

PyNaCl: Python binding to the Networking and Cryptography (NaCl) library

Contents

	Public Key Encryption
	Example

	Reference

	Secret Key Encryption
	Example

	Requirements

	Reference

	Algorithm details

	Digital Signatures
	Example

	Reference

	Ed25519

Support Features

	Encoders
	Built in Encoders

	Defining your own Encoder

	Exceptions

	Utility Classes

Api Documentation

	nacl.hash

Indices and tables

	Index

	Module Index

	Search Page

Public Key Encryption

Imagine Alice wants something valuable shipped to her. Because it’s valuable,
she wants to make sure it arrives securely (i.e. hasn’t been opened or
tampered with) and that it’s not a forgery (i.e. it’s actually from the sender
she’s expecting it to be from and nobody’s pulling the old switcheroo).

One way she can do this is by providing the sender (let’s call him Bob) with a
high-security box of her choosing. She provides Bob with this box, and
something else: a padlock, but a padlock without a key. Alice is keeping that
key all to herself. Bob can put items in the box then put the padlock onto it.
But once the padlock snaps shut, the box cannot be opened by anyone who
doesn’t have Alice’s private key.

Here’s the twist though: Bob also puts a padlock onto the box. This padlock
uses a key Bob has published to the world, such that if you have one of Bob’s
keys, you know a box came from him because Bob’s keys will open Bob’s padlocks
(let’s imagine a world where padlocks cannot be forged even if you know the
key). Bob then sends the box to Alice.

In order for Alice to open the box, she needs two keys: her private key that
opens her own padlock, and Bob’s well-known key. If Bob’s key doesn’t open the
second padlock, then Alice knows that this is not the box she was expecting
from Bob, it’s a forgery.

This bidirectional guarantee around identity is known as mutual authentication.

Example

The Box class uses the given public and private (secret)
keys to derive a shared key, which is used with the nonce given to encrypt the
given messages and to decrypt the given ciphertexts. The same shared key will
be generated from both pairing of keys, so given two keypairs belonging to
Alice (pkalice, skalice) and Bob (pkbob, skbob), the key derived from
(pkalice, skbob) will equal that from (pkbob, skalice).

This is how the system works:

import nacl.utils
from nacl.public import PrivateKey, Box

generate the private key which must be kept secret
skbob = PrivateKey.generate()

the public key can be given to anyone wishing to send
Bob an encrypted message
pkbob = skbob.public_key

Alice does the same and then
sends her public key to Bob and Bob his public key to Alice
skalice = PrivateKey.generate()
pkalice = skalice.public_key

Bob wishes to send Alice an encrypted message
So Bob must make a Box with his private key and Alice's public key
bob_box = Box(skbob, pkalice)

This is our message to send, it must be a bytestring as Box will
treat is as just a binary blob of data.
message = b"Kill all humans"

This is a nonce, it *MUST* only be used once, but it is not considered
secret and can be transmitted or stored alongside the ciphertext. A
good source of nonce is just 24 random bytes.
nonce = nacl.utils.random(Box.NONCE_SIZE)

Encrypt our message, it will be exactly 40 bytes longer than the original
message as it stores authentication information and nonce alongside it.
encrypted = bob_box.encrypt(message, nonce)

Alice creates a second box with her private key to decrypt the message
alice_box = Box(skalice, pkbob)

Decrypt our message, an exception will be raised if the encryption was
tampered with or there was otherwise an error.
plaintext = alice_box.decrypt(encrypted)

Reference

	
class nacl.public.PublicKey(public_key, encoder)

	The public key counterpart to an Curve25519
PrivateKey for encrypting messages.

	Parameters:	
	public_key (bytes) – Encoded Curve25519 public key.

	encoder – A class that is able to decode the public_key.

	
class nacl.public.PrivateKey(private_key, encoder)

	Private key for decrypting messages using the Curve25519 algorithm.

Warning

This must be protected and remain secret. Anyone who
knows the value of your PrivateKey can decrypt
any message encrypted by the corresponding
PublicKey

	Parameters:	
	private_key (bytes) – The private key used to decrypt messages.

	encoder – A class that is able to decode the private_key.

	
public_key

	An instance of PublicKey that corresponds with
the private key.

	
classmethod generate()

	Generates a random PrivateKey object

	Returns:	An instance of PrivateKey.

	
class nacl.public.Box(private_key, public_key)

	The Box class boxes and unboxes messages between a pair of keys

The ciphertexts generated by Box include a 16
byte authenticator which is checked as part of the decryption. An invalid
authenticator will cause the decrypt function to raise an exception. The
authenticator is not a signature. Once you’ve decrypted the message you’ve
demonstrated the ability to create arbitrary valid message, so messages you
send are repudiable. For non-repudiable messages, sign them after
encryption.

	Parameters:	
	private_key – An instance of PrivateKey used
to encrypt and decrypt messages

	public_key – An instance of PublicKey used to
encrypt and decrypt messages

	
classmethod decode(encoded, encoder)

	Decodes a serialized Box.

	Returns:	An instance of Box.

	
encrypt(plaintext, nonce, encoder)

	Encrypts the plaintext message using the given nonce and returns
the ciphertext encoded with the encoder.

Warning

It is VITALLY important that the nonce is a nonce,
i.e. it is a number used only once for any given key. If you
fail to do this, you compromise the privacy of the messages
encrypted.

	Parameters:	
	plaintext (bytes) – The plaintext message to encrypt.

	nonce (bytes) – The nonce to use in the encryption.

	encoder – A class that is able to decode the ciphertext.

	Returns:	An instance of EncryptedMessage.

	
decrypt(ciphertext, nonce, encoder)

	Decrypts the ciphertext using the given nonce and returns the
plaintext message.

	Parameters:	
	ciphertext (bytes) – The encrypted message to decrypt.

	nonce (bytes) – The nonce to use in the decryption.

	encoder – A class that is able to decode the plaintext.

	Return bytes:	The decrypted plaintext.

Secret Key Encryption

Secret key encryption (also called symmetric key encryption) is analogous to a
safe. You can store something secret through it and anyone who has the key can
open it and view the contents. SecretBox functions as
just such a safe, and like any good safe any attempts to tamper with the
contents is easily detected.

Secret Key Encryption allows you to store or transmit data over insecure
channels without leaking the contents of that message, nor anything about it
other than the length.

Example

import nacl.secret
import nacl.utils

This must be kept secret, this is the combination to your safe
key = nacl.utils.random(nacl.secret.SecretBox.KEY_SIZE)

This is your safe, you can use it to encrypt or decrypt messages
box = nacl.secret.SecretBox(key)

This is our message to send, it must be a bytestring as SecretBox will
treat is as just a binary blob of data.
message = b"The president will be exiting through the lower levels"

This is a nonce, it *MUST* only be used once, but it is not considered
secret and can be transmitted or stored alongside the ciphertext. A
good source of nonce is just 24 random bytes.
nonce = nacl.utils.random(nacl.secret.SecretBox.NONCE_SIZE)

Encrypt our message, it will be exactly 40 bytes longer than the original
message as it stores authentication information and nonce alongside it.
encrypted = box.encrypt(message, nonce)

Decrypt our message, an exception will be raised if the encryption was
tampered with or there was otherwise an error.
plaintext = box.decrypt(encrypted)

Requirements

Key

The 32 bytes key given to SecretBox must be kept secret.
It is the combination to your “safe” and anyone with this key will be able to
decrypt the data, or encrypt new data.

Nonce

The 24-byte nonce (Number used once [https://en.wikipedia.org/wiki/Cryptographic_nonce])
given to encrypt() and
decrypt() must NEVER be reused for a
particular key. Reusing a nonce may give an attacker enough information to
decrypt or forge other messages. A nonce is not considered secret and may be
freely transmitted or stored in plaintext alongside the ciphertext.

A nonce does not need to be random or unpredictable, nor does the method of
generating them need to be secret. A nonce could simply be a counter
incremented with each message encrypted, which can be useful in
connection-oriented protocols to reject duplicate messages (“replay
attacks”). A bidirectional connection could use the same key for both
directions, as long as their nonces never overlap (e.g. one direction always
sets the high bit to “1”, the other always sets it to “0”).

If you use a counter-based nonce along with a key that is persisted from one
session to another (e.g. saved to disk), you must store the counter along
with the key, to avoid accidental nonce reuse on the next session. For this
reason, many protocols derive a new key for each session, reset the counter
to zero with each new key, and never store the derived key or the counter.

You can safely generate random nonces by calling
:class:~nacl.utils.random(SecretBox.NONCE_SIZE).

Reference

	
class nacl.secret.SecretBox(key, encoder)

	The SecretBox class encrypts and decrypts messages using the given secret
key.

The ciphertexts generated by Secretbox include a 16
byte authenticator which is checked as part of the decryption. An invalid
authenticator will cause the decrypt function to raise an exception. The
authenticator is not a signature. Once you’ve decrypted the message you’ve
demonstrated the ability to create arbitrary valid message, so messages you
send are repudiable. For non-repudiable messages, sign them after
encryption.

	Parameters:	
	key (bytes) – The secret key used to encrypt and decrypt messages.

	encoder – A class that is able to decode the key.

	
encrypt(plaintext, nonce, encoder)

	Encrypts the plaintext message using the given nonce and returns the
ciphertext encoded with the encoder.

Warning

It is VITALLY important that the nonce is a nonce,
i.e. it is a number used only once for any given key. If you fail
to do this, you compromise the privacy of the messages encrypted.
Give your nonces a different prefix, or have one side use an odd
counter and one an even counter. Just make sure they are different.

	Parameters:	
	plaintext (bytes) – The plaintext message to encrypt.

	nonce (bytes) – The nonce to use in the encryption.

	encoder – A class that is able to decode the ciphertext.

	Returns:	An instance of EncryptedMessage.

	
decrypt(ciphertext, nonce, encoder)

	Decrypts the ciphertext using the given nonce and returns the plaintext
message.

	Parameters:	
	ciphertext (bytes) – The encrypted message to decrypt.

	nonce (bytes) – The nonce to use in the decryption.

	encoder – A class that is able to decode the plaintext.

	Return bytes:	The decrypted plaintext.

Algorithm details

	Encryption:	Salsa20 stream cipher [https://en.wikipedia.org/wiki/Salsa20]

	Authentication:	Poly1305 MAC [https://en.wikipedia.org/wiki/Poly1305-AES]

Digital Signatures

You can use a digital signature for many of the same reasons that you might
sign a paper document. A valid digital signature gives a recipient reason to
believe that the message was created by a known sender such that they cannot
deny sending it (authentication and non-repudiation) and that the message was
not altered in transit (integrity).

Digital signatures allow you to publish a public key, and then you can use your
private signing key to sign messages. Others who have your public key can then
use it to validate that your messages are actually authentic.

Example

Signer’s perspective (SigningKey)

import nacl.encoding
import nacl.signing

Generate a new random signing key
signing_key = nacl.signing.SigningKey.generate()

Sign a message with the signing key
signed = signing_key.sign(b"Attack at Dawn")

Obtain the verify key for a given signing key
verify_key = signing_key.verify_key

Serialize the verify key to send it to a third party
verify_key_hex = verify_key.encode(encoder=nacl.encoding.HexEncoder)

Verifier’s perspective (VerifyKey)

import nacl.signing

Create a VerifyKey object from a hex serialized public key
verify_key = nacl.signing.VerifyKey(verify_key_hex, encoder=nacl.encoding.HexEncoder)

Check the validity of a message's signature
Will raise nacl.exceptions.BadSignatureError if the signature check fails
verify_key.verify(signed)

Reference

	
class nacl.signing.SigningKey(seed, encoder)

	Private key for producing digital signatures using the Ed25519 algorithm.

Signing keys are produced from a 32-byte (256-bit) random seed value. This
value can be passed into the SigningKey as a
bytes() whose length is 32.

Warning

This must be protected and remain secret. Anyone who knows
the value of your SigningKey or it’s seed can
masquerade as you.

	Parameters:	
	seed (bytes) – Random 32-byte value (i.e. private key).

	encoder – A class that is able to decode the seed.

	
verify_key

	An instance of VerifyKey (i.e. public key)
that corresponds with the signing key.

	
classmethod generate()

	Generates a random SigningKey object

	Returns:	An instance of SigningKey.

	
sign(message, encoder)

	Sign a message using this key.

	Parameters:	
	message (bytes) – The data to be signed.

	encoder – A class that is able to decode the signed message.

	Returns:	An instance of SignedMessage.

	
class nacl.signing.VerifyKey(key, encoder)

	The public key counterpart to an Ed25519 SigningKey
for producing digital signatures.

	Parameters:	
	key (bytes) – A serialized Ed25519 public key.

	encoder – A class that is able to decode the key.

	
verify(smessage, signature, encoder)

	Verifies the signature of a signed message.

	Parameters:	
	smessage (bytes) – The signed message to verify. This is either
the original message or the concated signature and message.

	signature (bytes) – The signature of the message to verify against.
If the value of smessage is the concated signature and message,
this parameter can be None.

	encoder – A class that is able to decode the secret message and
signature.

	Return bytes:	The message if successfully verified.

	Raises:	nacl.exceptions.BadSignatureError – This is raised if the
signature is invalid.

	
class nacl.signing.SignedMessage

	A bytes subclass that holds a messaged that has been signed by a
SigningKey.

	
signature

	The signature contained within the
SignedMessage.

	
message

	The message contained within the SignedMessage.

Ed25519

Ed25519 is a public-key signature system with several attractive features:

	Fast single-signature verification: Ed25519 takes only 273364 cycles
to verify a signature on Intel’s widely deployed Nehalem/Westmere lines of
CPUs. (This performance measurement is for short messages; for very long
messages, verification time is dominated by hashing time.) Nehalem and
Westmere include all Core i7, i5, and i3 CPUs released between 2008 and
2010, and most Xeon CPUs released in the same period.

	Even faster batch verification: Ed25519 performs a batch of 64
separate signature verifications (verifying 64 signatures of 64 messages
under 64 public keys) in only 8.55 million cycles, i.e., under 134000
cycles per signature. Ed25519 fits easily into L1 cache, so contention
between cores is negligible: a quad-core 2.4GHz Westmere verifies 71000
signatures per second, while keeping the maximum verification latency
below 4 milliseconds.

	Very fast signing: Ed25519 takes only 87548 cycles to sign a
message. A quad-core 2.4GHz Westmere signs 109000 messages per second.

	Fast key generation: Key generation is almost as fast as signing. There
is a slight penalty for key generation to obtain a secure random number
from the operating system; /dev/urandom under Linux costs about 6000
cycles.

	High security level: This system has a 2^128 security target; breaking it
has similar difficulty to breaking NIST P-256, RSA with ~3000-bit keys,
strong 128-bit block ciphers, etc. The best attacks known actually cost
more than 2^140 bit operations on average, and degrade quadratically in
success probability as the number of bit operations drops.

	Collision resilience: Hash-function collisions do not break this system.
This adds a layer of defense against the possibility of weakness in the
selected hash function.

	No secret array indices: Ed25519 never reads or writes data from secret
addresses in RAM; the pattern of addresses is completely predictable.
Ed25519 is therefore immune to cache-timing attacks, hyperthreading
attacks, and other side-channel attacks that rely on leakage of addresses
through the CPU cache.

	No secret branch conditions: Ed25519 never performs conditional branches
based on secret data; the pattern of jumps is completely predictable.
Ed25519 is therefore immune to side-channel attacks that rely on leakage of
information through the branch-prediction unit.

	Small signatures: Ed25519 signatures are only 512-bits (64 bytes), one
of the smallest signature sizes available.

	Small keys: Ed25519 keys are only 256-bits (32 bytes), making them small
enough to easily copy and paste. Ed25519 also allows the public key to be
derived from the private key, meaning that it doesn’t need to be included
in a serialized private key in cases you want both.

	Deterministic: Unlike (EC)DSA, Ed25519 does not rely on an entropy
source when signing messages (which has lead to catastrophic private key [http://www.mydigitallife.info/fail0verflow-hack-permanent-sony-ps3-crack-to-code-sign-homebrew-games-and-apps/]
compromises), but instead computes signature nonces from a combination of
a hash of the signing key’s “seed” and the message to be signed. This
avoids using an entropy source for nonces, which can be a potential attack
vector if the entropy source is not generating good random numbers. Even a
single reused nonce can lead to a complete disclosure of the private key in
these schemes, which Ed25519 avoids entirely by being deterministic instead
of tied to an entropy source.

The numbers 87548 and 273364 shown above are official
eBATS <http://bench.cr.yp.to/> reports for a Westmere CPU (Intel Xeon E5620,
hydra2).

Ed25519 signatures are elliptic-curve signatures, carefully engineered at
several levels of design and implementation to achieve very high speeds without
compromising security.

Algorithm

	Public Keys: Curve25519 high-speed elliptic curve cryptography [https://cr.yp.to/ecdh.html]

	Signatures: Ed25519 digital signature system [https://cr.yp.to/ecdh.html]

[image: _images/ed25519.png]

	k:	Ed25519 private key (passed into SigningKey)

	A:	Ed25519 public key derived from k

	M:	message to be signed

	R:	a deterministic nonce value calculated from a combination of private key
data RH and the message M

	S:	Ed25519 signature

Encoders

PyNaCl supports a simple method of encoding and decoding messages in different
formats. Encoders are simple classes with staticmethods that encode/decode and
are typically passed as a keyword argument encoder to various methods.

For example you can generate a signing key and encode it in hex with:

hex_key = nacl.signing.SigningKey.generate().encode(encoder=nacl.encoding.HexEncoder)

Then you can later decode it from hex:

signing_key = nacl.signing.SigningKey(hex_key, encoder=nacl.encoding.HexEncoder)

Built in Encoders

	
class nacl.encoding.RawEncoder

	

	
class nacl.encoding.HexEncoder

	

	
class nacl.encoding.Base16Encoder

	

	
class nacl.encoding.Base32Encoder

	

	
class nacl.encoding.Base64Encoder

	

	
class nacl.encoding.URLSafeBase64Encoder

	

Defining your own Encoder

Defining your own encoder is easy. Each encoder is simply a class with 2 static
methods. For example here is the hex encoder:

import binascii

class HexEncoder(object):

 @staticmethod
 def encode(data):
 return binascii.hexlify(data)

 @staticmethod
 def decode(data):
 return binascii.unhexlify(data)

Exceptions

	
class CryptoError

	Base exception for all nacl related errors

	
class BadSignatureError

	Raised when the signature was forged or otherwise corrupt.

Utility Classes

	
class EncryptedMessage

	A bytes subclass that holds a message that has been encrypted by a
SecretBox or Box. The full
content of the bytes object is the combined nonce and
ciphertext.

	
nonce

	The nonce used during the encryption of the EncryptedMessage.

	
ciphertext

	The ciphertext contained within the EncryptedMessage.

nacl.hash

	
nacl.hash.sha256(message, encoder)

	Hashes message with SHA256.

	Parameters:	
	message (bytes) – The message to hash.

	encoder – A class that is able to encode the hashed message.

	Return bytes:	The hashed message.

	
nacl.hash.sha512(message, encoder)

	Hashes message with SHA512.

	Parameters:	
	message (bytes) – The message to hash.

	encoder – A class that is able to encode the hashed message.

	Return bytes:	The hashed message.

Index

 B
 | C
 | D
 | E
 | G
 | H
 | M
 | N
 | P
 | R
 | S
 | U
 | V

B

 	
 	BadSignatureError (built-in class)

 	Base16Encoder (class in nacl.encoding)

 	
 	Base32Encoder (class in nacl.encoding)

 	Base64Encoder (class in nacl.encoding)

 	Box (class in nacl.public)

C

 	
 	ciphertext (EncryptedMessage attribute)

 	
 	CryptoError (built-in class)

D

 	
 	decode() (nacl.public.Box class method)

 	
 	decrypt() (nacl.public.Box method)

 	(nacl.secret.SecretBox method)

E

 	
 	encrypt() (nacl.public.Box method)

 	(nacl.secret.SecretBox method)

 	
 	EncryptedMessage (built-in class)

G

 	
 	generate() (nacl.public.PrivateKey class method)

 	(nacl.signing.SigningKey class method)

H

 	
 	HexEncoder (class in nacl.encoding)

M

 	
 	message (nacl.signing.SignedMessage attribute)

N

 	
 	nonce (EncryptedMessage attribute)

P

 	
 	PrivateKey (class in nacl.public)

 	
 	public_key (nacl.public.PrivateKey attribute)

 	PublicKey (class in nacl.public)

R

 	
 	RawEncoder (class in nacl.encoding)

S

 	
 	SecretBox (class in nacl.secret)

 	sha256() (in module nacl.hash)

 	sha512() (in module nacl.hash)

 	
 	sign() (nacl.signing.SigningKey method)

 	signature (nacl.signing.SignedMessage attribute)

 	SignedMessage (class in nacl.signing)

 	SigningKey (class in nacl.signing)

U

 	
 	URLSafeBase64Encoder (class in nacl.encoding)

V

 	
 	verify() (nacl.signing.VerifyKey method)

 	
 	verify_key (nacl.signing.SigningKey attribute)

 	VerifyKey (class in nacl.signing)

 _static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/ed25519.png
\.
signature

B byess1201
/

Troyies

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/down-pressed.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		PyNaCl: Python binding to the Networking and Cryptography (NaCl) library

 		Public Key Encryption

 		Example

 		Reference

 		Secret Key Encryption

 		Example

 		Requirements

 		Key

 		Nonce

 		Reference

 		Algorithm details

 		Digital Signatures

 		Example

 		Reference

 		Ed25519

 		Algorithm

 		Encoders

 		Built in Encoders

 		Defining your own Encoder

 		Exceptions

 		Utility Classes

 		nacl.hash

_images/ed25519.png
\.
signature

B byess1201
/

Troyies

_static/comment-bright.png

