

    
      Navigation

      
        	
          index

        	
          next |

        	PyNash Coffee and Code 1.0 documentation 
 
      

    


    
      
          
            
  
Welcome to PyNash Coffee and Code’s documentation!

Contents:



	About
	How does Coffee and Code work?

	Does that mean I need to have something prepared to talk about?

	I hate “public speaking”!

	Is coffee and code kid friendly?





	Setup

	Environments
	Getting Started

	pyenv

	VirtualEnv

	VIRTUALENVWRAPPER

	PIP Enhancements












Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2014, PyNash.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	PyNash Coffee and Code 1.0 documentation 
 
      

    


    
      
          
            
  
About

PyNash Coffee and Code (C-n-C) is a “safe learning space.” In order to encourage this model, we use the full PyCon Code of Conduct [https://github.com/python/pycon-code-of-conduct/blob/master/code_of_conduct.md].
In addition to that code of conduct we are also using the Hacker School social rules [https://www.hackerschool.com/manual#sub-sec-social-rules]:



	No feigning surprise




The first rule means you shouldn’t act surprised when people say they don’t know something. This applies to both technical things (“What?! I can’t believe you don’t know what the stack is!”) and non-technical things (“You don’t know who RMS is?!”). Feigning surprise has absolutely no social or educational benefit: When people feign surprise, it’s usually to make them feel better about themselves and others feel worse. And even when that’s not the intention, it’s almost always the effect. As you’ve probably already guessed, this rule is tightly coupled to our belief in the importance of people feeling comfortable saying “I don’t know” and “I don’t understand.”



	No well-actually’s




A well-actually happens when someone says something that’s almost - but not entirely - correct, and you say, “well, actually…” and then give a minor correction. This is especially annoying when the correction has no bearing on the actual conversation. This doesn’t mean Hacker School isn’t about truth-seeking or that we don’t care about being precise. Almost all well-actually’s in our experience are about grandstanding, not truth-seeking. (Thanks to Miguel de Icaza for originally coining the term “well-actually.”)



	No back-seat driving




If you overhear people working through a problem, you shouldn’t intermittently lob advice across the room. This can lead to the “too many cooks” problem, but more important, it can be rude and disruptive to half-participate in a conversation. This isn’t to say you shouldn’t help, offer advice, or join conversations. On the contrary, we encourage all those things. Rather, it just means that when you want to help out or work with others, you should fully engage and not just butt in sporadically.



	No subtle ‘isms




Our last social rule bans subtle sexism, racism, homophobia, etc. This one is different from the rest, because it’s often not a specific, observable phenomenon (“well-actually’s” are easy to spot because they almost always start with the words, “well, actually…”).






How does Coffee and Code work?

Coffee and code is a different kind of meeting than PyNash normally does.  Everyone is the teacher and the student! Each C-n-C will be lead by a facilitator, but their main job is to set a framework for the discussion.  They aren’t there to lecture the whole time, only to demo and teach first :)

Each person will come up after the facilitator is done and demo/share a part of what they did. This is critical to retention and building confidence/trust.




Does that mean I need to have something prepared to talk about?

Nope you will demo part of something the facilitator already showed and add anything else you deem helpful.




I hate “public speaking”!

No worries so do I. But it’s a very useful skill much like coding, and this is a safe space.




Is coffee and code kid friendly?

Yes!!!







          

      

      

    


    
         Copyright 2014, PyNash.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	PyNash Coffee and Code 1.0 documentation 
 
      

    


    
      
          
            
  
Setup


	You need virtualbox installed from here [https://www.virtualbox.org/wiki/Downloads].



	You need vagrant install from here [https://www.vagrantup.com/downloads]



	Get the Vagrant virtual machine that we’ll use to work on from Github [https://github.com/pynashorg/pynash-cnc]


git clone git@github.com:pynashorg/pynash-cnc.git






	Change into that direction


cd pynash-cnc






	Next we need to download and start the vagrant box (this will take a while the first time because it has to download an ubuntu cloud image)


vagrant up






	You’re ready to go shutdown the vagrant box and cya Saturday morning!


vagrant halt












          

      

      

    


    
         Copyright 2014, PyNash.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	PyNash Coffee and Code 1.0 documentation 
 
      

    


    
      
          
            
  
Environments


Getting Started

Start the VM we’ll be working with and connect to it


vagrant up

vagrant ssh




Next, we need to make sure packages are upto date so let’s start by refreshing
the package list and then upgrading any out of date packages


sudo apt-get update

sudo apt-get upgrade







pyenv


What is pyenv?

It’s a way to build and manage multiple python versions. For example, it will
let you run python 2.5, 2.7, 3.4, pypy, etc all happily on one system. It’s
modeled after rbenv and works well with the rest of what we’re going to talk
about today.




Setting up pyenv?

First, we need to install git:


sudo apt-get install git


Next we need to clone down the pyenv repo:


git clone git://github.com/yyuu/pyenv.git .pyenv


So that we have access to pyenv we need to hook it up to our shell. In order
for this to work properly, we have to tell bash, zsh, or whatever where to look
for it.


echo ‘export PYENV_ROOT=”$HOME/.pyenv”’ >> ~/.bashrc


Now we’ll tell the shell to add it to the execution PATH list


echo ‘export PATH=”$PYENV_ROOT/bin:$PATH”’ >> ~/.bashrc


Now that we can access the pyenv files, we’re gonna call pyenv init


echo ‘eval “$(pyenv init -)”’ >> ~/.bashrc


Okay let’s restart the shell:


eval $SHELL


so now we have access to pyenv


pyenv


Now we need to install the build tools required to compile python
sudo apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm python-dev




Using pyenv?

Let’s see what python we are currently using.


pyenv versions

python –version




Let’s see what we can install


pyenv install -l


Let’s install the new goodness


pyenv install 3.4.1

pyenv rehash




Okay check the versions again


pyenv versions


Okay let’s use python 3.4.1 for our user default python


pyenv global 3.4.1

pyenv versions

python

import asyncio




Crap back to normal work...


pyenv install 2.7.8


How can I do per project versions?


mkdir -p ~/dev/tests

cd ~/dev/tests

pyenv local 2.7.8

ls -al

cat .python-version




WAIT WAT!?!
yeah that’s amazing




Extra Goodness

Sets the root for our global version


echo ‘export PYVER_ROOT=`pyenv prefix`’ >> ~/.bashrc


Set the executable path for our global version


echo ‘export PYVER_BIN=”$PYVER_ROOT/bin”’ >> ~/.bashrc







VirtualEnv

Let’s us seperate python packages into convenient environments that we can enable
and disable. This lets us do things like deal with dependancies and pin versions.


Install virtualenv


pip install virtualenv





Using virtualenv


virtualenv


WAIT WAT?!?


pyenv which python
pyenv which virtualenv
pyenv rehash





Creating an environment


virtualenv venv





Activating an environment


source venv/bin/activate


notice the prompt change


cat venv/bin/activate


Now we can install packages in this virtual environment that don’t inteerfer
with our system python or any other python apps we’re working on

Let’s install another package


pip install flask





Leaving the virtualenv


which python

pip freeze

deactivate




Notice the python and package listings


which python

pip freeze




So what is I don’t wanna use the pyenv version of python I want a different one


virtualenv –python=/opt/python-3.3/bin/python venv







VIRTUALENVWRAPPER

Makes it easier to setup and use virtualenv in a consistent manner project to
project. It also provides some great hooks for us to tie into.


Install virtualenvwrapper


pip install virtualenvwrapper


Tell virtualenvwrapper where to store virtualenvs


echo ‘export WORKON_HOME=$HOME/.virtualenv’ >> ~/.bashrc


Tell virtualenvwrapper where to store projects


echo ‘export PROJECT_HOME=$HOME/dev’ >> ~/.bashrc


Initialize virtualenvwrapper


echo ‘source $PYVER_BIN/virtualenvwrapper.sh’ >> ~/.bashrc


reinit shell


source ~/.bashrc





Using virtualenvwrapper




Listing available environments/projects


workon





Creating an environment

This creates and activates a new virtualenv but does not create a directory


mkvirtualenv cookies


Deactivating doesn’t change it’s just


deactivate





Removing an environment


rmvirtualenv cookies





Creating a project

This creates a new virtualenv and a project directory.


mkproject cookies





Removing a project is a two step process


rm -rf $PROJECT_HOME/cookies

rmvirtualenv cookies







Activating an environment or project

This will activate the environment and if a project switch to it’s directory


workon cookies





Hooks

let you add to the behavior of the virtualenvwrapper commands


cd ~/.virtualenv

ls




An example [https://github.com/jasonamyers/dotfiles-linux/blob/master/virtualenv/postmkvirtualenv]






PIP Enhancements

Pip can be so much faster than it is, but it requires just a few things done
to it first

Glyph’s pip 2014 awesomeness [http://pip2014.com/]

tweet @glyph a HUGE THANK YOU ... RIGHT NOW from PYNASH!


The pain


pip install ipython[all]





Installing Packages


pip install setuptools;

pip install wheel

pip wheel setuptools

pip wheel virtualenv

pip install virtualenv virtualenvwrapper







Setting up ENV


echo ‘export STANDARD_CACHE_DIR=”${XDG_CACHE_HOME:-${HOME}/.cache}/pip”’ >> ~/.bashrc

echo ‘export WHEELHOUSE=”${STANDARD_CACHE_DIR}/Wheelhouse”’ >> ~/.bashrc

echo ‘export PIP_USE_WHEEL=”yes”’ >> ~/.bashrc

echo ‘export PIP_DOWNLOAD_CACHE=”${STANDARD_CACHE_DIR}/Downloads”’ >> ~/.bashrc

echo ‘export PIP_FIND_LINKS=”file://${WHEELHOUSE}”’ >> ~/.bashrc

echo ‘export PIP_WHEEL_DIR=”${WHEELHOUSE}”’ >> ~/.bashrc







Using it right


pip wheel ipython

pip install ipython












          

      

      

    


    
         Copyright 2014, PyNash.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	PyNash Coffee and Code 1.0 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2014, PyNash.
      Created using Sphinx 1.3.5.
    

  _static/down.png





_static/up.png





_static/comment-close.png





_static/comment.png





_static/plus.png





_static/down-pressed.png





_static/comment-bright.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/ajax-loader.gif





