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Introduction


What is PyMoskito ?

PyMoskito aims to be a useful tool for students and researchers in the field of
control theory that performs repetitive task occurring in modelling as well as
controller and observer design.

The toolbox consists of two parts: Part one -the core- is a modular simulation
circuit whose parts (Model, Controller and many more)
can be easily fitted to one’s personal needs by using one of the “ready to go”
variants or deriving from the more powerful base classes.

To configure this simulation loop and to analyse its results, part two
-the frontend- comes into play. The graphical user interfaces not only allows
one to accurately tune the parameters of each part of the simulation but also
allows to automate simulation runs e.g. to simulate different combinations of
modules or parameters.
This batch-like interface is feed by human readable yaml files
which make it easy to store and reproduce simulated setups.
Furthermore PyMoskito offers possibilities to run postprocessing on the
generated results and easily lets you create plots for step responses.




What is PyMoskito not ?

Although the simulation loop is quite flexible it is not a complete block
oriented simulation environment for model based-design but ideas for the
development in this direction are always appreciated.







          

      

      

    

  

    
      
          
            
  
Installation


General Options

At the command line:

$ pip install pymoskito





Or, if you have virtualenvwrapper installed:

$ mkvirtualenv pymoskito
$ pip install pymoskito





From the repository:

$ git clone https://github.com/cklb/pymoskito
$ python setup.py install








For Windows

PyMoskito depends on Qt5 and VTK .

Qt5 is already included in the most python distributions, to have an easy start
we recommend to use Winpython [https://winpython.github.io/] .

The wheel for the VTK package (Version >= 7) can be obtained from
http://www.lfd.uci.edu/~gohlke/pythonlibs/#vtk .
It can be installed using the Winpython Control Panel or directly via:

$ pip install VTK-VERSION_NAME_HERE.whl





from your winpython shell.




Troubleshooting

Missing dependencies (windows)

If the provided packages on your system are to old, pip may feel obligated to
update them. Since the majority of packages now provide ready to use wheels
for windows on pypi [https://pypi.python.org/pypi] this should work automatically.
If for some reason this process fails, you will most certainly find an
appropriate wheel here [https://www.lfd.uci.edu/~gohlke/pythonlibs/] . After downloading just navigate your shell into the
directory and call:

$ pip install PACKAGE_NAME.whl





to install it.

Missing vtk libraries (linux)

If importing vtk fails with something similar to:

>>> Import Error: vtkIOAMRPython module not found





then look at the output of:

$ ldd PATH/TO/SITE-PKGS/vtk/vtkIOAMRPython.so





to see which libs are missing.

GUI looks blurry on high-dpi displays

You may add the line:

os.environ["QT_AUTO_SCREEN_SCALE_FACTOR"] = "1"





before you import pymoskito to enable autoscaling in Qt.







          

      

      

    

  

    
      
          
            
  
Tutorials

Below you will find some lessons on different aspects of the toolbox, sorted from
basic to expert level.

Beginner:



	Beginners Tutorial

	Visualization





Intermediate:



	Switching Systems

	Postprocessing





Expert:



	Metaprocessing









          

      

      

    

  

    
      
          
            
  
Beginners Tutorial

Welcome to the PyMoskito Tutorial! It is intended to introduce new users to the
toolbox.
For more detailed descriptions, please see the
Users Guide or the
Modules Reference.

Within this tutorial, an inverse pendulum on cart will be simulated and
stabilized.
With the help of PyMoskito, the model as well as the controller will be tested
by simulating the open and closed control loop.

All code is written in Python. If you want to refresh or expand
your knowledge about this language, see e.g. the Python Tutorial [https://docs.python.org/3/tutorial/index.html].



	PyMoskito’s Signal Diagram

	A Pendulum on Cart

	Implementing a Model

	Starting the Program

	Testing the Model

	Implementing a Controller

	Closing the Control Loop

	Further Reading









          

      

      

    

  

    
      
          
            
  
PyMoskito’s Signal Diagram

PyMoskito simulates the control loop as shown in Fig. 1.
This tutorial will focus on the part highlighted in blue,
since these modules are essential to run the toolbox.


[image: Image of PyMoskito's Control Loop]
Fig. 1 The control loop implemented by PyMoskito



Every block in this diagram represents a configurable part of the control loop
that is implemented as a generic base class.
By deriving from these base classes, it is easy to make sure
that implemented classes work well within the context of the toolbox.

From the highlighted classes, the trajectory generator and the model mixer are
considered reusable,
therefore PyMoskito provides these classes ready to go.
On the other hand, the model and the controller are determined by
the specific system and have to be implemented to suit your problem.
If you would like to implement one of the nonhighlighted classes,
see the
Users Guide
or other
Tutorials
for help.

Next up the system, used for implementation is introduced.





          

      

      

    

  

    
      
          
            
  
A Pendulum on Cart

A pendulum is fixed on a cart, which can move in the horizontal direction.
The cart has a mass [image: M].
The friction between the cart and the surface causes a frictional force [image: F_R = D \cdot \dot{s}], in opposite direction to the movement of the cart.
The pendulum has a mass [image: m], a moment of intertia [image: J], a length [image: l] and an angle of deflection [image: \varphi].
The friction in the joint where the pendulum is mounted on the cart causes a frictional torque [image: M_R = d \cdot \dot{\varphi}],
in opposite direction to the rotational speed of the pendululm.
The system is illustrated in Fig. 2.

The task is to control the position [image: s] of the cart
and to stabilize the pendulum in its downside position.
The possibility of stabilizing the pendulum in its upside position is not implemented in this tutorial.
Actuating variable is the force [image: F].


[image: Image of the Pendulum on a Cart System]
Fig. 2 The pendulum on an cart system



With the state vector


[image: \boldsymbol{x} = \begin{pmatrix}     x_1 \\     x_2 \\     x_3 \\     x_4 \end{pmatrix} = \begin{pmatrix}     s \\     \varphi \\     \dot{s} \\     \dot{\varphi} \end{pmatrix} ,]


the model equations are given by


[image: \boldsymbol{\dot{x}} = \begin{pmatrix}     \dot{x_1} \\     \dot{x_2} \\     \dot{x_3} \\     \dot{x_4} \end{pmatrix} = \begin{pmatrix}     x_3 \\     x_4 \\     \frac{JF - JDx_3 - mlJ{x_4}^2 \sin(x_2) + m^2 l^2 g \sin(x_2)\cos(x_2) - mldx_4\cos(x_2)}         {(M+m)J - (ml\cos(x_2))^2} \\     \frac{ml\cos(x_2)F - mlDx_3\cos(x_2) - (mlx_4)^2 \sin(x_2)\cos(x_2) + (M+m)mlg\sin(x_2) - (M+m)dx_4}         {(M+m)J - (ml\cos(x_2))^2} \end{pmatrix} .]


The cart’s position


[image: y = x_1 = s]


is chosen as output of the system.
With this model given, the next step is to implement a class containing these equations.





          

      

      

    

  

    
      
          
            
  
Implementing a Model

At first, a new class derived from the abstract class Model is necessary.
Its basic functions will be calculating the state derivatives and the output from the model parameters, the current state and the input values.

Create a folder within a path of your choice.
All files created during this tutorial need to be stored here.
Create a file called:

model.py





With the first lines of code, import the library NumPy [http://www.numpy.org/],
the OrderedDictionary class and PyMoskito itself:

	1
2
3
4
5
6
7

	# -*- coding: utf-8 -*-
from collections import OrderedDict
import numpy as np

import pymoskito as pm









Derive your class from Model.
Next, create an OrderedDict called public_settings.
All entries in this dictionary will be accessible in the graphical interface of PyMoskito during runtime.
While you have the freedom to name these entries as you like,
the entry initial state is obligatory and must contain the initial state vector.
All values entered will be the initial values for the model parameters:

	 9
10
11
12
13
14
15
16
17
18

	class PendulumModel(pm.Model):
    public_settings = OrderedDict([("initial state", [0, 180.0, 0, 0]),
                                   ("cart mass", 4.3),  # [kg]
                                   ("cart friction", 10),  # [Ns/m]
                                   ("pendulum mass", 0.32),  # [kg]
                                   ("pendulum inertia", 0.07),  # [kg*m^2]
                                   ("pendulum friction", 0.03),  # [Nms]
                                   ("pendulum length", 0.35),  # [m]
                                   ("gravity", 9.81)])  # [m/s^2]








Within the constructor, you must define the number of inputs and states.
Do so by storing these values in settings as seen in lines 24 and 25.
Adding output information as seen in line 26 is optional,
this will make it easier to distinguish between several outputs of bigger systems.
It is obligatory to call the constructor of the base class at the end.
The constructor’s argument settings is a copy of public_settings
with all changes the user made in the interface:

	20
21
22
23
24
25
26
27
28
29
30
31

	    def __init__(self, settings):
        # conversion from degree to radiant
        settings["initial state"][1] = np.deg2rad(settings["initial state"][1])
        settings["initial state"][3] = np.deg2rad(settings["initial state"][3])

        # add specific "private" settings
        settings.update(state_count=4)
        settings.update(input_count=1)
        settings.update({"output_info": {0: {"Name": "cart position",
                                             "Unit": "m"}}})
        pm.Model.__init__(self, settings)








The calculation of the state derivatives takes place in a method
that returns the results as an array.
The method’s parameters are the current time t, the current state vector x,
and the parameter args. The later is free to be defined as you need it,
in this case it will be the force F as the model input.
To keep the model equations compact and readable,
it is recommended to store the model values in variables with short names:

	33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

	    def state_function(self, t, x, args):
        # definitional
        s = x[0]
        phi = x[1]
        ds = x[2]
        dphi = x[3]
        F = args[0]

        # shortcuts for readability
        M = self._settings["cart mass"]
        D = self._settings["cart friction"]
        m = self._settings["pendulum mass"]
        J = self._settings["pendulum inertia"]
        d = self._settings["pendulum friction"]
        l = self._settings["pendulum length"]
        g = self._settings["gravity"]

        dx1 = ds
        dx2 = dphi
        dx3 = ((J * F
                - J * D * ds
                - m * l * J * dphi ** 2 * np.sin(phi)
                + (m * l) ** 2 * g * np.sin(phi) * np.cos(phi)
                - m * l * d * dphi * np.cos(phi))
               / ((M + m) * J - (m * l * np.cos(phi)) ** 2))
        dx4 = ((m * l * np.cos(phi) * F
                - m * l * D * ds * np.cos(phi)
                - (m * l * dphi) ** 2 * np.cos(phi) * np.sin(phi)
                + (M + m) * m * l * g * np.sin(phi) - (M + m) * d * dphi)
               / ((M + m) * J - (m * l * np.cos(phi)) ** 2))

        dx = np.array([dx1, dx2, dx3, dx4])
        return dx








The output of the system is calculated in a method with the current state vector as parameter.
Returning the results as an array as previously would be possible.
But in this case, the output is simply the position s of the cart,
so extracting it from the state vector and returning it as a scalar is sufficient
:

	68
69

	    def calc_output(self, input_vector):
        return input_vector[0]







This now fully implemented model class has a yet unknown behavior.
To test it, the next step is to start PyMoskito for simulation purposes.





          

      

      

    

  

    
      
          
            
  
Starting the Program

For PyMoskito to start, an application needs to launch the toolbox and execute it.
To do so, create a file in the same directory as the model and name it:

main.py





Copy the following code into your main file:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	# -*- coding: utf-8 -*-
import pymoskito as pm

# import custom modules
import model


if __name__ == '__main__':
    # register model
    pm.register_simulation_module(pm.Model, model.PendulumModel)

    # start the program
    pm.run()







Note the import command in line 5,
which includes the earlier implemented model file in the application.
The command in line 10 registers the model to the toolbox.
This lets PyMoskito know that this module is available
and adds it to the eligible options in the interface.
Line 13 finally starts our application.

Use the command line to navigate to the directory of the main file and the model file
and start the toolbox with the command:

$ python main.py





The upstarting interface of PyMoskito
gives you the possibility to test the implemented model in the next step.





          

      

      

    

  

    
      
          
            
  
Testing the Model

Choose initial states that make the prediction of the system’s
reaction easy and compare them with the simulation results.
After successfully starting the program,
you will see the interface of the toolbox as shown in Fig. 3.


[image: The Interface of PyMoskito after start up]
Fig. 3 The Interface of PyMoskito after start up



Within the Properties Window (1), double clicking on a value (all None by default)
activates a drop down menu.
Clicking again presents all eligible options.
One of these options now is PendulumModel,
since it was registered to PyMoskito earlier.
Choose it now and press enter to confirm your choice.

By clicking on the arrow that appeared on the left of Model,
all model parameters and the initial state are displayed.
These are taken from the public_settings which have been defined earlier in the model.
Double click on a value to change it manually.
Press enter to confirm the input.

Choose the PendulumModel, the ODEInt as Solver and the AdditiveMixer as ModelMixer.
Change the initial state of Model to [0, 100, 0, 0] and the end time of Solver to 20 as shown in Fig. 4.


[image: The Settings for Model Test]
Fig. 4 The settings for testing the model class



Click the gearwheel button (2), use the drop-down menu (3) or press F5 to start the simulation.
After a succesful simulation, all created diagrams will be listed in the Data Window (4).
Double click on one to display it as shown in Fig. 5.


[image: PyMoskito's Interface after successful simulation]
Fig. 5 The Interface of PyMoskito after a successful simulation



Feel free to experiment with the properties and see, if the model reacts the way you would have predicted.
After testing the model class, a controller shall be implemented.





          

      

      

    

  

    
      
          
            
  
Implementing a Controller

To close the loop a controller has to be added.
This can easily be done by deriving from the Controller class.
Its task is to stabilize the pendulum by calculating a suitable input for the model.
To keep things simple, the linear state-feedback controller in this scenario
and it is based on the linearized system which is given by


[image: \boldsymbol{A} = \begin{pmatrix}     0 & 0 & 1 & 0\\     0 & 0 & 0 & 1\\     0 & \frac{m^{2}l^{2}g}{z} & -\frac{JD}{z} & \frac{mld}{z}\\     0 & -\frac{(M+m)mlg}{z} & \frac{mlD}{z} & -\frac{(M+m)d}{z}\\ \end{pmatrix} \ \ \boldsymbol{B} = \begin{pmatrix}     0\\     0\\     \frac{J}{z}\\     -\frac{ml}{z}\\ \end{pmatrix} \ \ \boldsymbol{C} = \begin{pmatrix}     1 & 0 & 0 & 0\\ \end{pmatrix}]


with


[image: z = J (M+m) - m^{2}l^{2}.]


The linear control law is given by


[image: u = -\boldsymbol{K} \boldsymbol{x} + \boldsymbol{V} \boldsymbol{y_d}]


with the control gain [image: \boldsymbol{K}]
and the prefilter [image: \boldsymbol{V}].
One possibility to calculate the control gain is by using the Ackermann formula.

With all necessary equations, the implementation of the controller class can begin.
Start by creating a file called:

controller.py





Import the same classes as in the model class:

	1
2
3
4
5
6
7

	# -*- coding: utf-8 -*-
import numpy as np
from collections import OrderedDict

import pymoskito as pm









Derive your controller from
Controller
Next, create public_settings as before in the model.
Its entries will be accessable in the graphical interface of PyMoskito during runtime.
This time, the only parameters will be the desired poles of the closed loop,
which the controller shall establish:

	 9
10
11
12

	class BasicController(pm.Controller):
    public_settings = OrderedDict([("poles", [-2, -2, -2, -2])
                                   ])








Within the constructor, it is obligatory to set the input order and
an input type.
The input order determines how many derivatives of the trajectory
will be required, sinc eour controller is very simple a 0 will do here.
Valid entries for input type are system_state, system_output,
Observer and Sensor. In our case we will go for system_state.
After all necessary updates, call the constructor of the base class as seen in
line 20.
Store the linearized system matrices and the equilibrium state.
To make matrix operations possible, use the array type provided by NumPy.
PyMoskito’s Controltools provide functions
to calculate the values of a linear state feedback and a prefilter,
which can be used as seen in lines 49-50.
The method place_siso() is an implementation of the Ackermann formula:

	14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	    def __init__(self, settings):
        settings.update(input_order=0)
        settings.update(input_type="system_state")

        pm.Controller.__init__(self, settings)

        # model parameters
        g = 9.81  # gravity [m/s^2]
        M = 4.2774  # cart mass [kg]
        D = 10  # cart friction constant [Ns/m]
        m = 0.3211  # pendulum mass [kg]
        d = 0.023  # pendulum friction constant [Nms]
        l = 0.3533  # pendulum length [m]
        J = 0.072  # pendulum moment of intertia [kg*m^2]

        # the system matrices after linearization in phi=PI
        z = (M + m) * J - (m * l) ** 2
        A = np.array([[0, 0, 1, 0],
                      [0, 0, 0, 1],
                      [0, (m * l) ** 2 * g / z, -J * D / z, m * l * d / z],
                      [0, -(M + m) * m * l * g / z, m * l * D / z,
                       -(M + m) * d / z]
                      ])
        B = np.array([[0],
                      [0],
                      [J / z],
                      [-l * m / z]
                      ])
        C = np.array([[1, 0, 0, 0]])

        # the equilibrium state as a vector
        self._eq_state = np.array([0, np.pi, 0, 0])

        # pole placement of linearized state feedback
        self._K = pm.controltools.place_siso(A, B, self._settings["poles"])
        self._V = pm.controltools.calc_prefilter(A, B, C, self._K)








That would be all for the constructor.
The only other method left to implement contains the actual control law and will
be called by the solver during runtime.
Its parameters are the current time, the current values of trajectory,
feedforward and controller input.
The parameter **kwargs holds further information, which is explained
in pymoskito.simulation_modules.Controller. For our example, we will just ignore it.
Since this controller will be stabilizing the system in the steady state [0,0,0,0],
it has to be subtracted to work on the small signal scale.

	52
53
54
55
56
57
58

	    def _control(self, time, trajectory_values=None, feedforward_values=None,
                 input_values=None, **kwargs):
        x = input_values - self._eq_state
        yd = trajectory_values - self._eq_state[0]
        output = - np.dot(self._K, x) + np.dot(self._V, yd[0])

        return output







Finally, import the controller file and register the controller class to PyMoskito
by adding two lines to the main.py file as done before with the model class.
Your main.py should now look like this, with the changed lines highlighted:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	# -*- coding: utf-8 -*-
import pymoskito as pm

# import custom modules
import model
import controller


if __name__ == '__main__':
    # register model
    pm.register_simulation_module(pm.Model, model.PendulumModel)

    # register controller
    pm.register_simulation_module(pm.Controller, controller.BasicController)

    # start the program
    pm.run()







Having put all pieces together, we are now ready to run our scenario.





          

      

      

    

  

    
      
          
            
  
Closing the Control Loop

Firstly, start PyMoskito from the commandline and reapply the previous
steps:


	select PendulumModel as Model


	change the initial state of PendulumModel to [0, 100, 0, 0]


	select ODEInt as Solver


	change the end time of Solver to 10


	select AdditiveMixer as ModelMixer




Now, it gets interesting, select:


	the new BasicController as Controller


	change Input A of ModelMixer to Controller and


	select Setpoint as Trajectory




to generate desired values for out new setup. The setpoint 0 demands that
the cart position (the output defined by our model) should be kept at zero.

To enter string values, type 'Controller' or "Controller"
and remember to press enter to confirm the input.

The Properties window should now look like Fig. 6


[image: Properties with Changes]
Fig. 6 The properties window with changes for testing applied



Now, hit F5 to run the simulation.
After simulating, you find a few more diagrams in the data section.
Fig. 7 shows the example of the control error.


[image: Interface with Control Error]
Fig. 7 PyMoskito’s interface with the control error diagram displayed



Feel free to experiment with the settings and see,
if the control loop reacts the way you would have predicted.
Keep in mind that the implemented controller is static.
The control law does not adapt to changes of the model parameters,
since the controller gain is calculated from values stored in the controller class.
You can use this effect to simulate the situation,
where the controller design was based on model parameters
that differ from the real parameters of the process.

These were all the fundamental functions of PyMoskito considered necessary to work with it.
One more important, but also more advanced feature is the system’s visualization in 2D or 3D.
This animation appears in the window at the top right, which remained grey during this tutorial
(see Fig. 3, Fig. 5, Fig. 7).
For more information on this topic, see the
lesson on visualization.





          

      

      

    

  

    
      
          
            
  
Further Reading

After completing the Beginners Tutorial, there are several ways to go on
if you did not find an answer to your problem or simply would like to know more.

PyMoskito contains a few examples of fully implemented systems.
Take a peak into what is possible by running their simulations or reading their source code.

The Users Guide offers instructions to access the full potential of PyMoskito.
Read about animated visualization, storing simulation settings for future reuse, comparing simulation results and more.

The Modules Reference contains documentations of all classes,
that are part of PyMoskito. Read about all abstract classes being part of the control loop,
the modules realizing the simulation or the interface and more.





          

      

      

    

  

    
      
          
            
  
Visualization

This tutorial covers the subject of how to visualize your system using pymoskito.

To do this, you can provide a pm.Visualizer to the toolbox which
will then be used to show the system. To accomplish this, pymoskito uses the
VisualizationToolkit (vtk [https://www.vtk.org/]) for natty 3d plots. However, if vtk [https://www.vtk.org/] is not available
a fallback method using the matplotlib [https://www.matplotlib.org/] is also supported.

Before we start visualizing, we need to choose a system. For sake of simplicity,
the simple_example system from the introduction
will be used. Visualizers for both toolkits will be explained in the following
sections.



	Visualization using the Matplotlib
	Building the visualizer

	Registering the visualizer





	Visualization using VTK
	Building the visualizer













          

      

      

    

  

    
      
          
            
  
Visualization using the Matplotlib


Building the visualizer

The overall plan here is to derive a class that we will call MplPendulumVisualizer
from MplVisualizer. In its constructor,
we will lay down all the elements we want to use to visualize the system.
In our case these will be the beam on which the cart is moving, the cart and
of course the pendulum. Later on, the method
pymoskito.MplVisualizer.update_scene()
will be called repeatedly from the GUI to update the visualization.

We will start off with the following code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	# -*- coding: utf-8 -*-
import numpy as np
import pymoskito as pm

import matplotlib as mpl
import matplotlib.patches
import matplotlib.transforms


class MplPendulumVisualizer(pm.MplVisualizer):

    # parameters
    x_min_plot = -.85
    x_max_plot = .85
    y_min_plot = -.6
    y_max_plot = .6

    cart_height = .1
    cart_length = .2

    beam_height = .01
    beam_length = 1

    pendulum_shaft_height = 0.027
    pendulum_shaft_radius = 0.020

    pendulum_height = 0.5
    pendulum_radius = 0.005







On top, we import some modules we’ll need later on. Once this is done we derive
our MplPendulumVisualizer from MplVisualizer.
What follows below are some parameters for the matplotlib canvas and the objects
we want to draw, fell free to adapt them as you like!

In the first part of the constructor, we set up the canvas:

	30
31
32
33
34
35
36
37

	
    def __init__(self, q_widget, q_layout):
        # setup canvas
        pm.MplVisualizer.__init__(self, q_widget, q_layout)
        self.axes.set_xlim(self.x_min_plot, self.x_max_plot)
        self.axes.set_ylim(self.y_min_plot, self.y_max_plot)
        self.axes.set_aspect("equal")








Afterwards, our “actors” are created:

	39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

	        self.beam = mpl.patches.Rectangle(xy=[-self.beam_length/2,
                                              -(self.beam_height
                                                + self.cart_height/2)],
                                          width=self.beam_length,
                                          height=self.beam_height,
                                          color="lightgrey")

        self.cart = mpl.patches.Rectangle(xy=[-self.cart_length/2,
                                              -self.cart_height/2],
                                          width=self.cart_length,
                                          height=self.cart_height,
                                          color="dimgrey")

        self.pendulum_shaft = mpl.patches.Circle(
            xy=[0, 0],
            radius=self.pendulum_shaft_radius,
            color="lightgrey",
            zorder=3)

        t = mpl.transforms.Affine2D().rotate_deg(180) + self.axes.transData
        self.pendulum = mpl.patches.Rectangle(
            xy=[-self.pendulum_radius, 0],
            width=2*self.pendulum_radius,
            height=self.pendulum_height,
            color=pm.colors.HKS07K100,
            zorder=2,
            transform=t)








Note that a transformation object is used to get the patch in the correct place
and orientation. We’ll make more use of transformations later.
For now, all that is left to do for the constructor is to add our actors
t the canvas:
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	        self.axes.add_patch(self.beam)
        self.axes.add_patch(self.cart)
        self.axes.add_patch(self.pendulum_shaft)
        self.axes.add_patch(self.pendulum)








After this step, the GUI knows how our system looks like. Now comes the
interesting part: We use the systems state vector (the first Equation in
introduction) which we obtained from the
simulation to update our drawing:
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	    def update_scene(self, x):
        cart_pos = x[0]
        phi = np.rad2deg(x[1])

        # cart and shaft
        self.cart.set_x(cart_pos - self.cart_length/2)
        self.pendulum_shaft.center = (cart_pos, 0)

        # pendulum
        ped_trafo = (mpl.transforms.Affine2D().rotate_deg(phi)
                     + mpl.transforms.Affine2D().translate(cart_pos, 0)
                     + self.axes.transData)
        self.pendulum.set_transform(ped_trafo)

        # update canvas
        self.canvas.draw()









As defined by our model, the first element of the state vector x yields the
cart position, while the pendulum deflection (in rad) is given by x[1] .
Firstly, cart and the pendulum shaft are moved. This can either be done via
set_x() or by  directly overwriting the value of the center
attribute.
For the pendulum however, a transformation chain is build. It consists of a rotation
by the pendulum angle phi followed by a translation to the current cart position.
The last component is used to compensate offsets from the rendered window.

Lastly but important: The canvas is updated vie a call to self.canvas.draw()

The complete class can be found under:

pymoskito/examples/simple_pednulum/visualizer_mpl.py








Registering the visualizer

To get our visualizer actually working, we need to register it. For the simple
main.py of our example this would mean adding the following lines:

	 1
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 3
 4
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 6
 7
 8
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	# -*- coding: utf-8 -*-
import pymoskito as pm

# import custom modules
import model
import controller
import visualizer_mpl


if __name__ == '__main__':
    # register model
    pm.register_simulation_module(pm.Model, model.PendulumModel)

    # register controller
    pm.register_simulation_module(pm.Controller, controller.BasicController)

    # register visualizer
    pm.register_visualizer(visualizer_mpl.MplPendulumVisualizer)

    # start the program
    pm.run()







After starting the program, this is what you should see in the top right corner:


[image: Matplotlib visualization of the simple inverse pendulum]
Fig. 8 Matplotlib visualization of the simple pendulum system



If you are looking for a fancier animation, check out the VTK Tutorial.







          

      

      

    

  

    
      
          
            
  
Visualization using VTK


Building the visualizer

TODO







          

      

      

    

  

    
      
          
            
  
Switching Systems

TODO





          

      

      

    

  

    
      
          
            
  
Postprocessing

TODO





          

      

      

    

  

    
      
          
            
  
Metaprocessing

TODO





          

      

      

    

  

    
      
          
            
  
Examples

PyMoskito comes with quite a set of interesting examples from the field of
control theory. To run an example just enter:

$ python -m pymoskito.examples.NAME





where NAME is the name, given in parenthesis behind the example titles.

List of Examples:



	Ball and Beam (ballbeam)

	Ball in Tube (balltube)

	Tandem Pendulum (pendulum)

	Car with Trailers (car)









          

      

      

    

  

    
      
          
            
  
Ball and Beam (ballbeam)

A beam is pivoted on a bearing in its middle.
The position of a ball on the beam is controlable by applying a torque into the bearing.

The ball has a mass [image: M], a radius [image: R] and a moment of inertia [image: J_b].
Its distance [image: r] to the beam center is counted positively to the right.
For the purpose of simplification, the ball can only move in the horizontal direction.

The beam has a length [image: L], a moment of inertia [image: J]
and its deflection from the horizontal line is the angle [image: \theta].

The task is to control the position  [image: r] of the ball with the actuation
variable being the torque [image: \tau]. The interesting part in this particular
system is that while being nonlinear and intrinsically unstable, it’s relative
degree is not well-defined. This makes it an exciting but yet still clear lab
example. The description used here is taken from the publication [Hauser92] .


[image: Image of Ball and Beam System]
Fig. 9 The ball and beam system



With the state vector


[image: \boldsymbol{x} = \begin{pmatrix}     x_1 \\     x_2 \\     x_3 \\     x_4 \end{pmatrix} = \begin{pmatrix}     r \\     \dot{r} \\     \theta \\     \dot{\theta} \end{pmatrix},]


the nonlinear model equations are given by


[image: \boldsymbol{\dot{x}} = \begin{pmatrix}     \dot{x}_1 \\     \dot{x}_2 \\     \dot{x}_3 \\     \dot{x}_4 \end{pmatrix} = \begin{pmatrix}     x_2 \\     \frac{M R^2}{J_b + M R^2} (x_1 x_4^2 - g \sin(x_3)) \\     x_4 \\     \frac{\tau - M \cdot (2x_1 x_2 x_4 + g x_1 \cos(x_3))}{M x_1^2 + J + J_b} \end{pmatrix}.]


Violations of the model’s boundary conditions are the ball leaving the beam


[image: |x_1| > \frac{L}{2}]


or the beam’s deflection reaching the vertical line


[image: |x_3| > \frac{\pi}{2}.]


The ball’s position


[image: y = x_1 = r]


is chosen as output.

The example comes with five controllers.
The FController and GController both implemenent a input-output-linearization of the system
and manipulate the second output derivative by ignoring certain parts of the term.
The JController ignores the nonlinear parts of the linearized model equations,
also called standard jacobian approximation.
The LSSController linearizes the nonlinear model in a chosen steady state
and applies static state feedback.
The PIXController also linearizes the model and additionally integrates the control error.

LinearFeedforward implements a compensation of the linear system equation parts,
with the aim of reducing the controllers task to the nonlinear terms of the equations and disturbances.

The example comes with four observers.
LuenbergerObserver, LuenbergerObserverReduced and LuenbergerObserverInt
are different implementations of the Luenberger observer.
The second of these improves its performance by using a different method of integration and the third uses the solver for integration.
The HighGainObserver tries to implement an observer for nonlinear systems,
However, the examination for observability leads to the presumption that this attempt should fail.

A 3D visualizer is implemented.
In case of missing VTK, a 2D visualization can be used instead.

An external settings file contains all parameters.
All implemented classes import their initial values from here.

At program start, the main loads two regimes from the file default.sreg.
test-nonlinear is a setting of the nonlinear controller moving the ball from the left to the right side
of the beam.
test-linear shows the step response of a linear controller, resulting in the ball moving from the middle to the right side of the beam.

The example also provides ten different modules for postprocessing.
They plot different combinations of results in two formats, one of them being pdf.
The second format of files can be given to a metaprocessor.

The structure of __main__.py allows starting the example without navigating to the directory
and using an __init__.py file to outsource the import commands for additional files.


	Hauser92

	Hauser, J.; Sastry, S.; Kokotovic, P.
Nonlinear Control Via Approximate
Input-Output-Linearization: The Ball and Beam Example. IEEE Trans. on
Automatic Control, 1992, vol 37, no. 3, pp. 392-398









          

      

      

    

  

    
      
          
            
  
Ball in Tube (balltube)

A fan at the bottom of a tube produces an air stream moving upwards.
A ball levitates in the air stream.

The task is to control the ball’s position [image: z].
Actuating variable is the motor’s control signal [image: u_{pwm}].


[image: Image of Ball in Tube System]
Fig. 10 The ball in tube system



The example comes with two models, which differ in the reaction to the ball falling down.
The BallInTubeModel makes the ball stick to the ground once it falls down.
The BallInTubeSpringModel lets the ball to jump back up again:



	Ball in Tube Model

	Ball in Tube Spring Model





The OpenLoop controller ignores the current state and output of the model,
as well as trajectory values.
Instead it gives the opportunity to set the actuating variable [image: u_{pwm}] manually.

The ball’s position is used as a flat output in this flatness based feedforward module:



	Ball in Tube Feedforward





A 3D visualizer is implemented.
In case of missing VTK, a 2D visualization can be used instead.

An external settings file contains all parameters.
All implemented classes import their initial values from here.

Regimes are stored in two files.
At program start, the main function loads six regimes from the file default.sreg.
In addition, nine regimes can be loaded manually from the file experiments.sreg.

The structure of __main__.py allows starting the example without navigating to the directory
and using an __init__.py file to outsource the import commands for additional files.

The example also provides a package for symbolic calculation.





          

      

      

    

  

    
      
          
            
  
Ball in Tube Model

A fan at the bottom of a tube produces an air stream moving upwards.
A ball levitates in the air stream.

The fan rotates with the rotational speed [image: \eta].
It produces an air stream with the velocity [image: v].
The factor [image: k_L] describes the proportionality between the air’s volume flow rate and the fan’s rotational speed.
The motor driving the fan is modeled as a PT2-element with the amplification [image: k_s],
the damping [image: d] and the time constant [image: T].
An Arduino Uno controls the motor,
its discrete control signal [image: u_{pwm}] has a range of [image: 0 - 255]
and amplifies the supply voltage [image: V_{cc}].

The ball covers an area [image: A_B] and has a mass [image: m].
Its distance to the tube’s bottom is the position [image: z].
The gap between the ball and the tube covers an area [image: A_{Sp}].
The factor [image: k_V] describes the proportionality between
the force of flow resistance and the velocity of the air streaming through the gap.

The tube has a height [image: h].

The task is to control the ball’s position [image: z].
Actuating variable is the motor’s control signal [image: u_{pwm}].


[image: Image of Ball in Tube System]
Fig. 11 The ball in tube system in detail



TWith the state vector


[image: \boldsymbol{x} = \begin{pmatrix}     x_1 \\     x_2 \\     x_3 \\     x_4 \end{pmatrix} = \begin{pmatrix}     \eta \\     \dot{\eta} \\     z \\     \dot{z} \end{pmatrix} ,]


the model equations are given by


[image: \boldsymbol{\dot{x}} = \begin{pmatrix}     \dot{x}_1 \\     \dot{x}_2 \\     \dot{x}_3 \\     \dot{x}_4 \end{pmatrix} = \begin{pmatrix}     x_2 \\     -\frac{1}{T^2} x_1 - \frac{2 d}{T} x_2 + \frac{k_s}{T^2} \frac{u_{pwm}}{255} V_{cc} \\     x_4 \\     \frac{k_L}{m}(\frac{k_V x_1 - A_B x_4}{A_{Sp}})^2-g \end{pmatrix}.]


In case of the ball falling down and reaching a position [image: x_3 < 0] below the fan,
the root function of the model overrides the ball’s position [image: x_3 = 0] and velocity [image: x_4 = 0].

The model’s boundary condition is violated if the ball leaves the tube on the upper end:


[image: x_3 > h]


The ball’s position


[image: y = x_3 = z]


is chosen as output.





          

      

      

    

  

    
      
          
            
  
Ball in Tube Spring Model

This model contains all equations of the Ball in Tube Model
except for one single change:
The dynamics of the ball bouncing back up once it falls to the ground.

Instead of overriding the ball’s position and speed once the ball falls below the fan,
the fourth system equation is overwritten by an extended version


[image: \dot{x}_4 = \frac{K x_3}{m} - \frac{D x_4}{m} + \frac{k_L}{m}\left(\frac{k_V x_1 - A_B x_4}{A_{Sp}}\right)^2-g .]


This inserts a spring with the stiffness [image: K] and the damping [image: D] on the ground of the tube.





          

      

      

    

  

    
      
          
            
  
Ball in Tube Feedforward

Analyzing the system for flatness leads to finding the ball’s position as the flat output of the system,
meaning that all other system variables can be calculated from it.
This can be retraced easily with the following chain of equations:


[image: x_3 &= y \\  &= f_3 (y)  x_4 &= \dot{y} \\  &= f_4 (\dot{y})  x_1 &= \frac {A_{Sp}}{k_V}\sqrt{\frac{m}{k_L}(\ddot{y} + g)} + \frac{A_B}{k_V} \dot{y} \\  &= f_1 (y, \dot{y}, \ddot{y})  x_2 &= \frac {m A_{Sp}^2 y^{(3)}}{2 k_V k_L (k_V x_1 - A_B \dot{y})} + \frac{A_B}{k_V} \ddot{y} \\  &= f_2 (y, \dot{y}, \ddot{y}, y^{(3)})  u   &= \frac {m T^2 A_{Sp}^2 y^{(4)} - 2 k_L T^2 (k_V x_2 - A_B \ddot{y})^2}{2 k_s k_V k_L (k_V x_1 - A_B \dot{y})} + \frac {A_B T^2}{k_s k_V} y^{(3)} + \frac {2 d T}{k_s} x_2 + \frac{1}{k_s} x_1 \\  &= f_u (y, \dot{y}, \ddot{y}, y^{(3)}, y^{(4)})]


The last equation [image: u= f_u (y, \dot{y}, \ddot{y}, y^{(3)}, y^{(4)})] is implented in this feedforward module.
The highest order of derivatives is [image: y^{(4)}], so the trajectory generator
needs to provide a trajectory that is differentiable at least four times.





          

      

      

    

  

    
      
          
            
  
Tandem Pendulum (pendulum)

Two pendulums are fixed on a cart, which can move in the horizontal direction.

The cart has a mass [image: m_0]. The friction between the cart and the surface causes a frictional force [image: F_r = d_0 \cdot \dot{s}],
in opposite direction as the velocity [image: \dot{s}] of the cart.

Each pendulum has a mass [image: m_i], a moment of intertia [image: J_i], a length [image: l_i] and an angle of deflection [image: \varphi_i].
The friction in the joint where the pendulums are mounted on the cart causes a frictional torque [image: M_{ir} = d_i \cdot \dot{\varphi}_i],
in opposite direction as the speed of rotation [image: \dot{\varphi}_i].
The system is shown in Fig. 12 .

The task is to control the position [image: s] of the cart and to stabilize the pendulums in either the upward or downward position.
Actuating variable is the force F.


[image: Image of Pendulum System]
Fig. 12 The pendulum system



The example comes with three models.
A point mass model, a rigid body model and a partially linearized model.

The state vector [image: \boldsymbol{x}] is chosen in all three models as:


[image: \boldsymbol{x} = \begin{pmatrix}     x_1 \\     x_2 \\     x_3 \\     x_4 \\     x_5 \\     x_6 \end{pmatrix} = \begin{pmatrix}     s \\     \dot{s} \\     \varphi_1 \\     \dot{\varphi}_1 \\     \varphi_2 \\     \dot{\varphi}_2 \end{pmatrix}]


The class TwoPendulumModel is the implementation of a point mass model.
The mass of each pendulum is considered concentrated at the end of its rod.
The model resulting model equations are relatively simple and moments of inertia do not appear:


[image: \dot{x} = \begin{pmatrix}     \dot{x}_1 \\     \dot{x}_2 \\     \dot{x}_3 \\     \dot{x}_4 \\     \dot{x}_5 \\     \dot{x}_6 \end{pmatrix} = \begin{pmatrix}     x_2 \\     \frac{1}{M} \left( F_1 + F_2 + F - d_0 x_2 - \frac{d_1 x_4}{l_1} \cos(x_3) - \frac{d_2 x_6}{l_2} \cos(x_5) \right)\\     x_4 \\     \frac{g}{l_1}\sin(x_3) - \frac {d_1 x_4}{m_1 l_1^2} + \frac{\cos(x_3)}{l_1 M} \left( F_1 + F_2 + F - d_0 x_2 - \frac{d_1 x_4}{l_1} \cos(x_3) - \frac{d_2 x_6}{l_2} \cos(x_5) \right) \\     x_6 \\     \frac{g}{l_2}\sin(x_5) - \frac {d_2 x_6}{m_2 l_2^2} + \frac{\cos(x_5)}{l_2 M} \left( F_1 + F_2 + F - d_0 x_2 - \frac{d_1 x_4}{l_1} \cos(x_3) - \frac{d_2 x_6}{l_2} \cos(x_5) \right) \end{pmatrix}]



[image: M &= m_0 + m_1 \sin^2(x_3) + m_2 \sin^2(x_5)\\ F_1 &= m_1 \sin(x_3)(g \cos(x_3) - l_1 x_4^2) \\ F_2 &= m_2 \sin(x_5)(g \cos(x_5) - l_2 x_6^2)]


The class TwoPendulumRigidBodyModel is the implementation of a rigid body model.
The rods are considered to have a mass and can not be ignored,
each pendulum has a moment of inertia [image: J_{DPi}]:


[image: \dot{x} = \begin{pmatrix}     \dot{x}_1 \\     \dot{x}_2 \\     \dot{x}_3 \\     \dot{x}_4 \\     \dot{x}_5 \\     \dot{x}_6 \end{pmatrix} = \begin{pmatrix}     x_2 \\     \frac{term2 \ + \ term3 \ + \ term4}{term1} \\     x_4 \\     \frac {1}{J_{DP1}} \left( m_1^* l_1^* \cos(x_3) \dot{x}_2 + M_1 - d_1 x_4 +  m_1^* l_1^* g \sin(x_3)\right)\\     x_6 \\     \frac {1}{J_{DP2}} \left( m_2^* l_2^* \cos(x_5) \dot{x}_2 + M_2 -  d_2 x_6 + m_2^* l_2^* g \sin(x_5)\right) \end{pmatrix}]



[image: term1 &= m_0^* + m_1^* + m_2^* - \frac{m_1^{*2} l_1^{*2} \cos^2(x_3)}{J_{DP1}} - \frac{m_2^{*2} l_2^{*2} \cos^2(x_5)}{J_{DP2}}\\ term2 &= \frac {m_1^* l_1^* \cos(x_3) }{J_{DP1}} (M_1 -  d_1 x_4 + m_1^* l_1^* g \sin(x_3))\\ term3 &= \frac {m_2^* l_2^* \cos(x_5) }{J_{DP2}}(M_2 - d_2 x_6 + m_2^* l_2^* g \sin(x_5)) \\ term4 &= F - d_0 x_2 - m_1^* l_1^* x_4^2 \sin(x_3) - m_2^* l_2^* x_6^2 \sin(x_5) \\]


The class TwoPendulumModelParLin is the implementation of a the partially linearized point mass model.
The input is chosen as


[image: u_{tr} = \frac{1}{M} \left( F_1 + F_2 + F - d_0 x_2 - \frac{d_1 x_4}{l_1} \cos(x_3) - \frac{d_2 x_6}{l_2} \cos(x_5) \right),]


with [image: M], [image: F_1] and [image: F_2] as before in TwoPendulumModel.
This transforms the model equations into the input afine form


[image: \dot{x} = \begin{pmatrix}     \dot{x}_1 \\     \dot{x}_2 \\     \dot{x}_3 \\     \dot{x}_4 \\     \dot{x}_5 \\     \dot{x}_6 \end{pmatrix} = \begin{pmatrix}     x_2 \\     0 \\     x_4 \\     \frac{g}{l_1}\sin(x_3) - \frac {d_1 x_4}{m_1 l_1^2} \\     x_6 \\     \frac{g}{l_2}\sin(x_5) - \frac {d_2 x_6}{m_2 l_2^2} \end{pmatrix} + \begin{pmatrix}     0 \\     1 \\     0 \\     \frac{\cos(x_3)}{l_1}\\     0\\     \frac{\cos(x_5)}{l_2} \end{pmatrix} u_{tr}]


All three models define the cart’s position


[image: y = x_1 = s]


as the output of the system.

The example comes with five controllers.
Two of them, LinearStateFeedback and LinearStateFeedbackParLin, implement linear state feedback,
both using the package symbolic_calculation to calculate their gain and prefilter.
The LinearQuadraticRegulator
calculates its gain and prefilter by solving the continuous algebraic Riccati equation.
The LjapunovController is designed with the method of Ljapunov to stabilize the pendulums in the upward position.
And finally the SwingUpController, especially designed to swing up the pendulums using linear state feedback
and to stabilize the system by switching to a Ljapunov controller once the pendulums point upwards.

A 3D visualizer is implemented.
In case of missing VTK, a 2D visualization can be used instead.

An external settings file contains all parameters.
All implemented classes import their initial values from here.

At program start, the main loads eleven regimes from the file default.sreg.
The provided regimes not only show the stabilization of the system in different
steady-states (e.g. both pendulums pointing downwards or both pointing upwards)
but also ways to transition them between those states (e.g. swinging them up).

The example also provides two modules for postprocessing.
They plot different combinations of results in two formats, one of them being pdf.
The second format of files can be passed to a metaprocessor.

The structure of __main__.py allows starting the example without navigating to the directory
and using an __init__.py file to outsource the import commands for additional files.





          

      

      

    

  

    
      
          
            
  
Car with Trailers (car)

A car pulls multiple trailers. All parts of the vehicle have one axis for simplification.

The car moves forward with a velocity [image: v] and turns with a ratotional speed [image: \omega].
The coordinates [image: x] and [image: y] describe the car’s distance to the origin of a stationary coordinate system.

The car’s and the trailer’s deflections regarding the horizontal line are [image: \varphi_1], [image: \varphi_2] and [image: \varphi_3].

The distances between the axles and the couplings from front to back are [image: d_1], [image: l_2], [image: d_2] and [image: l_3]


[image: Image of Car System]
Fig. 13 The car system



With the state vector


[image: \boldsymbol{x} = \begin{pmatrix}     x_1 \\     x_2 \\     x_3 \\     x_4 \\     x_5 \end{pmatrix} = \begin{pmatrix}     x \\     y \\     \varphi_1 \\     \varphi_2 \\     \varphi_3 \end{pmatrix},]


the model equations are given by


[image: \boldsymbol{\dot{x}} = \begin{pmatrix}     \dot{x}_1 \\     \dot{x}_2 \\     \dot{x}_3 \\     \dot{x}_4 \\     \dot{x}_5 \end{pmatrix} = \begin{pmatrix}     v \cos(x_3)\\     v \sin(x_3)\\     \omega \\     \frac{1}{l_2} \sin(x_3 - x_4) v - \frac{d_1}{l_2} \cos(x_3 - x_4) \omega \\     \dot{x}_5 \end{pmatrix},]


with


[image: \dot{x}_5 = \left(\frac{1}{l_3} \sin(x_3 - x_5) - \frac{l_2 + d_2}{l_2 l_3} \sin(x_3 - x_4) \cos(x_4 - x_5)\right) v + \dots \\ \dots + \left(-\frac{d_1}{l_3} \cos(x_3 - x_5) + \frac{d_1 (l_2 + d_2)}{l_2 l_3} \cos(x_3 - x_4) \cos(x_4 - x_5)\right) \omega .]


The driving speed [image: v] and the turning speed [image: \omega] are set to constant values in the state function of the model.
They are potential actuating variables to control the system.

There is no output defined.

The example comes with no controller,
with a 2D visualization,
an external settings file containing all initial values for the parameters
and one regime loaded from the file default.sreg by the main at program start.

The structure of __main__.py allows starting the example without navigating to the directory
and using an __init__.py file to outsource the import commands for additional files.





          

      

      

    

  

    
      
          
            
  
Users Guide

tbd





          

      

      

    

  

    
      
          
            
  
PyMoskito Modules Reference

Because every feature of PyMoskito must have a test case, when you are not sure how
to use something, just look into the tests/ directories, find that feature
and read the tests for it, that will tell you everything you need to know.

Most of the things are already documented though in this document, that is
automatically generated using PyMoskito’s docstrings.

Click the  “modules” (Module Index) link in the top right corner to easily
access any PyInduct module, or use this contents:



	Simulation GUI

	Simulation Modules

	Generic Simulation Modules

	Simulation Core

	Processing GUI

	Processing Core

	Controltools

	Tools






Contributions to docs

All contributions are welcome. If you’d like to improve something, look into
the sources if they contain the information you need (if not, please fix them),
otherwise the documentation generation needs to be improved (look in the
doc/ directory).







          

      

      

    

  

    
      
          
            
  
Simulation GUI


	
class pymoskito.simulation_gui.SimulationGui

	class for the graphical user interface


	
apply_regime_by_name(regime_name)

	Apply the regime given by regime_name und update the regime index.


	Returns

	True if successful, False if errors occurred.



	Return type

	bool










	
closeEvent(self, QCloseEvent)

	




	
export_simulation_data(ok)

	Query the user for a custom name and export the current simulation
results.


	Parameters

	ok – unused parameter from QAction.triggered() Signal










	
increment_playback_time()

	go one time step forward in playback






	
load_regimes_from_file(file_name)

	load simulation regime from file
:param file_name:






	
new_simulation_data(status, data)

	Slot to be called when the simulation interface has completed the
current job and new data is available.


	Parameters

	
	status (str) – Status of the simulation, either
- finished : Simulation has been finished successfully or
- failed : Simulation has failed.


	data (dict) – Dictionary, holding the simulation data.













	
pause_animation()

	pause the animation






	
play_animation()

	play the animation






	
plot_data_vector(item)

	Creates a plot widget based on the given item.

If a plot for this item is already open no new plot is created but the
existing one is raised up again.


	Parameters

	item (Qt.ListItem) – Item to plot.










	
postprocessing_clicked()

	starts the post- and metaprocessing application






	
regime_dclicked(item)

	Apply the selected regime to the current target.






	
reset_camera_clicked()

	reset camera in vtk window






	
run_next_regime()

	Execute the next regime in the regime batch.






	
start_regime_execution()

	Simulate all regimes in the regime list.






	
start_simulation()

	start the simulation and disable start button






	
stop_animation()

	Stop the animation if it is running and reset the playback time.






	
stop_regime_execution()

	Stop the batch process.






	
update_gui()

	Updates the graphical user interface to reflect changes of the current
display time.


	This includes:

	
	timestamp


	visualisation window


	time cursors in diagrams













	
update_playback_speed(val)

	adjust playback time to slider value


	Parameters

	val – 










	
update_playback_time()

	adjust playback time to slider value










	
pymoskito.simulation_gui.run(regimes=None)

	Helper function to launch the PyMoskito GUI









          

      

      

    

  

    
      
          
            
  
Simulation Modules


	
class pymoskito.simulation_modules.SimulationModule(settings)

	Smallest unit pof the simulation framework.

This class provides necessary functions like output calculation and holds
all settings that can be accessed by the user.
The public_settings are read by the
SimulationInterface and the rendered by the GUI. All entries
stated in this dictionary will be available as changeable settings for the
module.
On initialization, a possibly modified (in terms of its values) version of
this dict will be passed back to this class and is thenceforward available
via the settings property.

The most important method is calc_output() which is called by the
Simulator to retrieve this modules output.


	Parameters

	settings (OrderedDict) – Settings for this simulation module.
These entries will be shown in the properties view and can be
changed by the user. The important entries for this base class are:


	output info:

	Dict holding an information dictionaries with keys Name and
Unit for each element in the output data.
If available, these information are used to display reasonable names
in the result view and to display the corresponding units for the
result plots.












	Warn:

	Do NOT use ‘.’ in the output_info name field.










	
exception pymoskito.simulation_modules.SimulationException

	




	
class pymoskito.simulation_modules.Trajectory(settings)

	Base class for all trajectory generators


	
_desired_values(t)

	Placeholder for calculations of desired values.


	Parameters

	t (float) – Time.



	Returns

	Trajectory output. This should always be a two-dimensional
array holding the components in to 0th and their derivatives in
the 1th axis.



	Return type

	Array














	
class pymoskito.simulation_modules.Feedforward(settings)

	Base class for all feedforward implementations


	
_feedforward(time, trajectory_values)

	Placeholder for feedforward calculations.


	Parameters

	
	time (float) – Current time.


	trajectory_values (array-like) – Desired values from the trajectory
generator.






	Returns

	Feedforward output. This signal can be added to the
controllers output via the ModelMixer and is also
directly passed to the controller.



	Return type

	Array














	
class pymoskito.simulation_modules.Controller(settings)

	Base class for controllers.


	Parameters

	settings (dict) – Dictionary holding the config options for this module.
It must contain the following keys:


	input_order

	The order of required derivatives from the trajectory generator.



	input_type

	Source for the feedback calculation and one of the following:
system_state , system_output , Observer or Sensor .












	
_control(time, trajectory_values=None, feedforward_values=None, input_values=None, **kwargs)

	Placeholder for control law calculations.

For more sophisticated implementations overload calc_output() .


	Parameters

	
	time (float) – Current time.


	trajectory_values (array-like) – Desired values from the trajectory
generator.


	feedforward_values (array-like) – Output of feedforward block.


	input_values (array-like) – The input values selected by
input_type .


	**kwargs – Placeholder for custom parameters.






	Returns

	Control output.



	Return type

	Array














	
class pymoskito.simulation_modules.Limiter(settings)

	Base class for all limiter variants


	
_limit(values)

	Placeholder for actual limit calculations.


	Parameters

	values (array-like) – Values to limit.



	Returns

	Limited output.



	Return type

	Array














	
class pymoskito.simulation_modules.ModelMixer(settings)

	




	
class pymoskito.simulation_modules.Model(settings)

	Base class for all user defined system models in state-space form.


	Parameters

	settings (dict) – Dictionary holding the config options for this module.
It must contain the following keys:


	input_count

	The length of the input vector for this model.



	state_count

	The length of the state vector for this model.



	initial state

	The initial state vector for this model.












	
check_consistency(x)

	Check whether the assumptions, made in the modelling process are
violated.


	Parameters

	x – Current system state



	Raises

	ModelException – If a violation is detected. This will
stop the simulation process.










	
initial_state

	Return the initial state of the system.






	
root_function(x)

	Check whether a reinitialisation of the integrator should be performed.

This can be the case if there are discontinuities in the system dynamics
such as switching.


	Parameters

	x (array-like) – Current system state.



	Returns

	
	bool: True if reset is advised.


	array-like: State to continue with.








	Return type

	tuple










	
state_function(t, x, args)

	Calculate the state derivatives of a system with state x at time t.


	Parameters

	
	x (Array-like) – System state.


	t (float) – System time.






	Returns

	Temporal derivative of the system state at time t.














	
exception pymoskito.simulation_modules.ModelException

	Exception to be raised if the current system state violates modelling
assumptions.






	
class pymoskito.simulation_modules.Solver(settings)

	Base Class for solver implementations






	
class pymoskito.simulation_modules.Disturbance(settings)

	Base class for all disturbance variants


	
_disturb(value)

	Placeholder for disturbance calculations.

If the noise is to be dependent on the measured signal use its value
to create the noise.


	Parameters

	value (array-like float) – Values from the source selected by the
input_signal property.



	Returns

	Noise that will be mixed with a signal later on.



	Return type

	array-like float














	
class pymoskito.simulation_modules.Sensor(settings)

	Base class for all sensor variants


	
_measure(value)

	Placeholder for measurement calculations.

One may reorder or remove state elements or introduce measurement delays
here.


	Parameters

	value (array-like float) – Values from the source selected by the
input_signal property.



	Returns

	‘Measured’ values.



	Return type

	array-like float














	
class pymoskito.simulation_modules.ObserverMixer(settings)

	




	
class pymoskito.simulation_modules.Observer(settings)

	Base class for observers


	
_observe(time, system_input, system_output)

	Placeholder for observer law.


	Parameters

	
	time – Current time.


	system_input – Current system input.


	system_output – Current system output.






	Returns

	Estimated system state

















          

      

      

    

  

    
      
          
            
  
Generic Simulation Modules


	
class pymoskito.generic_simulation_modules.LinearStateSpaceModel(settings)

	The state space model of a linear system.

The parameters of this model can be provided in form of a file whose path is
given by the setting config file .
This path should point to a pickled dict holding the following keys:



	system:

	An Instance of scipy.signal.StateSpace (from scipy)
representing the system,



	op_inputs:

	An array-like object holding the operational point’s inputs,



	op_outputs:

	An array-like object holding the operational point’s outputs.









	
state_function(t, x, args)

	Calculate the state derivatives of a system with state x at time t.


	Parameters

	
	x (Array-like) – System state.


	t (float) – System time.






	Returns

	Temporal derivative of the system state at time t.














	
class pymoskito.generic_simulation_modules.ODEInt(settings)

	Wrapper for ode_int from Scipy project


	
integrate(t)

	Integrate until target step is reached.


	Parameters

	t – target time



	Returns

	system state at target time










	
set_input(*args)

	propagate input changes to ode_int










	
class pymoskito.generic_simulation_modules.ModelInputLimiter(settings)

	ModelInputLimiter that limits the model input values.


	Settings:

	Limits: (List of) list(s) that hold (min, max) pairs for the
corresponding input.










	
class pymoskito.generic_simulation_modules.Setpoint(settings)

	Provides setpoints for every output component.

If the output is not scalar, just add more entries to the list.
By querying the differential order from the controller (if available) the
required derivatives are given.


Note

Keep in mind that while this class provides zeros for all derivatives
of the desired value, they actually strive to infinity for [image: t=0] .








	
class pymoskito.generic_simulation_modules.HarmonicTrajectory(settings)

	This generator provides a scalar harmonic sinus signal
with derivatives up to order n






	
class pymoskito.generic_simulation_modules.SmoothTransition(settings)

	provides (differential) smooth transition between two scalar states






	
class pymoskito.generic_simulation_modules.PIDController(settings)

	PID Controller






	
class pymoskito.generic_simulation_modules.LinearStateSpaceController(settings)

	A controller that is based on a state space model of a linear system.

This controller needs a linear statespace model, just as the
LinearStateSpaceModel . The file provided in config file
should therefore contain a dict holding the entries: model,
op_inputs and op_outputs .

If poles is given (differing from None ) the state-feedback will be
computed using pymoskito.place_siso() .
Furthermore an appropriate prefilter is calculated, which establishes
stationary attainment of the desired output values.


Note

If a SIMO or MIMO system is given, the control [https://github.com/python-control/python-control] package as well as the
slycot [https://github.com/python-control/Slycot] package are needed the perform the pole placement.








	
class pymoskito.generic_simulation_modules.DeadTimeSensor(settings)

	Sensor that adds a measurement delay on chosen states






	
class pymoskito.generic_simulation_modules.GaussianNoise(settings)

	Noise generator for gaussian noise






	
class pymoskito.generic_simulation_modules.AdditiveMixer(settings)

	Signal Mixer that accumulates all input signals.

Processing is done according to rules of numpy broadcasting.









          

      

      

    

  

    
      
          
            
  
Simulation Core


	
class pymoskito.simulation_core.SimulationStateChange(**kwargs)

	Object that is emitted when Simulator changes its state.


	Keyword Arguments

	
	type – Keyword describing the state change, can be one of the following


	init Initialisation


	start : Start of Simulation


	time : Accomplishment of new progress step


	finish : Finish of Simulation


	abort : Abortion of Simulation







	data – Data that is emitted on state change.


	info – Further information.













	
class pymoskito.simulation_core.Simulator(settings, modules)

	This Class executes the time-step integration.

It forms the Core of the physical simulation and interacts with the GUI
via the :py:class:’‘SimulationInterface`

Calculated values will be stored every 1 / measure rate seconds.


	
run()

	Start the simulation.






	
stop()

	Stop the simulation.













          

      

      

    

  

    
      
          
            
  
Processing GUI


	
class pymoskito.processing_gui.PostProcessor(parent=None)

	
	
closeEvent(self, QCloseEvent)

	











          

      

      

    

  

    
      
          
            
  
Processing Core


	
class pymoskito.processing_core.PostProcessingModule

	Base Class for Postprocessing Modules


	
static calc_l1_norm_abs(meas_values, desired_values, step_width)

	Calculate the L1-Norm of the absolute error.


	Parameters

	
	step_width (float) – Time difference between measurements.


	desired_values (array-like) – Desired values.


	meas_values (array-like) – Measured values.













	
static calc_l1_norm_itae(meas_values, desired_values, step_width)

	Calculate the L1-Norm of the ITAE (Integral of Time-multiplied Absolute
value of Error).


	Parameters

	
	step_width (float) – Time difference between measurements.


	desired_values (array-like) – Desired values.


	meas_values (array-like) – Measured values.













	
process(files)

	worker-wrapper function that processes an array of result files
This is an convenience wrapper for simple processor implementation.
Overload for more sophisticated implementations
:param files:






	
run(data)

	Run this postprocessor.

This function will be called from process() with the simulation
results from one simulation result file.

Overwrite this function to implement your own PostProcessor.

Args;
param data: simulation results from a pymoskito simulation result file.


	Returns

	With a figure Canvas an a name.



	Return type

	Dict














	
class pymoskito.processing_core.MetaProcessingModule

	Base Class for Meta-Processing Modules


	
plot_family(family, x_path, y_path, mode, x_index=-1, y_index=-1)

	plots y over x for all members that can be found in family sources
:param family:
:param x_path:
:param y_path:
:param mode:
:param x_index:
:param y_index:
:return:






	
set_plot_labeling(title='', grid=True, x_label='', y_label='', line_type='line')

	helper to quickly set axis labeling with the good font sizes
:param title:
:param grid:
:param x_label:
:param y_label:
:param line_type:
:return:













          

      

      

    

  

    
      
          
            
  
Controltools

This file contains some functions that are quite helpful when designing feedback
laws.
This collection is not complete and does not aim to be so.
For a more sophisticated collection have a look at the symbtools
(https://github.com/TUD-RST/symbtools) or control package which are not used
in this package to keep a small footprint.


	
pymoskito.controltools.char_coefficients(poles)

	Calculate the coefficients of a characteristic polynomial.


	Parameters

	poles (list or numpy.ndarray) – pol configuration



	Returns

	coefficients



	Return type

	numpy.ndarray










	
pymoskito.controltools.place_siso(a_mat, b_mat, poles)

	Place poles for single input single output (SISO) systems:



	pol placement for state feedback: [image: A] and [image: b]


	pol placement for observer: [image: A^T] and [image: c]








	Parameters

	
	a_mat (numpy.ndarray) – System matrix.:math:A


	b_mat (numpy.ndarray) – Input vector [image: b] or Output matrix
[image: c] .


	poles (list or numpy.ndarray) – Desired poles.






	Returns

	Feedback vector or [image: k] or observer gain
[image: l^T] .



	Return type

	numpy.ndarray










	
pymoskito.controltools.calc_prefilter(a_mat, b_mat, c_mat, k_mat=None)

	Calculate the prefilter matrix


[image: \boldsymbol{V} = - \left[\boldsymbol{C} \left(\boldsymbol{A} - \boldsymbol{B}\boldsymbol{K}\right)^{-1}\boldsymbol{B}\right]^{-1}]



	Parameters

	
	a_mat (numpy.ndarray) – system matrix


	b_mat (numpy.ndarray) – input matrix


	c_mat (numpy.ndarray) – output matrix


	k_mat (numpy.ndarray) – control matrix






	Returns

	Prefilter matrix



	Return type

	numpy.ndarray










	
pymoskito.controltools.controllability_matrix(a_mat, b_mat)

	Calculate controllability matrix and check controllability of the system.


[image: \boldsymbol{Q_{c}} = \begin{pmatrix} \boldsymbol{B} & \boldsymbol{A}\boldsymbol{B} & \boldsymbol{A}^{2} \boldsymbol{B} & \cdots & \boldsymbol{A}^{n-1}\boldsymbol{B}\\ \end{pmatrix}]



	Parameters

	
	a_mat (numpy.ndarray) – system matrix


	b_mat (numpy.ndarray) – manipulating matrix






	Returns

	controllability matrix [image: \boldsymbol{Q_{c}}]



	Return type

	numpy.ndarray










	
pymoskito.controltools.observability_matrix(a_mat, c_mat)

	Calculate observability matrix and check observability of the system.


[image: \boldsymbol{Q_{o}} = \begin{pmatrix} \boldsymbol{C}\\ \boldsymbol{C}\boldsymbol{A}\\ \boldsymbol{C}\boldsymbol{A}^{2}\\ \vdots \\ \boldsymbol{C}\boldsymbol{A}^{n-1}\\ \end{pmatrix}]



	Parameters

	
	a_mat (numpy.ndarray) – system matrix


	c_mat (numpy.ndarray) – output matrix






	Returns

	observability matrix [image: \boldsymbol{Q_{o}}]



	Return type

	numpy.ndarray










	
pymoskito.controltools.lie_derivatives(h, f, x, order=1)

	Calculates the Lie-Derivative from a scalar field [image: h(x)] along a
vector field [image: f(x)].


	Parameters

	
	h (sympy.matrix) – scalar field


	f (sympy.matrix) – vector field


	x (sympy.matrix) – symbolic representation of the states


	order (int) – order






	Returns

	lie derivatives in ascending order



	Return type

	list of sympy.matrix













          

      

      

    

  

    
      
          
            
  
Tools

Tools, functions and other funny things


	
pymoskito.tools.rotation_matrix_xyz(axis, angle, angle_dim)

	Calculate the rotation matrix for a rotation around a given axis with the angle [image: \varphi].


	Parameters

	
	axis (str) – choose rotation axis “x”, “y” or “z”


	angle (int or float) – rotation angle [image: \varphi]


	angle_dim (str) – choose “deg” for degree or “rad” for radiant






	Returns

	rotation matrix



	Return type

	numpy.ndarray










	
pymoskito.tools.get_resource(res_name, res_type='icons')

	Build absolute path to specified resource within the package


	Parameters

	
	res_name (str) – name of the resource


	res_type (str) – subdir






	Returns

	path to resource



	Return type

	str













          

      

      

    

  

    
      
          
            
  
Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:


Types of Contributions


Report Bugs

Report bugs at https://github.com/cklb/pymoskito/issues.

If you are reporting a bug, please include:


	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.







Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.




Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.




Write Documentation

PyMoskito could always use more documentation, whether as part of the
official PyMoskito docs, in docstrings, or even on the web in blog posts,
articles, and such.




Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/cklb/pymoskito/issues.

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.


	Remember that this is a volunteer-driven project, and that contributions
are welcome :)









Get Started!

Ready to contribute? Here’s how to set up pymoskito [https://github.com/cklb/pymoskito] for local development.


	Fork the pymoskito [https://github.com/cklb/pymoskito] repo on GitHub.


	Clone your fork locally:

$ git clone git@github.com:your_name_here/pymoskito.git







	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper
installed, this is how you set up your fork for local development:

$ mkvirtualenv pymoskito
$ cd pymoskito/
$ python setup.py develop







	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.



	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ python setup.py test







	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.







Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	The pull request should include tests.


	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.


	The pull request should work for Python 3.4+ and for PyPy. Check
https://travis-ci.org/cklb/pymoskito/pull_requests
and make sure that the tests pass for all supported Python versions.







Tips

To run a subset of tests:

$ python -m unittest pymoskito/tests/test_gui.py
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History


0.3.0 (2018-10-01)


	Added a new plot system


	Added a last simulation list


	Added more log messages


	Removed latex as an requirement for the main GUI, only required for the Postprocessor







0.2.3 (2018-05-14)


	Added sensible examples for Post- and Meta processors in the Ball and Beam
example


	Fixed Issue regarding the Disturbance Block


	Removed error-prone pseudo post processing


	Fixed problems due to changes in trajectory generators







0.2.2 (2018-03-28)


	Added extensive beginners guide (thanks to Jonas) and tutorial section


	Added extended documentation for examples (again, thanks to Jonas)







0.2.1 (2017-09-07)


	Fixed issue when installing via pip


	Fixed issue with metaprocessors and added example metaprocessor for ballbeam


	Downgraded requirements







0.2.0 (2017-08-18)


	Second minor release with lots of new features.


	Completely overhauled graphical user interface with menus and shortcuts.


	PyMoskito now comes with three full-fledged examples from the world of
control theory, featuring the Ball and Beam- and a Tandem-Pendulum system.


	The main application now has a logger window which makes it easier to see what
is going on in the simulation circuit.


	Several bugs concerning encoding issues have been fixed


	Unittest have been added and the development now uses travis-ci


	Version change from PyQt4 to Pyt5


	Version change form Python 2.7 to 3.5+


	Changed version to GPLv3 and added appropriate references for the used images.


	Improved the export of simulation results


	Introduced persistent settings that make opening files less painful.


	Made vtk an optional dependency and added matplotlib based visualizers.


	Large improvements concerning the sphinx-build documentation


	Fixed issue concerning possible data types for simulation module properties


	Introduced new generic modules that directly work on scipy StateSpace objects.







0.1.0 (2015-01-11)


	First release on PyPI.
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