

Welcome to PyNLPl’s documentation!

PyNLPl, pronounced as ‘pineapple’, is a Python library for Natural Language
Processing. It contains various modules useful for common, and less common, NLP
tasks. PyNLPl can be used for basic tasks such as the extraction of n-grams and
frequency lists, and to build simple language model. There are also more
complex data types and algorithms. Moreover, there are parsers for file formats
common in NLP (e.g. FoLiA/Giza/Moses/ARPA/Timbl/CQL). There are also clients to
interface with various NLP specific servers. PyNLPl most notably features a
very extensive library for working with FoLiA XML (Format for Linguistic
Annotatation).

The library is a divided into several packages and modules. It works on Python
2.7, as well as Python 3.

The following modules are available:

	pynlpl.datatypes - Extra datatypes (priority queues, patterns, tries)

	pynlpl.evaluation - Evaluation & experiment classes (parameter search, wrapped
progressive sampling, class evaluation (precision/recall/f-score/auc), sampler, confusion matrix, multithreaded experiment pool)

	pynlpl.formats.cgn - Module for parsing CGN (Corpus Gesproken Nederlands) part-of-speech tags

	pynlpl.formats.folia - Extensive library for reading and manipulating the
documents in FoLiA [http://proycon.github.io/folia] format (Format for Linguistic Annotation).

	pynlpl.formats.fql - Extensive library for the FoLiA Query Language (FQL),
built on top of pynlpl.formats.folia. FQL is currently documented here [https://github.com/proycon/foliadocserve].

	pynlpl.formats.cql - Parser for the Corpus Query Language (CQL), as also used by
Corpus Workbench and Sketch Engine. Contains a convertor to FQL.

	pynlpl.formats.giza - Module for reading GIZA++ word alignment data

	pynlpl.formats.moses - Module for reading Moses phrase-translation tables.

	pynlpl.formats.sonar - Largely obsolete module for pre-releases of the
SoNaR corpus, use pynlpl.formats.folia instead.

	pynlpl.formats.timbl - Module for reading Timbl output (consider using
python-timbl [https://github.com/proycon/python-timbl] instead though)

	pynlpl.lm.lm - Module for simple language model and reader for ARPA
language model data as well (used by SRILM).

	pynlpl.search - Various search algorithms (Breadth-first, depth-first,
beam-search, hill climbing, A star, various variants of each)

	pynlpl.statistics - Frequency lists, Levenshtein, common statistics and
information theory functions

	pynlpl.textprocessors - Simple tokeniser, n-gram extraction

Contents:

	Common Functions

	Data Types

	Evaluation & Experiments

	FoLiA library
	Reading FoLiA
	Loading a document

	Printing text

	Index

	Elements

	Obtaining list of elements

	Select method

	Selection Shortcuts

	Navigating a document

	Structure Annotation Types

	Common attributes

	Annotations

	Editing FoLiA
	Creating a new document

	Declarations

	Adding structure

	Adding annotations

	Adding span annotation

	Deleting annotations

	Copying annotations

	Searching in a FoLiA document
	Corpus Query Language (CQL)

	FoLiA Query Language (FQL)

	Streaming Reader

	Higher-Order Annotations
	Text Markup

	Features

	Alternatives

	Corrections

	Alignments

	Descriptions, Metrics

	Metadata

	Formats
	Corpus Gesproken Nederlands

	FoLiA

	GIZA++

	Moses

	SoNaR

	Taggerdata

	TiMBL

	Language Models

	Search Algorithms

	Statistics and Information Theory
	Generic functions

	Frequency Lists and Distributions

	API Reference

	Text Processors
	Tokenisation

	N-gram extraction

Indices and tables

	Index

	Module Index

	search

Common Functions

	
pynlpl.common.Enum(*names)

	

	
pynlpl.common.b(s)

	

	
pynlpl.common.isstring(s)

	

	
pynlpl.common.log(msg, **kwargs)

	Generic log method. Will prepend timestamp.

	Keyword Arguments

	
	- Name of the system/module (system) –

	- Integer denoting the desired level of indentation (indent) –

	- List of streams to output to (streams) –

	- Stream to output to (stream) –

	
pynlpl.common.u(s, encoding='utf-8', errors='strict')

	

Data Types

This library contains various extra data types, based to a certain extend on MIT-licensed code from Peter Norvig, AI: A Modern Appproach : http://aima.cs.berkeley.edu/python/utils.html

	
class pynlpl.datatypes.FIFOQueue(data=[])

	A First-In-First-Out Queue

	
append(item)

	

	
extend(items)

	Append all elements from items to the queue

	
pop()

	Retrieve the next element in line, this will remove it from the queue

	
class pynlpl.datatypes.Pattern(data, classdecoder=None)

	
	
static fromstring(s, classencoder)

	

	
iterbytes(begin=0, end=0)

	

	
class pynlpl.datatypes.PatternMap(default=None)

	
	
items()

	

	
class pynlpl.datatypes.PatternSet

	
	
add(pattern)

	

	
remove(pattern)

	

	
class pynlpl.datatypes.PriorityQueue(data=[], f=<function PriorityQueue.<lambda>>, minimize=False, length=0, blockworse=False, blockequal=False, duplicates=True)

	A queue in which the maximum (or minumum) element is returned first,
as determined by either an external score function f (by default calling
the objects score() method). If minimize=True, the item with minimum f(x) is
returned first; otherwise is the item with maximum f(x) or x.score().

length can be set to an integer > 0. Items will only be added to the queue if they’re better or equal to the worst scoring item. If set to zero, length is unbounded.
blockworse can be set to true if you want to prohibit adding worse-scoring items to the queue. Only items scoring better than the BEST one are added.
blockequal can be set to false if you also want to prohibit adding equally-scoring items to the queue.
(Both parameters default to False)

	
append(item)

	Adds an item to the priority queue (in the right place), returns True if successfull, False if the item was blocked (because of a bad score)

	
pop()

	Retrieve the next element in line, this will remove it from the queue

	
prune(n)

	prune all but the first (=best) n items

	
prunebyscore(score, retainequalscore=False)

	Deletes all items below/above a certain score from the queue, depending on whether minimize is True or False. Note: It is recommended (more efficient) to use blockworse=True / blockequal=True instead! Preventing the addition of ‘worse’ items.

	
randomprune(n)

	prune down to n items at random, disregarding their score

	
score(i)

	Return the score for item x (cheap lookup), Item 0 is always the best item

	
stochasticprune(n)

	prune down to n items, chance of an item being pruned is reverse proportional to its score

	
class pynlpl.datatypes.Queue

	
	Queue is an abstract class/interface. There are three types:

	Python List: A Last In First Out Queue (no Queue object necessary).
FIFOQueue(): A First In First Out Queue.
PriorityQueue(lt): Queue where items are sorted by lt, (default <).

	Each type supports the following methods and functions:

	q.append(item) – add an item to the queue
q.extend(items) – equivalent to: for item in items: q.append(item)
q.pop() – return the top item from the queue
len(q) – number of items in q (also q.__len()).

	
extend(items)

	Append all elements from items to the queue

	
class pynlpl.datatypes.Tree(value=None, children=None)

	Simple tree structure. Nodes are themselves trees.

	
append(item)

	Add an item to the Tree

	
leaf()

	Is this a leaf node or not?

	
class pynlpl.datatypes.Trie(sequence=None)

	Simple trie structure. Nodes are themselves tries, values are stored on the edges, not the nodes.

	
append(sequence)

	

	
depth()

	Returns the depth of the current node

	
find(sequence)

	

	
items()

	

	
leaf()

	Is this a leaf node or not?

	
path()

	Returns the path to the current node

	
root()

	Returns True if this is the root of the Trie

	
sequence()

	

	
size()

	Size is number of nodes under the trie, including the current node

	
walk(leavesonly=True, maxdepth=None, _depth=0)

	Depth-first search, walking through trie, returning all encounterd nodes (by default only leaves)

Evaluation & Experiments

	
class pynlpl.evaluation.AbstractExperiment(inputdata=None, **parameters)

	
	
defaultparameters()

	

	
delete()

	

	
done(warn=True)

	Is the subprocess done?

	
duration()

	

	
run()

	

	
sample(size)

	Return a sample of the input data

	
score()

	

	
start()

	Start as a detached subprocess, immediately returning execution to caller.

	
startcommand(command, cwd, stdout, stderr, *arguments, **parameters)

	

	
wait()

	

	
class pynlpl.evaluation.ClassEvaluation(goals=[], observations=[], missing={}, encoding='utf-8')

	
	
accuracy(cls=None)

	

	
append(goal, observation)

	

	
auc(cls=None, macro=False)

	

	
compute()

	

	
confusionmatrix(casesensitive=True)

	

	
fp_rate(cls=None, macro=False)

	

	
fscore(cls=None, beta=1, macro=False)

	

	
outputmetrics()

	

	
precision(cls=None, macro=False)

	

	
recall(cls=None, macro=False)

	

	
specificity(cls=None, macro=False)

	

	
tp_rate(cls=None, macro=False)

	

	
class pynlpl.evaluation.ConfusionMatrix(tokens=None, casesensitive=True, dovalidation=True)

	Confusion Matrix

	
class pynlpl.evaluation.ExperimentPool(size)

	
	
append(experiment)

	

	
poll(haltonerror=True)

	

	
run(haltonerror=True)

	

	
start(experiment)

	

	
class pynlpl.evaluation.OrdinalEvaluation(goals=[], observations=[], missing={}, encoding='utf-8')

	
	
compute()

	

	
mae(cls=None)

	

	
rmse(cls=None)

	

	
class pynlpl.evaluation.ParamSearch(experimentclass, inputdata, parameterscope, poolsize=1, constraintfunc=None, delete=True)

	A simpler version of ParamSearch without Wrapped Progressive Sampling

	
exception pynlpl.evaluation.ProcessFailed

	

	
class pynlpl.evaluation.WPSParamSearch(experimentclass, inputdata, size, parameterscope, poolsize=1, sizefunc=None, prunefunc=None, constraintfunc=None, delete=True)

	ParamSearch with support for Wrapped Progressive Sampling

	
searchbest()

	

	
test(i=None)

	

	
pynlpl.evaluation.auc(x, y, reorder=False)

	Compute Area Under the Curve (AUC) using the trapezoidal rule

This is a general fuction, given points on a curve. For computing the area
under the ROC-curve, see auc_score().

	Parameters

	
	x (array, shape = [n]) – x coordinates.

	y (array, shape = [n]) – y coordinates.

	reorder (boolean, optional (default=False)) – If True, assume that the curve is ascending in the case of ties, as for
an ROC curve. If the curve is non-ascending, the result will be wrong.

	Returns

	auc

	Return type

	float

Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
>>> metrics.auc(fpr, tpr)
0.75

See also

	auc_score()

	Computes the area under the ROC curve

	
pynlpl.evaluation.filesampler(files, testsetsize=0.1, devsetsize=0, trainsetsize=0, outputdir='', encoding='utf-8')

	Extract a training set, test set and optimally a development set from one file, or multiple interdependent files (such as a parallel corpus). It is assumed each line contains one instance (such as a word or sentence for example).

	
pynlpl.evaluation.mae(absolute_error_values)

	

	
pynlpl.evaluation.rmse(squared_error_values)

	

FoLiA library

This tutorial will introduce the FoLiA Python library, part of PyNLPl. The
FoLiA library provides an Application Programming Interface for the reading,
creation and manipulation of FoLiA XML documents. The library works under
Python 2.7 as well as Python 3, which is the recommended version. The samples
in this documentation follow Python 3 conventions.

Prior to reading this document, it is recommended to first read the
FoLiA documentation itself and familiarise yourself with the format and
underlying paradigm. The FoLiA documentation can be found on the
FoLiA website [https://proycon.github.io/folia/] . It is especially important
to understand the way FoLiA handles sets/classes, declarations, common
attributes such as annotator/annotatortype and the distinction between various
kinds of annotation categories such as token annotation and span annotation.

This Python library is also the foundation of the FoLiA Tools [https://pypi.python.org/pypi/FoLiA-tools/] collection, which consists of
various command line utilities to perform common tasks on FoLiA documents. If
you’re merely interested in performing a certain common task, such as a single
query or conversion, you might want to check there if it contains is a tool that does
what you want already.

Reading FoLiA

Loading a document

Any script that uses FoLiA starts with the import:

from pynlpl.formats import folia

At the basis of any FoLiA processing lies the following class:

	Document

	This is the FoLiA Document and holds all its data in memory.

To read a document from file, instantiate a document as follows:

doc = folia.Document(file="/path/to/document.xml")

This returned Document instance holds the entire document in
memory. Note that for large FoLiA documents this may consume quite some memory!
If you happened to already have the document content in a string, you can load
as follows:

doc = folia.Document(string="<FoLiA ...")

Once you have loaded a document, all data is available for you to read and manipulate as you see fit. We will first illustrate some simple use cases:

To save a document back to the file it was loaded from, we do:

doc.save()

Or we can specify a specific filename:

doc.save("/tmp/document.xml")

Note

Any content that is in a different XML namespace than the FoLiA namespaces or other supported namespaces (XML, Xlink), will be ignored upon loading and lost when saving.

Printing text

You may want to simply print all (plain) text contained in the document, which is as easy as:

print(doc)

Obtaining the text as a string is done by invoking the document’s Document.text()
method:

text = doc.text()

Or alternatively as follows:

text = str(doc)

For any subelement of the document, you can obtain its text in the same fashion
as well, by calling its AbstractElement.text() method or by using
str(), the only difference is that the former allows for extensive fine
tuning using various extra parameters (See AbstractElement.text()).

Note

In Python 2, both str() as well as unicode() return a unicode instance. You may need to append .encode('utf-8') for proper output.

Index

A document instance has an index which you can use to grab any of its
elements by ID. Querying using the index proceeds similar to using a python
dictionary:

word = doc['example.p.3.s.5.w.1']
print(word)

Note

Python 2 users will have to do print word.text().encode('utf-8') instead, to ensure non-ascii characters are printed properly.

IDs are unique in the entire document, and preferably even beyond.

Elements

All FoLiA elements are derived from AbstractElement and offer an
identical interface. To quickly check whether you are dealing with a FoLiA
element you can therefore always do the following:

isinstance(word, folia.AbstractElement)

This abstract base element is never instantiated directly. The FoLiA paradigm
derives several more abstract base classes which may implement some additional
methods or overload some of the original ones:

	AbstractElement

	Abstract base class from which all FoLiA elements are derived.

	AbstractStructureElement

	Abstract element, all structure elements inherit from this class.

	AllowTokenAnnotation

	Elements that allow token annotation (including extended annotation) must inherit from this class

	AbstractSpanAnnotation

	Abstract element, all span annotation elements are derived from this class

	AbstractTokenAnnotation

	Abstract element, all token annotation elements are derived from this class

	AbstractAnnotationLayer

	Annotation layers for Span Annotation are derived from this abstract base class

	AbstractTextMarkup

	Abstract class for text markup elements, elements that appear with the TextContent (t) element.

Obtaining list of elements

The aforementioned index is useful only if you know the ID of the element. This
if often not the case, and you will want to iterate through the hierarchy of
elements through different means.

If you want to iterate over all of the child elements of a certain element,
regardless of what type they are, you can simply do so as follows:

for subelement in element:
 if isinstance(subelement, folia.Sentence):
 print("this is a sentence")
 else:
 print("this is something else")

If applied recursively this allows you to traverse the entire
element tree, there are however specialised methods available that do this for
you.

Select method

There is a generic method AbstractElement.select() available on all
elements to select child elements of any desired class. This method is by
default applied recursively for most element types:

sentence = doc['example.p.3.s.5.w.1']
words = sentence.select(folia.Word)
for word in words:
 print(word)

The AbstractElement.select() method has a sibling AbstractElement.count(), invoked with the same
arguments, which simply counts how many items it finds, without actually
returning them:

word = sentence.count(folia.Word)

Note

The select() method and similar high-level methods derived from it, are
generators. This implies that the results of the selection are returned one by
one in the iteration, as opposed to all stored in memory. This also implies
that you can only iterate over it once, we can not do another iteration over
the words variable in the above example, unless we reinvoke the
select() method to get a new generator. Likewise, we can not do
len(words), but have to use the count() method instead.

If you want to have all results in memory in a list, you can simply do the following:

words = list(sentence.select(folia.Word))

The select method is by default recursive, set the third argument to False to
make it non-recursive. The second argument can be used for restricting matches
to a specific set, a tuple of classes. The recursion will not go into any
non-authoritative elements such as alternatives, originals of corrections.

Selection Shortcuts

There are various shortcut methods for select().

For example, you can iterate over all words in the document using Document.words(), or
all words under any structural element using AbstractStructureElement.words():

for word in doc.words():
 print(word)

That however gives you one big iteration of words without boundaries. You may
more likely want to seek words within sentences, provided the document
distinguishes sentences. So we first iterate over all sentences using
Document.sentences() and then over the
words therein using AbstractStructureElement.words():

for sentence in doc.sentences():
 for word in sentence.words():
 print(word)

Or including paragraphs, assuming the document has them:

for paragraph in doc.paragraphs():
 for sentence in paragraph.sentences():
 for word in sentence.words():
 print(word)

Warning

Do be aware that such constructions make presumptions about the structure of the FoLiA document that may not always apply!

All of these shortcut methods also take an index parameter to quickly
select a specific item in the sequence:

word = sentence.words(3) #retrieves the fourth word

Navigating a document

The AbstractElement.select() method is your main tool for descending
downwards in the document tree. There are occassions, however, when you want go
upwards or sideways. The AbstractElement.next() and
AbstractElement.previous() methods can be used for sideway navigation,
they return the next or previous element, respectively:

nextelement = element.next()
previouselement = element.previous()

You can explicitly filter by passing an element type:

nextword = word.next(folia.Word)

By default, the search is constrained not to cross certain boundaries, such as
sentences and paragraphs. You can do so explicitly as well by passing a list of
constraints:

nextword = word.next(folia.Word, [folia.Sentence])

If you do not want any constraints, pass None:

nextword = word.next(folia.Word, None)

These methods will return None if no next/previous element was found (of
the specified type).

Each element has a parent attribute that links it to its parent:

sentence = word.parent

Only for the top-level element (Text or Speech), the parent
is None. There is also the method AbstractElement.ancestors() to iterate over all
ancestors, ordered from most immediate to most distant ancestor:

for ancestor in element.ancestors():
 print(type(ancestor))

If you are looking for ancestors of a specific type, you can pass it as an
argument:

for ancestor in element.ancestors(folia.Division):
 print(type(ancestor))

If only a single ancestor is desired, use the AbstractElement.ancestor()
method instead, unlike the generator version AbstractElement.ancestors(),
it will raise a NoSuchAnnotation exception if the ancestor was not
found:

paragraph = word.ancestor(folia.Paragraph)

Structure Annotation Types

The FoLiA library discerns various Python classes for structure
annotation, all are subclasses of AbstractStructureElement, which in
turn is a subclass of AbstractElement. We list the classes
for structure anntoation along with the FoLiA XML tag. Sets and classes can
be associated with most of these elements to make them more specific, these are
never prescribed by FoLiA. The list of classes is as follows:

	Cell

	A cell in a Row in a Table

	Definition

	Element used in Entry for the portion that provides a definition for the entry.

	Division

	Structure element representing some kind of division.

	Entry

	Represents an entry in a glossary/lexicon/dictionary.

	Event

	Structural element representing events, often used in new media contexts for things such as tweets,chat messages and forum posts.

	Example

	Element that provides an example.

	Figure

	Element for the representation of a graphical figure.

	Gap

	Gap element, represents skipped portions of the text.

	Head

	Head element; a structure element that acts as the header/title of a Division.

	Linebreak

	Line break element, signals a line break.

	List

	Element for enumeration/itemisation.

	ListItem

	Single element in a List.

	Note

	Element used for notes, such as footnotes or warnings or notice blocks.

	Paragraph

	Paragraph element.

	Part

	Generic structure element used to mark a part inside another block.

	Quote

	Quote: a structure element.

	Reference

	A structural element that denotes a reference, internal or external.

	Row

	A row in a Table

	Sentence

	Sentence element.

	Table

	A table consisting of Row elements that in turn consist of Cell elements

	Term

	A term, often used in contect of Entry

	TableHead

	Encapsulated the header of a table, contains Cell elements

	Text

	A full text.

	Whitespace

	Whitespace element, signals a vertical whitespace

	Word

	Word (aka token) element.

The FoLiA documentation [https://github.com/proycon/folia/raw/master/docs/folia.pdf] explains the exact semantics and use of
these in detail. Make sure to consult it to familiarize yourself with how the
elements should be used.

FoLiA and this library enforce explicit rules about what elements are allowed
in what others. Exceptions will be raised when this is about to be violated.

Common attributes

The FoLiA paradigm features sets and classes as primary means to represent
the actual value (class) of an annotation. A set often corresponds to a tagset,
such as a set of part-of-speech tags, and a class is one selected value in such a set.

The paradigm furthermore introduces other common attributes to set on
annotation elements, such as an identifier, information on the annotator, and
more. A full list is provided below:

	element.id (str) - The unique identifier of the element

	element.set (str) - The set the element pertains to.

	element.cls (str) - The assigned class, i.e. the actual value of
the annotation, defined in the set. Classes correspond with tagsets in this case of many annotation types.
Note that since class is already a reserved keyword in python, the library consistently uses cls everywhere.

	element.annotator (str) - The name or ID of the annotator who added/modified this element

	element.annotatortype - The type of annotator, can be either folia.AnnotatorType.MANUAL or folia.AnnotatorType.AUTO

	element.confidence (float) - A confidence value expressing

	element.datetime (datetime.datetime) - The date and time when the element was added/modified.

	element.n (str) - An ordinal label, used for instance in enumerated list contexts, numbered sections, etc..

The following attributes are specific to a speech context:

	element.src (str) - A URL or filename referring the an audio or video file containing the speech. Access this attribute using the element.speaker_src() method, as it is inheritable from ancestors.

	element.speaker (str) - The name of ID of the speaker. Access this attribute using the element.speech_speaker() method, as it is inheritable from ancestors.

	element.begintime (4-tuple) - The time in the above source fragment when the phonetic content of this element starts, this is a (hours, minutes,seconds,milliseconds) tuple.

	element.endtime (4-tuple) - The time in the above source fragment when the phonetic content of this element ends, this is a (hours, minutes,seconds,milliseconds) tuple.

Attributes that are not available for certain elements, or not set, default to None.

Annotations

As FoLiA is a format for linguistic annotation, accessing annotation is one of
the primary functions of this library. This can be done using the methods
AllowTokenAnnotation.annotations() or AllowTokenAnnotation.annotation()
that are available on many FoLiA elements. These methods are similar to the
AbstractElement.select() method except they will raise a
NoSuchAnnotation exception when no such annotation is found. The
difference between annotation() and annotations() is that the former
will grab only one and raise an exception if there are more between which it
can’t disambiguate, whereas the second is a generator, but will still raise an
exception if none is found:

for word in doc.words():
 try:
 pos = word.annotation(folia.PosAnnotation, 'http://somewhere/CGN')
 lemma = word.annotation(folia.LemmaAnnotation)
 print("Word: ", word)
 print("ID: ", word.id)
 print("PoS-tag: " , pos.cls)
 print("PoS Annotator: ", pos.annotator)
 print("Lemma-tag: " , lemma.cls)
 except folia.NoSuchAnnotation:
 print("No PoS or Lemma annotation")

Note that the second argument of AllowTokenAnnotation.annotation(), AllowTokenAnnotation.annotations() or
AbstractElement.select() can be used to restrict your selection to a certain set. In the
above example we restrict ourselves to Part-of-Speech tags in the CGN set.

Token Annotation Types

The following token annotation elements are available in FoLiA, they are
embedded under a structural element (not necessarily a token, despite the name).

	DomainAnnotation

	Domain annotation: an extended token annotation element

	PosAnnotation

	Part-of-Speech annotation: a token annotation element

	LangAnnotation

	Language annotation: an extended token annotation element

	LemmaAnnotation

	Lemma annotation: a token annotation element

	SenseAnnotation

	Sense annotation: a token annotation element

	SubjectivityAnnotation

	Subjectivity annotation/Sentiment analysis: a token annotation element

Text and phonetic annotation

The actual text of an element, or a phonetic textual representation, are also
considered annotations themselves.

	TextContent

	Text content element (t), holds text to be associated with whatever element the text content element is a child of.

	PhonContent

	Phonetic content element (ph), holds a phonetic representation to be associated with whatever element the phonetic content element is a child of.

Text is retrieved as string using AbstractElement.text(), or as element
using Phonetic content is retrieved as string using
AbstractElement.text(), or as element using
AbstractElement.textcontent().

Note

These are the only elements for which FoLiA prescribes a default set and a default class (current).
This will only be relevant if you work with multiple text layers (current
text vs OCRed text for instance) or with corrections of
orthography or phonetics.

Span Annotation

FoLiA distinguishes token annotation and span annotation, token annotation is
embedded in-line within a structural element, and the annotation therefore
pertains to that structural element, whereas span annotation is stored in a
stand-off annotation layer outside the element and refers back to it. Span
annotation elements typically span over multiple structural elements, they
are all subclasses of AbstractSpanAnnotation.

We will discuss three ways of accessing span annotation. As stated, span
annotation is contained within an annotation layer (a subclass of
AbstractAnnotationLayer) of a certain structure element, often a
sentence. In the first way of accessing span annotation, we do everything
explicitly: We first obtain the layer, then iterate over the span annotation
elements within that layer, and finally iterate over the words to which the
span applies. Assume we have a sentence and we want to print all the named
entities in it, assuming the entities layer is embedded at sentence level as is
conventional:

for layer in sentence.select(folia.EntitiesLayer):
 for entity in layer.select(folia.Entity):
 print(" Entity class=", entity.cls, " words=")
 for word in entity.wrefs():
 print(word, end="") #print without newline
 print() #print newline

The AbstractSpanAnnotation.wrefs() method, available on all span annotation elements, will return
a list of all words (as well as morphemes and phonemes) over which a span
annotation element spans.

This first way is rather verbose. The second way of accessing span annotation
takes another approach, using the Word.findspans() method available on Word instances.
Here we start from a word and seek span annotations in which that word occurs.
Assume we have a word and want to find chunks it occurs in:

for chunk in word.findspans(folia.Chunk):
 print(" Chunk class=", chunk.cls, " words=")
 for word2 in chunk.wrefs(): #print all words in the chunk (of which the word is a part)
 print(word2, end="")
 print()

The Word.findspans() method can be called with either the class of a Span
Annotation Element, such as Chunk, or with the class of the layer,
such as ChunkingLayer.

The third way allows us to look for span elements given an annotation layer and
words. In other words, it checks if one or more words form a span. This is an
exact match and not a sub-part match as in the previously described method. To
do this, we use use the AbstractAnnotationLayer.findspan method,
available on all annotation layers:

for span in annotationlayer.findspan(word1,word2):
 print("Class: ", span.cls)
 print("Text: ", span.text()) #same for every span here

Span Annotation Types

This section lists the available Span annotation elements, the layer that contains
them is explicitly mentioned as well.

Some of the span annotation elements are complex and take span role elements as
children, these are normal span annotation elements that occur on a within
another span annotation (of a particular type) and can not be used standalone.

FoLiA distinguishes the following span annotation elements:

	Chunk

	Chunk element, span annotation element to be used in ChunkingLayer

	CoreferenceChain

	Coreference chain.

	Dependency

	Span annotation element to encode dependency relations

	Entity

	Entity element, for entities such as named entities, multi-word expressions, temporal entities.

	Observation

	Observation.

	Predicate

	Predicate, used within SemanticRolesLayer, takes SemanticRole annotations as children, but has its own annotation type and separate declaration

	Sentiment

	Sentiment.

	Statement

	Statement.

	SyntacticUnit

	Syntactic Unit, span annotation element to be used in SyntaxLayer

	SemanticRole

	Semantic Role

	TimeSegment

	A time segment

These are placed in the following annotation layers:

	ChunkingLayer

	Chunking Layer: Annotation layer for Chunk span annotation elements

	CoreferenceLayer

	Syntax Layer: Annotation layer for SyntacticUnit span annotation elements

	DependenciesLayer

	Dependencies Layer: Annotation layer for Dependency span annotation elements.

	EntitiesLayer

	Entities Layer: Annotation layer for Entity span annotation elements.

	ObservationLayer

	Observation Layer: Annotation layer for Observation span annotation elements.

	SentimentLayer

	Sentiment Layer: Annotation layer for Sentiment span annotation elements, used for sentiment analysis.

	StatementLayer

	Statement Layer: Annotation layer for Statement span annotation elements, used for attribution annotation.

	SyntaxLayer

	Syntax Layer: Annotation layer for SyntacticUnit span annotation elements

	SemanticRolesLayer

	Syntax Layer: Annotation layer for SemanticRole span annotation elements

	TimingLayer

	Timing layer: Annotation layer for TimeSegment span annotation elements.

Some span annotation elements take span roles, depending on their type:

	CoreferenceLink

	Coreference link.

	DependencyDependent

	Span role element that marks the dependent in a dependency relation.

	Headspan

	The headspan role is used to mark the head of a span annotation.

Editing FoLiA

Creating a new document

Creating a new FoliA document, rather than loading an existing one from file,
is done by explicitly providing the ID for the new document in the
Document constructor:

doc = folia.Document(id='example')

Declarations

Whenever you add a new type of annotation, or a different set, to a FoLiA document, you have to
first declare it. This is done using the Document.declare() method. It takes as
arguments the annotation type, the set, and you can optionally pass keyword
arguments to annotator= and annotatortype= to set defaults.

An example for Part-of-Speech annotation:

doc.declare(folia.PosAnnotation, 'http://somewhere/brown-tag-set')

An example with a default annotator:

doc.declare(folia.PosAnnotation, 'http://somewhere/brown-tag-set', annotator='proycon', annotatortype=folia.AnnotatorType.MANUAL)

Any additional sets for Part-of-Speech would have to be explicitly declared as
well. To check if a particular annotation type and set is declared, use the
Document.declared() method.

Adding structure

Assuming we begin with an empty document, we should first add a Text element.
Then we can add paragraphs, sentences, or other structural elements. The
AbstractElement.add() method adds new children to an element:

text = doc.add(folia.Text)
paragraph = text.add(folia.Paragraph)
sentence = paragraph.add(folia.Sentence)
sentence.add(folia.Word, 'This')
sentence.add(folia.Word, 'is')
sentence.add(folia.Word, 'a')
sentence.add(folia.Word, 'test')
sentence.add(folia.Word, '.')

Note

The AbstractElement.add() method is actually a wrapper around AbstractElement.append(), which takes the
exact same arguments. It performs extra checks and works for both span
annotation as well as token annotation. Using append() will be faster
though.

Adding annotations

Adding annotations, or any elements for that matter, is done using the
AbstractElement.add() method on the intended parent element. We assume that the annotations
we add have already been properly declared, otherwise an exception will be
raised as soon as add() is called. Let’s build on the previous example:

#First we grab the fourth word, 'test', from the sentence
word = sentence.words(3)

#Add Part-of-Speech tag
word.add(folia.PosAnnotation, set='brown-tagset',cls='n')

#Add lemma
lemma.add(folia.LemmaAnnotation, cls='test')

Note that in the above examples, the add() method takes a class as first
argument, and subsequently takes keyword arguments that will be passed to the
classes’ constructor.

A second way of using AbstractElement.add() is by simply passing a fully instantiated child
element, thus constructing it prior to adding. The following is equivalent to the
above example, as the previous method is merely a shortcut for convenience:

#First we grab the fourth word, 'test', from the sentence
word = sentence.words(3)

#Add Part-of-Speech tag
word.add(folia.PosAnnotation(doc, set='brown-tagset',cls='n'))

#Add lemma
lemma.add(folia.LemmaAnnotation(doc , cls='test'))

The AbstractElement.add() method always returns that which was added, allowing it to be chained.

In the above example we first explicitly instantiate a PosAnnotation
and a LemmaAnnotation. Instantiation of any FoLiA element (always
Python class subclassed off AbstractElement) follows the following
pattern:

Class(document, *children, **kwargs)

Note

See AbstractElement.__init__() for all details on construction

Note that the document has to be passed explicitly as first argument to the constructor.

The common attributes are set using equally named keyword arguments:

	id=

	cls=

	set=

	annotator=

	annotatortype=

	confidence=

	src=

	speaker=

	begintime=

	endtime=

Not all attributes are allowed for all elements, and certain attributes are
required for certain elements. ValueError exceptions will be raised when these
constraints are not met.

Instead of setting id. you can also set the keyword argument
generate_id_in and pass it another element, an ID will be automatically
generated, based on the ID of the element passed. When you use the first method
of adding elements, instantiation with generate_id_in will take place automatically
behind the scenes when applicable and when id is not explicitly set.

Any extra non-keyword arguments should be FoLiA elements and will be appended
as the contents of the element, i.e. the children or subelements. Instead of
using non-keyword arguments, you can also use the keyword argument content
and pass a list. This is a shortcut made merely for convenience, as Python
obliges all non-keyword arguments to come before the keyword-arguments, which
if often aesthetically unpleasing for our purposes. Example of this use case
will be shown in the next section.

Adding span annotation

Adding span annotation is easy with the FoLiA library. As you know, span
annotation uses a stand-off annotation embedded in annotation layers. These
layers are in turn embedded in structural elements such as sentences. However,
the AbstractElement.add() method abstracts over this. Consider the following example of a named entity:

doc.declare(folia.Entity, "https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/namedentities.foliaset.xml")

sentence = text.add(folia.Sentence)
sentence.add(folia.Word, 'I',id='example.s.1.w.1')
sentence.add(folia.Word, 'saw',id='example.s.1.w.2')
sentence.add(folia.Word, 'the',id='example.s.1.w.3')
word = sentence.add(folia.Word, 'Dalai',id='example.s.1.w.4')
word2 =sentence.add(folia.Word, 'Lama',id='example.s.1.w.5')
sentence.add(folia.Word, '.', id='example.s.1.w.6')

word.add(folia.Entity, word, word2, cls="per")

To make references to the words, we simply pass the word instances and use the
document’s index to obtain them. Note also that passing a list using the
keyword argument contents is wholly equivalent to passing the non-keyword
arguments separately:

word.add(folia.Entity, cls="per", contents=[word,word2])

In the next example we do things more explicitly. We first create a sentence
and then add a syntax parse, consisting of nested elements:

doc.declare(folia.SyntaxLayer, 'some-syntax-set')

sentence = text.add(folia.Sentence)
sentence.add(folia.Word, 'The',id='example.s.1.w.1')
sentence.add(folia.Word, 'boy',id='example.s.1.w.2')
sentence.add(folia.Word, 'pets',id='example.s.1.w.3')
sentence.add(folia.Word, 'the',id='example.s.1.w.4')
sentence.add(folia.Word, 'cat',id='example.s.1.w.5')
sentence.add(folia.Word, '.', id='example.s.1.w.6')

#Adding Syntax Layer
layer = sentence.add(folia.SyntaxLayer)

#Adding Syntactic Units
layer.add(
 folia.SyntacticUnit(self.doc, cls='s', contents=[
 folia.SyntacticUnit(self.doc, cls='np', contents=[
 folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.1'], cls='det'),
 folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.2'], cls='n'),
]),
 folia.SyntacticUnit(self.doc, cls='vp', contents=[
 folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.3'], cls='v')
 folia.SyntacticUnit(self.doc, cls='np', contents=[
 folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.4'], cls='det'),
 folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.5'], cls='n'),
]),
]),
 folia.SyntacticUnit(self.doc, self.doc['example.s.1.w.6'], cls='fin')
])
)

Note

The lower-level AbstractElement.append() method would have had the same effect in the above syntax tree sample.

Deleting annotations

Any element can be deleted by calling the AbstractElement.remove() method on its parent. Suppose we want to delete word:

word.parent.remove(word)

Copying annotations

A deep copy can be made of any element by calling its AbstractElement.copy() method:

word2 = word.copy()

The copy will be without parent and document. If you intend to associate a copy with a new document, then copy as follows instead:

word2 = word.copy(newdoc)

If you intend to attach the copy somewhere in the same document, you may want to add a suffix for any identifiers in its scope, since duplicate identifiers are not allowed and would raise an exception. This can be specified as the second argument:

word2 = word.copy(doc, ".copy")

Searching in a FoLiA document

If you have loaded a FoLiA document into memory, you may want to search for a
particular annotations. You can of course loop over all structural and
annotation elements using AbstractElement.select(),
AllowTokenAnnotation.annotation() and
AllowTokenAnnotation.annotations(). Additionally, Word.findspans()
and AbstractAnnotationLayer.findspan() are useful methods of finding span
annotations covering particular words, whereas
AbstractSpanAnnotation.wrefs() does the reverse and finds the words for a
given span annotation element. In addition to these main methods of navigation
and selection, there is higher-level function available for searching, this
uses the FoLiA Query Language (FQL) or the Corpus Query Language (CQL).

These two languages are part of separate libraries that need to be imported:

from pynlpl.formats import fql, cql

Corpus Query Language (CQL)

CQL is the easier-language of the two and most suitable for corpus searching.
It is, however, less flexible than FQL, which is designed specifically for
FoLiA and can not just query, but also manipulate FoLiA documents in great
detail.

CQL was developed for the IMS Corpus Workbench [http://www.ims.uni-stuttgart.de/forschung/projekte/CorpusWorkbench.html],
at Stuttgart Univeristy, and is implemented in Sketch Engine, who provide good
CQL documentation [http://www.sketchengine.co.uk/documentation/wiki/SkE/CorpusQuerying].

CQL has to be converted to FQL first, which is then executed on the given document. This is a simple example querying for the word “house”:

doc = folia.Document(file="/path/to/some/document.folia.xml")
query = fql.Query(cql.cql2fql('"house"'))
for word in query(doc):
 print(word) #these will be folia.Word instances (all matching house)

Multiple words can be queried:

query = fql.Query(cql.cql2fql('"the" "big" "house"'))
for word1,word2,word3 in query(doc):
 print(word1, word2,word3)

Queries may contain wildcard expressions to match multiple text patterns. Gaps can be specified using []. The following will match any three word combination starting with the and ending with something that starts with house. It will thus match things like “the big house” or “the small household”:

query = fql.Query(cql.cql2fql('"the" [] "house.*"'))
for word1,word2,word3 in query(doc):
 ...

We can make the gap optional with a question mark, it can be lenghtened with + or * , like regular expressions:

query = fql.Query(cql.cql2fql('"the" []? "house.*"'))
for match in query(doc):
 print("We matched ", len(match), " words")

Querying is not limited to text, but all of FoLiA’s annotations can be used. To force our gap consist of one or more adjectives, we do:

query = fql.Query(cql.cql2fql('"the" [pos = "a"]+ "house.*"'))
for match in query(doc):
 ...

The original CQL attribute here is tag rather than pos, this can be used too. In addition, all FoLiA element types can be used! Just use their FoLiA tagname.

Consult the CQL documentation for more. Do note that CQL is very word/token centered, for searching other types of elements, use FQL instead.

FoLiA Query Language (FQL)

FQL is documented here [https://github.com/proycon/foliadocserve/blob/master/README.rst], a full
overview is beyond the scope of this documentation. We will just introduce some
basic selection queries so you can develop an initial impression of the language’s abilities.

All FQL processing is done via the following class, as already seen in the
previous section:

	Query

	This class represents an FQL query.

Selecting a word with a particular text is done as follows:

query = fql.Query('SELECT w WHERE text = "house"')
for word in query(doc):
 print(word) #this will be an instance of folia.Word

Regular expression matching can be done using the MATCHES operator:

query = fql.Query('SELECT w WHERE text MATCHES "^house.*$"')
for word in query(doc):
 print(word)

The classes of other annotation types can be easily queried as follows:

query = fql.Query('SELECT w WHERE :pos = "v"' AND :lemma = "be"')
for word in query(doc):
 print(word)

You can constrain your queries to a particular target selection using the FOR keyword:

query = fql.Query('SELECT w WHERE text MATCHES "^house.*$" FOR s WHERE text CONTAINS "sell"')
for word in query(doc):
 print(word)

This construction also allows you to select the actual annotations. To select all people (a named entity) for words that are not John:

query = fql.Query('SELECT entity WHERE class = "person" FOR w WHERE text != "John"')
for entity in query(doc):
 print(entity) #this will be an instance of folia.Entity

FOR statement may be chained, and Explicit IDs can be passed using the ID keyword:

query = fql.Query('SELECT entity WHERE class = "person" FOR w WHERE text != "John" FOR div ID "section.21"')
for entity in query(doc):
 print(entity)

Sets are specified using the OF keyword, it can be omitted if there is only one for the annotation type, but will be required otherwise:

query = fql.Query('SELECT su OF "http://some/syntax/set" WHERE class = "np"')
for su in query(doc):
 print(su) #this will be an instance of folia.SyntacticUnit

We have just covered the SELECT keyword, FQL has other keywords for manipulating documents, such as EDIT, ADD, APPEND and PREPEND.

Note

Consult the FQL documentation at https://github.com/proycon/foliadocserve/blob/master/README.rst for further documentation on the language.

Streaming Reader

Throughout this tutorial you have seen the Document class as a means
of reading FoLiA documents. This class always loads the entire document in
memory, which can be a considerable resource demand. The following class
provides an alternative to loading FoLiA documents:

	Reader

	Streaming FoLiA reader.

It does not load the entire
document in memory but merely returns the elements you are interested in. This
results in far less memory usage and also provides a speed-up.

A reader is constructed as follows, the second argument is the class of the element you
want:

reader = folia.Reader("my.folia.xml", folia.Word)
for word in reader:
 print(word.id)

Higher-Order Annotations

Text Markup

FoLiA has a number of text markup elements, these appear within the
TextContent (t) element, iterating over the element of a
TextContent element will first and foremost produce strings, but also
uncover these markup elements when present. The following markup types exists:

	TextMarkupGap

	Markup element to mark gaps in text content (TextContent)

	TextMarkupString

	Markup element to mark arbitrary substrings in text content (TextContent)

	TextMarkupStyle

	Markup element to style text content (TextContent), e.g.

	TextMarkupCorrection

	Markup element to mark corrections in text content (TextContent).

	TextMarkupError

	Markup element to mark gaps in text content (TextContent)

Features

Features allow a second-order annotation by adding the ability to assign
properties and values to any of the existing annotation elements. They follow
the set/class paradigm by adding the notion of a subset and class relative to
this subset. The AbstractElement.feat() method provides a shortcut that can be used on any
annotation element to obtain the class of the feature, given a subset. To
illustrate the concept, take a look at part of speech annotation with some
features:

pos = word.annotation(folia.PosAnnotation)
if pos.cls = "n":
 if pos.feat('number') == 'plural':
 print("We have a plural noun!")
 elif pos.feat('number') == 'singular':
 print("We have a singular noun!")

The AbstractElement.feat() method will return an exception when the feature does not exist.
Note that the actual subset and class values are defined by the set and not
FoLiA itself! They are therefore fictitious in the above example.

The Python class for features is Feature, in the following example we
add a feature:

pos.add(folia.Feature, subset="gender", cls="f")

Although FoLiA does not define any sets nor subsets. Some annotation types do
come with some associated subsets, their use is never mandatory. The advantage
is that these associated subsets can be directly used as an XML attribute in
the FoLiA document. The FoLiA library provides extra classes, all subclassed
off Feature for these:

	Feature

	Feature elements can be used to associate subsets and subclasses with almost any annotation element

	SynsetFeature

	Synset feature, to be used within Sense

	ActorFeature

	Actor feature, to be used within Event

	BegindatetimeFeature

	Begindatetime feature, to be used within Event

	EnddatetimeFeature

	Enddatetime feature, to be used within Event

Alternatives

A key feature of FoLiA is its ability to make explicit alternative annotations,
for token annotations, the Alternative (alt) class is used to
this end. Alternative annotations are embedded in this structure. This implies
the annotation is not authoritative, but is merely an alternative to the actual
annotation (if any). Alternatives may typically occur in larger numbers,
representing a distribution each with a confidence value (not mandatory). Each
alternative is wrapped in its own Alternative element, as multiple
elements inside a single alternative are considered dependent and part of the
same alternative. Combining multiple annotation in one alternative makes sense
for mixed annotation types, where for instance a pos tag alternative is tied to
a particular lemma:

alt = word.add(folia.Alternative)
alt.add(folia.PosAnnotation, set='brown-tagset',cls='n',confidence=0.5)
alt = word.add(folia.Alternative) #note that we reassign the variable!
alt.add(folia.PosAnnotation, set='brown-tagset',cls='a',confidence=0.3)
alt = word.add(folia.Alternative)
alt.add(folia.PosAnnotation, set='brown-tagset',cls='v',confidence=0.2)

Span annotation elements have a different mechanism for alternatives, for those
the entire annotation layer is embedded in a AlternativeLayers
element. This element should be repeated for every type, unless the layers it
describeds are dependent on it eachother:

alt = sentence.add(folia.AlternativeLayers)
layer = alt.add(folia.Entities)
entity = layer.add(folia.Entity, word1,word2,cls="person", confidence=0.3)

Because the alternative annotations are non-authoritative, normal selection
methods such as select() and annotations() will never yield them,
unless explicitly told to do so. For this reason, there is an
alternatives() method on structure elements, for the first category of alternatives.

In summary, a list of the two relevant classes for alternatives:

	Alternative

	Element grouping alternative token annotation(s).

	AlternativeLayers

	Element grouping alternative subtoken annotation(s).

Corrections

Corrections are one of the most complex annotation types in FoLiA. Corrections
can be applied not just over text, but over any type of structure annotation,
token annotation or span annotation. Corrections explicitly preserve the
original, and recursively so if corrections are done over other corrections.

Despite their complexity, the library treats correction transparently. Whenever
you query for a particular element, and it is part of a correction, you get the
corrected version rather than the original. The original is always non-authoritative
and normal selection methods will ignore it.

If you want to deal with correction, you have to explicitly handle the
Correction element. If an element is part of a correction, its
AbstractElement.incorrection() method will give the correction element, if not, it will
return None:

pos = word.annotation(folia.PosAnnotation)
correction = pos.incorrection()
if correction:
 if correction.hasoriginal():
 originalpos = correction.original(0) #assuming it's the only element as is customary
 #originalpos will be an instance of folia.PosAnnotation
 print("The original pos was", originalpos.cls)

Corrections themselves carry a class too, indicating the type of correction (defined by the set used and not by FoLiA).

Besides Correction.original(), corrections distinguish three other types, Correction.new() (the corrected version), Correction.current() (the current uncorrected version) and Correction.suggestions() (a suggestion for correction), the former two and latter two usually form pairs, current() and new() can never be used together. Of suggestions(index) there may be multiple, hence the index argument. These return, respectively, instances of Original, folia.New, folia.Current and folia.Suggestion.

Adding a correction can be done explicitly:

wrongpos = word.annotation(folia.PosAnnotation)
word.add(folia.Correction, folia.New(doc, folia.PosAnnotation(doc, cls="n")) , folia.Original(doc, wrongpos), cls="misclassified")

Let’s settle for a suggestion rather than an actual correction:

wrongpos = word.annotation(folia.PosAnnotation)
word.add(folia.Correction, folia.Suggestion(doc, folia.PosAnnotation(doc, cls="n")), cls="misclassified")

In some instances, when correcting text or structural elements, New may be
empty, which would correspond to an deletion. Similarly, Original may be
empty, corresponding to an insertion.

The use of Current is reserved for use with structure elements, such as words, in combination with suggestions. The structure elements then have to be embedded in Current. This situation arises for instance when making suggestions for a merge or split.

Here is a list of all relevant classes for corrections:

	Correction

	Corrections are one of the most complex annotation types in FoLiA.

	Current

	Used in the context of Correction to encapsulate the currently authoritative annotations.

	ErrorDetection

	The ErrorDetection element is used to signal the presence of errors in a structural element.

	New

	

	Original

	Used in the context of Correction to encapsulate the original annotations prior to correction.

	Suggestion

	Suggestions are used in the context of Correction, but rather than provide an authoritative correction, it instead offers a suggestion for correction.

Alignments

Alignments are used to make reference to external documents. It concerns
references as annotation rather than references which are explicitly part of
the text, such as hyperlinks and Reference.

The following elements are relevant for alignments:

	Alignment

	The Alignment element is a form of higher-order annotation taht is used to point to an external resource.

	AlignReference

	The AlignReference element is used to point to specific elements inside the aligned source.

Descriptions, Metrics

FoLiA allows arbitrary descriptions to be assigned with any element. It also
allows assigning metrics to any annotation, which consist of a key/value pair
that often express a quantivative or qualitative measure. This is accomplished,
respectively, with the following element classes:

	Description

	Description is an element that can be used to associate a description with almost any other FoLiA element

	Metric

	Metric elements provide a key/value pair to allow the annotation of any kind of metric with any kind of annotation element.

Metadata

FoLiA can be used with a variety of more advanced metadata schemes (e.g. Dublin Core,
CMDI). If this is too much, you can use its own simple native metadata
facility, a simple key value store . After instantiation of a Document, the metadata can be
accessed through the metadata attribute, which behaves like a Python
dictionary:

doc = folia.Document(file="/path/to/document.xml")
doc.metadata['language'] = "en"

pynlpl.formats.folia.Document

	
class pynlpl.formats.folia.Document(*args, **kwargs)

	Bases: object

This is the FoLiA Document and holds all its data in memory.

All FoLiA elements have to be associated with a FoLiA document.
Besides holding elements, the document may hold metadata including declarations, and an index of all IDs.

Method Summary

	__init__(*args, **kwargs)

	Start/load a FoLiA document:

	add(text)

	Alias for Document.append()

	alias(annotationtype, set[, fallback])

	Return the alias for a set (if applicable, returns the unaltered set otherwise iff fallback is enabled)

	append(text)

	Add a text (or speech) to the document:

	count(Class[, set, recursive, ignore])

	See AbstractElement.count()

	create(Class, *args, **kwargs)

	Create an element associated with this Document.

	date([value])

	Get or set the document’s date from/in the metadata.

	declare(annotationtype, set, **kwargs)

	Declare a new annotation type to be used in the document.

	declared(annotationtype, set)

	Checks if the annotation type is present (i.e.

	defaultannotator(annotationtype[, set])

	Obtain the default annotator for the specified annotation type and set.

	defaultannotatortype(annotationtype[, set])

	Obtain the default annotator type for the specified annotation type and set.

	defaultdatetime(annotationtype[, set])

	Obtain the default datetime for the specified annotation type and set.

	defaultset(annotationtype)

	Obtain the default set for the specified annotation type.

	findwords(*args, **kwargs)

	

	items()

	Returns a depth-first flat list of all items in the document

	json()

	Serialise the document to a dict ready for serialisation to JSON.

	jsondeclarations()

	Return all declarations in a form ready to be serialised to JSON.

	language([value])

	No arguments: Get the document’s language (ISO-639-3) from metadata Argument: Set the document’s language (ISO-639-3) in metadata

	license([value])

	No arguments: Get the document’s license from metadata Argument: Set the document’s license in metadata

	load(filename)

	Load a FoLiA XML file.

	paragraphs([index])

	Return a generator of all paragraphs found in the document.

	parsemetadata(node)

	Internal method to parse metadata

	parsesubmetadata(node)

	

	parsexml(node[, ParentClass])

	Internal method.

	parsexmldeclarations(node)

	Internal method to parse XML declarations

	pendingvalidation([warnonly])

	Perform any pending validations

	publisher([value])

	No arguments: Get the document’s publisher from metadata Argument: Set the document’s publisher in metadata

	save([filename])

	Save the document to file.

	select(Class[, set, recursive, ignore])

	See AbstractElement.select()

	sentences([index])

	Return a generator of all sentence found in the document.

	setimdi(node)

	OBSOLETE

	text([cls, retaintokenisation])

	Returns the text of the entire document (returns a unicode instance)

	title([value])

	Get or set the document’s title from/in the metadata

	unalias(annotationtype, alias)

	Return the set for an alias (if applicable, raises an exception otherwise)

	words([index])

	Return a generator of all active words found in the document.

	xml()

	Serialise the document to XML.

	xmldeclarations()

	Internal method to generate XML nodes for all declarations

	xmlmetadata()

	Internal method to serialize metadata to XML

	xmlstring()

	Return the XML representation of the document as a string.

	xpath(query)

	Run Xpath expression and parse the resulting elements.

Attributes

	IDSEPARATOR

	

Method Details

	
__init__(*args, **kwargs)

	Start/load a FoLiA document:

There are four sources of input for loading a FoLiA document:

	Create a new document by specifying an ID:

doc = folia.Document(id='test')

	Load a document from FoLiA or D-Coi XML file:

doc = folia.Document(file='/path/to/doc.xml')

	Load a document from an XML string:

doc = folia.Document(string='<FoLiA>....</FoLiA>')

	Load a document by passing a parse xml tree (lxml.etree):

doc = folia.Document(tree=xmltree)

Additionally, there are three modes that can be set with the mode= keyword argument:

	folia.Mode.MEMORY - The entire FoLiA Document will be loaded into memory. This is the default mode and the only mode in which documents can be manipulated and saved again.

	folia.Mode.XPATH - The full XML tree will still be loaded into memory, but conversion to FoLiA classes occurs only when queried. This mode can be used when the full power of XPath is required.

	Keyword Arguments

	
	setdefinition (dict) – A dictionary of set definitions, the key corresponds to the set name, the value is a SetDefinition instance

	loadsetdefinitions (bool) – download and load set definitions (default: False)

	deepvalidation (bool) – Do deep validation of the document (default: False), implies loadsetdefinitions

	textvalidation (bool) – Do validation of text consistency (default: False)``

	preparsexmlcallback (function) – Callback for a function taking one argument (node, an lxml node). Will be called whenever an XML element is parsed into FoLiA. The function should return an instance inherited from folia.AbstractElement, or None to abort parsing this element (and all its children)

	parsexmlcallback (function) – Callback for a function taking one argument (element, a FoLiA element). Will be called whenever an XML element is parsed into FoLiA. The function should return an instance inherited from folia.AbstractElement, or None to abort adding this element (and all its children)

	debug (bool) – Boolean to enable/disable debug

	
__init__(*args, **kwargs)

	Start/load a FoLiA document:

There are four sources of input for loading a FoLiA document:

	Create a new document by specifying an ID:

doc = folia.Document(id='test')

	Load a document from FoLiA or D-Coi XML file:

doc = folia.Document(file='/path/to/doc.xml')

	Load a document from an XML string:

doc = folia.Document(string='<FoLiA>....</FoLiA>')

	Load a document by passing a parse xml tree (lxml.etree):

doc = folia.Document(tree=xmltree)

Additionally, there are three modes that can be set with the mode= keyword argument:

	folia.Mode.MEMORY - The entire FoLiA Document will be loaded into memory. This is the default mode and the only mode in which documents can be manipulated and saved again.

	folia.Mode.XPATH - The full XML tree will still be loaded into memory, but conversion to FoLiA classes occurs only when queried. This mode can be used when the full power of XPath is required.

	Keyword Arguments

	
	setdefinition (dict) – A dictionary of set definitions, the key corresponds to the set name, the value is a SetDefinition instance

	loadsetdefinitions (bool) – download and load set definitions (default: False)

	deepvalidation (bool) – Do deep validation of the document (default: False), implies loadsetdefinitions

	textvalidation (bool) – Do validation of text consistency (default: False)``

	preparsexmlcallback (function) – Callback for a function taking one argument (node, an lxml node). Will be called whenever an XML element is parsed into FoLiA. The function should return an instance inherited from folia.AbstractElement, or None to abort parsing this element (and all its children)

	parsexmlcallback (function) – Callback for a function taking one argument (element, a FoLiA element). Will be called whenever an XML element is parsed into FoLiA. The function should return an instance inherited from folia.AbstractElement, or None to abort adding this element (and all its children)

	debug (bool) – Boolean to enable/disable debug

	
add(text)

	Alias for Document.append()

	
alias(annotationtype, set, fallback=False)

	Return the alias for a set (if applicable, returns the unaltered set otherwise iff fallback is enabled)

	
append(text)

	Add a text (or speech) to the document:

Example 1:

doc.append(folia.Text)

	Example 2::

	doc.append(folia.Text(doc, id=’example.text’))

Example 3:

doc.append(folia.Speech)

	
count(Class, set=None, recursive=True, ignore=True)

	See AbstractElement.count()

	
create(Class, *args, **kwargs)

	Create an element associated with this Document. This method may be obsolete and removed later.

	
date(value=None)

	Get or set the document’s date from/in the metadata.

No arguments: Get the document’s date from metadata
Argument: Set the document’s date in metadata

	
declare(annotationtype, set, **kwargs)

	Declare a new annotation type to be used in the document.

Keyword arguments can be used to set defaults for any annotation of this type and set.

	Parameters

	
	annotationtype – The type of annotation, this is conveyed by passing the corresponding annototion class (such as PosAnnotation for example), or a member of AnnotationType, such as AnnotationType.POS.

	set (str) – the set, should formally be a URL pointing to the set definition

	Keyword Arguments

	
	annotator (str) – Sets a default annotator

	annotatortype – Should be either AnnotatorType.MANUAL or AnnotatorType.AUTO, indicating whether the annotation was performed manually or by an automated process.

	datetime (datetime.datetime) – Sets the default datetime

	alias (str) – Defines alias that may be used in set attribute of elements instead of the full set name

Example:

doc.declare(folia.PosAnnotation, 'http://some/path/brown-tag-set', annotator="mytagger", annotatortype=folia.AnnotatorType.AUTO)

	
declared(annotationtype, set)

	Checks if the annotation type is present (i.e. declared) in the document.

	Parameters

	
	annotationtype – The type of annotation, this is conveyed by passing the corresponding annototion class (such as PosAnnotation for example), or a member of AnnotationType, such as AnnotationType.POS.

	set (str) – the set, should formally be a URL pointing to the set definition (aliases are also supported)

Example:

if doc.declared(folia.PosAnnotation, 'http://some/path/brown-tag-set'):
 ..

	Returns

	bool

	
defaultannotator(annotationtype, set=None)

	Obtain the default annotator for the specified annotation type and set.

	Parameters

	
	annotationtype – The type of annotation, this is conveyed by passing the corresponding annototion class (such as PosAnnotation for example), or a member of AnnotationType, such as AnnotationType.POS.

	set (str) – the set, should formally be a URL pointing to the set definition

	Returns

	the set (str)

	Raises

	NoDefaultError if the annotation type does not exist or if there is ambiguity (multiple sets for the same type)

	
defaultannotatortype(annotationtype, set=None)

	Obtain the default annotator type for the specified annotation type and set.

	Parameters

	
	annotationtype – The type of annotation, this is conveyed by passing the corresponding annototion class (such as PosAnnotation for example), or a member of AnnotationType, such as AnnotationType.POS.

	set (str) – the set, should formally be a URL pointing to the set definition

	Returns

	AnnotatorType.AUTO or AnnotatorType.MANUAL

	Raises

	NoDefaultError if the annotation type does not exist or if there is ambiguity (multiple sets for the same type)

	
defaultdatetime(annotationtype, set=None)

	Obtain the default datetime for the specified annotation type and set.

	Parameters

	
	annotationtype – The type of annotation, this is conveyed by passing the corresponding annototion class (such as PosAnnotation for example), or a member of AnnotationType, such as AnnotationType.POS.

	set (str) – the set, should formally be a URL pointing to the set definition

	Returns

	the set (str)

	Raises

	NoDefaultError if the annotation type does not exist or if there is ambiguity (multiple sets for the same type)

	
defaultset(annotationtype)

	Obtain the default set for the specified annotation type.

	Parameters

	annotationtype – The type of annotation, this is conveyed by passing the corresponding annototion class (such as PosAnnotation for example), or a member of AnnotationType, such as AnnotationType.POS.

	Returns

	the set (str)

	Raises

	NoDefaultError if the annotation type does not exist or if there is ambiguity (multiple sets for the same type)

	
findwords(*args, **kwargs)

	

	
items()

	Returns a depth-first flat list of all items in the document

	
json()

	Serialise the document to a dict ready for serialisation to JSON.

Example:

import json
jsondoc = json.dumps(doc.json())

	
jsondeclarations()

	Return all declarations in a form ready to be serialised to JSON.

	Returns

	list of dict

	
language(value=None)

	No arguments: Get the document’s language (ISO-639-3) from metadata
Argument: Set the document’s language (ISO-639-3) in metadata

	
license(value=None)

	No arguments: Get the document’s license from metadata
Argument: Set the document’s license in metadata

	
load(filename)

	Load a FoLiA XML file.

	Argument:

	filename (str): The file to load

	
paragraphs(index=None)

	Return a generator of all paragraphs found in the document.

If an index is specified, return the n’th paragraph only (starting at 0)

	
parsemetadata(node)

	Internal method to parse metadata

	
parsesubmetadata(node)

	

	
parsexml(node, ParentClass=None)

	Internal method.

This is the main XML parser, will invoke class-specific XML parsers.

	
parsexmldeclarations(node)

	Internal method to parse XML declarations

	
pendingvalidation(warnonly=None)

	Perform any pending validations

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
publisher(value=None)

	No arguments: Get the document’s publisher from metadata
Argument: Set the document’s publisher in metadata

	
save(filename=None)

	Save the document to file.

	Parameters

	filename (*) – The filename to save to. If not set (None, default), saves to the same file as loaded from.

	
select(Class, set=None, recursive=True, ignore=True)

	See AbstractElement.select()

	
sentences(index=None)

	Return a generator of all sentence found in the document. Except for sentences in quotes.

If an index is specified, return the n’th sentence only (starting at 0)

	
setimdi(node)

	OBSOLETE

	
text(cls='current', retaintokenisation=False)

	Returns the text of the entire document (returns a unicode instance)

See also

AbstractElement.text()

	
title(value=None)

	Get or set the document’s title from/in the metadata

No arguments: Get the document’s title from metadata
Argument: Set the document’s title in metadata

	
unalias(annotationtype, alias)

	Return the set for an alias (if applicable, raises an exception otherwise)

	
words(index=None)

	Return a generator of all active words found in the document. Does not descend into annotation layers, alternatives, originals, suggestions.

If an index is specified, return the n’th word only (starting at 0)

	
xml()

	Serialise the document to XML.

	Returns

	lxml.etree.Element

See also

Document.xmlstring()

	
xmldeclarations()

	Internal method to generate XML nodes for all declarations

	
xmlmetadata()

	Internal method to serialize metadata to XML

	
xmlstring()

	Return the XML representation of the document as a string.

	
xpath(query)

	Run Xpath expression and parse the resulting elements. Don’t forget to use the FoLiA namesapace in your expressions, using folia: or the short form f:

pynlpl.formats.folia.AbstractElement

	
class pynlpl.formats.folia.AbstractElement(doc, *args, **kwargs)

	Bases: object

Abstract base class from which all FoLiA elements are derived.

This class implements many generic methods that are available on all FoLiA elements.

To see if an element is a FoLiA element, as opposed to any other python object, do:

isinstance(x, AbstractElement)

Generic FoLiA attributes can be accessed on all instances derived from this class:

	element.id (str) - The unique identifier of the element

	element.set (str) - The set the element pertains to.

	element.cls (str) - The assigned class, i.e. the actual value of the annotation, defined in the set. Classes correspond with tagsets in this case of many annotation types. Note that since class is already a reserved keyword in python, the library consistently uses cls everywhere.

	element.annotator (str) - The name or ID of the annotator who added/modified this element

	element.annotatortype - The type of annotator, can be either folia.AnnotatorType.MANUAL or folia.AnnotatorType.AUTO

	element.confidence (float) - A confidence value expressing

	element.datetime (datetime.datetime) - The date and time when the element was added/modified.

	element.n (str) - An ordinal label, used for instance in enumerated list contexts, numbered sections, etc..

The following generic attributes are specific to a speech context:

	element.src (str) - A URL or filename referring the an audio or video file containing the speech. Access this attribute using the element.speaker_src() method, as it is inheritable from ancestors.

	element.speaker (str) - The name of ID of the speaker. Access this attribute using the element.speech_speaker() method, as it is inheritable from ancestors.

	element.begintime (4-tuple) - The time in the above source fragment when the phonetic content of this element starts, this is a (hours, minutes,seconds,milliseconds) tuple.

	element.endtime (4-tuple) - The time in the above source fragment when the phonetic content of this element ends, this is a (hours, minutes,seconds,milliseconds) tuple.

Not all attributes are allowed, unset or unavailable attributes will always default to None.

Note

This class should never be instantiated directly, as it is abstract!

See also

AbstractElement.__init__()

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = None

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = None

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.AbstractStructureElement

	
class pynlpl.formats.folia.AbstractStructureElement(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.AllowTokenAnnotation, pynlpl.formats.folia.AllowGenerateID

Abstract element, all structure elements inherit from this class. Never instantiated directly.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n'

	

	
XLINK = False

	

	
XMLTAG = None

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.AllowTokenAnnotation

	
class pynlpl.formats.folia.AllowTokenAnnotation

	Bases: pynlpl.formats.folia.AllowCorrections

Elements that allow token annotation (including extended annotation) must inherit from this class

Method Summary

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	__str__

	Return str(self).

Method Details

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
__str__()

	Return str(self).

pynlpl.formats.folia.AbstractSpanAnnotation

	
class pynlpl.formats.folia.AbstractSpanAnnotation(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.AllowGenerateID, pynlpl.formats.folia.AllowCorrections

Abstract element, all span annotation elements are derived from this class

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = None

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.AbstractTokenAnnotation

	
class pynlpl.formats.folia.AbstractTokenAnnotation(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.AllowGenerateID

Abstract element, all token annotation elements are derived from this class

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 1

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = (1,)

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = None

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.AbstractAnnotationLayer

	
class pynlpl.formats.folia.AbstractAnnotationLayer(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.AllowGenerateID, pynlpl.formats.folia.AllowCorrections

Annotation layers for Span Annotation are derived from this abstract base class

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = True

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = None

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Returns

	Generator over Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

See also

Word.findspans()

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.AbstractTextMarkup

	
class pynlpl.formats.folia.AbstractTextMarkup(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement

Abstract class for text markup elements, elements that appear with the TextContent (t) element.

Markup elements pertain primarily to styling, but also have other roles.

Iterating over the element of a
TextContent element will first and foremost produce strings, but also
uncover these markup elements when present.

Method Summary

	__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	See AbstractElement.json()

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolve()

	

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text)

	Sets the text content of the markup element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = True

	

	
TEXTDELIMITER = ''

	

	
XLINK = True

	

	
XMLTAG = None

	

Method Details

	
__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	
__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	See AbstractElement.json()

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolve()

	

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text)

	Sets the text content of the markup element.

	Parameters

	text (str) –

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Cell

	
class pynlpl.formats.folia.Cell(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

A cell in a Row in a Table

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Cell'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = ' | '

	

	
XLINK = False

	

	
XMLTAG = 'cell'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Definition

	
class pynlpl.formats.folia.Definition(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Element used in Entry for the portion that provides a definition for the entry.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

	

	
ANNOTATIONTYPE = 39

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Definition'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'def'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Division

	
class pynlpl.formats.folia.Division(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Structure element representing some kind of division. Divisions may be nested at will, and may include almost all kinds of other structure elements.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	head()

	

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Division'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>)

	

	
ANNOTATIONTYPE = 2

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Division'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'div'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
head()

	

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Entry

	
class pynlpl.formats.folia.Entry(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Represents an entry in a glossary/lexicon/dictionary.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Definition'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Term'>)

	

	
ANNOTATIONTYPE = 37

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Entry'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'entry'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Event

	
class pynlpl.formats.folia.Event(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Structural element representing events, often used in new media contexts for things such as tweets,chat messages and forum posts.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.ActorFeature'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.BegindatetimeFeature'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Division'>, <class 'pynlpl.formats.folia.EnddatetimeFeature'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

	

	
ANNOTATIONTYPE = 21

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Event'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'event'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Example

	
class pynlpl.formats.folia.Example(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Element that provides an example. Used for instance in the context of Entry

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

	

	
ANNOTATIONTYPE = 40

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Example'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'ex'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Figure

	
class pynlpl.formats.folia.Figure(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Element for the representation of a graphical figure. Structure element.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	caption()

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Caption'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

	

	
ANNOTATIONTYPE = 5

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Figure'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'figure'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
caption()

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Gap

	
class pynlpl.formats.folia.Gap(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement

Gap element, represents skipped portions of the text.

Usually contains Content and possibly also a Description element

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	content()

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Content'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

	

	
ANNOTATIONTYPE = 24

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Gap'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 5, 8, 6, 7, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'gap'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
content()

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Head

	
class pynlpl.formats.folia.Head(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Head element; a structure element that acts as the header/title of a Division.

There may be only one per division. Often contains sentences (Sentence) or Words (Word).

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Head'

	

	
OCCURRENCES = 1

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'head'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Linebreak

	
class pynlpl.formats.folia.Linebreak(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement, pynlpl.formats.folia.AbstractTextMarkup

Line break element, signals a line break.

This element acts both as a structure element as well as a text markup element.

Method Summary

	__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	See AbstractElement.json()

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolve()

	

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text)

	Sets the text content of the markup element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

	

	
ANNOTATIONTYPE = 7

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Linebreak'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = True

	

	
TEXTDELIMITER = ''

	

	
XLINK = True

	

	
XMLTAG = 'br'

	

Method Details

	
__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	
__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	See AbstractElement.json()

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolve()

	

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text)

	Sets the text content of the markup element.

	Parameters

	text (str) –

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=None, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.List

	
class pynlpl.formats.folia.List(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Element for enumeration/itemisation. Structure element. Contains ListItem elements.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Caption'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.ListItem'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

	

	
ANNOTATIONTYPE = 4

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'List'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'list'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.ListItem

	
class pynlpl.formats.folia.ListItem(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Single element in a List. Structure element. Contained within List element.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Label'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'List Item'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n'

	

	
XLINK = False

	

	
XMLTAG = 'item'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Note

	
class pynlpl.formats.folia.Note(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Element used for notes, such as footnotes or warnings or notice blocks.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

	

	
ANNOTATIONTYPE = 25

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Note'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'note'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Paragraph

	
class pynlpl.formats.folia.Paragraph(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Paragraph element. A structure element. Represents a paragraph and holds all its sentences (and possibly other structure Whitespace and Quotes).

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Head'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

	

	
ANNOTATIONTYPE = 3

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Paragraph'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'p'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Part

	
class pynlpl.formats.folia.Part(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Generic structure element used to mark a part inside another block.

Do not use this for morphology, use Morpheme instead.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.TextContent'>)

	

	
ANNOTATIONTYPE = 35

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Part'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'part'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Quote

	
class pynlpl.formats.folia.Quote(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Quote: a structure element. For quotes/citations. May hold Word, Sentence or Paragraph data.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Division'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Word'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Quote'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'quote'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Reference

	
class pynlpl.formats.folia.Reference(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

A structural element that denotes a reference, internal or external. Examples are references to footnotes, bibliographies, hyperlinks.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolve()

	

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Reference'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'ref'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolve()

	

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Row

	
class pynlpl.formats.folia.Row(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

A row in a Table

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Cell'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Table Row'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n'

	

	
XLINK = False

	

	
XMLTAG = 'row'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Sentence

	
class pynlpl.formats.folia.Sentence(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Sentence element. A structure element. Represents a sentence and holds all its words (Word), and possibly other structure such as LineBreak, Whitespace and Quote

Method Summary

	__init__(doc, *args, **kwargs)

	Example.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	corrections()

	Are there corrections in this sentence?

	correctwords(originalwords, newwords, **kwargs)

	Generic correction method for words.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	deleteword(word, **kwargs)

	TODO: Write documentation

	description()

	Obtain the description associated with the element.

	division()

	Obtain the division this sentence is a part of (None otherwise).

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	insertword(newword, prevword, **kwargs)

	Inserts a word as a correction after an existing word.

	insertwordleft(newword, nextword, **kwargs)

	Inserts a word as a correction before an existing word.

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	mergewords(newword, *originalwords, **kwargs)

	TODO: Write documentation

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraph()

	Obtain the paragraph this sentence is a part of (None otherwise).

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	splitword(originalword, *newwords, **kwargs)

	TODO: Write documentation

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

	

	
ANNOTATIONTYPE = 8

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Sentence'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = ' '

	

	
XLINK = False

	

	
XMLTAG = 's'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Example:

sentence = paragraph.append(folia.Sentence)

sentence.append(folia.Word, 'This')
sentence.append(folia.Word, 'is')
sentence.append(folia.Word, 'a')
sentence.append(folia.Word, 'test', space=False)
sentence.append(folia.Word, '.')

Example:

sentence = folia.Sentence(doc, folia.Word(doc, 'This'), folia.Word(doc, 'is'), folia.Word(doc, 'a'), folia.Word(doc, 'test', space=False), folia.Word(doc, '.'))
paragraph.append(sentence)

See also

AbstractElement.__init__()

	
__init__(doc, *args, **kwargs)

	Example:

sentence = paragraph.append(folia.Sentence)

sentence.append(folia.Word, 'This')
sentence.append(folia.Word, 'is')
sentence.append(folia.Word, 'a')
sentence.append(folia.Word, 'test', space=False)
sentence.append(folia.Word, '.')

Example:

sentence = folia.Sentence(doc, folia.Word(doc, 'This'), folia.Word(doc, 'is'), folia.Word(doc, 'a'), folia.Word(doc, 'test', space=False), folia.Word(doc, '.'))
paragraph.append(sentence)

See also

AbstractElement.__init__()

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
corrections()

	Are there corrections in this sentence?

	Returns

	bool

	
correctwords(originalwords, newwords, **kwargs)

	Generic correction method for words. You most likely want to use the helper functions
Sentence.splitword() , Sentence.mergewords(), deleteword(), insertword() instead

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
deleteword(word, **kwargs)

	TODO: Write documentation

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
division()

	Obtain the division this sentence is a part of (None otherwise). Shortcut for AbstractElement.ancestor()

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
insertword(newword, prevword, **kwargs)

	Inserts a word as a correction after an existing word.

This method automatically computes the index of insertion
and calls AbstractElement.insert()

	Parameters

	
	newword (Word) – The new word to insert

	prevword (Word) – The word to insert after

	Keyword Arguments

	suggest (bool) – Do a suggestion for correction rather than the default authoritive correction

See also

AbstractElement.insert() and AbstractElement.getindex() If you do not want to do corrections

	
insertwordleft(newword, nextword, **kwargs)

	Inserts a word as a correction before an existing word.

Reverse of Sentence.insertword().

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
mergewords(newword, *originalwords, **kwargs)

	TODO: Write documentation

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraph()

	Obtain the paragraph this sentence is a part of (None otherwise). Shortcut for AbstractElement.ancestor()

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
splitword(originalword, *newwords, **kwargs)

	TODO: Write documentation

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Table

	
class pynlpl.formats.folia.Table(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

A table consisting of Row elements that in turn consist of Cell elements

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Row'>, <class 'pynlpl.formats.folia.TableHead'>)

	

	
ANNOTATIONTYPE = 33

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Table'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'table'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Term

	
class pynlpl.formats.folia.Term(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

A term, often used in contect of Entry

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Utterance'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

	

	
ANNOTATIONTYPE = 38

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Term'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'term'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.TableHead

	
class pynlpl.formats.folia.TableHead(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Encapsulated the header of a table, contains Cell elements

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.Row'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Table Header'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'tablehead'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Text

	
class pynlpl.formats.folia.Text(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

A full text. This is a high-level element (not to be confused with TextContent!). This element may contain Division,:class:Paragraph, class:Sentence, etc..

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractExtendedTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Division'>, <class 'pynlpl.formats.folia.Entry'>, <class 'pynlpl.formats.folia.Event'>, <class 'pynlpl.formats.folia.Example'>, <class 'pynlpl.formats.folia.External'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.Figure'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Gap'>, <class 'pynlpl.formats.folia.Linebreak'>, <class 'pynlpl.formats.folia.List'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Note'>, <class 'pynlpl.formats.folia.Paragraph'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Quote'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.Sentence'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.Table'>, <class 'pynlpl.formats.folia.TextContent'>, <class 'pynlpl.formats.folia.Whitespace'>, <class 'pynlpl.formats.folia.Word'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Text Body'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = '\n\n\n'

	

	
XLINK = False

	

	
XMLTAG = 'text'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Whitespace

	
class pynlpl.formats.folia.Whitespace(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement

Whitespace element, signals a vertical whitespace

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>)

	

	
ANNOTATIONTYPE = 6

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Whitespace'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = ''

	

	
XLINK = False

	

	
XMLTAG = 'whitespace'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=None, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Word

	
class pynlpl.formats.folia.Word(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractStructureElement, pynlpl.formats.folia.AllowCorrections

Word (aka token) element. Holds a word/token and all its related token annotations.

Method Summary

	__init__(doc, *args, **kwargs)

	Constructor for words.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	division()

	Obtain the deepest division this word is a part of, otherwise return None

	domain([set])

	Shortcut: returns the FoLiA class of the domain annotation (will return only one if there are multiple!)

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	findspans(type[, set])

	Yields span annotation elements of the specified type that include this word.

	generate_id(cls)

	

	getcorrection([set, cls])

	

	getcorrections([set, cls])

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Returns the text delimiter

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasannotationlayer([annotationtype, set])

	Does the specified annotation layer exist?

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	layers([annotationtype, set])

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	lemma([set])

	Shortcut: returns the FoLiA class of the lemma annotation (will return only one if there are multiple!)

	morpheme(index[, set])

	Returns a specific morpheme, the n’th morpheme (given the particular set if specified).

	morphemes([set])

	Generator yielding all morphemes (in a particular set if specified).

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	paragraph()

	Obtain the paragraph this word is a part of, otherwise return None

	paragraphs([index])

	Returns a generator of Paragraph elements found (recursively) under this element.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	phoneme(index[, set])

	Returns a specific phoneme, the n’th morpheme (given the particular set if specified).

	phonemes([set])

	Generator yielding all phonemes (in a particular set if specified).

	pos([set])

	Shortcut: returns the FoLiA class of the PoS annotation (will return only one if there are multiple!)

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	sense([set])

	Shortcut: returns the FoLiA class of the sense annotation (will return only one if there are multiple!)

	sentence()

	Obtain the sentence this word is a part of, otherwise return None

	sentences([index])

	Returns a generator of Sentence elements found (recursively) under this element

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	split(*newwords, **kwargs)

	

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	words([index])

	Returns a generator of Word elements found (recursively) under this element.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Alternative'>, <class 'pynlpl.formats.folia.AlternativeLayers'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Part'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.Reference'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

	

	
ANNOTATIONTYPE = 1

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = True

	

	
LABEL = 'Word/Token'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = ' '

	

	
XLINK = False

	

	
XMLTAG = 'w'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Constructor for words.

See AbstractElement.__init__ for all inherited keyword arguments and parameters.

Keyword arguments:

	space (bool): Indicates whether this token is followed by a space (defaults to True)

Example:

sentence.append(folia.Word, 'This')
sentence.append(folia.Word, 'is')
sentence.append(folia.Word, 'a')
sentence.append(folia.Word, 'test', space=False)
sentence.append(folia.Word, '.')

See also

AbstractElement.__init__

	
__init__(doc, *args, **kwargs)

	Constructor for words.

See AbstractElement.__init__ for all inherited keyword arguments and parameters.

Keyword arguments:

	space (bool): Indicates whether this token is followed by a space (defaults to True)

Example:

sentence.append(folia.Word, 'This')
sentence.append(folia.Word, 'is')
sentence.append(folia.Word, 'a')
sentence.append(folia.Word, 'test', space=False)
sentence.append(folia.Word, '.')

See also

AbstractElement.__init__

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
division()

	Obtain the deepest division this word is a part of, otherwise return None

	
domain(set=None)

	Shortcut: returns the FoLiA class of the domain annotation (will return only one if there are multiple!)

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
findspans(type, set=None)

	Yields span annotation elements of the specified type that include this word.

	Parameters

	
	type – The annotation type, can be passed as using any of the AnnotationType member, or by passing the relevant AbstractSpanAnnotation or AbstractAnnotationLayer class.

	set (str or None) – Constrain by set

Example:

for chunk in word.findspans(folia.Chunk):
 print(" Chunk class=", chunk.cls, " words=")
 for word2 in chunk.wrefs(): #print all words in the chunk (of which the word is a part)
 print(word2, end="")
 print()

	Yields

	Matching span annotation instances (derived from AbstractSpanAnnotation)

	
generate_id(cls)

	

	
getcorrection(set=None, cls=None)

	

	
getcorrections(set=None, cls=None)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Returns the text delimiter

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasannotationlayer(annotationtype=None, set=None)

	Does the specified annotation layer exist?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
layers(annotationtype=None, set=None)

	Returns a list of annotation layers found directly under this element, does not include alternative layers

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
lemma(set=None)

	Shortcut: returns the FoLiA class of the lemma annotation (will return only one if there are multiple!)

	
morpheme(index, set=None)

	Returns a specific morpheme, the n’th morpheme (given the particular set if specified).

	
morphemes(set=None)

	Generator yielding all morphemes (in a particular set if specified). For retrieving one specific morpheme by index, use morpheme() instead

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
paragraph()

	Obtain the paragraph this word is a part of, otherwise return None

	
paragraphs(index=None)

	Returns a generator of Paragraph elements found (recursively) under this element.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the generator of all

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
phoneme(index, set=None)

	Returns a specific phoneme, the n’th morpheme (given the particular set if specified).

	
phonemes(set=None)

	Generator yielding all phonemes (in a particular set if specified). For retrieving one specific morpheme by index, use morpheme() instead

	
pos(set=None)

	Shortcut: returns the FoLiA class of the PoS annotation (will return only one if there are multiple!)

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
sense(set=None)

	Shortcut: returns the FoLiA class of the sense annotation (will return only one if there are multiple!)

	
sentence()

	Obtain the sentence this word is a part of, otherwise return None

	
sentences(index=None)

	Returns a generator of Sentence elements found (recursively) under this element

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning a generator of all

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
split(*newwords, **kwargs)

	

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
words(index=None)

	Returns a generator of Word elements found (recursively) under this element.

	Parameters

	index (*) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.DomainAnnotation

	
class pynlpl.formats.folia.DomainAnnotation(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractExtendedTokenAnnotation

Domain annotation: an extended token annotation element

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

	

	
ANNOTATIONTYPE = 11

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Domain'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = (1,)

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'domain'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.PosAnnotation

	
class pynlpl.formats.folia.PosAnnotation(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractTokenAnnotation

Part-of-Speech annotation: a token annotation element

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.HeadFeature'>, <class 'pynlpl.formats.folia.Metric'>)

	

	
ANNOTATIONTYPE = 9

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Part-of-Speech'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 1

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = (1,)

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'pos'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.LangAnnotation

	
class pynlpl.formats.folia.LangAnnotation(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractExtendedTokenAnnotation

Language annotation: an extended token annotation element

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

	

	
ANNOTATIONTYPE = 31

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Language'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 1

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = (1,)

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'lang'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.LemmaAnnotation

	
class pynlpl.formats.folia.LemmaAnnotation(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractTokenAnnotation

Lemma annotation: a token annotation element

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

	

	
ANNOTATIONTYPE = 10

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Lemma'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 1

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = (1,)

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'lemma'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.SenseAnnotation

	
class pynlpl.formats.folia.SenseAnnotation(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractTokenAnnotation

Sense annotation: a token annotation element

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.SynsetFeature'>)

	

	
ANNOTATIONTYPE = 12

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Semantic Sense'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = (1,)

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'sense'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.SubjectivityAnnotation

	
class pynlpl.formats.folia.SubjectivityAnnotation(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractTokenAnnotation

Subjectivity annotation/Sentiment analysis: a token annotation element

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

	

	
ANNOTATIONTYPE = 19

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Subjectivity/Sentiment'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 1

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = (1,)

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'subjectivity'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.TextContent

	
class pynlpl.formats.folia.TextContent(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement

Text content element (t), holds text to be associated with whatever element the text content element is a child of.

Text content elements
on structure elements like Paragraph and Sentence are by definition untokenised. Only on Word` level and deeper they are by definition tokenised.

Text content elements can specify offset that refer to text at a higher parent level. Use the following keyword arguments:

	ref=: The instance to point to, this points to the element holding the text content element, not the text content element itself.

	offset=: The offset where this text is found, offsets start at 0

Method Summary

	__init__(doc, *args, **kwargs)

	Example.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	finddefaultreference()

	Find the default reference for text offsets: The parent of the current textcontent’s parent (counting only Structure Elements and Subtoken Annotation Elements)

	findreplaceables(parent, set, **kwargs)

	(Method for internal usage, see AbstractElement)

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	getreference([validate])

	Returns and validates the Text Content’s reference.

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	See AbstractElement.json()

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	(Method for internal usage, see AbstractElement)

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text)

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([normalize_spaces])

	Obtain the text (unicode instance)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

	

	
ANNOTATIONTYPE = 0

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Text'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (1, 2, 3, 5, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = True

	

	
TEXTDELIMITER = None

	

	
XLINK = True

	

	
XMLTAG = 't'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Example:

text = folia.TextContent(doc, 'test')
text = folia.TextContent(doc, 'test',cls='original')

	
__init__(doc, *args, **kwargs)

	Example:

text = folia.TextContent(doc, 'test')
text = folia.TextContent(doc, 'test',cls='original')

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
finddefaultreference()

	Find the default reference for text offsets:
The parent of the current textcontent’s parent (counting only Structure Elements and Subtoken Annotation Elements)

Note: This returns not a TextContent element, but its parent. Whether the textcontent actually exists is checked later/elsewhere

	
classmethod findreplaceables(parent, set, **kwargs)

	(Method for internal usage, see AbstractElement)

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
getreference(validate=True)

	Returns and validates the Text Content’s reference. Raises UnresolvableTextContent when invalid

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	See AbstractElement.json()

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	(Method for internal usage, see AbstractElement)

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text)

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(normalize_spaces=False)

	Obtain the text (unicode instance)

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.PhonContent

	
class pynlpl.formats.folia.PhonContent(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement

Phonetic content element (ph), holds a phonetic representation to be associated with whatever element the phonetic content element is a child of.

Phonetic content elements behave much like text content elements.

Phonetic content elements can specify offset that refer to phonetic content at a higher parent level. Use the following keyword arguments:

	ref=: The instance to point to, this points to the element holding the text content element, not the text content element itself.

	offset=: The offset where this text is found, offsets start at 0

Method Summary

	__init__(doc, *args, **kwargs)

	Example.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	finddefaultreference()

	Find the default reference for text offsets: The parent of the current textcontent’s parent (counting only Structure Elements and Subtoken Annotation Elements)

	findreplaceables(parent, set, **kwargs)

	(Method for internal usage, see AbstractElement)

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	getreference([validate])

	Return and validate the Phonetic Content’s reference.

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	(Method for internal usage, see AbstractElement)

	phon()

	Obtain the actual phonetic representation (unicode/str instance)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setphon(phon)

	Set the representation for the phonetic content (unicode instance), called whenever phon= is passed as a keyword argument to an element constructor

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>)

	

	
ANNOTATIONTYPE = 18

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Phonetic Content'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (1, 2, 3, 5, 11)

	

	
PHONCONTAINER = True

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'ph'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Example:

phon = folia.PhonContent(doc, 'hɛˈləʊ̯')
phon = folia.PhonContent(doc, 'hɛˈləʊ̯', cls="original")

	
__init__(doc, *args, **kwargs)

	Example:

phon = folia.PhonContent(doc, 'hɛˈləʊ̯')
phon = folia.PhonContent(doc, 'hɛˈləʊ̯', cls="original")

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
finddefaultreference()

	Find the default reference for text offsets:
The parent of the current textcontent’s parent (counting only Structure Elements and Subtoken Annotation Elements)

Note: This returns not a TextContent element, but its parent. Whether the textcontent actually exists is checked later/elsewhere

	
classmethod findreplaceables(parent, set, **kwargs)

	(Method for internal usage, see AbstractElement)

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
getreference(validate=True)

	Return and validate the Phonetic Content’s reference. Raises UnresolvableTextContent when invalid

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	(Method for internal usage, see AbstractElement)

	
phon()

	Obtain the actual phonetic representation (unicode/str instance)

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setphon(phon)

	Set the representation for the phonetic content (unicode instance), called whenever phon= is passed as a keyword argument to an element constructor

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Chunk

	
class pynlpl.formats.folia.Chunk(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Chunk element, span annotation element to be used in ChunkingLayer

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

	

	
ANNOTATIONTYPE = 14

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Chunk'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'chunk'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.CoreferenceChain

	
class pynlpl.formats.folia.CoreferenceChain(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Coreference chain. Holds CoreferenceLink instances.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.CoreferenceLink'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

	

	
ANNOTATIONTYPE = 28

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Coreference Chain'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = (<class 'pynlpl.formats.folia.CoreferenceLink'>,)

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'coreferencechain'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Dependency

	
class pynlpl.formats.folia.Dependency(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Span annotation element to encode dependency relations

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	dependent()

	Returns the dependent of the dependency relation.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	head()

	Returns the head of the dependency relation.

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.DependencyDependent'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.Metric'>)

	

	
ANNOTATIONTYPE = 22

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Dependency'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = (<class 'pynlpl.formats.folia.DependencyDependent'>, <class 'pynlpl.formats.folia.Headspan'>)

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'dependency'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
dependent()

	Returns the dependent of the dependency relation. Instance of DependencyDependent

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
head()

	Returns the head of the dependency relation. Instance of Headspan

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Entity

	
class pynlpl.formats.folia.Entity(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Entity element, for entities such as named entities, multi-word expressions, temporal entities. This is a span annotation element to be used in EntitiesLayer

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

	

	
ANNOTATIONTYPE = 15

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Entity'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'entity'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Observation

	
class pynlpl.formats.folia.Observation(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Observation.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

	

	
ANNOTATIONTYPE = 43

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Observation'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'observation'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Predicate

	
class pynlpl.formats.folia.Predicate(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Predicate, used within SemanticRolesLayer, takes SemanticRole annotations as children, but has its own annotation type and separate declaration

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.SemanticRole'>, <class 'pynlpl.formats.folia.WordReference'>)

	

	
ANNOTATIONTYPE = 42

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Predicate'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'predicate'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Sentiment

	
class pynlpl.formats.folia.Sentiment(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Sentiment. Takes span roles Headspan, Source and Target as children

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PolarityFeature'>, <class 'pynlpl.formats.folia.Source'>, <class 'pynlpl.formats.folia.StrengthFeature'>, <class 'pynlpl.formats.folia.Target'>, <class 'pynlpl.formats.folia.WordReference'>)

	

	
ANNOTATIONTYPE = 44

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Sentiment'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'sentiment'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Statement

	
class pynlpl.formats.folia.Statement(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Statement. Takes span roles Headspan, Source and Relation as children

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.Relation'>, <class 'pynlpl.formats.folia.Source'>, <class 'pynlpl.formats.folia.WordReference'>)

	

	
ANNOTATIONTYPE = 45

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Statement'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'statement'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.SyntacticUnit

	
class pynlpl.formats.folia.SyntacticUnit(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Syntactic Unit, span annotation element to be used in SyntaxLayer

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.SyntacticUnit'>, <class 'pynlpl.formats.folia.WordReference'>)

	

	
ANNOTATIONTYPE = 13

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Syntactic Unit'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'su'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.SemanticRole

	
class pynlpl.formats.folia.SemanticRole(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractSpanAnnotation

Semantic Role

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

	

	
ANNOTATIONTYPE = 29

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Semantic Role'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = (1,)

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'semrole'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.TimeSegment

	
class pynlpl.formats.folia.TimeSegment(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractSpanAnnotation

A time segment

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.ActorFeature'>, <class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.BegindatetimeFeature'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.EnddatetimeFeature'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

	

	
ANNOTATIONTYPE = 23

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Time Segment'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'timesegment'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.ChunkingLayer

	
class pynlpl.formats.folia.ChunkingLayer(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Chunking Layer: Annotation layer for Chunk span annotation elements

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Chunk'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

	

	
ANNOTATIONTYPE = 14

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = True

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'chunking'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Returns

	Generator over Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

See also

Word.findspans()

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.CoreferenceLayer

	
class pynlpl.formats.folia.CoreferenceLayer(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Syntax Layer: Annotation layer for SyntacticUnit span annotation elements

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.CoreferenceChain'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

	

	
ANNOTATIONTYPE = 28

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = True

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'coreferences'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Returns

	Generator over Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

See also

Word.findspans()

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.DependenciesLayer

	
class pynlpl.formats.folia.DependenciesLayer(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Dependencies Layer: Annotation layer for Dependency span annotation elements. For dependency entities.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Dependency'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

	

	
ANNOTATIONTYPE = 22

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = True

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'dependencies'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Returns

	Generator over Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

See also

Word.findspans()

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.EntitiesLayer

	
class pynlpl.formats.folia.EntitiesLayer(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Entities Layer: Annotation layer for Entity span annotation elements. For named entities.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Entity'>, <class 'pynlpl.formats.folia.ForeignData'>)

	

	
ANNOTATIONTYPE = 15

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = True

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'entities'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Returns

	Generator over Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

See also

Word.findspans()

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.ObservationLayer

	
class pynlpl.formats.folia.ObservationLayer(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Observation Layer: Annotation layer for Observation span annotation elements.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Observation'>)

	

	
ANNOTATIONTYPE = 43

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = True

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'observations'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Returns

	Generator over Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

See also

Word.findspans()

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.SentimentLayer

	
class pynlpl.formats.folia.SentimentLayer(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Sentiment Layer: Annotation layer for Sentiment span annotation elements, used for sentiment analysis.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Sentiment'>)

	

	
ANNOTATIONTYPE = 44

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = True

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'sentiments'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Returns

	Generator over Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

See also

Word.findspans()

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.StatementLayer

	
class pynlpl.formats.folia.StatementLayer(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Statement Layer: Annotation layer for Statement span annotation elements, used for attribution annotation.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Statement'>)

	

	
ANNOTATIONTYPE = 45

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = True

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'statements'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Returns

	Generator over Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

See also

Word.findspans()

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.SyntaxLayer

	
class pynlpl.formats.folia.SyntaxLayer(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Syntax Layer: Annotation layer for SyntacticUnit span annotation elements

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.SyntacticUnit'>)

	

	
ANNOTATIONTYPE = 13

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = True

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'syntax'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Returns

	Generator over Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

See also

Word.findspans()

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.SemanticRolesLayer

	
class pynlpl.formats.folia.SemanticRolesLayer(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Syntax Layer: Annotation layer for SemanticRole span annotation elements

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Predicate'>, <class 'pynlpl.formats.folia.SemanticRole'>)

	

	
ANNOTATIONTYPE = 29

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = True

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'semroles'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Returns

	Generator over Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

See also

Word.findspans()

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.TimingLayer

	
class pynlpl.formats.folia.TimingLayer(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractAnnotationLayer

Timing layer: Annotation layer for TimeSegment span annotation elements.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.TimeSegment'>)

	

	
ANNOTATIONTYPE = 23

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = True

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'timing'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Returns

	Generator over Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
findspan(*words)

	Returns the span element which spans over the specified words or morphemes.

See also

Word.findspans()

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.CoreferenceLink

	
class pynlpl.formats.folia.CoreferenceLink(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractSpanRole

Coreference link. Used in CoreferenceChain

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Headspan'>, <class 'pynlpl.formats.folia.LevelFeature'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.ModalityFeature'>, <class 'pynlpl.formats.folia.TimeFeature'>, <class 'pynlpl.formats.folia.WordReference'>)

	

	
ANNOTATIONTYPE = 28

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Coreference Link'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 4, 5)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'coreferencelink'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.DependencyDependent

	
class pynlpl.formats.folia.DependencyDependent(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractSpanRole

Span role element that marks the dependent in a dependency relation. Used in Dependency.

Headspan in turn is used to mark the head of a dependency relation.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Dependent'

	

	
OCCURRENCES = 1

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 4, 5)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'dep'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Headspan

	
class pynlpl.formats.folia.Headspan(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractSpanRole

The headspan role is used to mark the head of a span annotation.

It can be used in various contexts, for instance to mark the head of a Dependency.
It is allowed by most span annotations.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Will return a single annotation (even if there are multiple).

	annotations(Class[, set])

	Obtain annotations.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	wrefs([index, recurse])

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Alignment'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.WordReference'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Head'

	

	
OCCURRENCES = 1

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 4, 5)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'hd'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=None)

	Makes sure this element (and all subelements), are properly added to the index

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Will return a single annotation (even if there are multiple). Raises a NoSuchAnnotation exception if none was found

	
annotations(Class, set=None)

	Obtain annotations. Very similar to select() but raises an error if the annotation was not found.

	Parameters

	
	Class - The Class you want to retrieve (*) –

	set - The set you want to retrieve (*) –

	Yields

	elements

	Raises

	NoSuchAnnotation if the specified annotation does not exist.

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element. If idsuffix is a string, if set to True, a random idsuffix will be generated including a random 32-bit hash

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many. See annotations() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
setspan(*args)

	Sets the span of the span element anew, erases all data inside.

	Parameters

	*args – Instances of Word, Morpheme or Phoneme

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
wrefs(index=None, recurse=True)

	Returns a list of word references, these can be Words but also Morphemes or Phonemes.

	Parameters

	index (int or None) – If set to an integer, will retrieve and return the n’th element (starting at 0) instead of returning the list of all

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.fql.Query

	
class pynlpl.formats.fql.Query(q, context=<pynlpl.formats.fql.Context object>)

	Bases: object

This class represents an FQL query.

Selecting a word with a particular text is done as follows, doc is an instance of pynlpl.formats.folia.Document:

query = fql.Query('SELECT w WHERE text = "house"')
for word in query(doc):
 print(word) #this will be an instance of folia.Word

Regular expression matching can be done using the MATCHES operator:

query = fql.Query('SELECT w WHERE text MATCHES "^house.*$"')
for word in query(doc):
 print(word)

The classes of other annotation types can be easily queried as follows:

query = fql.Query('SELECT w WHERE :pos = "v"' AND :lemma = "be"')
for word in query(doc):
 print(word)

You can constrain your queries to a particular target selection using the FOR keyword:

query = fql.Query('SELECT w WHERE text MATCHES "^house.*$" FOR s WHERE text CONTAINS "sell"')
for word in query(doc):
 print(word)

This construction also allows you to select the actual annotations. To select all people (a named entity) for words that are not John:

query = fql.Query('SELECT entity WHERE class = "person" FOR w WHERE text != "John"')
for entity in query(doc):
 print(entity) #this will be an instance of folia.Entity

FOR statement may be chained, and Explicit IDs can be passed using the ID keyword:

query = fql.Query('SELECT entity WHERE class = "person" FOR w WHERE text != "John" FOR div ID "section.21"')
for entity in query(doc):
 print(entity)

Sets are specified using the OF keyword, it can be omitted if there is only one for the annotation type, but will be required otherwise:

query = fql.Query('SELECT su OF "http://some/syntax/set" WHERE class = "np"')
for su in query(doc):
 print(su) #this will be an instance of folia.SyntacticUnit

We have just covered just the SELECT keyword, FQL has other keywords for manipulating documents, such as EDIT, ADD, APPEND and PREPEND.

Note

Consult the FQL documentation at https://github.com/proycon/foliadocserve/blob/master/README.rst for further documentation on the language.

Method Summary

	__init__(q[, context])

	Initialize self.

	parse(q[, i])

	

Method Details

	
__init__(q, context=<pynlpl.formats.fql.Context object>)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(q, context=<pynlpl.formats.fql.Context object>)

	Initialize self. See help(type(self)) for accurate signature.

	
parse(q, i=0)

	

pynlpl.formats.folia.Reader

	
class pynlpl.formats.folia.Reader(filename, target, *args, **kwargs)

	Bases: object

Streaming FoLiA reader.

The reader allows you to read a FoLiA Document without holding the whole tree structure in memory. The document will be read and the elements you seek returned as they are found. If you are querying a corpus of large FoLiA documents for a specific structure, then it is strongly recommend to use the Reader rather than the standard Document!

Method Summary

	__init__(filename, target, *args, **kwargs)

	Read a FoLiA document in a streaming fashion.

	findwords(*args, **kwargs)

	

	initdoc()

	

Method Details

	
__init__(filename, target, *args, **kwargs)

	Read a FoLiA document in a streaming fashion. You select a specific target element and all occurrences of this element, including all contents (so all elements within), will be returned.

	Parameters

	
	filename (*) – The filename of the document to read

	target (*) – The FoLiA element(s) you want to read (with everything contained in its scope). Passed as a class. For example: folia.Sentence, or a tuple of multiple element classes. Can also be set to None to return all elements, but that would load the full tree structure into memory.

	
__init__(filename, target, *args, **kwargs)

	Read a FoLiA document in a streaming fashion. You select a specific target element and all occurrences of this element, including all contents (so all elements within), will be returned.

	Parameters

	
	filename (*) – The filename of the document to read

	target (*) – The FoLiA element(s) you want to read (with everything contained in its scope). Passed as a class. For example: folia.Sentence, or a tuple of multiple element classes. Can also be set to None to return all elements, but that would load the full tree structure into memory.

	
findwords(*args, **kwargs)

	

	
initdoc()

	

pynlpl.formats.folia.TextMarkupGap

	
class pynlpl.formats.folia.TextMarkupGap(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to mark gaps in text content (TextContent)

Only consider this element for gaps in spans of untokenised text. The use of structural element Gap is preferred.

Method Summary

	__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	See AbstractElement.json()

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolve()

	

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text)

	Sets the text content of the markup element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

	

	
ANNOTATIONTYPE = 24

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = True

	

	
TEXTDELIMITER = ''

	

	
XLINK = True

	

	
XMLTAG = 't-gap'

	

Method Details

	
__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	
__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	See AbstractElement.json()

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolve()

	

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text)

	Sets the text content of the markup element.

	Parameters

	text (str) –

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.TextMarkupString

	
class pynlpl.formats.folia.TextMarkupString(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to mark arbitrary substrings in text content (TextContent)

Method Summary

	__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	See AbstractElement.json()

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolve()

	

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text)

	Sets the text content of the markup element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

	

	
ANNOTATIONTYPE = 32

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = True

	

	
TEXTDELIMITER = ''

	

	
XLINK = True

	

	
XMLTAG = 't-str'

	

Method Details

	
__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	
__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	See AbstractElement.json()

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolve()

	

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text)

	Sets the text content of the markup element.

	Parameters

	text (str) –

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.TextMarkupStyle

	
class pynlpl.formats.folia.TextMarkupStyle(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to style text content (TextContent), e.g. make text bold, italics, underlined, coloured, etc..

Method Summary

	__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	See AbstractElement.json()

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolve()

	

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text)

	Sets the text content of the markup element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

	

	
ANNOTATIONTYPE = 34

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = True

	

	
TEXTDELIMITER = ''

	

	
XLINK = True

	

	
XMLTAG = 't-style'

	

Method Details

	
__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	
__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	See AbstractElement.json()

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolve()

	

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text)

	Sets the text content of the markup element.

	Parameters

	text (str) –

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.TextMarkupCorrection

	
class pynlpl.formats.folia.TextMarkupCorrection(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to mark corrections in text content (TextContent).

Only consider this element for corrections on untokenised text. The use of Correction is preferred.

Method Summary

	__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	See AbstractElement.json()

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolve()

	

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text)

	Sets the text content of the markup element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

	

	
ANNOTATIONTYPE = 16

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = True

	

	
TEXTDELIMITER = ''

	

	
XLINK = True

	

	
XMLTAG = 't-correction'

	

Method Details

	
__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	
__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	See AbstractElement.json()

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolve()

	

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text)

	Sets the text content of the markup element.

	Parameters

	text (str) –

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.TextMarkupError

	
class pynlpl.formats.folia.TextMarkupError(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractTextMarkup

Markup element to mark gaps in text content (TextContent)

Only consider this element for gaps in spans of untokenised text. The use of structural element ErrorDetection is preferred.

Method Summary

	__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	See AbstractElement.json()

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolve()

	

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text)

	Sets the text content of the markup element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	See AbstractElement.xml()

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTextMarkup'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Linebreak'>)

	

	
ANNOTATIONTYPE = 17

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = False

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = True

	

	
TEXTDELIMITER = ''

	

	
XLINK = True

	

	
XMLTAG = 't-error'

	

Method Details

	
__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	
__init__(doc, *args, **kwargs)

	See AbstractElement.__init__(), text is passed as a string in *args.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	See AbstractElement.json()

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolve()

	

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text)

	Sets the text content of the markup element.

	Parameters

	text (str) –

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	See AbstractElement.xml()

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Feature

	
class pynlpl.formats.folia.Feature(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement

Feature elements can be used to associate subsets and subclasses with almost any
annotation element

Method Summary

	__init__(doc, *args, **kwargs)

	Constructor.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml()

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Feature'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = None

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'feat'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Constructor.

	Keyword Arguments

	
	subset (str) – the subset

	cls (str) – the class

	
__init__(doc, *args, **kwargs)

	Constructor.

	Keyword Arguments

	
	subset (str) – the subset

	cls (str) – the class

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml()

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.SynsetFeature

	
class pynlpl.formats.folia.SynsetFeature(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.Feature

Synset feature, to be used within Sense

Method Summary

	__init__(doc, *args, **kwargs)

	Constructor.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml()

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Feature'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = None

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = 'synset'

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = None

	

Method Details

	
__init__(doc, *args, **kwargs)

	Constructor.

	Keyword Arguments

	
	subset (str) – the subset

	cls (str) – the class

	
__init__(doc, *args, **kwargs)

	Constructor.

	Keyword Arguments

	
	subset (str) – the subset

	cls (str) – the class

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml()

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.ActorFeature

	
class pynlpl.formats.folia.ActorFeature(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.Feature

Actor feature, to be used within Event

Method Summary

	__init__(doc, *args, **kwargs)

	Constructor.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml()

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Feature'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = None

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = 'actor'

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = None

	

Method Details

	
__init__(doc, *args, **kwargs)

	Constructor.

	Keyword Arguments

	
	subset (str) – the subset

	cls (str) – the class

	
__init__(doc, *args, **kwargs)

	Constructor.

	Keyword Arguments

	
	subset (str) – the subset

	cls (str) – the class

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml()

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.BegindatetimeFeature

	
class pynlpl.formats.folia.BegindatetimeFeature(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.Feature

Begindatetime feature, to be used within Event

Method Summary

	__init__(doc, *args, **kwargs)

	Constructor.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml()

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Feature'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = None

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = 'begindatetime'

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = None

	

Method Details

	
__init__(doc, *args, **kwargs)

	Constructor.

	Keyword Arguments

	
	subset (str) – the subset

	cls (str) – the class

	
__init__(doc, *args, **kwargs)

	Constructor.

	Keyword Arguments

	
	subset (str) – the subset

	cls (str) – the class

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml()

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.EnddatetimeFeature

	
class pynlpl.formats.folia.EnddatetimeFeature(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.Feature

Enddatetime feature, to be used within Event

Method Summary

	__init__(doc, *args, **kwargs)

	Constructor.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml()

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Feature'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = None

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = 'enddatetime'

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = None

	

Method Details

	
__init__(doc, *args, **kwargs)

	Constructor.

	Keyword Arguments

	
	subset (str) – the subset

	cls (str) – the class

	
__init__(doc, *args, **kwargs)

	Constructor.

	Keyword Arguments

	
	subset (str) – the subset

	cls (str) – the class

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml()

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Alternative

	
class pynlpl.formats.folia.Alternative(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.AllowTokenAnnotation, pynlpl.formats.folia.AllowGenerateID

Element grouping alternative token annotation(s).

Multiple alternative elements may occur, each denoting a different alternative. Elements grouped inside an alternative block are considered dependent.

A key feature of FoLiA is its ability to make explicit alternative
annotations, for token annotations, this class is used to this end.
Alternative annotations are embedded in this structure. This implies the
annotation is not authoritative, but is merely an alternative to the
actual annotation (if any). Alternatives may typically occur in larger
numbers, representing a distribution each with a confidence value (not
mandatory). Each alternative is wrapped in its an instance of this class,
as multiple elements inside a single alternative are considered dependent
and part of the same alternative. Combining multiple annotation in one
alternative makes sense for mixed annotation types, where for instance a
pos tag alternative is tied to a particular lemma.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	alternatives([Class, set])

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	annotation(type[, set])

	Obtain a single annotation element.

	annotations(Class[, set])

	Obtain child elements (annotations) of the specified class.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasannotation(Class[, set])

	Returns an integer indicating whether such as annotation exists, and if so, how many.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.MorphologyLayer'>, <class 'pynlpl.formats.folia.PhonologyLayer'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = False

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Alternative'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'alt'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
alternatives(Class=None, set=None)

	Generator over alternatives, either all or only of a specific annotation type, and possibly restrained also by set.

	Parameters

	
	Class (class) – The python Class you want to retrieve (e.g. PosAnnotation). Or set to None to select all alternatives regardless of what type they are.

	set (str) – The set you want to retrieve (defaults to None, which selects irregardless of set)

	Yields

	Alternative elements

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
annotation(type, set=None)

	Obtain a single annotation element.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Returns

	An element (instance derived from AbstractElement)

Example:

sense = word.annotation(folia.Sense, 'http://some/path/cornetto').cls

See also

AllowTokenAnnotation.annotations()
AbstractElement.select()

	Raises

	NoSuchAnnotation if no such annotation exists

	
annotations(Class, set=None)

	Obtain child elements (annotations) of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.annotations(folia.Sense, 'http://some/path/cornetto'):
 ..

See also

AbstractElement.select()

	Raises

	
	AllowTokenAnnotation.annotations()

	NoSuchAnnotation if no such annotation exists

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	Apply a correction (TODO: documentation to be written still)

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasannotation(Class, set=None)

	Returns an integer indicating whether such as annotation exists, and if so, how many.

See AllowTokenAnnotation.annotations`() for a description of the parameters.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.AlternativeLayers

	
class pynlpl.formats.folia.AlternativeLayers(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement

Element grouping alternative subtoken annotation(s). Multiple altlayers elements may occur, each denoting a different alternative. Elements grouped inside an alternative block are considered dependent.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractAnnotationLayer'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = False

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Alternative Layers'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'altlayers'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Correction

	
class pynlpl.formats.folia.Correction(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement, pynlpl.formats.folia.AllowGenerateID

Corrections are one of the most complex annotation types in FoLiA. Corrections
can be applied not just over text, but over any type of structure annotation,
token annotation or span annotation. Corrections explicitly preserve the
original, and recursively so if corrections are done over other corrections.

Despite their complexity, the library treats correction transparently. Whenever
you query for a particular element, and it is part of a correction, you get the
corrected version rather than the original. The original is always non-authoritative
and normal selection methods will ignore it.

	This class takes four classes as children, that in turn encapsulate the actual annotations:

	
	New - Encapsulates the newly corrected annotation(s)

	Original - Encapsulated the old original annotation(s)

	Current - Encapsulates the current authoritative annotation(s)

	Suggestions - Encapsulates the annotation(s) that are a non-authoritative suggestion for correction

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	current([index])

	Get the current authoritative annotation (used with suggestions in a structural context)

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	See AbstractElement.gettextdelimiter()

	hascurrent([allowempty])

	Does the correction record the current authoritative annotation (needed only in a structural context when suggestions are proposed)

	hasnew([allowempty])

	Does the correction define new corrected annotations?

	hasoriginal([allowempty])

	Does the correction record the old annotations prior to correction?

	hasphon([cls, strict, correctionhandling])

	See AbstractElement.hasphon()

	hassuggestions([allowempty])

	Does the correction propose suggestions for correction?

	hastext([cls, strict, correctionhandling])

	See AbstractElement.hastext()

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	new([index])

	Get the new corrected annotation.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	original([index])

	Get the old annotation prior to correction.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	See AbstractElement.phon()

	phoncontent([cls, correctionhandling])

	See AbstractElement.phoncontent()

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	suggestions([index])

	Get suggestions for correction.

	text([cls, retaintokenisation, …])

	See AbstractElement.text()

	textcontent([cls, correctionhandling])

	See AbstractElement.textcontent()

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Current'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ErrorDetection'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.New'>, <class 'pynlpl.formats.folia.Original'>, <class 'pynlpl.formats.folia.Suggestion'>)

	

	
ANNOTATIONTYPE = 16

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Correction'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'correction'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
current(index=None)

	Get the current authoritative annotation (used with suggestions in a structural context)

This returns only one annotation if multiple exist, use index to select another in the sequence.

	Returns

	an annotation element (AbstractElement)

	Raises

	NoSuchAnnotation

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	See AbstractElement.gettextdelimiter()

	
hascurrent(allowempty=False)

	Does the correction record the current authoritative annotation (needed only in a structural context when suggestions are proposed)

	
hasnew(allowempty=False)

	Does the correction define new corrected annotations?

	
hasoriginal(allowempty=False)

	Does the correction record the old annotations prior to correction?

	
hasphon(cls='current', strict=True, correctionhandling=1)

	See AbstractElement.hasphon()

	
hassuggestions(allowempty=False)

	Does the correction propose suggestions for correction?

	
hastext(cls='current', strict=True, correctionhandling=1)

	See AbstractElement.hastext()

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
new(index=None)

	Get the new corrected annotation.

This returns only one annotation if multiple exist, use index to select another in the sequence.

	Returns

	an annotation element (AbstractElement)

	Raises

	NoSuchAnnotation

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
original(index=None)

	Get the old annotation prior to correction.

This returns only one annotation if multiple exist, use index to select another in the sequence.

	Returns

	an annotation element (AbstractElement)

	Raises

	NoSuchAnnotation

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	See AbstractElement.phon()

	
phoncontent(cls='current', correctionhandling=1)

	See AbstractElement.phoncontent()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
suggestions(index=None)

	Get suggestions for correction.

	Yields

	Suggestion element that encapsulate the suggested annotations (if index is None, default)

	Returns

	a Suggestion element that encapsulate the suggested annotations (if index is set)

	Raises

	IndexError

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	See AbstractElement.text()

	
textcontent(cls='current', correctionhandling=1)

	See AbstractElement.textcontent()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Current

	
class pynlpl.formats.folia.Current(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractCorrectionChild

Used in the context of Correction to encapsulate the currently authoritative annotations.

Needed only when suggestions for correction are proposed (Suggestion) for structural elements.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractSpanAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 1

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = None

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'current'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.ErrorDetection

	
class pynlpl.formats.folia.ErrorDetection(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractExtendedTokenAnnotation

The ErrorDetection element is used to signal the presence of errors in a structural element.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	See AbstractElement.append()

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

	

	
ANNOTATIONTYPE = 17

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Error Detection'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = (1,)

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'errordetection'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	See AbstractElement.append()

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.New

	
class pynlpl.formats.folia.New(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractCorrectionChild

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	correct(**kwargs)

	

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractSpanAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 1

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = None

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'new'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
correct(**kwargs)

	

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Original

	
class pynlpl.formats.folia.Original(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractCorrectionChild

Used in the context of Correction to encapsulate the original annotations prior to correction.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractSpanAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = False

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 1

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = None

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'original'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Suggestion

	
class pynlpl.formats.folia.Suggestion(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractCorrectionChild

Suggestions are used in the context of Correction, but rather than provide an authoritative correction, it instead offers a suggestion for correction.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	generate_id(cls)

	

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AbstractSpanAnnotation'>, <class 'pynlpl.formats.folia.AbstractStructureElement'>, <class 'pynlpl.formats.folia.AbstractTokenAnnotation'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Correction'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>, <class 'pynlpl.formats.folia.PhonContent'>, <class 'pynlpl.formats.folia.String'>, <class 'pynlpl.formats.folia.TextContent'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = False

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = True

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = True

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'suggestion'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
generate_id(cls)

	

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Alignment

	
class pynlpl.formats.folia.Alignment(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement

The Alignment element is a form of higher-order annotation taht is used to point to an external resource.

It concerns references as annotation rather than references which are
explicitly part of the text, such as hyperlinks and Reference.

Inside the Alignment element, the AlignReference element may be used to point to specific elements (multiple denotes a span).

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolve([documents])

	

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.AlignReference'>, <class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.Metric'>)

	

	
ANNOTATIONTYPE = 26

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Alignment'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = True

	

	
XMLTAG = 'alignment'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolve(documents=None)

	

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.AlignReference

	
class pynlpl.formats.folia.AlignReference(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement

The AlignReference element is used to point to specific elements inside the aligned source.

It is used with Alignment which is responsible for pointing to the external resource.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolve([alignmentcontext, documents])

	

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = None

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'aref'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolve(alignmentcontext=None, documents={})

	

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Description

	
class pynlpl.formats.folia.Description(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement

Description is an element that can be used to associate a description with almost any other FoLiA element

Method Summary

	__init__(doc, *args, **kwargs)

	Required keyword arguments: * value=: The text content for the description (str or unicode)

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Comment'>)

	

	
ANNOTATIONTYPE = None

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Description'

	

	
OCCURRENCES = 1

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 2, 3, 5, 4, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'desc'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Required keyword arguments:
* value=: The text content for the description (str or unicode)

	
__init__(doc, *args, **kwargs)

	Required keyword arguments:
* value=: The text content for the description (str or unicode)

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

pynlpl.formats.folia.Metric

	
class pynlpl.formats.folia.Metric(doc, *args, **kwargs)

	Bases: pynlpl.formats.folia.AbstractElement

Metric elements provide a key/value pair to allow the annotation of any kind of metric with any kind of annotation element.

It is used for example for statistical measures to be added to elements as annotation.

Method Summary

	__init__(doc, *args, **kwargs)

	Initialize self.

	accepts(Class[, raiseexceptions, parentinstance])

	

	add(child, *args, **kwargs)

	

	addable(parent[, set, raiseexceptions])

	Tests whether a new element of this class can be added to the parent.

	addidsuffix(idsuffix[, recursive])

	Appends a suffix to this element’s ID, and optionally to all child IDs as well.

	addtoindex([norecurse])

	Makes sure this element (and all subelements), are properly added to the index.

	ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	ancestors([Class])

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element.

	append(child, *args, **kwargs)

	

	context(size[, placeholder, scope])

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	copy([newdoc, idsuffix])

	Make a deep copy of this element and all its children.

	copychildren([newdoc, idsuffix])

	Generator creating a deep copy of the children of this element.

	count(Class[, set, recursive, ignore, node])

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	deepvalidation()

	Perform deep validation of this element.

	description()

	Obtain the description associated with the element.

	feat(subset)

	Obtain the feature class value of the specific subset.

	findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	findreplaceables(parent[, set])

	Internal method to find replaceable elements.

	getindex(child[, recursive, ignore])

	Get the index at which an element occurs, recursive by default!

	getmetadata([key])

	Get the metadata that applies to this element, automatically inherited from parent elements

	gettextdelimiter([retaintokenisation])

	Return the text delimiter for this class.

	hasphon([cls, strict, correctionhandling])

	Does this element have phonetic content (of the specified class)

	hastext([cls, strict, correctionhandling])

	Does this element have text (of the specified class)

	incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	insert(index, child, *args, **kwargs)

	

	items([founditems])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	json([attribs, recurse, ignorelist])

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

	leftcontext(size[, placeholder, scope])

	Returns the left context for an element, as a list.

	next([Class, scope, reverse])

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	originaltext([cls])

	Alias for retrieving the original uncorrect text.

	parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	phon([cls, previousdelimiter, strict, …])

	Get the phonetic representation associated with this element (of the specified class)

	phoncontent([cls, correctionhandling])

	Get the phonetic content explicitly associated with this element (of the specified class).

	postappend()

	This method will be called after an element is added to another and does some checks.

	previous([Class, scope])

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope.

	relaxng([includechildren, extraattribs, …])

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	remove(child)

	Removes the child element

	replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set.

	resolveword(id)

	

	rightcontext(size[, placeholder, scope])

	Returns the right context for an element, as a list.

	select(Class[, set, recursive, ignore, node])

	Select child elements of the specified class.

	setdoc(newdoc)

	Set a different document.

	setdocument(doc)

	Associate a document with this element.

	setparents()

	Correct all parent relations for elements within the scop.

	settext(text[, cls])

	Set the text for this element.

	speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

	speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

	stricttext([cls])

	Alias for text() with strict=True

	text([cls, retaintokenisation, …])

	Get the text associated with this element (of the specified class)

	textcontent([cls, correctionhandling])

	Get the text content explicitly associated with this element (of the specified class).

	textvalidation([warnonly])

	Run text validation on this element.

	toktext([cls])

	Alias for text() with retaintokenisation=True

	updatetext()

	Recompute textual value based on the text content of the children.

	xml([attribs, elements, skipchildren])

	Serialises the FoLiA element and all its contents to XML.

	xmlstring([pretty_print])

	Serialises this FoLiA element and all its contents to XML.

	__iter__()

	Iterate over all children of this element.

	__len__()

	Returns the number of child elements under the current element.

	__str__()

	Alias for text()

Class Attributes

	
ACCEPTED_DATA = (<class 'pynlpl.formats.folia.Comment'>, <class 'pynlpl.formats.folia.Description'>, <class 'pynlpl.formats.folia.Feature'>, <class 'pynlpl.formats.folia.ForeignData'>, <class 'pynlpl.formats.folia.ValueFeature'>)

	

	
ANNOTATIONTYPE = 30

	

	
AUTH = True

	

	
AUTO_GENERATE_ID = False

	

	
LABEL = 'Metric'

	

	
OCCURRENCES = 0

	

	
OCCURRENCES_PER_SET = 0

	

	
OPTIONAL_ATTRIBS = (0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 11)

	

	
PHONCONTAINER = False

	

	
PRIMARYELEMENT = True

	

	
PRINTABLE = False

	

	
REQUIRED_ATTRIBS = None

	

	
REQUIRED_DATA = None

	

	
SETONLY = False

	

	
SPEAKABLE = False

	

	
SUBSET = None

	

	
TEXTCONTAINER = False

	

	
TEXTDELIMITER = None

	

	
XLINK = False

	

	
XMLTAG = 'metric'

	

Method Details

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(doc, *args, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

	
classmethod accepts(Class, raiseexceptions=True, parentinstance=None)

	

	
add(child, *args, **kwargs)

	

	
classmethod addable(parent, set=None, raiseexceptions=True)

	Tests whether a new element of this class can be added to the parent.

This method is mostly for internal use.
This will use the OCCURRENCES property, but may be overidden by subclasses for more customised behaviour.

	Parameters

	
	parent (AbstractElement) – The element that is being added to

	set (str or None) – The set

	raiseexceptions (bool) – Raise an exception if the element can’t be added?

	Returns

	bool

	Raises

	ValueError

	
addidsuffix(idsuffix, recursive=True)

	Appends a suffix to this element’s ID, and optionally to all child IDs as well. There is sually no need to call this directly, invoked implicitly by copy()

	
addtoindex(norecurse=[])

	Makes sure this element (and all subelements), are properly added to the index.

Mostly for internal use.

	
ancestor(*Classes)

	Find the most immediate ancestor of the specified type, multiple classes may be specified.

	Parameters

	*Classes – The possible classes (AbstractElement or subclasses) to select from. Not instances!

Example:

paragraph = word.ancestor(folia.Paragraph)

	
ancestors(Class=None)

	Generator yielding all ancestors of this element, effectively back-tracing its path to the root element. A tuple of multiple classes may be specified.

	Parameters

	*Class – The class or classes (AbstractElement or subclasses). Not instances!

	Yields

	elements (instances derived from AbstractElement)

	
append(child, *args, **kwargs)

	

	
context(size, placeholder=None, scope=None)

	Returns this word in context, {size} words to the left, the current word, and {size} words to the right

	
copy(newdoc=None, idsuffix='')

	Make a deep copy of this element and all its children.

	Parameters

	
	newdoc (Document) – The document the copy should be associated with.

	idsuffix (str or bool) – If set to a string, the ID of the copy will be append with this (prevents duplicate IDs when making copies for the same document). If set to True, a random suffix will be generated.

	Returns

	a copy of the element

	
copychildren(newdoc=None, idsuffix='')

	Generator creating a deep copy of the children of this element.

Invokes copy() on all children, parameters are the same.

	
count(Class, set=None, recursive=True, ignore=True, node=None)

	Like AbstractElement.select(), but instead of returning the elements, it merely counts them.

	Returns

	int

	
deepvalidation()

	Perform deep validation of this element.

	Raises

	DeepValidationError

	
description()

	Obtain the description associated with the element.

	Raises

	NoSuchAnnotation if there is no associated description.

	
feat(subset)

	Obtain the feature class value of the specific subset.

If a feature occurs multiple times, the values will be returned in a list.

Example:

sense = word.annotation(folia.Sense)
synset = sense.feat('synset')

	Returns

	str or list

	
findcorrectionhandling(cls)

	Find the proper correctionhandling given a textclass by looking in the underlying corrections where it is reused

	
classmethod findreplaceables(parent, set=None, **kwargs)

	Internal method to find replaceable elements. Auxiliary function used by AbstractElement.replace(). Can be overriden for more fine-grained control.

	
getindex(child, recursive=True, ignore=True)

	Get the index at which an element occurs, recursive by default!

	Returns

	int

	
getmetadata(key=None)

	Get the metadata that applies to this element, automatically inherited from parent elements

	
gettextdelimiter(retaintokenisation=False)

	Return the text delimiter for this class.

Uses the TEXTDELIMITER attribute but may return a customised one instead.

	
hasphon(cls='current', strict=True, correctionhandling=1)

	Does this element have phonetic content (of the specified class)

By default, and unlike phon(), this checks strictly, i.e. the element itself must have the phonetic content and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what phonetic content to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
hastext(cls='current', strict=True, correctionhandling=1)

	Does this element have text (of the specified class)

By default, and unlike text(), this checks strictly, i.e. the element itself must have the text and it is not inherited from its children.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	strict (bool) – Set this if you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to True.

	correctionhandling – Specifies what text to check for when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	bool

	
incorrection()

	Is this element part of a correction? If it is, it returns the Correction element (evaluating to True), otherwise it returns None

	
insert(index, child, *args, **kwargs)

	

	
items(founditems=[])

	Returns a depth-first flat list of all items below this element (not limited to AbstractElement)

	
json(attribs=None, recurse=True, ignorelist=False)

	Serialises the FoLiA element and all its contents to a Python dictionary suitable for serialisation to JSON.

Example:

import json
json.dumps(word.json())

	Returns

	dict

	
leftcontext(size, placeholder=None, scope=None)

	Returns the left context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
next(Class=True, scope=True, reverse=False)

	Returns the next element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`, may also be a tuple of multiple classes. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
originaltext(cls='original')

	Alias for retrieving the original uncorrect text.

A call to text() with correctionhandling=CorrectionHandling.ORIGINAL

	
classmethod parsexml(node, doc, **kwargs)

	Internal class method used for turning an XML element into an instance of the Class.

	Parameters

	
	node - XML Element (*) –

	doc - Document (*) –

	Returns

	An instance of the current Class.

	
phon(cls='current', previousdelimiter='', strict=False, correctionhandling=1)

	Get the phonetic representation associated with this element (of the specified class)

The phonetic content will be constructed from child-elements whereever possible, as they are more specific.
If no phonetic content can be obtained from the children and the element has itself phonetic content associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and phonetic content will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to phon(). Defaults to an empty string.

	strict (bool) – Set this if you are strictly interested in the phonetic content explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what phonetic content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current phonetic content. You can set this to CorrectionHandling.ORIGINAL if you want the phonetic content prior to correction, and CorrectionHandling.EITHER if you don’t care.

Example:

word.phon()

	Returns

	The phonetic content of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchPhon – if no phonetic conent is found at all.

See also

phoncontent(): Retrieves the phonetic content as an element rather than a string
text()
textcontent()

	
phoncontent(cls='current', correctionhandling=1)

	Get the phonetic content explicitly associated with this element (of the specified class).

Unlike phon(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the PhonContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the phonetic content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (PhonContent)

	Raises

	NoSuchPhon if there is no phonetic content for the element

See also

phon()
textcontent()
text()

	
postappend()

	This method will be called after an element is added to another and does some checks.

It can do extra checks and if necessary raise exceptions to prevent addition. By default makes sure the right document is associated.

This method is mostly for internal use.

	
previous(Class=True, scope=True)

	Returns the previous element, if it is of the specified type and if it does not cross the boundary of the defined scope. Returns None if no next element is found. Non-authoritative elements are never returned.

	Parameters

	
	Class (*) – The class to select; any python class subclassed off ‘AbstractElement`. Set to True to constrain to the same class as that of the current instance, set to None to not constrain at all

	scope (*) – A list of classes which are never crossed looking for a next element. Set to True to constrain to a default list of structure elements (Sentence,Paragraph,Division,Event, ListItem,Caption), set to None to not constrain at all.

	
classmethod relaxng(includechildren=True, extraattribs=None, extraelements=None, origclass=None)

	Returns a RelaxNG definition for this element (as an XML element (lxml.etree) rather than a string)

	
remove(child)

	Removes the child element

	
replace(child, *args, **kwargs)

	Appends a child element like append(), but replaces any existing child element of the same type and set. If no such child element exists, this will act the same as append()

	Keyword Arguments

	
	alternative (bool) – If set to True, the replaced element will be made into an alternative. Simply use AbstractElement.append() if you want the added element

	be an alternative. (to) –

See AbstractElement.append() for more information and all parameters.

	
resolveword(id)

	

	
rightcontext(size, placeholder=None, scope=None)

	Returns the right context for an element, as a list. This method crosses sentence/paragraph boundaries by default, which can be restricted by setting scope

	
select(Class, set=None, recursive=True, ignore=True, node=None)

	Select child elements of the specified class.

A further restriction can be made based on set.

	Parameters

	
	Class (class) – The class to select; any python class (not instance) subclassed off AbstractElement

	Set (str) – The set to match against, only elements pertaining to this set will be returned. If set to None (default), all elements regardless of set will be returned.

	recursive (bool) – Select recursively? Descending into child elements? Defaults to True.

	ignore – A list of Classes to ignore, if set to True instead of a list, all non-authoritative elements will be skipped (this is the default behaviour and corresponds to the following elements: Alternative, AlternativeLayer, Suggestion, and folia.Original. These elements and those contained within are never authorative. You may also include the boolean True as a member of a list, if you want to skip additional tags along the predefined non-authoritative ones.

	node (*) – Reserved for internal usage, used in recursion.

	Yields

	Elements (instances derived from AbstractElement)

Example:

for sense in text.select(folia.Sense, 'cornetto', True, [folia.Original, folia.Suggestion, folia.Alternative]):
 ..

	
setdoc(newdoc)

	Set a different document. Usually no need to call this directly, invoked implicitly by copy()

	
setdocument(doc)

	Associate a document with this element.

	Parameters

	doc (Document) – A document

Each element must be associated with a FoLiA document.

	
setparents()

	Correct all parent relations for elements within the scop. There is sually no need to call this directly, invoked implicitly by copy()

	
settext(text, cls='current')

	Set the text for this element.

	Parameters

	
	text (str) – The text

	cls (str) – The class of the text, defaults to current (leave this unless you know what you are doing). There may be only one text content element of each class associated with the element.

	
speech_speaker()

	Retrieves the speaker of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
speech_src()

	Retrieves the URL/filename of the audio or video file associated with the element.

The source is inherited from ancestor elements if none is specified. For this reason, always use this method rather than access the src attribute directly.

	Returns

	str or None if not found

	
stricttext(cls='current')

	Alias for text() with strict=True

	
text(cls='current', retaintokenisation=False, previousdelimiter='', strict=False, correctionhandling=1, normalize_spaces=False)

	Get the text associated with this element (of the specified class)

The text will be constructed from child-elements whereever possible, as they are more specific.
If no text can be obtained from the children and the element has itself text associated with
it, then that will be used.

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	retaintokenisation (bool) – If set, the space attribute on words will be ignored, otherwise it will be adhered to and text will be detokenised as much as possible. Defaults to False.

	previousdelimiter (str) – Can be set to a delimiter that was last outputed, useful when chaining calls to text(). Defaults to an empty string.

	strict (bool) – Set this iif you are strictly interested in the text explicitly associated with the element, without recursing into children. Defaults to False.

	correctionhandling – Specifies what text to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current text. You can set this to CorrectionHandling.ORIGINAL if you want the text prior to correction, and CorrectionHandling.EITHER if you don’t care.

	normalize_spaces (bool) – Return the text with multiple spaces, linebreaks, tabs normalized to single spaces

Example:

word.text()

	Returns

	The text of the element (unicode instance in Python 2, str in Python 3)

	Raises

	NoSuchText – if no text is found at all.

	
textcontent(cls='current', correctionhandling=1)

	Get the text content explicitly associated with this element (of the specified class).

Unlike text(), this method does not recurse into child elements (with the sole exception of the Correction/New element), and it returns the TextContent instance rather than the actual text!

	Parameters

	
	cls (str) – The class of the text content to obtain, defaults to current.

	correctionhandling – Specifies what content to retrieve when corrections are encountered. The default is CorrectionHandling.CURRENT, which will retrieve the corrected/current content. You can set this to CorrectionHandling.ORIGINAL if you want the content prior to correction, and CorrectionHandling.EITHER if you don’t care.

	Returns

	The phonetic content (TextContent)

	Raises

	NoSuchText if there is no text content for the element

See also

text()
phoncontent()
phon()

	
textvalidation(warnonly=None)

	Run text validation on this element. Checks whether any text redundancy is consistent and whether offsets are valid.

	Parameters

	warnonly (bool) – Warn only (True) or raise exceptions (False). If set to None then this value will be determined based on the document’s FoLiA version (Warn only before FoLiA v1.5)

	Returns

	bool

	
toktext(cls='current')

	Alias for text() with retaintokenisation=True

	
updatetext()

	Recompute textual value based on the text content of the children. Only supported on elements that are a TEXTCONTAINER

	
xml(attribs=None, elements=None, skipchildren=False)

	Serialises the FoLiA element and all its contents to XML.

Arguments are mostly for internal use.

	Returns

	an lxml.etree.Element

See also

AbstractElement.xmlstring() - for direct string output

	
xmlstring(pretty_print=False)

	Serialises this FoLiA element and all its contents to XML.

	Returns

	a string with XML representation for this element and all its children

	Return type

	str

	
__iter__()

	Iterate over all children of this element.

Example:

for annotation in word:
 ...

	
__len__()

	Returns the number of child elements under the current element.

	
__str__()

	Alias for text()

Formats

Corpus Gesproken Nederlands

	
exception pynlpl.formats.cgn.InvalidFeatureException

	

	
exception pynlpl.formats.cgn.InvalidTagException

	

	
pynlpl.formats.cgn.parse_cgn_postag(rawtag, raisefeatureexceptions=False)

	

FoLiA

See folia : folia.html

GIZA++

	
class pynlpl.formats.giza.GizaModel(filename, encoding='utf-8')

	

	
class pynlpl.formats.giza.GizaSentenceAlignment(sourceline, targetline, index)

	
	
getalignedtarget(index)

	Returns target range only if source index aligns to a single consecutive range of target tokens.

	
intersect(other)

	

	
class pynlpl.formats.giza.IntersectionAlignment(source2target, target2source, encoding=False)

	
	
reset()

	

	
class pynlpl.formats.giza.MultiWordAlignment(filename, encoding=False)

	Source to Target alignment: reads source-target.A3.final files, in which each source word may be aligned to multiple target words (adapted from code by Sander Canisius)

	
reset()

	

	
targetword(index, targetwords, alignment)

	Return the aligned targeword for a specified index in the source words. Multiple words are concatenated together with a space in between

	
targetwords(index, targetwords, alignment)

	Return the aligned targetwords for a specified index in the source words

	
class pynlpl.formats.giza.WordAlignment(filename, encoding=False)

	Target to Source alignment: reads target-source.A3.final files, in which each source word is aligned to one target word

	
reset()

	

	
targetword(index, targetwords, alignment)

	Return the aligned targetword for a specified index in the source words

	
pynlpl.formats.giza.parseAlignment(tokens)

	

Moses

	
class pynlpl.formats.moses.PhraseTable(filename, quiet=False, reverse=False, delimiter='|||', score_column=3, max_sourcen=0, sourceencoder=None, targetencoder=None, scorefilter=None)

	

	
class pynlpl.formats.moses.PhraseTableClient(host='localhost', port=65432)

	

SoNaR

	
class pynlpl.formats.sonar.Corpus(corpusdir, extension='pos', restrict_to_collection='', conditionf=<function Corpus.<lambda>>, ignoreerrors=False)

	

	
class pynlpl.formats.sonar.CorpusDocument(filename, encoding='iso-8859-15')

	This class represent one document/text of the Corpus (read-only)

	
paragraphs(with_id=False)

	Extracts paragraphs, returns list of plain-text(!) paragraphs

	
sentences()

	Iterate over all sentences (sentence_id, sentence) in the document, sentence is a list of 4-tuples (word,id,pos,lemma)

	
words()

	

	
class pynlpl.formats.sonar.CorpusDocumentX(filename, tree=None, index=True)

	This class represent one document/text of the Corpus, loaded into memory at once and retaining the full structure

	
paragraphs(node=None)

	iterate over paragraphs

	
save(filename=None, encoding='iso-8859-15')

	

	
sentences(node=None)

	iterate over sentences

	
validate(formats_dir='../formats/')

	checks if the document is valid

	
words(node=None)

	iterate over words

	
xpath(expression)

	Executes an xpath expression using the correct namespaces

	
class pynlpl.formats.sonar.CorpusFiles(corpusdir, extension='pos', restrict_to_collection='', conditionf=<function Corpus.<lambda>>, ignoreerrors=False)

	

	
class pynlpl.formats.sonar.CorpusX(corpusdir, extension='pos', restrict_to_collection='', conditionf=<function Corpus.<lambda>>, ignoreerrors=False)

	

	
pynlpl.formats.sonar.ns(namespace)

	Resolves the namespace identifier to a full URL

Taggerdata

	
class pynlpl.formats.taggerdata.Taggerdata(filename, encoding='utf-8', mode='r')

	
	
align(referencewords, datatuple)

	align the reference sentence with the tagged data

	
close()

	

	
next()

	

	
reset()

	

	
write(sentence)

	

TiMBL

	
class pynlpl.formats.timbl.TimblOutput(stream, delimiter=' ', ignorecolumns=[], ignorevalues=[])

	A class for reading Timbl classifier output, supports the +v+db option and ignores comments starting with #

	
parseDistribution(instance, start, end=None)

	

Language Models

	
class pynlpl.lm.lm.ARPALanguageModel(filename, encoding='utf-8', encoder=None, base_e=True, dounknown=True, debug=False, mode='simple')

	Full back-off language model, loaded from file in ARPA format.

This class does not build the model but allows you to use a pre-computed one.
You can use the tool ngram-count from for instance SRILM to actually build the model.

	
class NgramsProbs(data, mode='simple', delim=' ')

	Store Ngrams with their probabilities and backoffs.

This class is used in order to abstract the physical storage layout,
and enable memory/speed tradeoffs.

	
backoff(ngram)

	Return backoff value of a given ngram tuple

	
prob(ngram)

	Return probability of given ngram tuple

	
score(data, history=None)

	

	
scoreword(word, history=None)

	

	
class pynlpl.lm.lm.SimpleLanguageModel(n=2, casesensitive=True, beginmarker='<begin>', endmarker='<end>')

	This is a simple unsmoothed language model. This class can both hold and compute the model.

	
append(sentence)

	

	
load(filename)

	

	
save(filename)

	

	
scoresentence(sentence)

	

	
class pynlpl.lm.srilm.SRILM(filename, n)

	
	
logscore(ngram)

	

	
scoresentence(sentence, unknownwordprob=-12)

	

	
exception pynlpl.lm.srilm.SRILMException

	Base Exception for SRILM.

	
class pynlpl.lm.client.LMClient(host='localhost', port=12346, n=0)

	
	
scoresentence(sentence)

	

Search Algorithms

This module contains various search algorithms.

	
class pynlpl.search.AbstractSearch(**kwargs)

	
	
prune(state)

	Pruning method is called AFTER expansion of each node

	
reset()

	

	
searchall()

	Returns a list of all solutions

	
searchbest()

	Returns the single best result (if multiple have the same score, the first match is returned)

	
searchfirst()

	Returns the very first result (regardless of it being the best or not!)

	
searchlast(n=10)

	Return the last n results (or possibly less if not found). Note that the last results are not necessarily the best ones! Depending on the search type.

	
searchtop(n=10)

	Return the top n best resulta (or possibly less if not enough is found)

	
traversal()

	Returns all visited states (only when keeptraversal=True), note that this is not equal to the path, but contains all states that were checked!

	
traversalsize()

	Returns the number of nodes visited (also when keeptravel=False). Note that this is not equal to the path, but contains all states that were checked!

	
visited(state)

	

	
class pynlpl.search.AbstractSearchState(parent=None, cost=0)

	
	
depth()

	

	
expand()

	Generates successor states, implement your custom operators in the derived method.

	
path()

	

	
pathcost()

	

	
score()

	Should return a heuristic value. This needs to be set if you plan to used an informed search algorithm.

	
test(goalstates=None)

	Checks whether this state is a valid goal state, returns a boolean. If no goalstate is defined, then all states will test positively, this is what you usually want for optimisation problems.

	
class pynlpl.search.BeamSearch(states, beamsize, **kwargs)

	Local beam search algorithm

	
class pynlpl.search.BeamedBestFirstSearch(states, beamsize, **kwargs)

	Best first search with a beamsize (non-optimal!)

	
prune(state)

	Pruning method is called AFTER expansion of each node

	
class pynlpl.search.BestFirstSearch(state, **kwargs)

	

	
class pynlpl.search.BreadthFirstSearch(state, **kwargs)

	

	
class pynlpl.search.DepthFirstSearch(state, **kwargs)

	

	
class pynlpl.search.EarlyEagerBeamSearch(state, beamsize, **kwargs)

	A beam search that prunes early (after each state expansion) and eagerly (weeding out worse successors)

	
prune(state)

	Pruning method is called AFTER expansion of each node

	
class pynlpl.search.HillClimbingSearch(state, **kwargs)

	(identical to beamsearch with beam 1, but implemented differently)

	
class pynlpl.search.IterativeDeepening(state, **kwargs)

	
	
traversal()

	Returns all visited states (only when keeptraversal=True), note that this is not equal to the path, but contains all states that were checked!

	
traversalsize()

	Returns the number of nodes visited (also when keeptravel=False). Note that this is not equal to the path, but contains all states that were checked!

	
class pynlpl.search.StochasticBeamSearch(states, beamsize, **kwargs)

	
	
prune(state)

	Pruning method is called AFTER expansion of each node

	
pynlpl.search.binary_search(a, x, lo=0, hi=None)

	

Statistics and Information Theory

This module contains classes and functions for statistics and information theory. It is imported as follows:

import pynlpl.statistics

Generic functions

Amongst others, the following generic statistical functions are available:

* ``mean(list)`` - Computes the mean of a given list of numbers

	median(list) - Computes the median of a given list of numbers

	stddev(list) - Computes the standard deviation of a given list of numbers

	normalize(list) - Normalizes a list of numbers so that the sum is 1.0 .

Frequency Lists and Distributions

One of the most basic and widespread tasks in NLP is the creation of a frequency list. Counting is established by simply appending lists to the frequencylist:

freqlist = pynlpl.statistics.FrequencyList()
freqlist.append(['to','be','or','not','to','be'])

Take care not to append lists rather than strings unless you mean to create a frequency list over its characters rather than words. You may want to use the pynlpl.textprocessors.crudetokeniser first:

freqlist.append(pynlpl.textprocessors.crude_tokeniser("to be or not to be"))

The count can also be incremented explicitly explicitly for a single item:

freqlist.count(‘shakespeare’)

The FrequencyList offers dictionary-like access. For example, the following statement will be true for the frequency list just created:

freqlist['be'] == 2

Normalised counts (pseudo-probabilities) can be obtained using the p() method:

freqlist.p('be')

Normalised counts can also be obtained by instantiation a Distribution instance using the frequency list:

dist = pynlpl.statistics.Distribution(freqlist)

This too offers a dictionary-like interface, where values are by definition normalised. The advantage of a Distribution class is that it offers information-theoretic methods such as entropy(), maxentropy(), perplexity() and poslog().

A frequency list can be saved to file using the save(filename) method, and loaded back from file using the load(filename) method. The output() method is a generator yielding strings for each line of output, in ranked order.

API Reference

This is a Python library containing classes for Statistic and Information Theoretical computations. It also contains some code from Peter Norvig, AI: A Modern Appproach : http://aima.cs.berkeley.edu/python/utils.html

	
class pynlpl.statistics.Distribution(data, base=2)

	A distribution can be created over a FrequencyList or a plain dictionary with numeric values. It will be normalized automatically. This implemtation uses dictionaries/hashing

	
entropy(base=2)

	Compute the entropy of the distribution

	
information(type)

	Computes the information content of the specified type: -log_e(p(X))

	
items()

	Returns an unranked list of (type, prob) pairs. Use this only if you are not interested in the order.

	
keys()

	

	
maxentropy(base=2)

	Compute the maximum entropy of the distribution: log_e(N)

	
mode()

	Returns the type that occurs the most frequently in the probability distribution

	
output(delimiter='\t', freqlist=None)

	Generator yielding formatted strings expressing the time and probabily for each item in the distribution

	
perplexity(base=2)

	

	
poslog(type)

	alias for information content

	
values()

	

	
class pynlpl.statistics.FrequencyList(tokens=None, casesensitive=True, dovalidation=True)

	A frequency list (implemented using dictionaries)

	
append(tokens)

	Add a list of tokens to the frequencylist. This method will count them for you.

	
count(type, amount=1)

	Count a certain type. The counter will increase by the amount specified (defaults to one)

	
dict()

	

	
items()

	Returns an unranked list of (type, count) pairs. Use this only if you are not interested in the order.

	
load(filename)

	Load a frequency list from file (in the format produced by the save method)

	
mode()

	Returns the type that occurs the most frequently in the frequency list

	
output(delimiter='\t', addnormalised=False)

	Print a representation of the frequency list

	
p(type)

	Returns the probability (relative frequency) of the token

	
save(filename, addnormalised=False)

	Save a frequency list to file, can be loaded later using the load method

	
sum()

	Returns the total amount of tokens

	
tokens()

	Returns the total amount of tokens

	
typetokenratio()

	Computes the type/token ratio

	
values()

	

	
class pynlpl.statistics.HiddenMarkovModel(startstate, endstate=None)

	
	
print_dptable(V)

	

	
setemission(state, distribution)

	

	
viterbi(observations, doprint=False)

	

	
class pynlpl.statistics.MarkovChain(startstate, endstate=None)

	
	
accessible(fromstate, tostate)

	Is state tonode directly accessible (in one step) from state fromnode? (i.e. is there an edge between the nodes). If so, return the probability, else zero

	
communicates(fromstate, tostate, maxlength=999999)

	See if a node communicates (directly or indirectly) with another. Returns the probability of the shortest path (probably, but not necessarily the highest probability)

	
p(sequence, subsequence=True)

	Returns the probability of the given sequence or subsequence (if subsequence=True, default).

	
reducible()

	

	
settransitions(state, distribution)

	

	
size()

	

	
pynlpl.statistics.dotproduct(X, Y)

	Return the sum of the element-wise product of vectors x and y.
>>> dotproduct([1, 2, 3], [1000, 100, 10])
1230

	
pynlpl.statistics.histogram(values, mode=0, bin_function=None)

	Return a list of (value, count) pairs, summarizing the input values.
Sorted by increasing value, or if mode=1, by decreasing count.
If bin_function is given, map it over values first.

	
pynlpl.statistics.levenshtein(s1, s2, maxdistance=9999)

	Computes the levenshtein distance between two strings. Adapted from: http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python

	
pynlpl.statistics.log2(x)

	Base 2 logarithm.
>>> log2(1024)
10.0

	
pynlpl.statistics.mean(values)

	Return the arithmetic average of the values.

	
pynlpl.statistics.median(values)

	Return the middle value, when the values are sorted.
If there are an odd number of elements, try to average the middle two.
If they can’t be averaged (e.g. they are strings), choose one at random.
>>> median([10, 100, 11])
11
>>> median([1, 2, 3, 4])
2.5

	
pynlpl.statistics.mode(values)

	Return the most common value in the list of values.
>>> mode([1, 2, 3, 2])
2

	
pynlpl.statistics.normalize(numbers, total=1.0)

	Multiply each number by a constant such that the sum is 1.0 (or total).
>>> normalize([1,2,1])
[0.25, 0.5, 0.25]

	
pynlpl.statistics.product(seq)

	Return the product of a sequence of numerical values.
>>> product([1,2,6])
12

	
pynlpl.statistics.stddev(values, meanval=None)

	The standard deviation of a set of values.
Pass in the mean if you already know it.

	
pynlpl.statistics.vector_add(a, b)

	Component-wise addition of two vectors.
>>> vector_add((0, 1), (8, 9))
(8, 10)

Text Processors

This module contains classes and functions for text processing. It is imported as follows:

import pynlpl.textprocessors

Tokenisation

A very crude tokeniser is available in the form of the function pynlpl.textprocessors.crude_tokeniser(string). This will split punctuation characters from words and returns a list of tokens. It however has no regard for abbreviations and end-of-sentence detection, which is functionality a more sophisticated tokeniser can provide:

tokens = pynlpl.textprocessors.crude_tokeniser("to be, or not to be.")

This will result in:

tokens == [‘to’,’be’,’,’,’or’,’not’,’to’,’be’,’.’]

N-gram extraction

The extraction of n-grams is an elemental operation in Natural Language Processing. PyNLPl offers the Windower class to accomplish this task:

tokens = pynlpl.textprocessors.crude_tokeniser("to be or not to be")
for trigram in Windower(tokens,3):
 print trigram

The input to the Windower should be a list of words and a value for n. In addition, the windower can output extra symbols at the beginning of the input sequence and at the end of it. By default, this behaviour is enabled and the input symbol is <begin>, whereas the output symbol is <end>. If this behaviour is unwanted you can suppress it by instantiating the Windower as follows:

Windower(tokens,3, None, None)

The Windower is implemented as a Python generator and at each iteration yields a tuple of length n.

	
class pynlpl.textprocessors.MultiWindower(tokens, min_n=1, max_n=9, beginmarker=None, endmarker=None)

	Extract n-grams of various configurations from a sequence

	
class pynlpl.textprocessors.ReflowText(stream, filternontext=True)

	Attempts to re-flow a text that has arbitrary line endings in it. Also undoes hyphenisation

	
class pynlpl.textprocessors.Tokenizer(stream, splitsentences=True, onesentenceperline=False, regexps=(re.compile('^(?:(?:https?):(?:(?://)|(?:\\\\))|www\.)(?:[\w\d:#@%/;$()~_?\+-=\\\.&](?:#!)?)*'), re.compile('^[A-Za-z0-9\.\+_-]+@[A-Za-z0-9\._-]+(?:\.[a-zA-Z]+)+')))

	A tokenizer and sentence splitter, which acts on a file/stream-like object and when iterating over the object it yields
a lists of tokens (in case the sentence splitter is active (default)), or a token (if the sentence splitter is deactivated).

	
class pynlpl.textprocessors.Windower(tokens, n=1, beginmarker='<begin>', endmarker='<end>')

	Moves a sliding window over a list of tokens, upon iteration in yields all n-grams of specified size in a tuple.

Example without markers:

>>> for ngram in Windower("This is a test .",3, None, None):
... print(" ".join(ngram))
This is a
is a test
a test .

Example with default markers:

>>> for ngram in Windower("This is a test .",3):
... print(" ".join(ngram))
<begin> <begin> This
<begin> This is
This is a
is a test
a test .
test . <end>
. <end> <end>

	
pynlpl.textprocessors.calculate_overlap(haystack, needle, allowpartial=True)

	Calculate the overlap between two sequences. Yields (overlap, placement) tuples (multiple because there may be multiple overlaps!). The former is the part of the sequence that overlaps, and the latter is -1 if the overlap is on the left side, 0 if it is a subset, 1 if it overlaps on the right side, 2 if its an identical match

	
pynlpl.textprocessors.crude_tokenizer(text)

	Replaced by tokenize(). Alias

	
pynlpl.textprocessors.find_keyword_in_context(tokens, keyword, contextsize=1)

	Find a keyword in a particular sequence of tokens, and return the local context. Contextsize is the number of words to the left and right. The keyword may have multiple word, in which case it should to passed as a tuple or list

	
pynlpl.textprocessors.is_end_of_sentence(tokens, i)

	

	
pynlpl.textprocessors.split_sentences(tokens)

	Split sentences (based on tokenised data), returns sentences as a list of lists of tokens, each sentence is a list of tokens

	
pynlpl.textprocessors.strip_accents(s, encoding='utf-8')

	Strip characters with diacritics and return a flat ascii representation

	
pynlpl.textprocessors.swap(tokens, maxdist=2)

	Perform a swap operation on a sequence of tokens, exhaustively swapping all tokens up to the maximum specified distance. This is a subset of all permutations.

	
pynlpl.textprocessors.tokenise(text, regexps=(re.compile('^(?:(?:https?):(?:(?://)|(?:\\\\\\\\))|www\\.)(?:[\\w\\d:#@%/;$()~_?\\+-=\\\\\\.&](?:#!)?)*'), re.compile('^[A-Za-z0-9\\.\\+_-]+@[A-Za-z0-9\\._-]+(?:\\.[a-zA-Z]+)+')))

	Alias for the British

	
pynlpl.textprocessors.tokenize(text, regexps=(re.compile('^(?:(?:https?):(?:(?://)|(?:\\\\\\\\))|www\\.)(?:[\\w\\d:#@%/;$()~_?\\+-=\\\\\\.&](?:#!)?)*'), re.compile('^[A-Za-z0-9\\.\\+_-]+@[A-Za-z0-9\\._-]+(?:\\.[a-zA-Z]+)+')))

	Tokenizes a string and returns a list of tokens

	Parameters

	
	text (string) – The text to tokenise

	regexps (Tuple/list of regular expressions to use in tokenisation) – Regular expressions to use as tokeniser rules in tokenisation (default=_pynlpl.textprocessors.TOKENIZERRULES_)

	Return type

	Returns a list of tokens

Examples:

>>> for token in tokenize("This is a test."):
... print(token)
This
is
a
test
.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pynlpl	

 	
 	
 pynlpl.common	

 	
 	
 pynlpl.datatypes	

 	
 	
 pynlpl.evaluation	

 	
 	
 pynlpl.formats.cgn	

 	
 	
 pynlpl.formats.folia	

 	
 	
 pynlpl.formats.giza	

 	
 	
 pynlpl.formats.moses	

 	
 	
 pynlpl.formats.sonar	

 	
 	
 pynlpl.formats.taggerdata	

 	
 	
 pynlpl.formats.timbl	

 	
 	
 pynlpl.lm.client	

 	
 	
 pynlpl.lm.lm	

 	
 	
 pynlpl.lm.srilm	

 	
 	
 pynlpl.search	

 	
 	
 pynlpl.statistics	

 	
 	
 pynlpl.textprocessors	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	
 	__init__() (pynlpl.formats.folia.AbstractAnnotationLayer method), [1]

 	(pynlpl.formats.folia.AbstractElement method), [1]

 	(pynlpl.formats.folia.AbstractSpanAnnotation method), [1]

 	(pynlpl.formats.folia.AbstractStructureElement method), [1]

 	(pynlpl.formats.folia.AbstractTextMarkup method), [1]

 	(pynlpl.formats.folia.AbstractTokenAnnotation method), [1]

 	(pynlpl.formats.folia.ActorFeature method), [1]

 	(pynlpl.formats.folia.AlignReference method), [1]

 	(pynlpl.formats.folia.Alignment method), [1]

 	(pynlpl.formats.folia.AllowTokenAnnotation method)

 	(pynlpl.formats.folia.Alternative method), [1]

 	(pynlpl.formats.folia.AlternativeLayers method), [1]

 	(pynlpl.formats.folia.BegindatetimeFeature method), [1]

 	(pynlpl.formats.folia.Cell method), [1]

 	(pynlpl.formats.folia.Chunk method), [1]

 	(pynlpl.formats.folia.ChunkingLayer method), [1]

 	(pynlpl.formats.folia.CoreferenceChain method), [1]

 	(pynlpl.formats.folia.CoreferenceLayer method), [1]

 	(pynlpl.formats.folia.CoreferenceLink method), [1]

 	(pynlpl.formats.folia.Correction method), [1]

 	(pynlpl.formats.folia.Current method), [1]

 	(pynlpl.formats.folia.Definition method), [1]

 	(pynlpl.formats.folia.DependenciesLayer method), [1]

 	(pynlpl.formats.folia.Dependency method), [1]

 	(pynlpl.formats.folia.DependencyDependent method), [1]

 	(pynlpl.formats.folia.Description method), [1]

 	(pynlpl.formats.folia.Division method), [1]

 	(pynlpl.formats.folia.Document method), [1]

 	(pynlpl.formats.folia.DomainAnnotation method), [1]

 	(pynlpl.formats.folia.EnddatetimeFeature method), [1]

 	(pynlpl.formats.folia.EntitiesLayer method), [1]

 	(pynlpl.formats.folia.Entity method), [1]

 	(pynlpl.formats.folia.Entry method), [1]

 	(pynlpl.formats.folia.ErrorDetection method), [1]

 	(pynlpl.formats.folia.Event method), [1]

 	(pynlpl.formats.folia.Example method), [1]

 	(pynlpl.formats.folia.Feature method), [1]

 	(pynlpl.formats.folia.Figure method), [1]

 	(pynlpl.formats.folia.Gap method), [1]

 	(pynlpl.formats.folia.Head method), [1]

 	(pynlpl.formats.folia.Headspan method), [1]

 	(pynlpl.formats.folia.LangAnnotation method), [1]

 	(pynlpl.formats.folia.LemmaAnnotation method), [1]

 	(pynlpl.formats.folia.Linebreak method), [1]

 	(pynlpl.formats.folia.List method), [1]

 	(pynlpl.formats.folia.ListItem method), [1]

 	(pynlpl.formats.folia.Metric method), [1]

 	(pynlpl.formats.folia.New method), [1]

 	(pynlpl.formats.folia.Note method), [1]

 	(pynlpl.formats.folia.Observation method), [1]

 	(pynlpl.formats.folia.ObservationLayer method), [1]

 	(pynlpl.formats.folia.Original method), [1]

 	(pynlpl.formats.folia.Paragraph method), [1]

 	(pynlpl.formats.folia.Part method), [1]

 	(pynlpl.formats.folia.PhonContent method), [1]

 	(pynlpl.formats.folia.PosAnnotation method), [1]

 	(pynlpl.formats.folia.Predicate method), [1]

 	(pynlpl.formats.folia.Quote method), [1]

 	(pynlpl.formats.folia.Reader method), [1]

 	(pynlpl.formats.folia.Reference method), [1]

 	(pynlpl.formats.folia.Row method), [1]

 	(pynlpl.formats.folia.SemanticRole method), [1]

 	(pynlpl.formats.folia.SemanticRolesLayer method), [1]

 	(pynlpl.formats.folia.SenseAnnotation method), [1]

 	(pynlpl.formats.folia.Sentence method), [1]

 	(pynlpl.formats.folia.Sentiment method), [1]

 	(pynlpl.formats.folia.SentimentLayer method), [1]

 	(pynlpl.formats.folia.Statement method), [1]

 	(pynlpl.formats.folia.StatementLayer method), [1]

 	(pynlpl.formats.folia.SubjectivityAnnotation method), [1]

 	(pynlpl.formats.folia.Suggestion method), [1]

 	(pynlpl.formats.folia.SynsetFeature method), [1]

 	(pynlpl.formats.folia.SyntacticUnit method), [1]

 	(pynlpl.formats.folia.SyntaxLayer method), [1]

 	(pynlpl.formats.folia.Table method), [1]

 	(pynlpl.formats.folia.TableHead method), [1]

 	(pynlpl.formats.folia.Term method), [1]

 	(pynlpl.formats.folia.Text method), [1]

 	(pynlpl.formats.folia.TextContent method), [1]

 	(pynlpl.formats.folia.TextMarkupCorrection method), [1]

 	(pynlpl.formats.folia.TextMarkupError method), [1]

 	(pynlpl.formats.folia.TextMarkupGap method), [1]

 	(pynlpl.formats.folia.TextMarkupString method), [1]

 	(pynlpl.formats.folia.TextMarkupStyle method), [1]

 	(pynlpl.formats.folia.TimeSegment method), [1]

 	(pynlpl.formats.folia.TimingLayer method), [1]

 	(pynlpl.formats.folia.Whitespace method), [1]

 	(pynlpl.formats.folia.Word method), [1]

 	(pynlpl.formats.fql.Query method), [1]

 	__iter__() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	
 	__len__() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	__str__() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.AllowTokenAnnotation method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

A

 	
 	AbstractAnnotationLayer (class in pynlpl.formats.folia)

 	AbstractElement (class in pynlpl.formats.folia)

 	AbstractExperiment (class in pynlpl.evaluation)

 	AbstractSearch (class in pynlpl.search)

 	AbstractSearchState (class in pynlpl.search)

 	AbstractSpanAnnotation (class in pynlpl.formats.folia)

 	AbstractStructureElement (class in pynlpl.formats.folia)

 	AbstractTextMarkup (class in pynlpl.formats.folia)

 	AbstractTokenAnnotation (class in pynlpl.formats.folia)

 	ACCEPTED_DATA (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	accepts() (pynlpl.formats.folia.AbstractAnnotationLayer class method)

 	(pynlpl.formats.folia.AbstractElement class method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation class method)

 	(pynlpl.formats.folia.AbstractStructureElement class method)

 	(pynlpl.formats.folia.AbstractTextMarkup class method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation class method)

 	(pynlpl.formats.folia.ActorFeature class method)

 	(pynlpl.formats.folia.AlignReference class method)

 	(pynlpl.formats.folia.Alignment class method)

 	(pynlpl.formats.folia.Alternative class method)

 	(pynlpl.formats.folia.AlternativeLayers class method)

 	(pynlpl.formats.folia.BegindatetimeFeature class method)

 	(pynlpl.formats.folia.Cell class method)

 	(pynlpl.formats.folia.Chunk class method)

 	(pynlpl.formats.folia.ChunkingLayer class method)

 	(pynlpl.formats.folia.CoreferenceChain class method)

 	(pynlpl.formats.folia.CoreferenceLayer class method)

 	(pynlpl.formats.folia.CoreferenceLink class method)

 	(pynlpl.formats.folia.Correction class method)

 	(pynlpl.formats.folia.Current class method)

 	(pynlpl.formats.folia.Definition class method)

 	(pynlpl.formats.folia.DependenciesLayer class method)

 	(pynlpl.formats.folia.Dependency class method)

 	(pynlpl.formats.folia.DependencyDependent class method)

 	(pynlpl.formats.folia.Description class method)

 	(pynlpl.formats.folia.Division class method)

 	(pynlpl.formats.folia.DomainAnnotation class method)

 	(pynlpl.formats.folia.EnddatetimeFeature class method)

 	(pynlpl.formats.folia.EntitiesLayer class method)

 	(pynlpl.formats.folia.Entity class method)

 	(pynlpl.formats.folia.Entry class method)

 	(pynlpl.formats.folia.ErrorDetection class method)

 	(pynlpl.formats.folia.Event class method)

 	(pynlpl.formats.folia.Example class method)

 	(pynlpl.formats.folia.Feature class method)

 	(pynlpl.formats.folia.Figure class method)

 	(pynlpl.formats.folia.Gap class method)

 	(pynlpl.formats.folia.Head class method)

 	(pynlpl.formats.folia.Headspan class method)

 	(pynlpl.formats.folia.LangAnnotation class method)

 	(pynlpl.formats.folia.LemmaAnnotation class method)

 	(pynlpl.formats.folia.Linebreak class method)

 	(pynlpl.formats.folia.List class method)

 	(pynlpl.formats.folia.ListItem class method)

 	(pynlpl.formats.folia.Metric class method)

 	(pynlpl.formats.folia.New class method)

 	(pynlpl.formats.folia.Note class method)

 	(pynlpl.formats.folia.Observation class method)

 	(pynlpl.formats.folia.ObservationLayer class method)

 	(pynlpl.formats.folia.Original class method)

 	(pynlpl.formats.folia.Paragraph class method)

 	(pynlpl.formats.folia.Part class method)

 	(pynlpl.formats.folia.PhonContent class method)

 	(pynlpl.formats.folia.PosAnnotation class method)

 	(pynlpl.formats.folia.Predicate class method)

 	(pynlpl.formats.folia.Quote class method)

 	(pynlpl.formats.folia.Reference class method)

 	(pynlpl.formats.folia.Row class method)

 	(pynlpl.formats.folia.SemanticRole class method)

 	(pynlpl.formats.folia.SemanticRolesLayer class method)

 	(pynlpl.formats.folia.SenseAnnotation class method)

 	(pynlpl.formats.folia.Sentence class method)

 	(pynlpl.formats.folia.Sentiment class method)

 	(pynlpl.formats.folia.SentimentLayer class method)

 	(pynlpl.formats.folia.Statement class method)

 	(pynlpl.formats.folia.StatementLayer class method)

 	(pynlpl.formats.folia.SubjectivityAnnotation class method)

 	(pynlpl.formats.folia.Suggestion class method)

 	(pynlpl.formats.folia.SynsetFeature class method)

 	(pynlpl.formats.folia.SyntacticUnit class method)

 	(pynlpl.formats.folia.SyntaxLayer class method)

 	(pynlpl.formats.folia.Table class method)

 	(pynlpl.formats.folia.TableHead class method)

 	(pynlpl.formats.folia.Term class method)

 	(pynlpl.formats.folia.Text class method)

 	(pynlpl.formats.folia.TextContent class method)

 	(pynlpl.formats.folia.TextMarkupCorrection class method)

 	(pynlpl.formats.folia.TextMarkupError class method)

 	(pynlpl.formats.folia.TextMarkupGap class method)

 	(pynlpl.formats.folia.TextMarkupString class method)

 	(pynlpl.formats.folia.TextMarkupStyle class method)

 	(pynlpl.formats.folia.TimeSegment class method)

 	(pynlpl.formats.folia.TimingLayer class method)

 	(pynlpl.formats.folia.Whitespace class method)

 	(pynlpl.formats.folia.Word class method)

 	accessible() (pynlpl.statistics.MarkovChain method)

 	accuracy() (pynlpl.evaluation.ClassEvaluation method)

 	ActorFeature (class in pynlpl.formats.folia)

 	add() (pynlpl.datatypes.PatternSet method)

 	(pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.Document method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	addable() (pynlpl.formats.folia.AbstractAnnotationLayer class method)

 	(pynlpl.formats.folia.AbstractElement class method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation class method)

 	(pynlpl.formats.folia.AbstractStructureElement class method)

 	(pynlpl.formats.folia.AbstractTextMarkup class method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation class method)

 	(pynlpl.formats.folia.ActorFeature class method)

 	(pynlpl.formats.folia.AlignReference class method)

 	(pynlpl.formats.folia.Alignment class method)

 	(pynlpl.formats.folia.Alternative class method)

 	(pynlpl.formats.folia.AlternativeLayers class method)

 	(pynlpl.formats.folia.BegindatetimeFeature class method)

 	(pynlpl.formats.folia.Cell class method)

 	(pynlpl.formats.folia.Chunk class method)

 	(pynlpl.formats.folia.ChunkingLayer class method)

 	(pynlpl.formats.folia.CoreferenceChain class method)

 	(pynlpl.formats.folia.CoreferenceLayer class method)

 	(pynlpl.formats.folia.CoreferenceLink class method)

 	(pynlpl.formats.folia.Correction class method)

 	(pynlpl.formats.folia.Current class method)

 	(pynlpl.formats.folia.Definition class method)

 	(pynlpl.formats.folia.DependenciesLayer class method)

 	(pynlpl.formats.folia.Dependency class method)

 	(pynlpl.formats.folia.DependencyDependent class method)

 	(pynlpl.formats.folia.Description class method)

 	(pynlpl.formats.folia.Division class method)

 	(pynlpl.formats.folia.DomainAnnotation class method)

 	(pynlpl.formats.folia.EnddatetimeFeature class method)

 	(pynlpl.formats.folia.EntitiesLayer class method)

 	(pynlpl.formats.folia.Entity class method)

 	(pynlpl.formats.folia.Entry class method)

 	(pynlpl.formats.folia.ErrorDetection class method)

 	(pynlpl.formats.folia.Event class method)

 	(pynlpl.formats.folia.Example class method)

 	(pynlpl.formats.folia.Feature class method)

 	(pynlpl.formats.folia.Figure class method)

 	(pynlpl.formats.folia.Gap class method)

 	(pynlpl.formats.folia.Head class method)

 	(pynlpl.formats.folia.Headspan class method)

 	(pynlpl.formats.folia.LangAnnotation class method)

 	(pynlpl.formats.folia.LemmaAnnotation class method)

 	(pynlpl.formats.folia.Linebreak class method)

 	(pynlpl.formats.folia.List class method)

 	(pynlpl.formats.folia.ListItem class method)

 	(pynlpl.formats.folia.Metric class method)

 	(pynlpl.formats.folia.New class method)

 	(pynlpl.formats.folia.Note class method)

 	(pynlpl.formats.folia.Observation class method)

 	(pynlpl.formats.folia.ObservationLayer class method)

 	(pynlpl.formats.folia.Original class method)

 	(pynlpl.formats.folia.Paragraph class method)

 	(pynlpl.formats.folia.Part class method)

 	(pynlpl.formats.folia.PhonContent class method)

 	(pynlpl.formats.folia.PosAnnotation class method)

 	(pynlpl.formats.folia.Predicate class method)

 	(pynlpl.formats.folia.Quote class method)

 	(pynlpl.formats.folia.Reference class method)

 	(pynlpl.formats.folia.Row class method)

 	(pynlpl.formats.folia.SemanticRole class method)

 	(pynlpl.formats.folia.SemanticRolesLayer class method)

 	(pynlpl.formats.folia.SenseAnnotation class method)

 	(pynlpl.formats.folia.Sentence class method)

 	(pynlpl.formats.folia.Sentiment class method)

 	(pynlpl.formats.folia.SentimentLayer class method)

 	(pynlpl.formats.folia.Statement class method)

 	(pynlpl.formats.folia.StatementLayer class method)

 	(pynlpl.formats.folia.SubjectivityAnnotation class method)

 	(pynlpl.formats.folia.Suggestion class method)

 	(pynlpl.formats.folia.SynsetFeature class method)

 	(pynlpl.formats.folia.SyntacticUnit class method)

 	(pynlpl.formats.folia.SyntaxLayer class method)

 	(pynlpl.formats.folia.Table class method)

 	(pynlpl.formats.folia.TableHead class method)

 	(pynlpl.formats.folia.Term class method)

 	(pynlpl.formats.folia.Text class method)

 	(pynlpl.formats.folia.TextContent class method)

 	(pynlpl.formats.folia.TextMarkupCorrection class method)

 	(pynlpl.formats.folia.TextMarkupError class method)

 	(pynlpl.formats.folia.TextMarkupGap class method)

 	(pynlpl.formats.folia.TextMarkupString class method)

 	(pynlpl.formats.folia.TextMarkupStyle class method)

 	(pynlpl.formats.folia.TimeSegment class method)

 	(pynlpl.formats.folia.TimingLayer class method)

 	(pynlpl.formats.folia.Whitespace class method)

 	(pynlpl.formats.folia.Word class method)

 	addidsuffix() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	addtoindex() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	alias() (pynlpl.formats.folia.Document method)

 	align() (pynlpl.formats.taggerdata.Taggerdata method)

 	Alignment (class in pynlpl.formats.folia)

 	AlignReference (class in pynlpl.formats.folia)

 	AllowTokenAnnotation (class in pynlpl.formats.folia)

 	Alternative (class in pynlpl.formats.folia)

 	AlternativeLayers (class in pynlpl.formats.folia)

 	alternatives() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AllowTokenAnnotation method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	ancestor() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	
 	ancestors() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	annotation() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AllowTokenAnnotation method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	annotations() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AllowTokenAnnotation method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	ANNOTATIONTYPE (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	append() (pynlpl.datatypes.FIFOQueue method)

 	(pynlpl.datatypes.PriorityQueue method)

 	(pynlpl.datatypes.Tree method)

 	(pynlpl.datatypes.Trie method)

 	(pynlpl.evaluation.ClassEvaluation method)

 	(pynlpl.evaluation.ExperimentPool method)

 	(pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.Document method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	(pynlpl.lm.lm.SimpleLanguageModel method)

 	(pynlpl.statistics.FrequencyList method)

 	ARPALanguageModel (class in pynlpl.lm.lm)

 	ARPALanguageModel.NgramsProbs (class in pynlpl.lm.lm)

 	auc() (in module pynlpl.evaluation)

 	(pynlpl.evaluation.ClassEvaluation method)

 	AUTH (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	AUTO_GENERATE_ID (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

B

 	
 	b() (in module pynlpl.common)

 	backoff() (pynlpl.lm.lm.ARPALanguageModel.NgramsProbs method)

 	BeamedBestFirstSearch (class in pynlpl.search)

 	BeamSearch (class in pynlpl.search)

 	
 	BegindatetimeFeature (class in pynlpl.formats.folia)

 	BestFirstSearch (class in pynlpl.search)

 	binary_search() (in module pynlpl.search)

 	BreadthFirstSearch (class in pynlpl.search)

C

 	
 	calculate_overlap() (in module pynlpl.textprocessors)

 	caption() (pynlpl.formats.folia.Figure method)

 	Cell (class in pynlpl.formats.folia)

 	Chunk (class in pynlpl.formats.folia)

 	ChunkingLayer (class in pynlpl.formats.folia)

 	ClassEvaluation (class in pynlpl.evaluation)

 	close() (pynlpl.formats.taggerdata.Taggerdata method)

 	communicates() (pynlpl.statistics.MarkovChain method)

 	compute() (pynlpl.evaluation.ClassEvaluation method)

 	(pynlpl.evaluation.OrdinalEvaluation method)

 	ConfusionMatrix (class in pynlpl.evaluation)

 	confusionmatrix() (pynlpl.evaluation.ClassEvaluation method)

 	content() (pynlpl.formats.folia.Gap method)

 	context() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	copy() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	copychildren() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	
 	CoreferenceChain (class in pynlpl.formats.folia)

 	CoreferenceLayer (class in pynlpl.formats.folia)

 	CoreferenceLink (class in pynlpl.formats.folia)

 	Corpus (class in pynlpl.formats.sonar)

 	CorpusDocument (class in pynlpl.formats.sonar)

 	CorpusDocumentX (class in pynlpl.formats.sonar)

 	CorpusFiles (class in pynlpl.formats.sonar)

 	CorpusX (class in pynlpl.formats.sonar)

 	correct() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AllowTokenAnnotation method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	Correction (class in pynlpl.formats.folia)

 	corrections() (pynlpl.formats.folia.Sentence method)

 	correctwords() (pynlpl.formats.folia.Sentence method)

 	count() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.Document method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	(pynlpl.statistics.FrequencyList method)

 	create() (pynlpl.formats.folia.Document method)

 	crude_tokenizer() (in module pynlpl.textprocessors)

 	Current (class in pynlpl.formats.folia)

 	current() (pynlpl.formats.folia.Correction method)

D

 	
 	date() (pynlpl.formats.folia.Document method)

 	declare() (pynlpl.formats.folia.Document method)

 	declared() (pynlpl.formats.folia.Document method)

 	deepvalidation() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	defaultannotator() (pynlpl.formats.folia.Document method)

 	defaultannotatortype() (pynlpl.formats.folia.Document method)

 	defaultdatetime() (pynlpl.formats.folia.Document method)

 	defaultparameters() (pynlpl.evaluation.AbstractExperiment method)

 	defaultset() (pynlpl.formats.folia.Document method)

 	Definition (class in pynlpl.formats.folia)

 	delete() (pynlpl.evaluation.AbstractExperiment method)

 	deleteword() (pynlpl.formats.folia.Sentence method)

 	DependenciesLayer (class in pynlpl.formats.folia)

 	Dependency (class in pynlpl.formats.folia)

 	DependencyDependent (class in pynlpl.formats.folia)

 	dependent() (pynlpl.formats.folia.Dependency method)

 	
 	depth() (pynlpl.datatypes.Trie method)

 	(pynlpl.search.AbstractSearchState method)

 	DepthFirstSearch (class in pynlpl.search)

 	Description (class in pynlpl.formats.folia)

 	description() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	dict() (pynlpl.statistics.FrequencyList method)

 	Distribution (class in pynlpl.statistics)

 	Division (class in pynlpl.formats.folia)

 	division() (pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Word method)

 	Document (class in pynlpl.formats.folia)

 	domain() (pynlpl.formats.folia.Word method)

 	DomainAnnotation (class in pynlpl.formats.folia)

 	done() (pynlpl.evaluation.AbstractExperiment method)

 	dotproduct() (in module pynlpl.statistics)

 	duration() (pynlpl.evaluation.AbstractExperiment method)

E

 	
 	EarlyEagerBeamSearch (class in pynlpl.search)

 	EnddatetimeFeature (class in pynlpl.formats.folia)

 	EntitiesLayer (class in pynlpl.formats.folia)

 	Entity (class in pynlpl.formats.folia)

 	entropy() (pynlpl.statistics.Distribution method)

 	Entry (class in pynlpl.formats.folia)

 	Enum() (in module pynlpl.common)

 	
 	ErrorDetection (class in pynlpl.formats.folia)

 	Event (class in pynlpl.formats.folia)

 	Example (class in pynlpl.formats.folia)

 	expand() (pynlpl.search.AbstractSearchState method)

 	ExperimentPool (class in pynlpl.evaluation)

 	extend() (pynlpl.datatypes.FIFOQueue method)

 	(pynlpl.datatypes.Queue method)

F

 	
 	feat() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	Feature (class in pynlpl.formats.folia)

 	FIFOQueue (class in pynlpl.datatypes)

 	Figure (class in pynlpl.formats.folia)

 	filesampler() (in module pynlpl.evaluation)

 	find() (pynlpl.datatypes.Trie method)

 	find_keyword_in_context() (in module pynlpl.textprocessors)

 	findcorrectionhandling() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	
 	finddefaultreference() (pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.TextContent method)

 	findreplaceables() (pynlpl.formats.folia.AbstractAnnotationLayer class method)

 	(pynlpl.formats.folia.AbstractElement class method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation class method)

 	(pynlpl.formats.folia.AbstractStructureElement class method)

 	(pynlpl.formats.folia.AbstractTextMarkup class method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation class method)

 	(pynlpl.formats.folia.ActorFeature class method)

 	(pynlpl.formats.folia.AlignReference class method)

 	(pynlpl.formats.folia.Alignment class method)

 	(pynlpl.formats.folia.Alternative class method)

 	(pynlpl.formats.folia.AlternativeLayers class method)

 	(pynlpl.formats.folia.BegindatetimeFeature class method)

 	(pynlpl.formats.folia.Cell class method)

 	(pynlpl.formats.folia.Chunk class method)

 	(pynlpl.formats.folia.ChunkingLayer class method)

 	(pynlpl.formats.folia.CoreferenceChain class method)

 	(pynlpl.formats.folia.CoreferenceLayer class method)

 	(pynlpl.formats.folia.CoreferenceLink class method)

 	(pynlpl.formats.folia.Correction class method)

 	(pynlpl.formats.folia.Current class method)

 	(pynlpl.formats.folia.Definition class method)

 	(pynlpl.formats.folia.DependenciesLayer class method)

 	(pynlpl.formats.folia.Dependency class method)

 	(pynlpl.formats.folia.DependencyDependent class method)

 	(pynlpl.formats.folia.Description class method)

 	(pynlpl.formats.folia.Division class method)

 	(pynlpl.formats.folia.DomainAnnotation class method)

 	(pynlpl.formats.folia.EnddatetimeFeature class method)

 	(pynlpl.formats.folia.EntitiesLayer class method)

 	(pynlpl.formats.folia.Entity class method)

 	(pynlpl.formats.folia.Entry class method)

 	(pynlpl.formats.folia.ErrorDetection class method)

 	(pynlpl.formats.folia.Event class method)

 	(pynlpl.formats.folia.Example class method)

 	(pynlpl.formats.folia.Feature class method)

 	(pynlpl.formats.folia.Figure class method)

 	(pynlpl.formats.folia.Gap class method)

 	(pynlpl.formats.folia.Head class method)

 	(pynlpl.formats.folia.Headspan class method)

 	(pynlpl.formats.folia.LangAnnotation class method)

 	(pynlpl.formats.folia.LemmaAnnotation class method)

 	(pynlpl.formats.folia.Linebreak class method)

 	(pynlpl.formats.folia.List class method)

 	(pynlpl.formats.folia.ListItem class method)

 	(pynlpl.formats.folia.Metric class method)

 	(pynlpl.formats.folia.New class method)

 	(pynlpl.formats.folia.Note class method)

 	(pynlpl.formats.folia.Observation class method)

 	(pynlpl.formats.folia.ObservationLayer class method)

 	(pynlpl.formats.folia.Original class method)

 	(pynlpl.formats.folia.Paragraph class method)

 	(pynlpl.formats.folia.Part class method)

 	(pynlpl.formats.folia.PhonContent class method)

 	(pynlpl.formats.folia.PosAnnotation class method)

 	(pynlpl.formats.folia.Predicate class method)

 	(pynlpl.formats.folia.Quote class method)

 	(pynlpl.formats.folia.Reference class method)

 	(pynlpl.formats.folia.Row class method)

 	(pynlpl.formats.folia.SemanticRole class method)

 	(pynlpl.formats.folia.SemanticRolesLayer class method)

 	(pynlpl.formats.folia.SenseAnnotation class method)

 	(pynlpl.formats.folia.Sentence class method)

 	(pynlpl.formats.folia.Sentiment class method)

 	(pynlpl.formats.folia.SentimentLayer class method)

 	(pynlpl.formats.folia.Statement class method)

 	(pynlpl.formats.folia.StatementLayer class method)

 	(pynlpl.formats.folia.SubjectivityAnnotation class method)

 	(pynlpl.formats.folia.Suggestion class method)

 	(pynlpl.formats.folia.SynsetFeature class method)

 	(pynlpl.formats.folia.SyntacticUnit class method)

 	(pynlpl.formats.folia.SyntaxLayer class method)

 	(pynlpl.formats.folia.Table class method)

 	(pynlpl.formats.folia.TableHead class method)

 	(pynlpl.formats.folia.Term class method)

 	(pynlpl.formats.folia.Text class method)

 	(pynlpl.formats.folia.TextContent class method)

 	(pynlpl.formats.folia.TextMarkupCorrection class method)

 	(pynlpl.formats.folia.TextMarkupError class method)

 	(pynlpl.formats.folia.TextMarkupGap class method)

 	(pynlpl.formats.folia.TextMarkupString class method)

 	(pynlpl.formats.folia.TextMarkupStyle class method)

 	(pynlpl.formats.folia.TimeSegment class method)

 	(pynlpl.formats.folia.TimingLayer class method)

 	(pynlpl.formats.folia.Whitespace class method)

 	(pynlpl.formats.folia.Word class method)

 	findspan() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.TimingLayer method)

 	findspans() (pynlpl.formats.folia.Word method)

 	findwords() (pynlpl.formats.folia.Document method)

 	(pynlpl.formats.folia.Reader method)

 	fp_rate() (pynlpl.evaluation.ClassEvaluation method)

 	FrequencyList (class in pynlpl.statistics)

 	fromstring() (pynlpl.datatypes.Pattern static method)

 	fscore() (pynlpl.evaluation.ClassEvaluation method)

G

 	
 	Gap (class in pynlpl.formats.folia)

 	generate_id() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	getalignedtarget() (pynlpl.formats.giza.GizaSentenceAlignment method)

 	getcorrection() (pynlpl.formats.folia.Word method)

 	getcorrections() (pynlpl.formats.folia.Word method)

 	getindex() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	getmetadata() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	
 	getreference() (pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.TextContent method)

 	gettextdelimiter() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	GizaModel (class in pynlpl.formats.giza)

 	GizaSentenceAlignment (class in pynlpl.formats.giza)

H

 	
 	hasannotation() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AllowTokenAnnotation method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	hasannotationlayer() (pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	hascurrent() (pynlpl.formats.folia.Correction method)

 	hasnew() (pynlpl.formats.folia.Correction method)

 	hasoriginal() (pynlpl.formats.folia.Correction method)

 	hasphon() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	
 	hassuggestions() (pynlpl.formats.folia.Correction method)

 	hastext() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	Head (class in pynlpl.formats.folia)

 	head() (pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.Division method)

 	Headspan (class in pynlpl.formats.folia)

 	HiddenMarkovModel (class in pynlpl.statistics)

 	HillClimbingSearch (class in pynlpl.search)

 	histogram() (in module pynlpl.statistics)

I

 	
 	incorrection() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	information() (pynlpl.statistics.Distribution method)

 	initdoc() (pynlpl.formats.folia.Reader method)

 	insert() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	
 	insertword() (pynlpl.formats.folia.Sentence method)

 	insertwordleft() (pynlpl.formats.folia.Sentence method)

 	intersect() (pynlpl.formats.giza.GizaSentenceAlignment method)

 	IntersectionAlignment (class in pynlpl.formats.giza)

 	InvalidFeatureException

 	InvalidTagException

 	is_end_of_sentence() (in module pynlpl.textprocessors)

 	isstring() (in module pynlpl.common)

 	items() (pynlpl.datatypes.PatternMap method)

 	(pynlpl.datatypes.Trie method)

 	(pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.Document method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	(pynlpl.statistics.Distribution method)

 	(pynlpl.statistics.FrequencyList method)

 	IterativeDeepening (class in pynlpl.search)

 	iterbytes() (pynlpl.datatypes.Pattern method)

J

 	
 	json() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.Document method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	
 	jsondeclarations() (pynlpl.formats.folia.Document method)

K

 	
 	keys() (pynlpl.statistics.Distribution method)

L

 	
 	LABEL (pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	LangAnnotation (class in pynlpl.formats.folia)

 	language() (pynlpl.formats.folia.Document method)

 	layers() (pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	leaf() (pynlpl.datatypes.Tree method)

 	(pynlpl.datatypes.Trie method)

 	leftcontext() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	
 	lemma() (pynlpl.formats.folia.Word method)

 	LemmaAnnotation (class in pynlpl.formats.folia)

 	levenshtein() (in module pynlpl.statistics)

 	license() (pynlpl.formats.folia.Document method)

 	Linebreak (class in pynlpl.formats.folia)

 	List (class in pynlpl.formats.folia)

 	ListItem (class in pynlpl.formats.folia)

 	LMClient (class in pynlpl.lm.client)

 	load() (pynlpl.formats.folia.Document method)

 	(pynlpl.lm.lm.SimpleLanguageModel method)

 	(pynlpl.statistics.FrequencyList method)

 	log() (in module pynlpl.common)

 	log2() (in module pynlpl.statistics)

 	logscore() (pynlpl.lm.srilm.SRILM method)

M

 	
 	mae() (in module pynlpl.evaluation)

 	(pynlpl.evaluation.OrdinalEvaluation method)

 	MarkovChain (class in pynlpl.statistics)

 	maxentropy() (pynlpl.statistics.Distribution method)

 	mean() (in module pynlpl.statistics)

 	median() (in module pynlpl.statistics)

 	mergewords() (pynlpl.formats.folia.Sentence method)

 	
 	Metric (class in pynlpl.formats.folia)

 	mode() (in module pynlpl.statistics)

 	(pynlpl.statistics.Distribution method)

 	(pynlpl.statistics.FrequencyList method)

 	morpheme() (pynlpl.formats.folia.Word method)

 	morphemes() (pynlpl.formats.folia.Word method)

 	MultiWindower (class in pynlpl.textprocessors)

 	MultiWordAlignment (class in pynlpl.formats.giza)

N

 	
 	New (class in pynlpl.formats.folia)

 	new() (pynlpl.formats.folia.Correction method)

 	next() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	(pynlpl.formats.taggerdata.Taggerdata method)

 	
 	normalize() (in module pynlpl.statistics)

 	Note (class in pynlpl.formats.folia)

 	ns() (in module pynlpl.formats.sonar)

O

 	
 	Observation (class in pynlpl.formats.folia)

 	ObservationLayer (class in pynlpl.formats.folia)

 	OCCURRENCES (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	OCCURRENCES_PER_SET (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	OPTIONAL_ATTRIBS (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	
 	OrdinalEvaluation (class in pynlpl.evaluation)

 	Original (class in pynlpl.formats.folia)

 	original() (pynlpl.formats.folia.Correction method)

 	originaltext() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	output() (pynlpl.statistics.Distribution method)

 	(pynlpl.statistics.FrequencyList method)

 	outputmetrics() (pynlpl.evaluation.ClassEvaluation method)

P

 	
 	p() (pynlpl.statistics.FrequencyList method)

 	(pynlpl.statistics.MarkovChain method)

 	Paragraph (class in pynlpl.formats.folia)

 	paragraph() (pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Word method)

 	paragraphs() (pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.Document method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	(pynlpl.formats.sonar.CorpusDocument method)

 	(pynlpl.formats.sonar.CorpusDocumentX method)

 	ParamSearch (class in pynlpl.evaluation)

 	parse() (pynlpl.formats.fql.Query method)

 	parse_cgn_postag() (in module pynlpl.formats.cgn)

 	parseAlignment() (in module pynlpl.formats.giza)

 	parseDistribution() (pynlpl.formats.timbl.TimblOutput method)

 	parsemetadata() (pynlpl.formats.folia.Document method)

 	parsesubmetadata() (pynlpl.formats.folia.Document method)

 	parsexml() (pynlpl.formats.folia.AbstractAnnotationLayer class method)

 	(pynlpl.formats.folia.AbstractElement class method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation class method)

 	(pynlpl.formats.folia.AbstractStructureElement class method)

 	(pynlpl.formats.folia.AbstractTextMarkup class method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation class method)

 	(pynlpl.formats.folia.ActorFeature class method)

 	(pynlpl.formats.folia.AlignReference class method)

 	(pynlpl.formats.folia.Alignment class method)

 	(pynlpl.formats.folia.Alternative class method)

 	(pynlpl.formats.folia.AlternativeLayers class method)

 	(pynlpl.formats.folia.BegindatetimeFeature class method)

 	(pynlpl.formats.folia.Cell class method)

 	(pynlpl.formats.folia.Chunk class method)

 	(pynlpl.formats.folia.ChunkingLayer class method)

 	(pynlpl.formats.folia.CoreferenceChain class method)

 	(pynlpl.formats.folia.CoreferenceLayer class method)

 	(pynlpl.formats.folia.CoreferenceLink class method)

 	(pynlpl.formats.folia.Correction class method)

 	(pynlpl.formats.folia.Current class method)

 	(pynlpl.formats.folia.Definition class method)

 	(pynlpl.formats.folia.DependenciesLayer class method)

 	(pynlpl.formats.folia.Dependency class method)

 	(pynlpl.formats.folia.DependencyDependent class method)

 	(pynlpl.formats.folia.Description class method)

 	(pynlpl.formats.folia.Division class method)

 	(pynlpl.formats.folia.Document method)

 	(pynlpl.formats.folia.DomainAnnotation class method)

 	(pynlpl.formats.folia.EnddatetimeFeature class method)

 	(pynlpl.formats.folia.EntitiesLayer class method)

 	(pynlpl.formats.folia.Entity class method)

 	(pynlpl.formats.folia.Entry class method)

 	(pynlpl.formats.folia.ErrorDetection class method)

 	(pynlpl.formats.folia.Event class method)

 	(pynlpl.formats.folia.Example class method)

 	(pynlpl.formats.folia.Feature class method)

 	(pynlpl.formats.folia.Figure class method)

 	(pynlpl.formats.folia.Gap class method)

 	(pynlpl.formats.folia.Head class method)

 	(pynlpl.formats.folia.Headspan class method)

 	(pynlpl.formats.folia.LangAnnotation class method)

 	(pynlpl.formats.folia.LemmaAnnotation class method)

 	(pynlpl.formats.folia.Linebreak class method)

 	(pynlpl.formats.folia.List class method)

 	(pynlpl.formats.folia.ListItem class method)

 	(pynlpl.formats.folia.Metric class method)

 	(pynlpl.formats.folia.New class method)

 	(pynlpl.formats.folia.Note class method)

 	(pynlpl.formats.folia.Observation class method)

 	(pynlpl.formats.folia.ObservationLayer class method)

 	(pynlpl.formats.folia.Original class method)

 	(pynlpl.formats.folia.Paragraph class method)

 	(pynlpl.formats.folia.Part class method)

 	(pynlpl.formats.folia.PhonContent class method)

 	(pynlpl.formats.folia.PosAnnotation class method)

 	(pynlpl.formats.folia.Predicate class method)

 	(pynlpl.formats.folia.Quote class method)

 	(pynlpl.formats.folia.Reference class method)

 	(pynlpl.formats.folia.Row class method)

 	(pynlpl.formats.folia.SemanticRole class method)

 	(pynlpl.formats.folia.SemanticRolesLayer class method)

 	(pynlpl.formats.folia.SenseAnnotation class method)

 	(pynlpl.formats.folia.Sentence class method)

 	(pynlpl.formats.folia.Sentiment class method)

 	(pynlpl.formats.folia.SentimentLayer class method)

 	(pynlpl.formats.folia.Statement class method)

 	(pynlpl.formats.folia.StatementLayer class method)

 	(pynlpl.formats.folia.SubjectivityAnnotation class method)

 	(pynlpl.formats.folia.Suggestion class method)

 	(pynlpl.formats.folia.SynsetFeature class method)

 	(pynlpl.formats.folia.SyntacticUnit class method)

 	(pynlpl.formats.folia.SyntaxLayer class method)

 	(pynlpl.formats.folia.Table class method)

 	(pynlpl.formats.folia.TableHead class method)

 	(pynlpl.formats.folia.Term class method)

 	(pynlpl.formats.folia.Text class method)

 	(pynlpl.formats.folia.TextContent class method)

 	(pynlpl.formats.folia.TextMarkupCorrection class method)

 	(pynlpl.formats.folia.TextMarkupError class method)

 	(pynlpl.formats.folia.TextMarkupGap class method)

 	(pynlpl.formats.folia.TextMarkupString class method)

 	(pynlpl.formats.folia.TextMarkupStyle class method)

 	(pynlpl.formats.folia.TimeSegment class method)

 	(pynlpl.formats.folia.TimingLayer class method)

 	(pynlpl.formats.folia.Whitespace class method)

 	(pynlpl.formats.folia.Word class method)

 	parsexmldeclarations() (pynlpl.formats.folia.Document method)

 	Part (class in pynlpl.formats.folia)

 	path() (pynlpl.datatypes.Trie method)

 	(pynlpl.search.AbstractSearchState method)

 	pathcost() (pynlpl.search.AbstractSearchState method)

 	Pattern (class in pynlpl.datatypes)

 	PatternMap (class in pynlpl.datatypes)

 	PatternSet (class in pynlpl.datatypes)

 	pendingvalidation() (pynlpl.formats.folia.Document method)

 	perplexity() (pynlpl.statistics.Distribution method)

 	phon() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	PHONCONTAINER (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	PhonContent (class in pynlpl.formats.folia)

 	phoncontent() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	
 	phoneme() (pynlpl.formats.folia.Word method)

 	phonemes() (pynlpl.formats.folia.Word method)

 	PhraseTable (class in pynlpl.formats.moses)

 	PhraseTableClient (class in pynlpl.formats.moses)

 	poll() (pynlpl.evaluation.ExperimentPool method)

 	pop() (pynlpl.datatypes.FIFOQueue method)

 	(pynlpl.datatypes.PriorityQueue method)

 	pos() (pynlpl.formats.folia.Word method)

 	PosAnnotation (class in pynlpl.formats.folia)

 	poslog() (pynlpl.statistics.Distribution method)

 	postappend() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	precision() (pynlpl.evaluation.ClassEvaluation method)

 	Predicate (class in pynlpl.formats.folia)

 	previous() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	PRIMARYELEMENT (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	print_dptable() (pynlpl.statistics.HiddenMarkovModel method)

 	PRINTABLE (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	PriorityQueue (class in pynlpl.datatypes)

 	prob() (pynlpl.lm.lm.ARPALanguageModel.NgramsProbs method)

 	ProcessFailed

 	product() (in module pynlpl.statistics)

 	prune() (pynlpl.datatypes.PriorityQueue method)

 	(pynlpl.search.AbstractSearch method)

 	(pynlpl.search.BeamedBestFirstSearch method)

 	(pynlpl.search.EarlyEagerBeamSearch method)

 	(pynlpl.search.StochasticBeamSearch method)

 	prunebyscore() (pynlpl.datatypes.PriorityQueue method)

 	publisher() (pynlpl.formats.folia.Document method)

 	pynlpl.common (module)

 	pynlpl.datatypes (module)

 	pynlpl.evaluation (module)

 	pynlpl.formats.cgn (module)

 	pynlpl.formats.folia (module)

 	pynlpl.formats.giza (module)

 	pynlpl.formats.moses (module)

 	pynlpl.formats.sonar (module)

 	pynlpl.formats.taggerdata (module)

 	pynlpl.formats.timbl (module)

 	pynlpl.lm.client (module)

 	pynlpl.lm.lm (module)

 	pynlpl.lm.srilm (module)

 	pynlpl.search (module)

 	pynlpl.statistics (module)

 	pynlpl.textprocessors (module)

Q

 	
 	Query (class in pynlpl.formats.fql)

 	
 	Queue (class in pynlpl.datatypes)

 	Quote (class in pynlpl.formats.folia)

R

 	
 	randomprune() (pynlpl.datatypes.PriorityQueue method)

 	Reader (class in pynlpl.formats.folia)

 	recall() (pynlpl.evaluation.ClassEvaluation method)

 	reducible() (pynlpl.statistics.MarkovChain method)

 	Reference (class in pynlpl.formats.folia)

 	ReflowText (class in pynlpl.textprocessors)

 	relaxng() (pynlpl.formats.folia.AbstractAnnotationLayer class method)

 	(pynlpl.formats.folia.AbstractElement class method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation class method)

 	(pynlpl.formats.folia.AbstractStructureElement class method)

 	(pynlpl.formats.folia.AbstractTextMarkup class method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation class method)

 	(pynlpl.formats.folia.ActorFeature class method)

 	(pynlpl.formats.folia.AlignReference class method)

 	(pynlpl.formats.folia.Alignment class method)

 	(pynlpl.formats.folia.Alternative class method)

 	(pynlpl.formats.folia.AlternativeLayers class method)

 	(pynlpl.formats.folia.BegindatetimeFeature class method)

 	(pynlpl.formats.folia.Cell class method)

 	(pynlpl.formats.folia.Chunk class method)

 	(pynlpl.formats.folia.ChunkingLayer class method)

 	(pynlpl.formats.folia.CoreferenceChain class method)

 	(pynlpl.formats.folia.CoreferenceLayer class method)

 	(pynlpl.formats.folia.CoreferenceLink class method)

 	(pynlpl.formats.folia.Correction class method)

 	(pynlpl.formats.folia.Current class method)

 	(pynlpl.formats.folia.Definition class method)

 	(pynlpl.formats.folia.DependenciesLayer class method)

 	(pynlpl.formats.folia.Dependency class method)

 	(pynlpl.formats.folia.DependencyDependent class method)

 	(pynlpl.formats.folia.Description class method)

 	(pynlpl.formats.folia.Division class method)

 	(pynlpl.formats.folia.DomainAnnotation class method)

 	(pynlpl.formats.folia.EnddatetimeFeature class method)

 	(pynlpl.formats.folia.EntitiesLayer class method)

 	(pynlpl.formats.folia.Entity class method)

 	(pynlpl.formats.folia.Entry class method)

 	(pynlpl.formats.folia.ErrorDetection class method)

 	(pynlpl.formats.folia.Event class method)

 	(pynlpl.formats.folia.Example class method)

 	(pynlpl.formats.folia.Feature class method)

 	(pynlpl.formats.folia.Figure class method)

 	(pynlpl.formats.folia.Gap class method)

 	(pynlpl.formats.folia.Head class method)

 	(pynlpl.formats.folia.Headspan class method)

 	(pynlpl.formats.folia.LangAnnotation class method)

 	(pynlpl.formats.folia.LemmaAnnotation class method)

 	(pynlpl.formats.folia.Linebreak class method)

 	(pynlpl.formats.folia.List class method)

 	(pynlpl.formats.folia.ListItem class method)

 	(pynlpl.formats.folia.Metric class method)

 	(pynlpl.formats.folia.New class method)

 	(pynlpl.formats.folia.Note class method)

 	(pynlpl.formats.folia.Observation class method)

 	(pynlpl.formats.folia.ObservationLayer class method)

 	(pynlpl.formats.folia.Original class method)

 	(pynlpl.formats.folia.Paragraph class method)

 	(pynlpl.formats.folia.Part class method)

 	(pynlpl.formats.folia.PhonContent class method)

 	(pynlpl.formats.folia.PosAnnotation class method)

 	(pynlpl.formats.folia.Predicate class method)

 	(pynlpl.formats.folia.Quote class method)

 	(pynlpl.formats.folia.Reference class method)

 	(pynlpl.formats.folia.Row class method)

 	(pynlpl.formats.folia.SemanticRole class method)

 	(pynlpl.formats.folia.SemanticRolesLayer class method)

 	(pynlpl.formats.folia.SenseAnnotation class method)

 	(pynlpl.formats.folia.Sentence class method)

 	(pynlpl.formats.folia.Sentiment class method)

 	(pynlpl.formats.folia.SentimentLayer class method)

 	(pynlpl.formats.folia.Statement class method)

 	(pynlpl.formats.folia.StatementLayer class method)

 	(pynlpl.formats.folia.SubjectivityAnnotation class method)

 	(pynlpl.formats.folia.Suggestion class method)

 	(pynlpl.formats.folia.SynsetFeature class method)

 	(pynlpl.formats.folia.SyntacticUnit class method)

 	(pynlpl.formats.folia.SyntaxLayer class method)

 	(pynlpl.formats.folia.Table class method)

 	(pynlpl.formats.folia.TableHead class method)

 	(pynlpl.formats.folia.Term class method)

 	(pynlpl.formats.folia.Text class method)

 	(pynlpl.formats.folia.TextContent class method)

 	(pynlpl.formats.folia.TextMarkupCorrection class method)

 	(pynlpl.formats.folia.TextMarkupError class method)

 	(pynlpl.formats.folia.TextMarkupGap class method)

 	(pynlpl.formats.folia.TextMarkupString class method)

 	(pynlpl.formats.folia.TextMarkupStyle class method)

 	(pynlpl.formats.folia.TimeSegment class method)

 	(pynlpl.formats.folia.TimingLayer class method)

 	(pynlpl.formats.folia.Whitespace class method)

 	(pynlpl.formats.folia.Word class method)

 	remove() (pynlpl.datatypes.PatternSet method)

 	(pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	replace() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	REQUIRED_ATTRIBS (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	
 	REQUIRED_DATA (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	reset() (pynlpl.formats.giza.IntersectionAlignment method)

 	(pynlpl.formats.giza.MultiWordAlignment method)

 	(pynlpl.formats.giza.WordAlignment method)

 	(pynlpl.formats.taggerdata.Taggerdata method)

 	(pynlpl.search.AbstractSearch method)

 	resolve() (pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	resolveword() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	rightcontext() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	rmse() (in module pynlpl.evaluation)

 	(pynlpl.evaluation.OrdinalEvaluation method)

 	root() (pynlpl.datatypes.Trie method)

 	Row (class in pynlpl.formats.folia)

 	run() (pynlpl.evaluation.AbstractExperiment method)

 	(pynlpl.evaluation.ExperimentPool method)

S

 	
 	sample() (pynlpl.evaluation.AbstractExperiment method)

 	save() (pynlpl.formats.folia.Document method)

 	(pynlpl.formats.sonar.CorpusDocumentX method)

 	(pynlpl.lm.lm.SimpleLanguageModel method)

 	(pynlpl.statistics.FrequencyList method)

 	score() (pynlpl.datatypes.PriorityQueue method)

 	(pynlpl.evaluation.AbstractExperiment method)

 	(pynlpl.lm.lm.ARPALanguageModel method)

 	(pynlpl.search.AbstractSearchState method)

 	scoresentence() (pynlpl.lm.client.LMClient method)

 	(pynlpl.lm.lm.SimpleLanguageModel method)

 	(pynlpl.lm.srilm.SRILM method)

 	scoreword() (pynlpl.lm.lm.ARPALanguageModel method)

 	searchall() (pynlpl.search.AbstractSearch method)

 	searchbest() (pynlpl.evaluation.WPSParamSearch method)

 	(pynlpl.search.AbstractSearch method)

 	searchfirst() (pynlpl.search.AbstractSearch method)

 	searchlast() (pynlpl.search.AbstractSearch method)

 	searchtop() (pynlpl.search.AbstractSearch method)

 	select() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.Document method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	SemanticRole (class in pynlpl.formats.folia)

 	SemanticRolesLayer (class in pynlpl.formats.folia)

 	sense() (pynlpl.formats.folia.Word method)

 	SenseAnnotation (class in pynlpl.formats.folia)

 	Sentence (class in pynlpl.formats.folia)

 	sentence() (pynlpl.formats.folia.Word method)

 	sentences() (pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.Document method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	(pynlpl.formats.sonar.CorpusDocument method)

 	(pynlpl.formats.sonar.CorpusDocumentX method)

 	Sentiment (class in pynlpl.formats.folia)

 	SentimentLayer (class in pynlpl.formats.folia)

 	sequence() (pynlpl.datatypes.Trie method)

 	setdoc() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	setdocument() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	setemission() (pynlpl.statistics.HiddenMarkovModel method)

 	setimdi() (pynlpl.formats.folia.Document method)

 	SETONLY (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	setparents() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	setphon() (pynlpl.formats.folia.PhonContent method)

 	setspan() (pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.TimeSegment method)

 	settext() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	
 	settransitions() (pynlpl.statistics.MarkovChain method)

 	SimpleLanguageModel (class in pynlpl.lm.lm)

 	size() (pynlpl.datatypes.Trie method)

 	(pynlpl.statistics.MarkovChain method)

 	SPEAKABLE (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	specificity() (pynlpl.evaluation.ClassEvaluation method)

 	speech_speaker() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	speech_src() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	split() (pynlpl.formats.folia.Word method)

 	split_sentences() (in module pynlpl.textprocessors)

 	splitword() (pynlpl.formats.folia.Sentence method)

 	SRILM (class in pynlpl.lm.srilm)

 	SRILMException

 	start() (pynlpl.evaluation.AbstractExperiment method)

 	(pynlpl.evaluation.ExperimentPool method)

 	startcommand() (pynlpl.evaluation.AbstractExperiment method)

 	Statement (class in pynlpl.formats.folia)

 	StatementLayer (class in pynlpl.formats.folia)

 	stddev() (in module pynlpl.statistics)

 	StochasticBeamSearch (class in pynlpl.search)

 	stochasticprune() (pynlpl.datatypes.PriorityQueue method)

 	stricttext() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	strip_accents() (in module pynlpl.textprocessors)

 	SubjectivityAnnotation (class in pynlpl.formats.folia)

 	SUBSET (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	Suggestion (class in pynlpl.formats.folia)

 	suggestions() (pynlpl.formats.folia.Correction method)

 	sum() (pynlpl.statistics.FrequencyList method)

 	swap() (in module pynlpl.textprocessors)

 	SynsetFeature (class in pynlpl.formats.folia)

 	SyntacticUnit (class in pynlpl.formats.folia)

 	SyntaxLayer (class in pynlpl.formats.folia)

T

 	
 	Table (class in pynlpl.formats.folia)

 	TableHead (class in pynlpl.formats.folia)

 	Taggerdata (class in pynlpl.formats.taggerdata)

 	targetword() (pynlpl.formats.giza.MultiWordAlignment method)

 	(pynlpl.formats.giza.WordAlignment method)

 	targetwords() (pynlpl.formats.giza.MultiWordAlignment method)

 	Term (class in pynlpl.formats.folia)

 	test() (pynlpl.evaluation.WPSParamSearch method)

 	(pynlpl.search.AbstractSearchState method)

 	Text (class in pynlpl.formats.folia)

 	text() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.Document method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	TEXTCONTAINER (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	TextContent (class in pynlpl.formats.folia)

 	textcontent() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	TEXTDELIMITER (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	
 	TextMarkupCorrection (class in pynlpl.formats.folia)

 	TextMarkupError (class in pynlpl.formats.folia)

 	TextMarkupGap (class in pynlpl.formats.folia)

 	TextMarkupString (class in pynlpl.formats.folia)

 	TextMarkupStyle (class in pynlpl.formats.folia)

 	textvalidation() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	TimblOutput (class in pynlpl.formats.timbl)

 	TimeSegment (class in pynlpl.formats.folia)

 	TimingLayer (class in pynlpl.formats.folia)

 	title() (pynlpl.formats.folia.Document method)

 	tokenise() (in module pynlpl.textprocessors)

 	tokenize() (in module pynlpl.textprocessors)

 	Tokenizer (class in pynlpl.textprocessors)

 	tokens() (pynlpl.statistics.FrequencyList method)

 	toktext() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	tp_rate() (pynlpl.evaluation.ClassEvaluation method)

 	traversal() (pynlpl.search.AbstractSearch method)

 	(pynlpl.search.IterativeDeepening method)

 	traversalsize() (pynlpl.search.AbstractSearch method)

 	(pynlpl.search.IterativeDeepening method)

 	Tree (class in pynlpl.datatypes)

 	Trie (class in pynlpl.datatypes)

 	typetokenratio() (pynlpl.statistics.FrequencyList method)

U

 	
 	u() (in module pynlpl.common)

 	unalias() (pynlpl.formats.folia.Document method)

 	updatetext() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

V

 	
 	validate() (pynlpl.formats.sonar.CorpusDocumentX method)

 	values() (pynlpl.statistics.Distribution method)

 	(pynlpl.statistics.FrequencyList method)

 	
 	vector_add() (in module pynlpl.statistics)

 	visited() (pynlpl.search.AbstractSearch method)

 	viterbi() (pynlpl.statistics.HiddenMarkovModel method)

W

 	
 	wait() (pynlpl.evaluation.AbstractExperiment method)

 	walk() (pynlpl.datatypes.Trie method)

 	Whitespace (class in pynlpl.formats.folia)

 	Windower (class in pynlpl.textprocessors)

 	Word (class in pynlpl.formats.folia)

 	WordAlignment (class in pynlpl.formats.giza)

 	words() (pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.Document method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	(pynlpl.formats.sonar.CorpusDocument method)

 	(pynlpl.formats.sonar.CorpusDocumentX method)

 	
 	WPSParamSearch (class in pynlpl.evaluation)

 	wrefs() (pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.TimeSegment method)

 	write() (pynlpl.formats.taggerdata.Taggerdata method)

X

 	
 	XLINK (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	xml() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.Document method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	xmldeclarations() (pynlpl.formats.folia.Document method)

 	xmlmetadata() (pynlpl.formats.folia.Document method)

 	
 	xmlstring() (pynlpl.formats.folia.AbstractAnnotationLayer method)

 	(pynlpl.formats.folia.AbstractElement method)

 	(pynlpl.formats.folia.AbstractSpanAnnotation method)

 	(pynlpl.formats.folia.AbstractStructureElement method)

 	(pynlpl.formats.folia.AbstractTextMarkup method)

 	(pynlpl.formats.folia.AbstractTokenAnnotation method)

 	(pynlpl.formats.folia.ActorFeature method)

 	(pynlpl.formats.folia.AlignReference method)

 	(pynlpl.formats.folia.Alignment method)

 	(pynlpl.formats.folia.Alternative method)

 	(pynlpl.formats.folia.AlternativeLayers method)

 	(pynlpl.formats.folia.BegindatetimeFeature method)

 	(pynlpl.formats.folia.Cell method)

 	(pynlpl.formats.folia.Chunk method)

 	(pynlpl.formats.folia.ChunkingLayer method)

 	(pynlpl.formats.folia.CoreferenceChain method)

 	(pynlpl.formats.folia.CoreferenceLayer method)

 	(pynlpl.formats.folia.CoreferenceLink method)

 	(pynlpl.formats.folia.Correction method)

 	(pynlpl.formats.folia.Current method)

 	(pynlpl.formats.folia.Definition method)

 	(pynlpl.formats.folia.DependenciesLayer method)

 	(pynlpl.formats.folia.Dependency method)

 	(pynlpl.formats.folia.DependencyDependent method)

 	(pynlpl.formats.folia.Description method)

 	(pynlpl.formats.folia.Division method)

 	(pynlpl.formats.folia.Document method)

 	(pynlpl.formats.folia.DomainAnnotation method)

 	(pynlpl.formats.folia.EnddatetimeFeature method)

 	(pynlpl.formats.folia.EntitiesLayer method)

 	(pynlpl.formats.folia.Entity method)

 	(pynlpl.formats.folia.Entry method)

 	(pynlpl.formats.folia.ErrorDetection method)

 	(pynlpl.formats.folia.Event method)

 	(pynlpl.formats.folia.Example method)

 	(pynlpl.formats.folia.Feature method)

 	(pynlpl.formats.folia.Figure method)

 	(pynlpl.formats.folia.Gap method)

 	(pynlpl.formats.folia.Head method)

 	(pynlpl.formats.folia.Headspan method)

 	(pynlpl.formats.folia.LangAnnotation method)

 	(pynlpl.formats.folia.LemmaAnnotation method)

 	(pynlpl.formats.folia.Linebreak method)

 	(pynlpl.formats.folia.List method)

 	(pynlpl.formats.folia.ListItem method)

 	(pynlpl.formats.folia.Metric method)

 	(pynlpl.formats.folia.New method)

 	(pynlpl.formats.folia.Note method)

 	(pynlpl.formats.folia.Observation method)

 	(pynlpl.formats.folia.ObservationLayer method)

 	(pynlpl.formats.folia.Original method)

 	(pynlpl.formats.folia.Paragraph method)

 	(pynlpl.formats.folia.Part method)

 	(pynlpl.formats.folia.PhonContent method)

 	(pynlpl.formats.folia.PosAnnotation method)

 	(pynlpl.formats.folia.Predicate method)

 	(pynlpl.formats.folia.Quote method)

 	(pynlpl.formats.folia.Reference method)

 	(pynlpl.formats.folia.Row method)

 	(pynlpl.formats.folia.SemanticRole method)

 	(pynlpl.formats.folia.SemanticRolesLayer method)

 	(pynlpl.formats.folia.SenseAnnotation method)

 	(pynlpl.formats.folia.Sentence method)

 	(pynlpl.formats.folia.Sentiment method)

 	(pynlpl.formats.folia.SentimentLayer method)

 	(pynlpl.formats.folia.Statement method)

 	(pynlpl.formats.folia.StatementLayer method)

 	(pynlpl.formats.folia.SubjectivityAnnotation method)

 	(pynlpl.formats.folia.Suggestion method)

 	(pynlpl.formats.folia.SynsetFeature method)

 	(pynlpl.formats.folia.SyntacticUnit method)

 	(pynlpl.formats.folia.SyntaxLayer method)

 	(pynlpl.formats.folia.Table method)

 	(pynlpl.formats.folia.TableHead method)

 	(pynlpl.formats.folia.Term method)

 	(pynlpl.formats.folia.Text method)

 	(pynlpl.formats.folia.TextContent method)

 	(pynlpl.formats.folia.TextMarkupCorrection method)

 	(pynlpl.formats.folia.TextMarkupError method)

 	(pynlpl.formats.folia.TextMarkupGap method)

 	(pynlpl.formats.folia.TextMarkupString method)

 	(pynlpl.formats.folia.TextMarkupStyle method)

 	(pynlpl.formats.folia.TimeSegment method)

 	(pynlpl.formats.folia.TimingLayer method)

 	(pynlpl.formats.folia.Whitespace method)

 	(pynlpl.formats.folia.Word method)

 	XMLTAG (pynlpl.formats.folia.AbstractAnnotationLayer attribute)

 	(pynlpl.formats.folia.AbstractElement attribute)

 	(pynlpl.formats.folia.AbstractSpanAnnotation attribute)

 	(pynlpl.formats.folia.AbstractStructureElement attribute)

 	(pynlpl.formats.folia.AbstractTextMarkup attribute)

 	(pynlpl.formats.folia.AbstractTokenAnnotation attribute)

 	(pynlpl.formats.folia.ActorFeature attribute)

 	(pynlpl.formats.folia.AlignReference attribute)

 	(pynlpl.formats.folia.Alignment attribute)

 	(pynlpl.formats.folia.Alternative attribute)

 	(pynlpl.formats.folia.AlternativeLayers attribute)

 	(pynlpl.formats.folia.BegindatetimeFeature attribute)

 	(pynlpl.formats.folia.Cell attribute)

 	(pynlpl.formats.folia.Chunk attribute)

 	(pynlpl.formats.folia.ChunkingLayer attribute)

 	(pynlpl.formats.folia.CoreferenceChain attribute)

 	(pynlpl.formats.folia.CoreferenceLayer attribute)

 	(pynlpl.formats.folia.CoreferenceLink attribute)

 	(pynlpl.formats.folia.Correction attribute)

 	(pynlpl.formats.folia.Current attribute)

 	(pynlpl.formats.folia.Definition attribute)

 	(pynlpl.formats.folia.DependenciesLayer attribute)

 	(pynlpl.formats.folia.Dependency attribute)

 	(pynlpl.formats.folia.DependencyDependent attribute)

 	(pynlpl.formats.folia.Description attribute)

 	(pynlpl.formats.folia.Division attribute)

 	(pynlpl.formats.folia.DomainAnnotation attribute)

 	(pynlpl.formats.folia.EnddatetimeFeature attribute)

 	(pynlpl.formats.folia.EntitiesLayer attribute)

 	(pynlpl.formats.folia.Entity attribute)

 	(pynlpl.formats.folia.Entry attribute)

 	(pynlpl.formats.folia.ErrorDetection attribute)

 	(pynlpl.formats.folia.Event attribute)

 	(pynlpl.formats.folia.Example attribute)

 	(pynlpl.formats.folia.Feature attribute)

 	(pynlpl.formats.folia.Figure attribute)

 	(pynlpl.formats.folia.Gap attribute)

 	(pynlpl.formats.folia.Head attribute)

 	(pynlpl.formats.folia.Headspan attribute)

 	(pynlpl.formats.folia.LangAnnotation attribute)

 	(pynlpl.formats.folia.LemmaAnnotation attribute)

 	(pynlpl.formats.folia.Linebreak attribute)

 	(pynlpl.formats.folia.List attribute)

 	(pynlpl.formats.folia.ListItem attribute)

 	(pynlpl.formats.folia.Metric attribute)

 	(pynlpl.formats.folia.New attribute)

 	(pynlpl.formats.folia.Note attribute)

 	(pynlpl.formats.folia.Observation attribute)

 	(pynlpl.formats.folia.ObservationLayer attribute)

 	(pynlpl.formats.folia.Original attribute)

 	(pynlpl.formats.folia.Paragraph attribute)

 	(pynlpl.formats.folia.Part attribute)

 	(pynlpl.formats.folia.PhonContent attribute)

 	(pynlpl.formats.folia.PosAnnotation attribute)

 	(pynlpl.formats.folia.Predicate attribute)

 	(pynlpl.formats.folia.Quote attribute)

 	(pynlpl.formats.folia.Reference attribute)

 	(pynlpl.formats.folia.Row attribute)

 	(pynlpl.formats.folia.SemanticRole attribute)

 	(pynlpl.formats.folia.SemanticRolesLayer attribute)

 	(pynlpl.formats.folia.SenseAnnotation attribute)

 	(pynlpl.formats.folia.Sentence attribute)

 	(pynlpl.formats.folia.Sentiment attribute)

 	(pynlpl.formats.folia.SentimentLayer attribute)

 	(pynlpl.formats.folia.Statement attribute)

 	(pynlpl.formats.folia.StatementLayer attribute)

 	(pynlpl.formats.folia.SubjectivityAnnotation attribute)

 	(pynlpl.formats.folia.Suggestion attribute)

 	(pynlpl.formats.folia.SynsetFeature attribute)

 	(pynlpl.formats.folia.SyntacticUnit attribute)

 	(pynlpl.formats.folia.SyntaxLayer attribute)

 	(pynlpl.formats.folia.Table attribute)

 	(pynlpl.formats.folia.TableHead attribute)

 	(pynlpl.formats.folia.Term attribute)

 	(pynlpl.formats.folia.Text attribute)

 	(pynlpl.formats.folia.TextContent attribute)

 	(pynlpl.formats.folia.TextMarkupCorrection attribute)

 	(pynlpl.formats.folia.TextMarkupError attribute)

 	(pynlpl.formats.folia.TextMarkupGap attribute)

 	(pynlpl.formats.folia.TextMarkupString attribute)

 	(pynlpl.formats.folia.TextMarkupStyle attribute)

 	(pynlpl.formats.folia.TimeSegment attribute)

 	(pynlpl.formats.folia.TimingLayer attribute)

 	(pynlpl.formats.folia.Whitespace attribute)

 	(pynlpl.formats.folia.Word attribute)

 	xpath() (pynlpl.formats.folia.Document method)

 	(pynlpl.formats.sonar.CorpusDocumentX method)

 nav.xhtml

 Table of Contents

 		
 Welcome to PyNLPl’s documentation!

 		
 Common Functions

 		
 Data Types

 		
 Evaluation & Experiments

 		
 FoLiA library

 		
 Reading FoLiA

 		
 Loading a document

 		
 Printing text

 		
 Index

 		
 Elements

 		
 Obtaining list of elements

 		
 Select method

 		
 Selection Shortcuts

 		
 Navigating a document

 		
 Structure Annotation Types

 		
 Common attributes

 		
 Annotations

 		
 Editing FoLiA

 		
 Creating a new document

 		
 Declarations

 		
 Adding structure

 		
 Adding annotations

 		
 Adding span annotation

 		
 Deleting annotations

 		
 Copying annotations

 		
 Searching in a FoLiA document

 		
 Corpus Query Language (CQL)

 		
 FoLiA Query Language (FQL)

 		
 Streaming Reader

 		
 Higher-Order Annotations

 		
 Text Markup

 		
 Features

 		
 Alternatives

 		
 Corrections

 		
 Alignments

 		
 Descriptions, Metrics

 		
 Metadata

 		
 Formats

 		
 Corpus Gesproken Nederlands

 		
 FoLiA

 		
 GIZA++

 		
 Moses

 		
 SoNaR

 		
 Taggerdata

 		
 TiMBL

 		
 Language Models

 		
 Search Algorithms

 		
 Statistics and Information Theory

 		
 Generic functions

 		
 Frequency Lists and Distributions

 		
 API Reference

 		
 Text Processors

 		
 Tokenisation

 		
 N-gram extraction

_static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/ajax-loader.gif

_static/comment-bright.png

