

tribute), 830
SPEAKABLE (pynlpl.formats.folia.TimeSegment

attribute), 634
SPEAKABLE (pynlpl.formats.folia.TimingLayer at-

tribute), 752
SPEAKABLE (pynlpl.formats.folia.Whitespace at-

tribute), 399
SPEAKABLE (pynlpl.formats.folia.Word attribute), 413
specificity() (pynlpl.evaluation.ClassEvaluation method),

10
speech_speaker() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 82
speech_speaker() (pynlpl.formats.folia.AbstractElement

method), 32
speech_speaker() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 59
speech_speaker() (pynlpl.formats.folia.AbstractStructureElement

method), 45
speech_speaker() (pynlpl.formats.folia.AbstractTextMarkup

method), 92
speech_speaker() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 70
speech_speaker() (pynlpl.formats.folia.ActorFeature

method), 891
speech_speaker() (pynlpl.formats.folia.Alignment

method), 1015
speech_speaker() (pynlpl.formats.folia.AlignReference

method), 1027
speech_speaker() (pynlpl.formats.folia.Alternative

method), 927
speech_speaker() (pynlpl.formats.folia.AlternativeLayers

method), 938
speech_speaker() (pynlpl.formats.folia.BegindatetimeFeature

method), 902
speech_speaker() (pynlpl.formats.folia.Cell method), 108
speech_speaker() (pynlpl.formats.folia.Chunk method),

525
speech_speaker() (pynlpl.formats.folia.ChunkingLayer

method), 654
speech_speaker() (pynlpl.formats.folia.CoreferenceChain

method), 536
speech_speaker() (pynlpl.formats.folia.CoreferenceLayer

method), 665
speech_speaker() (pynlpl.formats.folia.CoreferenceLink

method), 771
speech_speaker() (pynlpl.formats.folia.Correction

method), 950
speech_speaker() (pynlpl.formats.folia.Current method),

960
speech_speaker() (pynlpl.formats.folia.Definition

method), 121
speech_speaker() (pynlpl.formats.folia.DependenciesLayer

method), 677
speech_speaker() (pynlpl.formats.folia.Dependency

method), 548
speech_speaker() (pynlpl.formats.folia.DependencyDependent

method), 783
speech_speaker() (pynlpl.formats.folia.Description

method), 1038
speech_speaker() (pynlpl.formats.folia.Division method),

1166 Index

PyNLPl Documentation, Release 1.2.8

134
speech_speaker() (pynlpl.formats.folia.DomainAnnotation

method), 435
speech_speaker() (pynlpl.formats.folia.EnddatetimeFeature

method), 913
speech_speaker() (pynlpl.formats.folia.EntitiesLayer

method), 689
speech_speaker() (pynlpl.formats.folia.Entity method),

560
speech_speaker() (pynlpl.formats.folia.Entry method),

147
speech_speaker() (pynlpl.formats.folia.ErrorDetection

method), 971
speech_speaker() (pynlpl.formats.folia.Event method),

160
speech_speaker() (pynlpl.formats.folia.Example method),

173
speech_speaker() (pynlpl.formats.folia.Feature method),

869
speech_speaker() (pynlpl.formats.folia.Figure method),

186
speech_speaker() (pynlpl.formats.folia.Gap method), 197
speech_speaker() (pynlpl.formats.folia.Head method),

210
speech_speaker() (pynlpl.formats.folia.Headspan

method), 795
speech_speaker() (pynlpl.formats.folia.LangAnnotation

method), 457
speech_speaker() (pynlpl.formats.folia.LemmaAnnotation

method), 468
speech_speaker() (pynlpl.formats.folia.Linebreak

method), 223
speech_speaker() (pynlpl.formats.folia.List method), 236
speech_speaker() (pynlpl.formats.folia.ListItem method),

249
speech_speaker() (pynlpl.formats.folia.Metric method),

1049
speech_speaker() (pynlpl.formats.folia.New method), 982
speech_speaker() (pynlpl.formats.folia.Note method),

262
speech_speaker() (pynlpl.formats.folia.Observation

method), 571
speech_speaker() (pynlpl.formats.folia.ObservationLayer

method), 701
speech_speaker() (pynlpl.formats.folia.Original method),

993
speech_speaker() (pynlpl.formats.folia.Paragraph

method), 275
speech_speaker() (pynlpl.formats.folia.Part method), 288
speech_speaker() (pynlpl.formats.folia.PhonContent

method), 512
speech_speaker() (pynlpl.formats.folia.PosAnnotation

method), 446
speech_speaker() (pynlpl.formats.folia.Predicate

method), 583
speech_speaker() (pynlpl.formats.folia.Quote method),

301
speech_speaker() (pynlpl.formats.folia.Reference

method), 314
speech_speaker() (pynlpl.formats.folia.Row method), 327
speech_speaker() (pynlpl.formats.folia.SemanticRole

method), 630
speech_speaker() (pynlpl.formats.folia.SemanticRolesLayer

method), 748
speech_speaker() (pynlpl.formats.folia.SenseAnnotation

method), 479
speech_speaker() (pynlpl.formats.folia.Sentence

method), 342
speech_speaker() (pynlpl.formats.folia.Sentiment

method), 595
speech_speaker() (pynlpl.formats.folia.SentimentLayer

method), 712
speech_speaker() (pynlpl.formats.folia.Statement

method), 606
speech_speaker() (pynlpl.formats.folia.StatementLayer

method), 724
speech_speaker() (pynlpl.formats.folia.SubjectivityAnnotation

method), 490
speech_speaker() (pynlpl.formats.folia.Suggestion

method), 1004
speech_speaker() (pynlpl.formats.folia.SynsetFeature

method), 880
speech_speaker() (pynlpl.formats.folia.SyntacticUnit

method), 618
speech_speaker() (pynlpl.formats.folia.SyntaxLayer

method), 736
speech_speaker() (pynlpl.formats.folia.Table method),

355
speech_speaker() (pynlpl.formats.folia.TableHead

method), 381
speech_speaker() (pynlpl.formats.folia.Term method),

368
speech_speaker() (pynlpl.formats.folia.Text method), 394
speech_speaker() (pynlpl.formats.folia.TextContent

method), 501
speech_speaker() (pynlpl.formats.folia.TextMarkupCorrection

method), 847
speech_speaker() (pynlpl.formats.folia.TextMarkupError

method), 857
speech_speaker() (pynlpl.formats.folia.TextMarkupGap

method), 815
speech_speaker() (pynlpl.formats.folia.TextMarkupString

method), 825
speech_speaker() (pynlpl.formats.folia.TextMarkupStyle

method), 836
speech_speaker() (pynlpl.formats.folia.TimeSegment

method), 641
speech_speaker() (pynlpl.formats.folia.TimingLayer

Index 1167

PyNLPl Documentation, Release 1.2.8

method), 759
speech_speaker() (pynlpl.formats.folia.Whitespace

method), 407
speech_speaker() (pynlpl.formats.folia.Word method),

422
speech_src() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 82
speech_src() (pynlpl.formats.folia.AbstractElement

method), 32
speech_src() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 59
speech_src() (pynlpl.formats.folia.AbstractStructureElement

method), 45
speech_src() (pynlpl.formats.folia.AbstractTextMarkup

method), 93
speech_src() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 70
speech_src() (pynlpl.formats.folia.ActorFeature method),

891
speech_src() (pynlpl.formats.folia.Alignment method),

1016
speech_src() (pynlpl.formats.folia.AlignReference

method), 1027
speech_src() (pynlpl.formats.folia.Alternative method),

927
speech_src() (pynlpl.formats.folia.AlternativeLayers

method), 938
speech_src() (pynlpl.formats.folia.BegindatetimeFeature

method), 902
speech_src() (pynlpl.formats.folia.Cell method), 108
speech_src() (pynlpl.formats.folia.Chunk method), 525
speech_src() (pynlpl.formats.folia.ChunkingLayer

method), 654
speech_src() (pynlpl.formats.folia.CoreferenceChain

method), 536
speech_src() (pynlpl.formats.folia.CoreferenceLayer

method), 666
speech_src() (pynlpl.formats.folia.CoreferenceLink

method), 771
speech_src() (pynlpl.formats.folia.Correction method),

950
speech_src() (pynlpl.formats.folia.Current method), 960
speech_src() (pynlpl.formats.folia.Definition method),

121
speech_src() (pynlpl.formats.folia.DependenciesLayer

method), 677
speech_src() (pynlpl.formats.folia.Dependency method),

548
speech_src() (pynlpl.formats.folia.DependencyDependent

method), 783
speech_src() (pynlpl.formats.folia.Description method),

1038
speech_src() (pynlpl.formats.folia.Division method), 134
speech_src() (pynlpl.formats.folia.DomainAnnotation

method), 435
speech_src() (pynlpl.formats.folia.EnddatetimeFeature

method), 913
speech_src() (pynlpl.formats.folia.EntitiesLayer method),

689
speech_src() (pynlpl.formats.folia.Entity method), 560
speech_src() (pynlpl.formats.folia.Entry method), 147
speech_src() (pynlpl.formats.folia.ErrorDetection

method), 971
speech_src() (pynlpl.formats.folia.Event method), 160
speech_src() (pynlpl.formats.folia.Example method), 173
speech_src() (pynlpl.formats.folia.Feature method), 869
speech_src() (pynlpl.formats.folia.Figure method), 186
speech_src() (pynlpl.formats.folia.Gap method), 198
speech_src() (pynlpl.formats.folia.Head method), 210
speech_src() (pynlpl.formats.folia.Headspan method),

795
speech_src() (pynlpl.formats.folia.LangAnnotation

method), 457
speech_src() (pynlpl.formats.folia.LemmaAnnotation

method), 468
speech_src() (pynlpl.formats.folia.Linebreak method),

223
speech_src() (pynlpl.formats.folia.List method), 236
speech_src() (pynlpl.formats.folia.ListItem method), 249
speech_src() (pynlpl.formats.folia.Metric method), 1049
speech_src() (pynlpl.formats.folia.New method), 982
speech_src() (pynlpl.formats.folia.Note method), 262
speech_src() (pynlpl.formats.folia.Observation method),

571
speech_src() (pynlpl.formats.folia.ObservationLayer

method), 701
speech_src() (pynlpl.formats.folia.Original method), 993
speech_src() (pynlpl.formats.folia.Paragraph method),

275
speech_src() (pynlpl.formats.folia.Part method), 288
speech_src() (pynlpl.formats.folia.PhonContent method),

512
speech_src() (pynlpl.formats.folia.PosAnnotation

method), 446
speech_src() (pynlpl.formats.folia.Predicate method), 583
speech_src() (pynlpl.formats.folia.Quote method), 301
speech_src() (pynlpl.formats.folia.Reference method),

314
speech_src() (pynlpl.formats.folia.Row method), 327
speech_src() (pynlpl.formats.folia.SemanticRole

method), 630
speech_src() (pynlpl.formats.folia.SemanticRolesLayer

method), 748
speech_src() (pynlpl.formats.folia.SenseAnnotation

method), 479
speech_src() (pynlpl.formats.folia.Sentence method), 342
speech_src() (pynlpl.formats.folia.Sentiment method),

595

1168 Index

PyNLPl Documentation, Release 1.2.8

speech_src() (pynlpl.formats.folia.SentimentLayer
method), 713

speech_src() (pynlpl.formats.folia.Statement method),
606

speech_src() (pynlpl.formats.folia.StatementLayer
method), 724

speech_src() (pynlpl.formats.folia.SubjectivityAnnotation
method), 490

speech_src() (pynlpl.formats.folia.Suggestion method),
1004

speech_src() (pynlpl.formats.folia.SynsetFeature
method), 880

speech_src() (pynlpl.formats.folia.SyntacticUnit
method), 618

speech_src() (pynlpl.formats.folia.SyntaxLayer method),
736

speech_src() (pynlpl.formats.folia.Table method), 355
speech_src() (pynlpl.formats.folia.TableHead method),

381
speech_src() (pynlpl.formats.folia.Term method), 368
speech_src() (pynlpl.formats.folia.Text method), 394
speech_src() (pynlpl.formats.folia.TextContent method),

502
speech_src() (pynlpl.formats.folia.TextMarkupCorrection

method), 847
speech_src() (pynlpl.formats.folia.TextMarkupError

method), 857
speech_src() (pynlpl.formats.folia.TextMarkupGap

method), 815
speech_src() (pynlpl.formats.folia.TextMarkupString

method), 825
speech_src() (pynlpl.formats.folia.TextMarkupStyle

method), 836
speech_src() (pynlpl.formats.folia.TimeSegment

method), 641
speech_src() (pynlpl.formats.folia.TimingLayer method),

760
speech_src() (pynlpl.formats.folia.Whitespace method),

407
speech_src() (pynlpl.formats.folia.Word method), 422
split() (pynlpl.formats.folia.Word method), 422
split_sentences() (in module pynlpl.textprocessors), 1066
splitword() (pynlpl.formats.folia.Sentence method), 342
SRILM (class in pynlpl.lm.srilm), 1057
SRILMException, 1058
start() (pynlpl.evaluation.AbstractExperiment method), 9
start() (pynlpl.evaluation.ExperimentPool method), 10
startcommand() (pynlpl.evaluation.AbstractExperiment

method), 9
Statement (class in pynlpl.formats.folia), 597
StatementLayer (class in pynlpl.formats.folia), 714
stddev() (in module pynlpl.statistics), 1064
StochasticBeamSearch (class in pynlpl.search), 1060
stochasticprune() (pynlpl.datatypes.PriorityQueue

method), 6
stricttext() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 82
stricttext() (pynlpl.formats.folia.AbstractElement

method), 32
stricttext() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 59
stricttext() (pynlpl.formats.folia.AbstractStructureElement

method), 46
stricttext() (pynlpl.formats.folia.AbstractTextMarkup

method), 93
stricttext() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 70
stricttext() (pynlpl.formats.folia.ActorFeature method),

892
stricttext() (pynlpl.formats.folia.Alignment method),

1016
stricttext() (pynlpl.formats.folia.AlignReference method),

1027
stricttext() (pynlpl.formats.folia.Alternative method), 927
stricttext() (pynlpl.formats.folia.AlternativeLayers

method), 938
stricttext() (pynlpl.formats.folia.BegindatetimeFeature

method), 903
stricttext() (pynlpl.formats.folia.Cell method), 109
stricttext() (pynlpl.formats.folia.Chunk method), 525
stricttext() (pynlpl.formats.folia.ChunkingLayer method),

654
stricttext() (pynlpl.formats.folia.CoreferenceChain

method), 537
stricttext() (pynlpl.formats.folia.CoreferenceLayer

method), 666
stricttext() (pynlpl.formats.folia.CoreferenceLink

method), 771
stricttext() (pynlpl.formats.folia.Correction method), 950
stricttext() (pynlpl.formats.folia.Current method), 960
stricttext() (pynlpl.formats.folia.Definition method), 122
stricttext() (pynlpl.formats.folia.DependenciesLayer

method), 677
stricttext() (pynlpl.formats.folia.Dependency method),

548
stricttext() (pynlpl.formats.folia.DependencyDependent

method), 783
stricttext() (pynlpl.formats.folia.Description method),

1038
stricttext() (pynlpl.formats.folia.Division method), 135
stricttext() (pynlpl.formats.folia.DomainAnnotation

method), 435
stricttext() (pynlpl.formats.folia.EnddatetimeFeature

method), 914
stricttext() (pynlpl.formats.folia.EntitiesLayer method),

689
stricttext() (pynlpl.formats.folia.Entity method), 560
stricttext() (pynlpl.formats.folia.Entry method), 148

Index 1169

PyNLPl Documentation, Release 1.2.8

stricttext() (pynlpl.formats.folia.ErrorDetection method),
971

stricttext() (pynlpl.formats.folia.Event method), 161
stricttext() (pynlpl.formats.folia.Example method), 174
stricttext() (pynlpl.formats.folia.Feature method), 869
stricttext() (pynlpl.formats.folia.Figure method), 187
stricttext() (pynlpl.formats.folia.Gap method), 198
stricttext() (pynlpl.formats.folia.Head method), 211
stricttext() (pynlpl.formats.folia.Headspan method), 795
stricttext() (pynlpl.formats.folia.LangAnnotation

method), 457
stricttext() (pynlpl.formats.folia.LemmaAnnotation

method), 468
stricttext() (pynlpl.formats.folia.Linebreak method), 223
stricttext() (pynlpl.formats.folia.List method), 237
stricttext() (pynlpl.formats.folia.ListItem method), 250
stricttext() (pynlpl.formats.folia.Metric method), 1049
stricttext() (pynlpl.formats.folia.New method), 982
stricttext() (pynlpl.formats.folia.Note method), 263
stricttext() (pynlpl.formats.folia.Observation method),

572
stricttext() (pynlpl.formats.folia.ObservationLayer

method), 701
stricttext() (pynlpl.formats.folia.Original method), 993
stricttext() (pynlpl.formats.folia.Paragraph method), 276
stricttext() (pynlpl.formats.folia.Part method), 289
stricttext() (pynlpl.formats.folia.PhonContent method),

512
stricttext() (pynlpl.formats.folia.PosAnnotation method),

446
stricttext() (pynlpl.formats.folia.Predicate method), 583
stricttext() (pynlpl.formats.folia.Quote method), 302
stricttext() (pynlpl.formats.folia.Reference method), 315
stricttext() (pynlpl.formats.folia.Row method), 328
stricttext() (pynlpl.formats.folia.SemanticRole method),

630
stricttext() (pynlpl.formats.folia.SemanticRolesLayer

method), 748
stricttext() (pynlpl.formats.folia.SenseAnnotation

method), 479
stricttext() (pynlpl.formats.folia.Sentence method), 342
stricttext() (pynlpl.formats.folia.Sentiment method), 595
stricttext() (pynlpl.formats.folia.SentimentLayer

method), 713
stricttext() (pynlpl.formats.folia.Statement method), 607
stricttext() (pynlpl.formats.folia.StatementLayer method),

724
stricttext() (pynlpl.formats.folia.SubjectivityAnnotation

method), 490
stricttext() (pynlpl.formats.folia.Suggestion method),

1004
stricttext() (pynlpl.formats.folia.SynsetFeature method),

880
stricttext() (pynlpl.formats.folia.SyntacticUnit method),

618
stricttext() (pynlpl.formats.folia.SyntaxLayer method),

736
stricttext() (pynlpl.formats.folia.Table method), 355
stricttext() (pynlpl.formats.folia.TableHead method), 381
stricttext() (pynlpl.formats.folia.Term method), 368
stricttext() (pynlpl.formats.folia.Text method), 394
stricttext() (pynlpl.formats.folia.TextContent method),

502
stricttext() (pynlpl.formats.folia.TextMarkupCorrection

method), 847
stricttext() (pynlpl.formats.folia.TextMarkupError

method), 858
stricttext() (pynlpl.formats.folia.TextMarkupGap

method), 815
stricttext() (pynlpl.formats.folia.TextMarkupString

method), 826
stricttext() (pynlpl.formats.folia.TextMarkupStyle

method), 836
stricttext() (pynlpl.formats.folia.TimeSegment method),

642
stricttext() (pynlpl.formats.folia.TimingLayer method),

760
stricttext() (pynlpl.formats.folia.Whitespace method),

407
stricttext() (pynlpl.formats.folia.Word method), 422
strip_accents() (in module pynlpl.textprocessors), 1067
SubjectivityAnnotation (class in pynlpl.formats.folia),

481
SUBSET (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
SUBSET (pynlpl.formats.folia.AbstractElement at-

tribute), 26
SUBSET (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
SUBSET (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
SUBSET (pynlpl.formats.folia.AbstractTextMarkup at-

tribute), 86
SUBSET (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
SUBSET (pynlpl.formats.folia.ActorFeature attribute),

885
SUBSET (pynlpl.formats.folia.Alignment attribute),

1009
SUBSET (pynlpl.formats.folia.AlignReference attribute),

1020
SUBSET (pynlpl.formats.folia.Alternative attribute), 919
SUBSET (pynlpl.formats.folia.AlternativeLayers at-

tribute), 931
SUBSET (pynlpl.formats.folia.BegindatetimeFeature at-

tribute), 896
SUBSET (pynlpl.formats.folia.Cell attribute), 101
SUBSET (pynlpl.formats.folia.Chunk attribute), 518

1170 Index

PyNLPl Documentation, Release 1.2.8

SUBSET (pynlpl.formats.folia.ChunkingLayer attribute),
647

SUBSET (pynlpl.formats.folia.CoreferenceChain at-
tribute), 530

SUBSET (pynlpl.formats.folia.CoreferenceLayer at-
tribute), 658

SUBSET (pynlpl.formats.folia.CoreferenceLink at-
tribute), 764

SUBSET (pynlpl.formats.folia.Correction attribute), 944
SUBSET (pynlpl.formats.folia.Current attribute), 954
SUBSET (pynlpl.formats.folia.Definition attribute), 113
SUBSET (pynlpl.formats.folia.DependenciesLayer at-

tribute), 670
SUBSET (pynlpl.formats.folia.Dependency attribute),

541
SUBSET (pynlpl.formats.folia.DependencyDependent

attribute), 776
SUBSET (pynlpl.formats.folia.Description attribute),

1032
SUBSET (pynlpl.formats.folia.Division attribute), 126
SUBSET (pynlpl.formats.folia.DomainAnnotation

attribute), 429
SUBSET (pynlpl.formats.folia.EnddatetimeFeature at-

tribute), 907
SUBSET (pynlpl.formats.folia.EntitiesLayer attribute),

682
SUBSET (pynlpl.formats.folia.Entity attribute), 553
SUBSET (pynlpl.formats.folia.Entry attribute), 139
SUBSET (pynlpl.formats.folia.ErrorDetection attribute),

965
SUBSET (pynlpl.formats.folia.Event attribute), 152
SUBSET (pynlpl.formats.folia.Example attribute), 165
SUBSET (pynlpl.formats.folia.Feature attribute), 862
SUBSET (pynlpl.formats.folia.Figure attribute), 178
SUBSET (pynlpl.formats.folia.Gap attribute), 191
SUBSET (pynlpl.formats.folia.Head attribute), 202
SUBSET (pynlpl.formats.folia.Headspan attribute), 788
SUBSET (pynlpl.formats.folia.LangAnnotation at-

tribute), 451
SUBSET (pynlpl.formats.folia.LemmaAnnotation at-

tribute), 462
SUBSET (pynlpl.formats.folia.Linebreak attribute), 215
SUBSET (pynlpl.formats.folia.List attribute), 228
SUBSET (pynlpl.formats.folia.ListItem attribute), 241
SUBSET (pynlpl.formats.folia.Metric attribute), 1043
SUBSET (pynlpl.formats.folia.New attribute), 976
SUBSET (pynlpl.formats.folia.Note attribute), 254
SUBSET (pynlpl.formats.folia.Observation attribute),

565
SUBSET (pynlpl.formats.folia.ObservationLayer at-

tribute), 694
SUBSET (pynlpl.formats.folia.Original attribute), 987
SUBSET (pynlpl.formats.folia.Paragraph attribute), 267
SUBSET (pynlpl.formats.folia.Part attribute), 280

SUBSET (pynlpl.formats.folia.PhonContent attribute),
506

SUBSET (pynlpl.formats.folia.PosAnnotation attribute),
440

SUBSET (pynlpl.formats.folia.Predicate attribute), 576
SUBSET (pynlpl.formats.folia.Quote attribute), 293
SUBSET (pynlpl.formats.folia.Reference attribute), 306
SUBSET (pynlpl.formats.folia.Row attribute), 319
SUBSET (pynlpl.formats.folia.SemanticRole attribute),

623
SUBSET (pynlpl.formats.folia.SemanticRolesLayer at-

tribute), 741
SUBSET (pynlpl.formats.folia.SenseAnnotation at-

tribute), 473
SUBSET (pynlpl.formats.folia.Sentence attribute), 333
SUBSET (pynlpl.formats.folia.Sentiment attribute), 588
SUBSET (pynlpl.formats.folia.SentimentLayer attribute),

705
SUBSET (pynlpl.formats.folia.Statement attribute), 599
SUBSET (pynlpl.formats.folia.StatementLayer attribute),

717
SUBSET (pynlpl.formats.folia.SubjectivityAnnotation at-

tribute), 484
SUBSET (pynlpl.formats.folia.Suggestion attribute), 998
SUBSET (pynlpl.formats.folia.SynsetFeature attribute),

874
SUBSET (pynlpl.formats.folia.SyntacticUnit attribute),

611
SUBSET (pynlpl.formats.folia.SyntaxLayer attribute),

729
SUBSET (pynlpl.formats.folia.Table attribute), 347
SUBSET (pynlpl.formats.folia.TableHead attribute), 373
SUBSET (pynlpl.formats.folia.Term attribute), 360
SUBSET (pynlpl.formats.folia.Text attribute), 386
SUBSET (pynlpl.formats.folia.TextContent attribute),

495
SUBSET (pynlpl.formats.folia.TextMarkupCorrection at-

tribute), 840
SUBSET (pynlpl.formats.folia.TextMarkupError at-

tribute), 851
SUBSET (pynlpl.formats.folia.TextMarkupGap at-

tribute), 808
SUBSET (pynlpl.formats.folia.TextMarkupString at-

tribute), 819
SUBSET (pynlpl.formats.folia.TextMarkupStyle at-

tribute), 830
SUBSET (pynlpl.formats.folia.TimeSegment attribute),

634
SUBSET (pynlpl.formats.folia.TimingLayer attribute),

752
SUBSET (pynlpl.formats.folia.Whitespace attribute), 399
SUBSET (pynlpl.formats.folia.Word attribute), 413
Suggestion (class in pynlpl.formats.folia), 995
suggestions() (pynlpl.formats.folia.Correction method),

Index 1171

PyNLPl Documentation, Release 1.2.8

950
sum() (pynlpl.statistics.FrequencyList method), 1063
swap() (in module pynlpl.textprocessors), 1067
SynsetFeature (class in pynlpl.formats.folia), 871
SyntacticUnit (class in pynlpl.formats.folia), 608
SyntaxLayer (class in pynlpl.formats.folia), 726

T
Table (class in pynlpl.formats.folia), 344
TableHead (class in pynlpl.formats.folia), 370
Taggerdata (class in pynlpl.formats.taggerdata), 1055
targetword() (pynlpl.formats.giza.MultiWordAlignment

method), 1054
targetword() (pynlpl.formats.giza.WordAlignment

method), 1054
targetwords() (pynlpl.formats.giza.MultiWordAlignment

method), 1054
Term (class in pynlpl.formats.folia), 357
test() (pynlpl.evaluation.WPSParamSearch method), 10
test() (pynlpl.search.AbstractSearchState method), 1060
Text (class in pynlpl.formats.folia), 383
text() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 82
text() (pynlpl.formats.folia.AbstractElement method), 32
text() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 59
text() (pynlpl.formats.folia.AbstractStructureElement

method), 46
text() (pynlpl.formats.folia.AbstractTextMarkup method),

93
text() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 70
text() (pynlpl.formats.folia.ActorFeature method), 892
text() (pynlpl.formats.folia.Alignment method), 1016
text() (pynlpl.formats.folia.AlignReference method),

1027
text() (pynlpl.formats.folia.Alternative method), 927
text() (pynlpl.formats.folia.AlternativeLayers method),

938
text() (pynlpl.formats.folia.BegindatetimeFeature

method), 903
text() (pynlpl.formats.folia.Cell method), 109
text() (pynlpl.formats.folia.Chunk method), 525
text() (pynlpl.formats.folia.ChunkingLayer method), 654
text() (pynlpl.formats.folia.CoreferenceChain method),

537
text() (pynlpl.formats.folia.CoreferenceLayer method),

666
text() (pynlpl.formats.folia.CoreferenceLink method),

772
text() (pynlpl.formats.folia.Correction method), 950
text() (pynlpl.formats.folia.Current method), 960
text() (pynlpl.formats.folia.Definition method), 122

text() (pynlpl.formats.folia.DependenciesLayer method),
677

text() (pynlpl.formats.folia.Dependency method), 548
text() (pynlpl.formats.folia.DependencyDependent

method), 783
text() (pynlpl.formats.folia.Description method), 1038
text() (pynlpl.formats.folia.Division method), 135
text() (pynlpl.formats.folia.Document method), 20
text() (pynlpl.formats.folia.DomainAnnotation method),

435
text() (pynlpl.formats.folia.EnddatetimeFeature method),

914
text() (pynlpl.formats.folia.EntitiesLayer method), 689
text() (pynlpl.formats.folia.Entity method), 560
text() (pynlpl.formats.folia.Entry method), 148
text() (pynlpl.formats.folia.ErrorDetection method), 971
text() (pynlpl.formats.folia.Event method), 161
text() (pynlpl.formats.folia.Example method), 174
text() (pynlpl.formats.folia.Feature method), 869
text() (pynlpl.formats.folia.Figure method), 187
text() (pynlpl.formats.folia.Gap method), 198
text() (pynlpl.formats.folia.Head method), 211
text() (pynlpl.formats.folia.Headspan method), 795
text() (pynlpl.formats.folia.LangAnnotation method), 457
text() (pynlpl.formats.folia.LemmaAnnotation method),

468
text() (pynlpl.formats.folia.Linebreak method), 223
text() (pynlpl.formats.folia.List method), 237
text() (pynlpl.formats.folia.ListItem method), 250
text() (pynlpl.formats.folia.Metric method), 1049
text() (pynlpl.formats.folia.New method), 982
text() (pynlpl.formats.folia.Note method), 263
text() (pynlpl.formats.folia.Observation method), 572
text() (pynlpl.formats.folia.ObservationLayer method),

701
text() (pynlpl.formats.folia.Original method), 993
text() (pynlpl.formats.folia.Paragraph method), 276
text() (pynlpl.formats.folia.Part method), 289
text() (pynlpl.formats.folia.PhonContent method), 512
text() (pynlpl.formats.folia.PosAnnotation method), 446
text() (pynlpl.formats.folia.Predicate method), 583
text() (pynlpl.formats.folia.Quote method), 302
text() (pynlpl.formats.folia.Reference method), 315
text() (pynlpl.formats.folia.Row method), 328
text() (pynlpl.formats.folia.SemanticRole method), 630
text() (pynlpl.formats.folia.SemanticRolesLayer method),

748
text() (pynlpl.formats.folia.SenseAnnotation method),

479
text() (pynlpl.formats.folia.Sentence method), 342
text() (pynlpl.formats.folia.Sentiment method), 595
text() (pynlpl.formats.folia.SentimentLayer method), 713
text() (pynlpl.formats.folia.Statement method), 607
text() (pynlpl.formats.folia.StatementLayer method), 724

1172 Index

PyNLPl Documentation, Release 1.2.8

text() (pynlpl.formats.folia.SubjectivityAnnotation
method), 490

text() (pynlpl.formats.folia.Suggestion method), 1004
text() (pynlpl.formats.folia.SynsetFeature method), 880
text() (pynlpl.formats.folia.SyntacticUnit method), 618
text() (pynlpl.formats.folia.SyntaxLayer method), 736
text() (pynlpl.formats.folia.Table method), 355
text() (pynlpl.formats.folia.TableHead method), 381
text() (pynlpl.formats.folia.Term method), 368
text() (pynlpl.formats.folia.Text method), 394
text() (pynlpl.formats.folia.TextContent method), 502
text() (pynlpl.formats.folia.TextMarkupCorrection

method), 847
text() (pynlpl.formats.folia.TextMarkupError method),

858
text() (pynlpl.formats.folia.TextMarkupGap method), 815
text() (pynlpl.formats.folia.TextMarkupString method),

826
text() (pynlpl.formats.folia.TextMarkupStyle method),

836
text() (pynlpl.formats.folia.TimeSegment method), 642
text() (pynlpl.formats.folia.TimingLayer method), 760
text() (pynlpl.formats.folia.Whitespace method), 407
text() (pynlpl.formats.folia.Word method), 422
TEXTCONTAINER (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
TEXTCONTAINER (pynlpl.formats.folia.AbstractElement

attribute), 26
TEXTCONTAINER (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
TEXTCONTAINER (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
TEXTCONTAINER (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
TEXTCONTAINER (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
TEXTCONTAINER (pynlpl.formats.folia.ActorFeature

attribute), 885
TEXTCONTAINER (pynlpl.formats.folia.Alignment at-

tribute), 1009
TEXTCONTAINER (pynlpl.formats.folia.AlignReference

attribute), 1020
TEXTCONTAINER (pynlpl.formats.folia.Alternative at-

tribute), 919
TEXTCONTAINER (pynlpl.formats.folia.AlternativeLayers

attribute), 931
TEXTCONTAINER (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
TEXTCONTAINER (pynlpl.formats.folia.Cell attribute),

101
TEXTCONTAINER (pynlpl.formats.folia.Chunk at-

tribute), 518
TEXTCONTAINER (pynlpl.formats.folia.ChunkingLayer

attribute), 647

TEXTCONTAINER (pynlpl.formats.folia.CoreferenceChain
attribute), 530

TEXTCONTAINER (pynlpl.formats.folia.CoreferenceLayer
attribute), 658

TEXTCONTAINER (pynlpl.formats.folia.CoreferenceLink
attribute), 764

TEXTCONTAINER (pynlpl.formats.folia.Correction at-
tribute), 944

TEXTCONTAINER (pynlpl.formats.folia.Current at-
tribute), 954

TEXTCONTAINER (pynlpl.formats.folia.Definition at-
tribute), 113

TEXTCONTAINER (pynlpl.formats.folia.DependenciesLayer
attribute), 670

TEXTCONTAINER (pynlpl.formats.folia.Dependency
attribute), 541

TEXTCONTAINER (pynlpl.formats.folia.DependencyDependent
attribute), 776

TEXTCONTAINER (pynlpl.formats.folia.Description at-
tribute), 1032

TEXTCONTAINER (pynlpl.formats.folia.Division at-
tribute), 126

TEXTCONTAINER (pynlpl.formats.folia.DomainAnnotation
attribute), 429

TEXTCONTAINER (pynlpl.formats.folia.EnddatetimeFeature
attribute), 907

TEXTCONTAINER (pynlpl.formats.folia.EntitiesLayer
attribute), 682

TEXTCONTAINER (pynlpl.formats.folia.Entity at-
tribute), 553

TEXTCONTAINER (pynlpl.formats.folia.Entry at-
tribute), 139

TEXTCONTAINER (pynlpl.formats.folia.ErrorDetection
attribute), 965

TEXTCONTAINER (pynlpl.formats.folia.Event at-
tribute), 152

TEXTCONTAINER (pynlpl.formats.folia.Example at-
tribute), 165

TEXTCONTAINER (pynlpl.formats.folia.Feature at-
tribute), 862

TEXTCONTAINER (pynlpl.formats.folia.Figure at-
tribute), 178

TEXTCONTAINER (pynlpl.formats.folia.Gap attribute),
191

TEXTCONTAINER (pynlpl.formats.folia.Head at-
tribute), 203

TEXTCONTAINER (pynlpl.formats.folia.Headspan at-
tribute), 788

TEXTCONTAINER (pynlpl.formats.folia.LangAnnotation
attribute), 451

TEXTCONTAINER (pynlpl.formats.folia.LemmaAnnotation
attribute), 462

TEXTCONTAINER (pynlpl.formats.folia.Linebreak at-
tribute), 215

Index 1173

PyNLPl Documentation, Release 1.2.8

TEXTCONTAINER (pynlpl.formats.folia.List attribute),
228

TEXTCONTAINER (pynlpl.formats.folia.ListItem at-
tribute), 241

TEXTCONTAINER (pynlpl.formats.folia.Metric at-
tribute), 1043

TEXTCONTAINER (pynlpl.formats.folia.New attribute),
976

TEXTCONTAINER (pynlpl.formats.folia.Note attribute),
254

TEXTCONTAINER (pynlpl.formats.folia.Observation
attribute), 565

TEXTCONTAINER (pynlpl.formats.folia.ObservationLayer
attribute), 694

TEXTCONTAINER (pynlpl.formats.folia.Original
attribute), 987

TEXTCONTAINER (pynlpl.formats.folia.Paragraph at-
tribute), 267

TEXTCONTAINER (pynlpl.formats.folia.Part attribute),
280

TEXTCONTAINER (pynlpl.formats.folia.PhonContent
attribute), 506

TEXTCONTAINER (pynlpl.formats.folia.PosAnnotation
attribute), 440

TEXTCONTAINER (pynlpl.formats.folia.Predicate at-
tribute), 576

TEXTCONTAINER (pynlpl.formats.folia.Quote at-
tribute), 293

TEXTCONTAINER (pynlpl.formats.folia.Reference at-
tribute), 306

TEXTCONTAINER (pynlpl.formats.folia.Row attribute),
319

TEXTCONTAINER (pynlpl.formats.folia.SemanticRole
attribute), 623

TEXTCONTAINER (pynlpl.formats.folia.SemanticRolesLayer
attribute), 741

TEXTCONTAINER (pynlpl.formats.folia.SenseAnnotation
attribute), 473

TEXTCONTAINER (pynlpl.formats.folia.Sentence at-
tribute), 333

TEXTCONTAINER (pynlpl.formats.folia.Sentiment at-
tribute), 588

TEXTCONTAINER (pynlpl.formats.folia.SentimentLayer
attribute), 705

TEXTCONTAINER (pynlpl.formats.folia.Statement at-
tribute), 599

TEXTCONTAINER (pynlpl.formats.folia.StatementLayer
attribute), 717

TEXTCONTAINER (pynlpl.formats.folia.SubjectivityAnnotation
attribute), 484

TEXTCONTAINER (pynlpl.formats.folia.Suggestion at-
tribute), 998

TEXTCONTAINER (pynlpl.formats.folia.SynsetFeature
attribute), 874

TEXTCONTAINER (pynlpl.formats.folia.SyntacticUnit
attribute), 611

TEXTCONTAINER (pynlpl.formats.folia.SyntaxLayer
attribute), 729

TEXTCONTAINER (pynlpl.formats.folia.Table at-
tribute), 347

TEXTCONTAINER (pynlpl.formats.folia.TableHead at-
tribute), 373

TEXTCONTAINER (pynlpl.formats.folia.Term at-
tribute), 360

TEXTCONTAINER (pynlpl.formats.folia.Text attribute),
386

TEXTCONTAINER (pynlpl.formats.folia.TextContent
attribute), 495

TEXTCONTAINER (pynlpl.formats.folia.TextMarkupCorrection
attribute), 840

TEXTCONTAINER (pynlpl.formats.folia.TextMarkupError
attribute), 851

TEXTCONTAINER (pynlpl.formats.folia.TextMarkupGap
attribute), 808

TEXTCONTAINER (pynlpl.formats.folia.TextMarkupString
attribute), 819

TEXTCONTAINER (pynlpl.formats.folia.TextMarkupStyle
attribute), 830

TEXTCONTAINER (pynlpl.formats.folia.TimeSegment
attribute), 634

TEXTCONTAINER (pynlpl.formats.folia.TimingLayer
attribute), 752

TEXTCONTAINER (pynlpl.formats.folia.Whitespace at-
tribute), 399

TEXTCONTAINER (pynlpl.formats.folia.Word at-
tribute), 413

TextContent (class in pynlpl.formats.folia), 492
textcontent() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 83
textcontent() (pynlpl.formats.folia.AbstractElement

method), 33
textcontent() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 60
textcontent() (pynlpl.formats.folia.AbstractStructureElement

method), 46
textcontent() (pynlpl.formats.folia.AbstractTextMarkup

method), 93
textcontent() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 71
textcontent() (pynlpl.formats.folia.ActorFeature method),

892
textcontent() (pynlpl.formats.folia.Alignment method),

1016
textcontent() (pynlpl.formats.folia.AlignReference

method), 1027
textcontent() (pynlpl.formats.folia.Alternative method),

927
textcontent() (pynlpl.formats.folia.AlternativeLayers

1174 Index

PyNLPl Documentation, Release 1.2.8

method), 939
textcontent() (pynlpl.formats.folia.BegindatetimeFeature

method), 903
textcontent() (pynlpl.formats.folia.Cell method), 109
textcontent() (pynlpl.formats.folia.Chunk method), 526
textcontent() (pynlpl.formats.folia.ChunkingLayer

method), 654
textcontent() (pynlpl.formats.folia.CoreferenceChain

method), 537
textcontent() (pynlpl.formats.folia.CoreferenceLayer

method), 666
textcontent() (pynlpl.formats.folia.CoreferenceLink

method), 772
textcontent() (pynlpl.formats.folia.Correction method),

950
textcontent() (pynlpl.formats.folia.Current method), 961
textcontent() (pynlpl.formats.folia.Definition method),

122
textcontent() (pynlpl.formats.folia.DependenciesLayer

method), 678
textcontent() (pynlpl.formats.folia.Dependency method),

549
textcontent() (pynlpl.formats.folia.DependencyDependent

method), 784
textcontent() (pynlpl.formats.folia.Description method),

1039
textcontent() (pynlpl.formats.folia.Division method), 135
textcontent() (pynlpl.formats.folia.DomainAnnotation

method), 436
textcontent() (pynlpl.formats.folia.EnddatetimeFeature

method), 914
textcontent() (pynlpl.formats.folia.EntitiesLayer method),

690
textcontent() (pynlpl.formats.folia.Entity method), 561
textcontent() (pynlpl.formats.folia.Entry method), 148
textcontent() (pynlpl.formats.folia.ErrorDetection

method), 972
textcontent() (pynlpl.formats.folia.Event method), 161
textcontent() (pynlpl.formats.folia.Example method), 174
textcontent() (pynlpl.formats.folia.Feature method), 870
textcontent() (pynlpl.formats.folia.Figure method), 187
textcontent() (pynlpl.formats.folia.Gap method), 198
textcontent() (pynlpl.formats.folia.Head method), 211
textcontent() (pynlpl.formats.folia.Headspan method),

796
textcontent() (pynlpl.formats.folia.LangAnnotation

method), 458
textcontent() (pynlpl.formats.folia.LemmaAnnotation

method), 469
textcontent() (pynlpl.formats.folia.Linebreak method),

224
textcontent() (pynlpl.formats.folia.List method), 237
textcontent() (pynlpl.formats.folia.ListItem method), 250
textcontent() (pynlpl.formats.folia.Metric method), 1050

textcontent() (pynlpl.formats.folia.New method), 983
textcontent() (pynlpl.formats.folia.Note method), 263
textcontent() (pynlpl.formats.folia.Observation method),

572
textcontent() (pynlpl.formats.folia.ObservationLayer

method), 702
textcontent() (pynlpl.formats.folia.Original method), 994
textcontent() (pynlpl.formats.folia.Paragraph method),

276
textcontent() (pynlpl.formats.folia.Part method), 289
textcontent() (pynlpl.formats.folia.PhonContent method),

512
textcontent() (pynlpl.formats.folia.PosAnnotation

method), 447
textcontent() (pynlpl.formats.folia.Predicate method),

584
textcontent() (pynlpl.formats.folia.Quote method), 302
textcontent() (pynlpl.formats.folia.Reference method),

315
textcontent() (pynlpl.formats.folia.Row method), 328
textcontent() (pynlpl.formats.folia.SemanticRole

method), 631
textcontent() (pynlpl.formats.folia.SemanticRolesLayer

method), 749
textcontent() (pynlpl.formats.folia.SenseAnnotation

method), 480
textcontent() (pynlpl.formats.folia.Sentence method), 343
textcontent() (pynlpl.formats.folia.Sentiment method),

596
textcontent() (pynlpl.formats.folia.SentimentLayer

method), 713
textcontent() (pynlpl.formats.folia.Statement method),

607
textcontent() (pynlpl.formats.folia.StatementLayer

method), 725
textcontent() (pynlpl.formats.folia.SubjectivityAnnotation

method), 491
textcontent() (pynlpl.formats.folia.Suggestion method),

1005
textcontent() (pynlpl.formats.folia.SynsetFeature

method), 881
textcontent() (pynlpl.formats.folia.SyntacticUnit

method), 619
textcontent() (pynlpl.formats.folia.SyntaxLayer method),

737
textcontent() (pynlpl.formats.folia.Table method), 356
textcontent() (pynlpl.formats.folia.TableHead method),

382
textcontent() (pynlpl.formats.folia.Term method), 369
textcontent() (pynlpl.formats.folia.Text method), 395
textcontent() (pynlpl.formats.folia.TextContent method),

502
textcontent() (pynlpl.formats.folia.TextMarkupCorrection

method), 848

Index 1175

PyNLPl Documentation, Release 1.2.8

textcontent() (pynlpl.formats.folia.TextMarkupError
method), 858

textcontent() (pynlpl.formats.folia.TextMarkupGap
method), 816

textcontent() (pynlpl.formats.folia.TextMarkupString
method), 826

textcontent() (pynlpl.formats.folia.TextMarkupStyle
method), 837

textcontent() (pynlpl.formats.folia.TimeSegment
method), 642

textcontent() (pynlpl.formats.folia.TimingLayer method),
760

textcontent() (pynlpl.formats.folia.Whitespace method),
408

textcontent() (pynlpl.formats.folia.Word method), 423
TEXTDELIMITER (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
TEXTDELIMITER (pynlpl.formats.folia.AbstractElement

attribute), 26
TEXTDELIMITER (pynlpl.formats.folia.AbstractSpanAnnotation

attribute), 52
TEXTDELIMITER (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
TEXTDELIMITER (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
TEXTDELIMITER (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
TEXTDELIMITER (pynlpl.formats.folia.ActorFeature

attribute), 885
TEXTDELIMITER (pynlpl.formats.folia.Alignment at-

tribute), 1009
TEXTDELIMITER (pynlpl.formats.folia.AlignReference

attribute), 1020
TEXTDELIMITER (pynlpl.formats.folia.Alternative at-

tribute), 919
TEXTDELIMITER (pynlpl.formats.folia.AlternativeLayers

attribute), 931
TEXTDELIMITER (pynlpl.formats.folia.BegindatetimeFeature

attribute), 896
TEXTDELIMITER (pynlpl.formats.folia.Cell attribute),

101
TEXTDELIMITER (pynlpl.formats.folia.Chunk at-

tribute), 518
TEXTDELIMITER (pynlpl.formats.folia.ChunkingLayer

attribute), 647
TEXTDELIMITER (pynlpl.formats.folia.CoreferenceChain

attribute), 530
TEXTDELIMITER (pynlpl.formats.folia.CoreferenceLayer

attribute), 658
TEXTDELIMITER (pynlpl.formats.folia.CoreferenceLink

attribute), 764
TEXTDELIMITER (pynlpl.formats.folia.Correction at-

tribute), 944
TEXTDELIMITER (pynlpl.formats.folia.Current at-

tribute), 954
TEXTDELIMITER (pynlpl.formats.folia.Definition at-

tribute), 113
TEXTDELIMITER (pynlpl.formats.folia.DependenciesLayer

attribute), 670
TEXTDELIMITER (pynlpl.formats.folia.Dependency at-

tribute), 541
TEXTDELIMITER (pynlpl.formats.folia.DependencyDependent

attribute), 776
TEXTDELIMITER (pynlpl.formats.folia.Description at-

tribute), 1032
TEXTDELIMITER (pynlpl.formats.folia.Division

attribute), 126
TEXTDELIMITER (pynlpl.formats.folia.DomainAnnotation

attribute), 429
TEXTDELIMITER (pynlpl.formats.folia.EnddatetimeFeature

attribute), 907
TEXTDELIMITER (pynlpl.formats.folia.EntitiesLayer

attribute), 682
TEXTDELIMITER (pynlpl.formats.folia.Entity at-

tribute), 553
TEXTDELIMITER (pynlpl.formats.folia.Entry attribute),

139
TEXTDELIMITER (pynlpl.formats.folia.ErrorDetection

attribute), 965
TEXTDELIMITER (pynlpl.formats.folia.Event at-

tribute), 152
TEXTDELIMITER (pynlpl.formats.folia.Example

attribute), 165
TEXTDELIMITER (pynlpl.formats.folia.Feature at-

tribute), 862
TEXTDELIMITER (pynlpl.formats.folia.Figure at-

tribute), 178
TEXTDELIMITER (pynlpl.formats.folia.Gap attribute),

191
TEXTDELIMITER (pynlpl.formats.folia.Head attribute),

203
TEXTDELIMITER (pynlpl.formats.folia.Headspan at-

tribute), 788
TEXTDELIMITER (pynlpl.formats.folia.LangAnnotation

attribute), 451
TEXTDELIMITER (pynlpl.formats.folia.LemmaAnnotation

attribute), 462
TEXTDELIMITER (pynlpl.formats.folia.Linebreak at-

tribute), 215
TEXTDELIMITER (pynlpl.formats.folia.List attribute),

228
TEXTDELIMITER (pynlpl.formats.folia.ListItem

attribute), 241
TEXTDELIMITER (pynlpl.formats.folia.Metric at-

tribute), 1043
TEXTDELIMITER (pynlpl.formats.folia.New attribute),

976
TEXTDELIMITER (pynlpl.formats.folia.Note attribute),

1176 Index

PyNLPl Documentation, Release 1.2.8

254
TEXTDELIMITER (pynlpl.formats.folia.Observation at-

tribute), 565
TEXTDELIMITER (pynlpl.formats.folia.ObservationLayer

attribute), 694
TEXTDELIMITER (pynlpl.formats.folia.Original at-

tribute), 987
TEXTDELIMITER (pynlpl.formats.folia.Paragraph at-

tribute), 267
TEXTDELIMITER (pynlpl.formats.folia.Part attribute),

280
TEXTDELIMITER (pynlpl.formats.folia.PhonContent

attribute), 506
TEXTDELIMITER (pynlpl.formats.folia.PosAnnotation

attribute), 440
TEXTDELIMITER (pynlpl.formats.folia.Predicate at-

tribute), 576
TEXTDELIMITER (pynlpl.formats.folia.Quote at-

tribute), 293
TEXTDELIMITER (pynlpl.formats.folia.Reference at-

tribute), 306
TEXTDELIMITER (pynlpl.formats.folia.Row attribute),

319
TEXTDELIMITER (pynlpl.formats.folia.SemanticRole

attribute), 623
TEXTDELIMITER (pynlpl.formats.folia.SemanticRolesLayer

attribute), 741
TEXTDELIMITER (pynlpl.formats.folia.SenseAnnotation

attribute), 473
TEXTDELIMITER (pynlpl.formats.folia.Sentence

attribute), 333
TEXTDELIMITER (pynlpl.formats.folia.Sentiment at-

tribute), 588
TEXTDELIMITER (pynlpl.formats.folia.SentimentLayer

attribute), 706
TEXTDELIMITER (pynlpl.formats.folia.Statement at-

tribute), 599
TEXTDELIMITER (pynlpl.formats.folia.StatementLayer

attribute), 717
TEXTDELIMITER (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 484
TEXTDELIMITER (pynlpl.formats.folia.Suggestion at-

tribute), 998
TEXTDELIMITER (pynlpl.formats.folia.SynsetFeature

attribute), 874
TEXTDELIMITER (pynlpl.formats.folia.SyntacticUnit

attribute), 611
TEXTDELIMITER (pynlpl.formats.folia.SyntaxLayer

attribute), 729
TEXTDELIMITER (pynlpl.formats.folia.Table attribute),

347
TEXTDELIMITER (pynlpl.formats.folia.TableHead at-

tribute), 373
TEXTDELIMITER (pynlpl.formats.folia.Term attribute),

360
TEXTDELIMITER (pynlpl.formats.folia.Text attribute),

386
TEXTDELIMITER (pynlpl.formats.folia.TextContent at-

tribute), 495
TEXTDELIMITER (pynlpl.formats.folia.TextMarkupCorrection

attribute), 841
TEXTDELIMITER (pynlpl.formats.folia.TextMarkupError

attribute), 851
TEXTDELIMITER (pynlpl.formats.folia.TextMarkupGap

attribute), 809
TEXTDELIMITER (pynlpl.formats.folia.TextMarkupString

attribute), 819
TEXTDELIMITER (pynlpl.formats.folia.TextMarkupStyle

attribute), 830
TEXTDELIMITER (pynlpl.formats.folia.TimeSegment

attribute), 634
TEXTDELIMITER (pynlpl.formats.folia.TimingLayer

attribute), 753
TEXTDELIMITER (pynlpl.formats.folia.Whitespace at-

tribute), 399
TEXTDELIMITER (pynlpl.formats.folia.Word attribute),

413
TextMarkupCorrection (class in pynlpl.formats.folia),

838
TextMarkupError (class in pynlpl.formats.folia), 849
TextMarkupGap (class in pynlpl.formats.folia), 806
TextMarkupString (class in pynlpl.formats.folia), 817
TextMarkupStyle (class in pynlpl.formats.folia), 827
textvalidation() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 83
textvalidation() (pynlpl.formats.folia.AbstractElement

method), 33
textvalidation() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 60
textvalidation() (pynlpl.formats.folia.AbstractStructureElement

method), 47
textvalidation() (pynlpl.formats.folia.AbstractTextMarkup

method), 94
textvalidation() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 71
textvalidation() (pynlpl.formats.folia.ActorFeature

method), 893
textvalidation() (pynlpl.formats.folia.Alignment method),

1017
textvalidation() (pynlpl.formats.folia.AlignReference

method), 1028
textvalidation() (pynlpl.formats.folia.Alternative

method), 928
textvalidation() (pynlpl.formats.folia.AlternativeLayers

method), 939
textvalidation() (pynlpl.formats.folia.BegindatetimeFeature

method), 904
textvalidation() (pynlpl.formats.folia.Cell method), 110

Index 1177

PyNLPl Documentation, Release 1.2.8

textvalidation() (pynlpl.formats.folia.Chunk method), 526
textvalidation() (pynlpl.formats.folia.ChunkingLayer

method), 655
textvalidation() (pynlpl.formats.folia.CoreferenceChain

method), 538
textvalidation() (pynlpl.formats.folia.CoreferenceLayer

method), 667
textvalidation() (pynlpl.formats.folia.CoreferenceLink

method), 773
textvalidation() (pynlpl.formats.folia.Correction method),

950
textvalidation() (pynlpl.formats.folia.Current method),

961
textvalidation() (pynlpl.formats.folia.Definition method),

123
textvalidation() (pynlpl.formats.folia.DependenciesLayer

method), 678
textvalidation() (pynlpl.formats.folia.Dependency

method), 549
textvalidation() (pynlpl.formats.folia.DependencyDependent

method), 784
textvalidation() (pynlpl.formats.folia.Description

method), 1039
textvalidation() (pynlpl.formats.folia.Division method),

136
textvalidation() (pynlpl.formats.folia.DomainAnnotation

method), 436
textvalidation() (pynlpl.formats.folia.EnddatetimeFeature

method), 915
textvalidation() (pynlpl.formats.folia.EntitiesLayer

method), 690
textvalidation() (pynlpl.formats.folia.Entity method), 561
textvalidation() (pynlpl.formats.folia.Entry method), 149
textvalidation() (pynlpl.formats.folia.ErrorDetection

method), 972
textvalidation() (pynlpl.formats.folia.Event method), 162
textvalidation() (pynlpl.formats.folia.Example method),

175
textvalidation() (pynlpl.formats.folia.Feature method),

870
textvalidation() (pynlpl.formats.folia.Figure method), 188
textvalidation() (pynlpl.formats.folia.Gap method), 199
textvalidation() (pynlpl.formats.folia.Head method), 212
textvalidation() (pynlpl.formats.folia.Headspan method),

796
textvalidation() (pynlpl.formats.folia.LangAnnotation

method), 458
textvalidation() (pynlpl.formats.folia.LemmaAnnotation

method), 469
textvalidation() (pynlpl.formats.folia.Linebreak method),

224
textvalidation() (pynlpl.formats.folia.List method), 238
textvalidation() (pynlpl.formats.folia.ListItem method),

251

textvalidation() (pynlpl.formats.folia.Metric method),
1050

textvalidation() (pynlpl.formats.folia.New method), 983
textvalidation() (pynlpl.formats.folia.Note method), 264
textvalidation() (pynlpl.formats.folia.Observation

method), 573
textvalidation() (pynlpl.formats.folia.ObservationLayer

method), 702
textvalidation() (pynlpl.formats.folia.Original method),

994
textvalidation() (pynlpl.formats.folia.Paragraph method),

277
textvalidation() (pynlpl.formats.folia.Part method), 290
textvalidation() (pynlpl.formats.folia.PhonContent

method), 513
textvalidation() (pynlpl.formats.folia.PosAnnotation

method), 447
textvalidation() (pynlpl.formats.folia.Predicate method),

584
textvalidation() (pynlpl.formats.folia.Quote method), 303
textvalidation() (pynlpl.formats.folia.Reference method),

316
textvalidation() (pynlpl.formats.folia.Row method), 329
textvalidation() (pynlpl.formats.folia.SemanticRole

method), 631
textvalidation() (pynlpl.formats.folia.SemanticRolesLayer

method), 749
textvalidation() (pynlpl.formats.folia.SenseAnnotation

method), 480
textvalidation() (pynlpl.formats.folia.Sentence method),

343
textvalidation() (pynlpl.formats.folia.Sentiment method),

596
textvalidation() (pynlpl.formats.folia.SentimentLayer

method), 714
textvalidation() (pynlpl.formats.folia.Statement method),

608
textvalidation() (pynlpl.formats.folia.StatementLayer

method), 725
textvalidation() (pynlpl.formats.folia.SubjectivityAnnotation

method), 491
textvalidation() (pynlpl.formats.folia.Suggestion

method), 1005
textvalidation() (pynlpl.formats.folia.SynsetFeature

method), 881
textvalidation() (pynlpl.formats.folia.SyntacticUnit

method), 619
textvalidation() (pynlpl.formats.folia.SyntaxLayer

method), 737
textvalidation() (pynlpl.formats.folia.Table method), 356
textvalidation() (pynlpl.formats.folia.TableHead method),

382
textvalidation() (pynlpl.formats.folia.Term method), 369
textvalidation() (pynlpl.formats.folia.Text method), 395

1178 Index

PyNLPl Documentation, Release 1.2.8

textvalidation() (pynlpl.formats.folia.TextContent
method), 502

textvalidation() (pynlpl.formats.folia.TextMarkupCorrection
method), 848

textvalidation() (pynlpl.formats.folia.TextMarkupError
method), 859

textvalidation() (pynlpl.formats.folia.TextMarkupGap
method), 816

textvalidation() (pynlpl.formats.folia.TextMarkupString
method), 827

textvalidation() (pynlpl.formats.folia.TextMarkupStyle
method), 837

textvalidation() (pynlpl.formats.folia.TimeSegment
method), 643

textvalidation() (pynlpl.formats.folia.TimingLayer
method), 761

textvalidation() (pynlpl.formats.folia.Whitespace
method), 408

textvalidation() (pynlpl.formats.folia.Word method), 423
TimblOutput (class in pynlpl.formats.timbl), 1055
TimeSegment (class in pynlpl.formats.folia), 632
TimingLayer (class in pynlpl.formats.folia), 750
title() (pynlpl.formats.folia.Document method), 20
tokenise() (in module pynlpl.textprocessors), 1067
tokenize() (in module pynlpl.textprocessors), 1067
Tokenizer (class in pynlpl.textprocessors), 1066
tokens() (pynlpl.statistics.FrequencyList method), 1063
toktext() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 83
toktext() (pynlpl.formats.folia.AbstractElement method),

34
toktext() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 60
toktext() (pynlpl.formats.folia.AbstractStructureElement

method), 47
toktext() (pynlpl.formats.folia.AbstractTextMarkup

method), 94
toktext() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 71
toktext() (pynlpl.formats.folia.ActorFeature method), 893
toktext() (pynlpl.formats.folia.Alignment method), 1017
toktext() (pynlpl.formats.folia.AlignReference method),

1028
toktext() (pynlpl.formats.folia.Alternative method), 928
toktext() (pynlpl.formats.folia.AlternativeLayers

method), 939
toktext() (pynlpl.formats.folia.BegindatetimeFeature

method), 904
toktext() (pynlpl.formats.folia.Cell method), 110
toktext() (pynlpl.formats.folia.Chunk method), 526
toktext() (pynlpl.formats.folia.ChunkingLayer method),

655
toktext() (pynlpl.formats.folia.CoreferenceChain

method), 538

toktext() (pynlpl.formats.folia.CoreferenceLayer
method), 667

toktext() (pynlpl.formats.folia.CoreferenceLink method),
773

toktext() (pynlpl.formats.folia.Correction method), 950
toktext() (pynlpl.formats.folia.Current method), 961
toktext() (pynlpl.formats.folia.Definition method), 123
toktext() (pynlpl.formats.folia.DependenciesLayer

method), 679
toktext() (pynlpl.formats.folia.Dependency method), 550
toktext() (pynlpl.formats.folia.DependencyDependent

method), 784
toktext() (pynlpl.formats.folia.Description method), 1039
toktext() (pynlpl.formats.folia.Division method), 136
toktext() (pynlpl.formats.folia.DomainAnnotation

method), 436
toktext() (pynlpl.formats.folia.EnddatetimeFeature

method), 915
toktext() (pynlpl.formats.folia.EntitiesLayer method),

690
toktext() (pynlpl.formats.folia.Entity method), 561
toktext() (pynlpl.formats.folia.Entry method), 149
toktext() (pynlpl.formats.folia.ErrorDetection method),

972
toktext() (pynlpl.formats.folia.Event method), 162
toktext() (pynlpl.formats.folia.Example method), 175
toktext() (pynlpl.formats.folia.Feature method), 870
toktext() (pynlpl.formats.folia.Figure method), 188
toktext() (pynlpl.formats.folia.Gap method), 199
toktext() (pynlpl.formats.folia.Head method), 212
toktext() (pynlpl.formats.folia.Headspan method), 796
toktext() (pynlpl.formats.folia.LangAnnotation method),

458
toktext() (pynlpl.formats.folia.LemmaAnnotation

method), 469
toktext() (pynlpl.formats.folia.Linebreak method), 225
toktext() (pynlpl.formats.folia.List method), 238
toktext() (pynlpl.formats.folia.ListItem method), 251
toktext() (pynlpl.formats.folia.Metric method), 1050
toktext() (pynlpl.formats.folia.New method), 983
toktext() (pynlpl.formats.folia.Note method), 264
toktext() (pynlpl.formats.folia.Observation method), 573
toktext() (pynlpl.formats.folia.ObservationLayer

method), 702
toktext() (pynlpl.formats.folia.Original method), 994
toktext() (pynlpl.formats.folia.Paragraph method), 277
toktext() (pynlpl.formats.folia.Part method), 290
toktext() (pynlpl.formats.folia.PhonContent method), 513
toktext() (pynlpl.formats.folia.PosAnnotation method),

447
toktext() (pynlpl.formats.folia.Predicate method), 584
toktext() (pynlpl.formats.folia.Quote method), 303
toktext() (pynlpl.formats.folia.Reference method), 316
toktext() (pynlpl.formats.folia.Row method), 329

Index 1179

PyNLPl Documentation, Release 1.2.8

toktext() (pynlpl.formats.folia.SemanticRole method),
631

toktext() (pynlpl.formats.folia.SemanticRolesLayer
method), 749

toktext() (pynlpl.formats.folia.SenseAnnotation method),
480

toktext() (pynlpl.formats.folia.Sentence method), 343
toktext() (pynlpl.formats.folia.Sentiment method), 596
toktext() (pynlpl.formats.folia.SentimentLayer method),

714
toktext() (pynlpl.formats.folia.Statement method), 608
toktext() (pynlpl.formats.folia.StatementLayer method),

726
toktext() (pynlpl.formats.folia.SubjectivityAnnotation

method), 491
toktext() (pynlpl.formats.folia.Suggestion method), 1005
toktext() (pynlpl.formats.folia.SynsetFeature method),

882
toktext() (pynlpl.formats.folia.SyntacticUnit method),

619
toktext() (pynlpl.formats.folia.SyntaxLayer method), 737
toktext() (pynlpl.formats.folia.Table method), 356
toktext() (pynlpl.formats.folia.TableHead method), 382
toktext() (pynlpl.formats.folia.Term method), 369
toktext() (pynlpl.formats.folia.Text method), 396
toktext() (pynlpl.formats.folia.TextContent method), 502
toktext() (pynlpl.formats.folia.TextMarkupCorrection

method), 848
toktext() (pynlpl.formats.folia.TextMarkupError method),

859
toktext() (pynlpl.formats.folia.TextMarkupGap method),

816
toktext() (pynlpl.formats.folia.TextMarkupString

method), 827
toktext() (pynlpl.formats.folia.TextMarkupStyle method),

837
toktext() (pynlpl.formats.folia.TimeSegment method),

643
toktext() (pynlpl.formats.folia.TimingLayer method), 761
toktext() (pynlpl.formats.folia.Whitespace method), 409
toktext() (pynlpl.formats.folia.Word method), 424
tp_rate() (pynlpl.evaluation.ClassEvaluation method), 10
traversal() (pynlpl.search.AbstractSearch method), 1059
traversal() (pynlpl.search.IterativeDeepening method),

1060
traversalsize() (pynlpl.search.AbstractSearch method),

1059
traversalsize() (pynlpl.search.IterativeDeepening

method), 1060
Tree (class in pynlpl.datatypes), 6
Trie (class in pynlpl.datatypes), 6
typetokenratio() (pynlpl.statistics.FrequencyList method),

1063

U
u() (in module pynlpl.common), 3
unalias() (pynlpl.formats.folia.Document method), 20
updatetext() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 83
updatetext() (pynlpl.formats.folia.AbstractElement

method), 34
updatetext() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 60
updatetext() (pynlpl.formats.folia.AbstractStructureElement

method), 47
updatetext() (pynlpl.formats.folia.AbstractTextMarkup

method), 94
updatetext() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 71
updatetext() (pynlpl.formats.folia.ActorFeature method),

893
updatetext() (pynlpl.formats.folia.Alignment method),

1017
updatetext() (pynlpl.formats.folia.AlignReference

method), 1028
updatetext() (pynlpl.formats.folia.Alternative method),

928
updatetext() (pynlpl.formats.folia.AlternativeLayers

method), 939
updatetext() (pynlpl.formats.folia.BegindatetimeFeature

method), 904
updatetext() (pynlpl.formats.folia.Cell method), 110
updatetext() (pynlpl.formats.folia.Chunk method), 526
updatetext() (pynlpl.formats.folia.ChunkingLayer

method), 655
updatetext() (pynlpl.formats.folia.CoreferenceChain

method), 538
updatetext() (pynlpl.formats.folia.CoreferenceLayer

method), 667
updatetext() (pynlpl.formats.folia.CoreferenceLink

method), 773
updatetext() (pynlpl.formats.folia.Correction method),

950
updatetext() (pynlpl.formats.folia.Current method), 961
updatetext() (pynlpl.formats.folia.Definition method),

123
updatetext() (pynlpl.formats.folia.DependenciesLayer

method), 679
updatetext() (pynlpl.formats.folia.Dependency method),

550
updatetext() (pynlpl.formats.folia.DependencyDependent

method), 784
updatetext() (pynlpl.formats.folia.Description method),

1039
updatetext() (pynlpl.formats.folia.Division method), 136
updatetext() (pynlpl.formats.folia.DomainAnnotation

method), 436
updatetext() (pynlpl.formats.folia.EnddatetimeFeature

1180 Index

PyNLPl Documentation, Release 1.2.8

method), 915
updatetext() (pynlpl.formats.folia.EntitiesLayer method),

690
updatetext() (pynlpl.formats.folia.Entity method), 561
updatetext() (pynlpl.formats.folia.Entry method), 149
updatetext() (pynlpl.formats.folia.ErrorDetection

method), 972
updatetext() (pynlpl.formats.folia.Event method), 162
updatetext() (pynlpl.formats.folia.Example method), 175
updatetext() (pynlpl.formats.folia.Feature method), 870
updatetext() (pynlpl.formats.folia.Figure method), 188
updatetext() (pynlpl.formats.folia.Gap method), 199
updatetext() (pynlpl.formats.folia.Head method), 212
updatetext() (pynlpl.formats.folia.Headspan method), 796
updatetext() (pynlpl.formats.folia.LangAnnotation

method), 458
updatetext() (pynlpl.formats.folia.LemmaAnnotation

method), 469
updatetext() (pynlpl.formats.folia.Linebreak method),

225
updatetext() (pynlpl.formats.folia.List method), 238
updatetext() (pynlpl.formats.folia.ListItem method), 251
updatetext() (pynlpl.formats.folia.Metric method), 1050
updatetext() (pynlpl.formats.folia.New method), 983
updatetext() (pynlpl.formats.folia.Note method), 264
updatetext() (pynlpl.formats.folia.Observation method),

573
updatetext() (pynlpl.formats.folia.ObservationLayer

method), 702
updatetext() (pynlpl.formats.folia.Original method), 994
updatetext() (pynlpl.formats.folia.Paragraph method),

277
updatetext() (pynlpl.formats.folia.Part method), 290
updatetext() (pynlpl.formats.folia.PhonContent method),

513
updatetext() (pynlpl.formats.folia.PosAnnotation

method), 447
updatetext() (pynlpl.formats.folia.Predicate method), 584
updatetext() (pynlpl.formats.folia.Quote method), 303
updatetext() (pynlpl.formats.folia.Reference method),

316
updatetext() (pynlpl.formats.folia.Row method), 329
updatetext() (pynlpl.formats.folia.SemanticRole method),

631
updatetext() (pynlpl.formats.folia.SemanticRolesLayer

method), 749
updatetext() (pynlpl.formats.folia.SenseAnnotation

method), 480
updatetext() (pynlpl.formats.folia.Sentence method), 343
updatetext() (pynlpl.formats.folia.Sentiment method),

596
updatetext() (pynlpl.formats.folia.SentimentLayer

method), 714
updatetext() (pynlpl.formats.folia.Statement method),

608
updatetext() (pynlpl.formats.folia.StatementLayer

method), 726
updatetext() (pynlpl.formats.folia.SubjectivityAnnotation

method), 491
updatetext() (pynlpl.formats.folia.Suggestion method),

1005
updatetext() (pynlpl.formats.folia.SynsetFeature method),

882
updatetext() (pynlpl.formats.folia.SyntacticUnit method),

619
updatetext() (pynlpl.formats.folia.SyntaxLayer method),

737
updatetext() (pynlpl.formats.folia.Table method), 356
updatetext() (pynlpl.formats.folia.TableHead method),

382
updatetext() (pynlpl.formats.folia.Term method), 369
updatetext() (pynlpl.formats.folia.Text method), 396
updatetext() (pynlpl.formats.folia.TextContent method),

502
updatetext() (pynlpl.formats.folia.TextMarkupCorrection

method), 848
updatetext() (pynlpl.formats.folia.TextMarkupError

method), 859
updatetext() (pynlpl.formats.folia.TextMarkupGap

method), 816
updatetext() (pynlpl.formats.folia.TextMarkupString

method), 827
updatetext() (pynlpl.formats.folia.TextMarkupStyle

method), 837
updatetext() (pynlpl.formats.folia.TimeSegment method),

643
updatetext() (pynlpl.formats.folia.TimingLayer method),

761
updatetext() (pynlpl.formats.folia.Whitespace method),

409
updatetext() (pynlpl.formats.folia.Word method), 424

V
validate() (pynlpl.formats.sonar.CorpusDocumentX

method), 1054
values() (pynlpl.statistics.Distribution method), 1062
values() (pynlpl.statistics.FrequencyList method), 1063
vector_add() (in module pynlpl.statistics), 1064
visited() (pynlpl.search.AbstractSearch method), 1059
viterbi() (pynlpl.statistics.HiddenMarkovModel method),

1063

W
wait() (pynlpl.evaluation.AbstractExperiment method), 9
walk() (pynlpl.datatypes.Trie method), 7
Whitespace (class in pynlpl.formats.folia), 396
Windower (class in pynlpl.textprocessors), 1066
Word (class in pynlpl.formats.folia), 409

Index 1181

PyNLPl Documentation, Release 1.2.8

WordAlignment (class in pynlpl.formats.giza), 1054
words() (pynlpl.formats.folia.AbstractStructureElement

method), 47
words() (pynlpl.formats.folia.Cell method), 110
words() (pynlpl.formats.folia.Definition method), 123
words() (pynlpl.formats.folia.Division method), 136
words() (pynlpl.formats.folia.Document method), 20
words() (pynlpl.formats.folia.Entry method), 149
words() (pynlpl.formats.folia.Event method), 162
words() (pynlpl.formats.folia.Example method), 175
words() (pynlpl.formats.folia.Figure method), 188
words() (pynlpl.formats.folia.Head method), 212
words() (pynlpl.formats.folia.Linebreak method), 225
words() (pynlpl.formats.folia.List method), 238
words() (pynlpl.formats.folia.ListItem method), 251
words() (pynlpl.formats.folia.Note method), 264
words() (pynlpl.formats.folia.Paragraph method), 277
words() (pynlpl.formats.folia.Part method), 290
words() (pynlpl.formats.folia.Quote method), 303
words() (pynlpl.formats.folia.Reference method), 316
words() (pynlpl.formats.folia.Row method), 329
words() (pynlpl.formats.folia.Sentence method), 344
words() (pynlpl.formats.folia.Table method), 357
words() (pynlpl.formats.folia.TableHead method), 383
words() (pynlpl.formats.folia.Term method), 370
words() (pynlpl.formats.folia.Text method), 396
words() (pynlpl.formats.folia.Whitespace method), 409
words() (pynlpl.formats.folia.Word method), 424
words() (pynlpl.formats.sonar.CorpusDocument method),

1054
words() (pynlpl.formats.sonar.CorpusDocumentX

method), 1055
WPSParamSearch (class in pynlpl.evaluation), 10
wrefs() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 60
wrefs() (pynlpl.formats.folia.Chunk method), 526
wrefs() (pynlpl.formats.folia.CoreferenceChain method),

538
wrefs() (pynlpl.formats.folia.CoreferenceLink method),

773
wrefs() (pynlpl.formats.folia.Dependency method), 550
wrefs() (pynlpl.formats.folia.DependencyDependent

method), 785
wrefs() (pynlpl.formats.folia.Entity method), 561
wrefs() (pynlpl.formats.folia.Headspan method), 796
wrefs() (pynlpl.formats.folia.Observation method), 573
wrefs() (pynlpl.formats.folia.Predicate method), 585
wrefs() (pynlpl.formats.folia.SemanticRole method), 631
wrefs() (pynlpl.formats.folia.Sentiment method), 596
wrefs() (pynlpl.formats.folia.Statement method), 608
wrefs() (pynlpl.formats.folia.SyntacticUnit method), 620
wrefs() (pynlpl.formats.folia.TimeSegment method), 643
write() (pynlpl.formats.taggerdata.Taggerdata method),

1055

X
XLINK (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
XLINK (pynlpl.formats.folia.AbstractElement attribute),

26
XLINK (pynlpl.formats.folia.AbstractSpanAnnotation at-

tribute), 52
XLINK (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
XLINK (pynlpl.formats.folia.AbstractTextMarkup

attribute), 86
XLINK (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
XLINK (pynlpl.formats.folia.ActorFeature attribute), 885
XLINK (pynlpl.formats.folia.Alignment attribute), 1009
XLINK (pynlpl.formats.folia.AlignReference attribute),

1020
XLINK (pynlpl.formats.folia.Alternative attribute), 919
XLINK (pynlpl.formats.folia.AlternativeLayers at-

tribute), 931
XLINK (pynlpl.formats.folia.BegindatetimeFeature at-

tribute), 896
XLINK (pynlpl.formats.folia.Cell attribute), 101
XLINK (pynlpl.formats.folia.Chunk attribute), 518
XLINK (pynlpl.formats.folia.ChunkingLayer attribute),

647
XLINK (pynlpl.formats.folia.CoreferenceChain at-

tribute), 530
XLINK (pynlpl.formats.folia.CoreferenceLayer at-

tribute), 658
XLINK (pynlpl.formats.folia.CoreferenceLink attribute),

764
XLINK (pynlpl.formats.folia.Correction attribute), 944
XLINK (pynlpl.formats.folia.Current attribute), 954
XLINK (pynlpl.formats.folia.Definition attribute), 114
XLINK (pynlpl.formats.folia.DependenciesLayer at-

tribute), 670
XLINK (pynlpl.formats.folia.Dependency attribute), 541
XLINK (pynlpl.formats.folia.DependencyDependent at-

tribute), 776
XLINK (pynlpl.formats.folia.Description attribute), 1032
XLINK (pynlpl.formats.folia.Division attribute), 126
XLINK (pynlpl.formats.folia.DomainAnnotation at-

tribute), 429
XLINK (pynlpl.formats.folia.EnddatetimeFeature at-

tribute), 907
XLINK (pynlpl.formats.folia.EntitiesLayer attribute),

682
XLINK (pynlpl.formats.folia.Entity attribute), 553
XLINK (pynlpl.formats.folia.Entry attribute), 139
XLINK (pynlpl.formats.folia.ErrorDetection attribute),

965
XLINK (pynlpl.formats.folia.Event attribute), 152
XLINK (pynlpl.formats.folia.Example attribute), 165

1182 Index

PyNLPl Documentation, Release 1.2.8

XLINK (pynlpl.formats.folia.Feature attribute), 863
XLINK (pynlpl.formats.folia.Figure attribute), 178
XLINK (pynlpl.formats.folia.Gap attribute), 191
XLINK (pynlpl.formats.folia.Head attribute), 203
XLINK (pynlpl.formats.folia.Headspan attribute), 788
XLINK (pynlpl.formats.folia.LangAnnotation attribute),

451
XLINK (pynlpl.formats.folia.LemmaAnnotation at-

tribute), 462
XLINK (pynlpl.formats.folia.Linebreak attribute), 216
XLINK (pynlpl.formats.folia.List attribute), 228
XLINK (pynlpl.formats.folia.ListItem attribute), 241
XLINK (pynlpl.formats.folia.Metric attribute), 1043
XLINK (pynlpl.formats.folia.New attribute), 976
XLINK (pynlpl.formats.folia.Note attribute), 254
XLINK (pynlpl.formats.folia.Observation attribute), 565
XLINK (pynlpl.formats.folia.ObservationLayer at-

tribute), 694
XLINK (pynlpl.formats.folia.Original attribute), 987
XLINK (pynlpl.formats.folia.Paragraph attribute), 267
XLINK (pynlpl.formats.folia.Part attribute), 280
XLINK (pynlpl.formats.folia.PhonContent attribute), 506
XLINK (pynlpl.formats.folia.PosAnnotation attribute),

440
XLINK (pynlpl.formats.folia.Predicate attribute), 576
XLINK (pynlpl.formats.folia.Quote attribute), 293
XLINK (pynlpl.formats.folia.Reference attribute), 306
XLINK (pynlpl.formats.folia.Row attribute), 319
XLINK (pynlpl.formats.folia.SemanticRole attribute),

623
XLINK (pynlpl.formats.folia.SemanticRolesLayer

attribute), 741
XLINK (pynlpl.formats.folia.SenseAnnotation attribute),

473
XLINK (pynlpl.formats.folia.Sentence attribute), 333
XLINK (pynlpl.formats.folia.Sentiment attribute), 588
XLINK (pynlpl.formats.folia.SentimentLayer attribute),

706
XLINK (pynlpl.formats.folia.Statement attribute), 600
XLINK (pynlpl.formats.folia.StatementLayer attribute),

717
XLINK (pynlpl.formats.folia.SubjectivityAnnotation at-

tribute), 484
XLINK (pynlpl.formats.folia.Suggestion attribute), 998
XLINK (pynlpl.formats.folia.SynsetFeature attribute),

874
XLINK (pynlpl.formats.folia.SyntacticUnit attribute),

611
XLINK (pynlpl.formats.folia.SyntaxLayer attribute), 729
XLINK (pynlpl.formats.folia.Table attribute), 347
XLINK (pynlpl.formats.folia.TableHead attribute), 373
XLINK (pynlpl.formats.folia.Term attribute), 360
XLINK (pynlpl.formats.folia.Text attribute), 386
XLINK (pynlpl.formats.folia.TextContent attribute), 495

XLINK (pynlpl.formats.folia.TextMarkupCorrection at-
tribute), 841

XLINK (pynlpl.formats.folia.TextMarkupError attribute),
851

XLINK (pynlpl.formats.folia.TextMarkupGap attribute),
809

XLINK (pynlpl.formats.folia.TextMarkupString at-
tribute), 819

XLINK (pynlpl.formats.folia.TextMarkupStyle attribute),
830

XLINK (pynlpl.formats.folia.TimeSegment attribute),
635

XLINK (pynlpl.formats.folia.TimingLayer attribute), 753
XLINK (pynlpl.formats.folia.Whitespace attribute), 399
XLINK (pynlpl.formats.folia.Word attribute), 413
xml() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 83
xml() (pynlpl.formats.folia.AbstractElement method), 34
xml() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 60
xml() (pynlpl.formats.folia.AbstractStructureElement

method), 47
xml() (pynlpl.formats.folia.AbstractTextMarkup

method), 94
xml() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 71
xml() (pynlpl.formats.folia.ActorFeature method), 893
xml() (pynlpl.formats.folia.Alignment method), 1017
xml() (pynlpl.formats.folia.AlignReference method),

1028
xml() (pynlpl.formats.folia.Alternative method), 928
xml() (pynlpl.formats.folia.AlternativeLayers method),

939
xml() (pynlpl.formats.folia.BegindatetimeFeature

method), 904
xml() (pynlpl.formats.folia.Cell method), 110
xml() (pynlpl.formats.folia.Chunk method), 526
xml() (pynlpl.formats.folia.ChunkingLayer method), 655
xml() (pynlpl.formats.folia.CoreferenceChain method),

538
xml() (pynlpl.formats.folia.CoreferenceLayer method),

667
xml() (pynlpl.formats.folia.CoreferenceLink method),

773
xml() (pynlpl.formats.folia.Correction method), 950
xml() (pynlpl.formats.folia.Current method), 961
xml() (pynlpl.formats.folia.Definition method), 123
xml() (pynlpl.formats.folia.DependenciesLayer method),

679
xml() (pynlpl.formats.folia.Dependency method), 550
xml() (pynlpl.formats.folia.DependencyDependent

method), 785
xml() (pynlpl.formats.folia.Description method), 1039
xml() (pynlpl.formats.folia.Division method), 136

Index 1183

PyNLPl Documentation, Release 1.2.8

xml() (pynlpl.formats.folia.Document method), 21
xml() (pynlpl.formats.folia.DomainAnnotation method),

437
xml() (pynlpl.formats.folia.EnddatetimeFeature method),

915
xml() (pynlpl.formats.folia.EntitiesLayer method), 691
xml() (pynlpl.formats.folia.Entity method), 561
xml() (pynlpl.formats.folia.Entry method), 149
xml() (pynlpl.formats.folia.ErrorDetection method), 973
xml() (pynlpl.formats.folia.Event method), 162
xml() (pynlpl.formats.folia.Example method), 175
xml() (pynlpl.formats.folia.Feature method), 871
xml() (pynlpl.formats.folia.Figure method), 188
xml() (pynlpl.formats.folia.Gap method), 199
xml() (pynlpl.formats.folia.Head method), 212
xml() (pynlpl.formats.folia.Headspan method), 796
xml() (pynlpl.formats.folia.LangAnnotation method), 459
xml() (pynlpl.formats.folia.LemmaAnnotation method),

470
xml() (pynlpl.formats.folia.Linebreak method), 225
xml() (pynlpl.formats.folia.List method), 238
xml() (pynlpl.formats.folia.ListItem method), 251
xml() (pynlpl.formats.folia.Metric method), 1051
xml() (pynlpl.formats.folia.New method), 984
xml() (pynlpl.formats.folia.Note method), 264
xml() (pynlpl.formats.folia.Observation method), 573
xml() (pynlpl.formats.folia.ObservationLayer method),

702
xml() (pynlpl.formats.folia.Original method), 995
xml() (pynlpl.formats.folia.Paragraph method), 277
xml() (pynlpl.formats.folia.Part method), 290
xml() (pynlpl.formats.folia.PhonContent method), 513
xml() (pynlpl.formats.folia.PosAnnotation method), 448
xml() (pynlpl.formats.folia.Predicate method), 585
xml() (pynlpl.formats.folia.Quote method), 303
xml() (pynlpl.formats.folia.Reference method), 316
xml() (pynlpl.formats.folia.Row method), 329
xml() (pynlpl.formats.folia.SemanticRole method), 631
xml() (pynlpl.formats.folia.SemanticRolesLayer

method), 749
xml() (pynlpl.formats.folia.SenseAnnotation method),

481
xml() (pynlpl.formats.folia.Sentence method), 344
xml() (pynlpl.formats.folia.Sentiment method), 596
xml() (pynlpl.formats.folia.SentimentLayer method), 714
xml() (pynlpl.formats.folia.Statement method), 608
xml() (pynlpl.formats.folia.StatementLayer method), 726
xml() (pynlpl.formats.folia.SubjectivityAnnotation

method), 492
xml() (pynlpl.formats.folia.Suggestion method), 1006
xml() (pynlpl.formats.folia.SynsetFeature method), 882
xml() (pynlpl.formats.folia.SyntacticUnit method), 620
xml() (pynlpl.formats.folia.SyntaxLayer method), 738
xml() (pynlpl.formats.folia.Table method), 357

xml() (pynlpl.formats.folia.TableHead method), 383
xml() (pynlpl.formats.folia.Term method), 370
xml() (pynlpl.formats.folia.Text method), 396
xml() (pynlpl.formats.folia.TextContent method), 502
xml() (pynlpl.formats.folia.TextMarkupCorrection

method), 848
xml() (pynlpl.formats.folia.TextMarkupError method),

859
xml() (pynlpl.formats.folia.TextMarkupGap method), 816
xml() (pynlpl.formats.folia.TextMarkupString method),

827
xml() (pynlpl.formats.folia.TextMarkupStyle method),

837
xml() (pynlpl.formats.folia.TimeSegment method), 643
xml() (pynlpl.formats.folia.TimingLayer method), 761
xml() (pynlpl.formats.folia.Whitespace method), 409
xml() (pynlpl.formats.folia.Word method), 424
xmldeclarations() (pynlpl.formats.folia.Document

method), 21
xmlmetadata() (pynlpl.formats.folia.Document method),

21
xmlstring() (pynlpl.formats.folia.AbstractAnnotationLayer

method), 83
xmlstring() (pynlpl.formats.folia.AbstractElement

method), 34
xmlstring() (pynlpl.formats.folia.AbstractSpanAnnotation

method), 60
xmlstring() (pynlpl.formats.folia.AbstractStructureElement

method), 47
xmlstring() (pynlpl.formats.folia.AbstractTextMarkup

method), 94
xmlstring() (pynlpl.formats.folia.AbstractTokenAnnotation

method), 71
xmlstring() (pynlpl.formats.folia.ActorFeature method),

893
xmlstring() (pynlpl.formats.folia.Alignment method),

1017
xmlstring() (pynlpl.formats.folia.AlignReference

method), 1028
xmlstring() (pynlpl.formats.folia.Alternative method),

928
xmlstring() (pynlpl.formats.folia.AlternativeLayers

method), 939
xmlstring() (pynlpl.formats.folia.BegindatetimeFeature

method), 904
xmlstring() (pynlpl.formats.folia.Cell method), 110
xmlstring() (pynlpl.formats.folia.Chunk method), 526
xmlstring() (pynlpl.formats.folia.ChunkingLayer

method), 655
xmlstring() (pynlpl.formats.folia.CoreferenceChain

method), 538
xmlstring() (pynlpl.formats.folia.CoreferenceLayer

method), 667
xmlstring() (pynlpl.formats.folia.CoreferenceLink

1184 Index

PyNLPl Documentation, Release 1.2.8

method), 773
xmlstring() (pynlpl.formats.folia.Correction method), 951
xmlstring() (pynlpl.formats.folia.Current method), 962
xmlstring() (pynlpl.formats.folia.Definition method), 123
xmlstring() (pynlpl.formats.folia.DependenciesLayer

method), 679
xmlstring() (pynlpl.formats.folia.Dependency method),

550
xmlstring() (pynlpl.formats.folia.DependencyDependent

method), 785
xmlstring() (pynlpl.formats.folia.Description method),

1040
xmlstring() (pynlpl.formats.folia.Division method), 136
xmlstring() (pynlpl.formats.folia.Document method), 21
xmlstring() (pynlpl.formats.folia.DomainAnnotation

method), 437
xmlstring() (pynlpl.formats.folia.EnddatetimeFeature

method), 915
xmlstring() (pynlpl.formats.folia.EntitiesLayer method),

691
xmlstring() (pynlpl.formats.folia.Entity method), 561
xmlstring() (pynlpl.formats.folia.Entry method), 149
xmlstring() (pynlpl.formats.folia.ErrorDetection method),

973
xmlstring() (pynlpl.formats.folia.Event method), 162
xmlstring() (pynlpl.formats.folia.Example method), 175
xmlstring() (pynlpl.formats.folia.Feature method), 871
xmlstring() (pynlpl.formats.folia.Figure method), 188
xmlstring() (pynlpl.formats.folia.Gap method), 199
xmlstring() (pynlpl.formats.folia.Head method), 212
xmlstring() (pynlpl.formats.folia.Headspan method), 796
xmlstring() (pynlpl.formats.folia.LangAnnotation

method), 459
xmlstring() (pynlpl.formats.folia.LemmaAnnotation

method), 470
xmlstring() (pynlpl.formats.folia.Linebreak method), 225
xmlstring() (pynlpl.formats.folia.List method), 238
xmlstring() (pynlpl.formats.folia.ListItem method), 251
xmlstring() (pynlpl.formats.folia.Metric method), 1051
xmlstring() (pynlpl.formats.folia.New method), 984
xmlstring() (pynlpl.formats.folia.Note method), 264
xmlstring() (pynlpl.formats.folia.Observation method),

573
xmlstring() (pynlpl.formats.folia.ObservationLayer

method), 702
xmlstring() (pynlpl.formats.folia.Original method), 995
xmlstring() (pynlpl.formats.folia.Paragraph method), 277
xmlstring() (pynlpl.formats.folia.Part method), 290
xmlstring() (pynlpl.formats.folia.PhonContent method),

513
xmlstring() (pynlpl.formats.folia.PosAnnotation method),

448
xmlstring() (pynlpl.formats.folia.Predicate method), 585
xmlstring() (pynlpl.formats.folia.Quote method), 303

xmlstring() (pynlpl.formats.folia.Reference method), 316
xmlstring() (pynlpl.formats.folia.Row method), 329
xmlstring() (pynlpl.formats.folia.SemanticRole method),

631
xmlstring() (pynlpl.formats.folia.SemanticRolesLayer

method), 749
xmlstring() (pynlpl.formats.folia.SenseAnnotation

method), 481
xmlstring() (pynlpl.formats.folia.Sentence method), 344
xmlstring() (pynlpl.formats.folia.Sentiment method), 596
xmlstring() (pynlpl.formats.folia.SentimentLayer

method), 714
xmlstring() (pynlpl.formats.folia.Statement method), 608
xmlstring() (pynlpl.formats.folia.StatementLayer

method), 726
xmlstring() (pynlpl.formats.folia.SubjectivityAnnotation

method), 492
xmlstring() (pynlpl.formats.folia.Suggestion method),

1006
xmlstring() (pynlpl.formats.folia.SynsetFeature method),

882
xmlstring() (pynlpl.formats.folia.SyntacticUnit method),

620
xmlstring() (pynlpl.formats.folia.SyntaxLayer method),

738
xmlstring() (pynlpl.formats.folia.Table method), 357
xmlstring() (pynlpl.formats.folia.TableHead method),

383
xmlstring() (pynlpl.formats.folia.Term method), 370
xmlstring() (pynlpl.formats.folia.Text method), 396
xmlstring() (pynlpl.formats.folia.TextContent method),

502
xmlstring() (pynlpl.formats.folia.TextMarkupCorrection

method), 848
xmlstring() (pynlpl.formats.folia.TextMarkupError

method), 859
xmlstring() (pynlpl.formats.folia.TextMarkupGap

method), 816
xmlstring() (pynlpl.formats.folia.TextMarkupString

method), 827
xmlstring() (pynlpl.formats.folia.TextMarkupStyle

method), 837
xmlstring() (pynlpl.formats.folia.TimeSegment method),

643
xmlstring() (pynlpl.formats.folia.TimingLayer method),

761
xmlstring() (pynlpl.formats.folia.Whitespace method),

409
xmlstring() (pynlpl.formats.folia.Word method), 424
XMLTAG (pynlpl.formats.folia.AbstractAnnotationLayer

attribute), 75
XMLTAG (pynlpl.formats.folia.AbstractElement at-

tribute), 26
XMLTAG (pynlpl.formats.folia.AbstractSpanAnnotation

Index 1185

PyNLPl Documentation, Release 1.2.8

attribute), 52
XMLTAG (pynlpl.formats.folia.AbstractStructureElement

attribute), 37
XMLTAG (pynlpl.formats.folia.AbstractTextMarkup at-

tribute), 86
XMLTAG (pynlpl.formats.folia.AbstractTokenAnnotation

attribute), 63
XMLTAG (pynlpl.formats.folia.ActorFeature attribute),

885
XMLTAG (pynlpl.formats.folia.Alignment attribute),

1009
XMLTAG (pynlpl.formats.folia.AlignReference at-

tribute), 1020
XMLTAG (pynlpl.formats.folia.Alternative attribute),

919
XMLTAG (pynlpl.formats.folia.AlternativeLayers at-

tribute), 931
XMLTAG (pynlpl.formats.folia.BegindatetimeFeature at-

tribute), 896
XMLTAG (pynlpl.formats.folia.Cell attribute), 101
XMLTAG (pynlpl.formats.folia.Chunk attribute), 518
XMLTAG (pynlpl.formats.folia.ChunkingLayer at-

tribute), 647
XMLTAG (pynlpl.formats.folia.CoreferenceChain

attribute), 530
XMLTAG (pynlpl.formats.folia.CoreferenceLayer at-

tribute), 658
XMLTAG (pynlpl.formats.folia.CoreferenceLink at-

tribute), 764
XMLTAG (pynlpl.formats.folia.Correction attribute), 944
XMLTAG (pynlpl.formats.folia.Current attribute), 954
XMLTAG (pynlpl.formats.folia.Definition attribute), 114
XMLTAG (pynlpl.formats.folia.DependenciesLayer at-

tribute), 670
XMLTAG (pynlpl.formats.folia.Dependency attribute),

541
XMLTAG (pynlpl.formats.folia.DependencyDependent

attribute), 776
XMLTAG (pynlpl.formats.folia.Description attribute),

1032
XMLTAG (pynlpl.formats.folia.Division attribute), 127
XMLTAG (pynlpl.formats.folia.DomainAnnotation at-

tribute), 429
XMLTAG (pynlpl.formats.folia.EnddatetimeFeature at-

tribute), 907
XMLTAG (pynlpl.formats.folia.EntitiesLayer attribute),

682
XMLTAG (pynlpl.formats.folia.Entity attribute), 553
XMLTAG (pynlpl.formats.folia.Entry attribute), 139
XMLTAG (pynlpl.formats.folia.ErrorDetection attribute),

965
XMLTAG (pynlpl.formats.folia.Event attribute), 153
XMLTAG (pynlpl.formats.folia.Example attribute), 165
XMLTAG (pynlpl.formats.folia.Feature attribute), 863

XMLTAG (pynlpl.formats.folia.Figure attribute), 179
XMLTAG (pynlpl.formats.folia.Gap attribute), 191
XMLTAG (pynlpl.formats.folia.Head attribute), 203
XMLTAG (pynlpl.formats.folia.Headspan attribute), 788
XMLTAG (pynlpl.formats.folia.LangAnnotation at-

tribute), 451
XMLTAG (pynlpl.formats.folia.LemmaAnnotation

attribute), 462
XMLTAG (pynlpl.formats.folia.Linebreak attribute), 216
XMLTAG (pynlpl.formats.folia.List attribute), 228
XMLTAG (pynlpl.formats.folia.ListItem attribute), 241
XMLTAG (pynlpl.formats.folia.Metric attribute), 1043
XMLTAG (pynlpl.formats.folia.New attribute), 976
XMLTAG (pynlpl.formats.folia.Note attribute), 254
XMLTAG (pynlpl.formats.folia.Observation attribute),

565
XMLTAG (pynlpl.formats.folia.ObservationLayer at-

tribute), 694
XMLTAG (pynlpl.formats.folia.Original attribute), 987
XMLTAG (pynlpl.formats.folia.Paragraph attribute), 268
XMLTAG (pynlpl.formats.folia.Part attribute), 281
XMLTAG (pynlpl.formats.folia.PhonContent attribute),

506
XMLTAG (pynlpl.formats.folia.PosAnnotation attribute),

440
XMLTAG (pynlpl.formats.folia.Predicate attribute), 576
XMLTAG (pynlpl.formats.folia.Quote attribute), 293
XMLTAG (pynlpl.formats.folia.Reference attribute), 307
XMLTAG (pynlpl.formats.folia.Row attribute), 319
XMLTAG (pynlpl.formats.folia.SemanticRole attribute),

623
XMLTAG (pynlpl.formats.folia.SemanticRolesLayer at-

tribute), 741
XMLTAG (pynlpl.formats.folia.SenseAnnotation at-

tribute), 473
XMLTAG (pynlpl.formats.folia.Sentence attribute), 333
XMLTAG (pynlpl.formats.folia.Sentiment attribute), 588
XMLTAG (pynlpl.formats.folia.SentimentLayer at-

tribute), 706
XMLTAG (pynlpl.formats.folia.Statement attribute), 600
XMLTAG (pynlpl.formats.folia.StatementLayer at-

tribute), 717
XMLTAG (pynlpl.formats.folia.SubjectivityAnnotation

attribute), 484
XMLTAG (pynlpl.formats.folia.Suggestion attribute),

998
XMLTAG (pynlpl.formats.folia.SynsetFeature attribute),

874
XMLTAG (pynlpl.formats.folia.SyntacticUnit attribute),

611
XMLTAG (pynlpl.formats.folia.SyntaxLayer attribute),

729
XMLTAG (pynlpl.formats.folia.Table attribute), 347
XMLTAG (pynlpl.formats.folia.TableHead attribute), 373

1186 Index

PyNLPl Documentation, Release 1.2.8

XMLTAG (pynlpl.formats.folia.Term attribute), 360
XMLTAG (pynlpl.formats.folia.Text attribute), 386
XMLTAG (pynlpl.formats.folia.TextContent attribute),

495
XMLTAG (pynlpl.formats.folia.TextMarkupCorrection

attribute), 841
XMLTAG (pynlpl.formats.folia.TextMarkupError at-

tribute), 851
XMLTAG (pynlpl.formats.folia.TextMarkupGap at-

tribute), 809
XMLTAG (pynlpl.formats.folia.TextMarkupString

attribute), 819
XMLTAG (pynlpl.formats.folia.TextMarkupStyle at-

tribute), 830
XMLTAG (pynlpl.formats.folia.TimeSegment attribute),

635
XMLTAG (pynlpl.formats.folia.TimingLayer attribute),

753
XMLTAG (pynlpl.formats.folia.Whitespace attribute),

399
XMLTAG (pynlpl.formats.folia.Word attribute), 413
xpath() (pynlpl.formats.folia.Document method), 21
xpath() (pynlpl.formats.sonar.CorpusDocumentX

method), 1055

Index 1187

	Common Functions
	Data Types
	Evaluation & Experiments
	FoLiA library
	Reading FoLiA
	Loading a document
	Printing text
	Index
	Elements
	Obtaining list of elements
	Select method
	Selection Shortcuts
	Navigating a document
	Structure Annotation Types
	Common attributes
	Annotations

	Editing FoLiA
	Creating a new document
	Declarations
	Adding structure
	Adding annotations
	Adding span annotation
	Deleting annotations
	Copying annotations

	Searching in a FoLiA document
	Corpus Query Language (CQL)
	FoLiA Query Language (FQL)
	Streaming Reader

	Higher-Order Annotations
	Text Markup
	Features
	Alternatives
	Corrections
	Alignments
	Descriptions, Metrics

	Metadata

	Formats
	Corpus Gesproken Nederlands
	FoLiA
	GIZA++
	Moses
	SoNaR
	Taggerdata
	TiMBL

	Language Models
	Search Algorithms
	Statistics and Information Theory
	Generic functions
	Frequency Lists and Distributions
	API Reference

	Text Processors
	Tokenisation
	N-gram extraction

	Indices and tables
	Python Module Index

