

 Navigation

 	
 index

 	
 next |

 	Pymixup 1.0.2 documentation

Welcome to pymixup’s documentation!

pymixup is a Python project obfuscator. It takes Python code that looks like this:

def mk_formatted_array_string(number_array, decimal='.', separator=',',
 is_sort_array=False,
 is_strip_unused_decimals=False,
 joiner=' '):
 """Format an array of numbers into a string of formatted numbers.

 Parameters

 decimal : str
 is_sort_array : bool
 is_strip_unused_decimals : bool
 joiner : str
 number_array : np.array
 separator : str
 """
 try:
 if is_sort_array:
 number_array_ = np.sort(number_array)
 else:
 number_array_ = number_array
 formatted_string = joiner.join([
 mk_formatted_number(
 number, is_strip_unused_decimals=is_strip_unused_decimals)
 for number in number_array_
])
 except ValueError:
 raise
 if decimal != '.' or separator != ',':
 formatted_string = formatted_string.replace(',', '~'). \
 replace('.', decimal).replace('~', separator)
 return formatted_string

and turns it into this:

def raiug(enihb,xskrm='.',oqkio=',',fmzcc=False,jkego=False,aidon=' '):
 try:
 if fmzcc:
 voxaq=np.sort(enihb)
 else:
 voxaq=enihb
 zexay=aidon.join([gkmiw(number,jkego=jkego)for number in voxaq])
 except ValueError:
 raise
 if xskrm!='.'or oqkio!=',':
 zexay=zexay.replace(',','~').replace('.',xskrm).replace('~',oqkio)
return zexay

Why Obfuscate?

Python is a great interpreted language. Its syntax allows us to write elegant easy-to-read code.

But sometimes you may not want your code to easy to understand. For example, if you are charging for an app that is installed on a mobile phone, then you do not want competitors to copy your code and resell your app at a lower cost. Even if you distribute just the compiled .pyc byte code, it can be decompiled and made readable.

In this case, it’s sensible to make the program as hard as possible for someone else to copy and edit. That’s the work of obfuscation.

Because of its interpreted nature, there are limits to how much a Python program can be obfuscated, since the program must still be understood by the interpreter. For example, Python keywords like “if” and “class” cannot be changed, or Python won’t be able to understand them. However, variables and method names you create can be changed–as long as the changes are duplicated throughout the source files.

That’s what pymixup does. It obfuscates non-reserved words (e.g., words that are not keywords) into garbled words of random characters to make the program harder to understand and follow.

CAVEAT: The obfuscated code can be reverse engineered by deciphering what an obfuscated variable or method does and renaming the garbled term to a meaningful one. That’s a potentially labor-intensive process that hopefully discourages those who want to steal your code from attempting it.

What pymixup Does

pymixup will read all the Python files in a project and obfuscate the file contents, the file names, and the folder names based on rules you specify in the setup lists. All is emphasized because pymixup works with projects–it’s not restricted to single source files. So obfuscated packages can use other obfuscated packages, since the obfuscated names will be shared between them.

In addition, for the cross-platform program Kivy, pymixup will also obfuscate the corresponding .kv files.

Other files types may be added in the future; for example, Django .html template files. Pull requests are welcome.

Contents

	Installation
	Requirements

	Installation

	Run pytests

	Program Flow
	Initially load the reserved names list

	Discover all names used in the project

	Obfuscate the project

	Coding Standards to Accommodate Obfuscating

	Setup
	Identify the project files

	Identify the obfuscation directories

	Specify names that should not be obfuscated

	Specify work files and directories to exclude

	Specify modules and files to add

	Steps to Obfuscate a Project
	Setup the project

	Use Fabric tasks to facilitate the steps

	Import a development project

	Obfuscate the project

	Export and test in your development platform

	Export and test on the destination platform

	Deploy the obfuscated project

	Folder Structure for Source Files

	Command Line Options
	Parameters

	Fabric automated tasks

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Richard DeVost.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pymixup 1.0.2 documentation

Installation

Requirements

	Python 2.7x

	pymixup uses Fabric to automate tasks, and Fabric has not (yet) migrated to Python 3. This is pymixup’s only known requirement for Python 2.7x. When (if) Fabric is updated to use Python 3.x, pymixup should run on Python 3.x.

	Fabric

	Used to automate tasks to prepare files for obfuscation and to deploy obfuscated code.

	pyparsing

	Used to parse Python and Kivy code.

	peewee

	Used as the ORM for the Sqlite db that contains the reserved (unobfuscated) and obfuscated names in the project.

	pytest

	Used as the unit testing framework.

Installation

pymixup should be installed in a development folder that you can edit. That is, it should not be installed in Python’s site-packages directory. If you use virtual environments (in directory ~/virtualenv), an install in Unix could look like this:

$ cd ~/virtualenv
$ virtualenv pymixup
$ pip install fabric pyparsing peewee pytest
$ source pymixup/bin/activate
$ cd ~/projects
$ git clone git://github.com/rdevost/pymixup

Run pytests

To running pytest from the command line, first set an environment variable IS_PYMIXUP_TEST=1. For example, in Unix:

export IS_PYMIXUP_TEST=1
cd pymixup
py.test

This environment variable is used to determine whether to use the live on-disk database Reserved and Identifier tables or set up temporary testing in-memory ones.

 Copyright 2016, Richard DeVost.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pymixup 1.0.2 documentation

Program Flow

pymixup reads a Python project and creates a corresponding obfuscated project by using the following steps.

Initially load the reserved names list

pymixup builds a database of all distinct names used in a project. The Identifier table contains all the names in a project plus their obfuscated values. The Reserved contains all the names that are reserved and should not be obfuscated. These tables are initially populated by a list of names you specify that should not be obfuscated.

Discover all names used in the project

pymixup then reads through the project files and finishes loading the Identifier and Reserved tables. This is done as follows.

	Examine every non-string and non-comment name in the Python programs and add it to the Reserved and Identifier tables. This step uses the following logic:

if the name is a reserved name
or is imported from a reserved package
or is an attribute of a reserved name
 add it to Reserved (if it isn't already there)
 if the name is in Identifier
 unobfuscate it (by changing it's obfuscated value to its real name)
 else
 add it to Identifier without obfuscation
else
 obfuscate it and add it to Identifier

	Each name is obfuscated by assigning it a randomly-generated name based on allowed letters (specified in ALPHABET in logic/randomizename.py) and a name length (specified when calling the randomizer in logic/identifier.py). The length of obfuscated words and what characters are allowed for them can be changed there.

	File and folder names that are not reserved are also obfuscated.

Obfuscate the project

After discovering all the names used in a project (which may require reading through the project files a few times), pymixup reads through the project files again and creates obfuscated versions using the Identifier table (from above). The obfuscated source files have:

	Comments and doc strings removed.

	Line breaks in Python statements removed, so each statement will be on a single line, regardless of its length.

	Names changed to their obfuscated values.

 Copyright 2016, Richard DeVost.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pymixup 1.0.2 documentation

Coding Standards to Accommodate Obfuscating

Some changes to coding style must be made for the obfuscator to work.

	
	Start doc strings with a triple quote AND text; do not start a doc string with a standalone triple quote. Doc strings CAN terminate with a standalone triple quote. For example,

	use:

"""My doc string."""

or:

"""My doc string.

This is what this function does.
"""

not:

"""
My doc string.
"""

Both double- and single-quotes are accepted for the triple quotes.

Doc strings with standalone triple quotes (as in the last example) are copied in to the obfuscated program without change.

To assign a multi-line string to a variable, use a triple-quoted string. For example:

myvar = """I want this
whole string to be assigned to myvar,
line breaks and all."""

	
	Use the platform directives “# {+<platform>}” (to begin a block) and “# {-<platform>}” (to end a block) to include code specifically for a platform. Code in the block will be copied and obfuscated only for the specified platform of when no platform is specified. For example,

	use:

{+android}
if android_level == 3:
 process.quit()
{-android}

to include the two android-specific code lines in the android build and to exclude them from ios builds.

	Put Kivy code in separate .kv files; don’t embed the Kivy language code within the .py files. That is, don’t use Builder.load_string, since strings are not obfuscated. The .kv extension is used to direct those Kivy language lines to a separate parser with rules specifically for Kivy, so those files can be obfuscated too.

	Make sure every method has an executable line (even if it’s just pass). For example, a Python program with a method that has only comments will load fine on a Mac, but will not load in iOS; and in this case, iOS gives no clue as to why the program fails to load.

 Copyright 2016, Richard DeVost.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pymixup 1.0.2 documentation

Setup

Define your project for pymixup using the lists and variables described below. These are simple Python lists and variables defined in the modules common/settings.py, data/builddb.py, obfuscate/obfuscate.py, and export/fabfile.py.

Identify the project files

pymixup needs to know which Python packages plus other files and directories make up the project. These are specified in the following common/settings.py lists.

	obfuscated_packages

	Your project’s Python packages; that is, your source code packages. Do not include Python standard libraries and libraries imported from site-packages in this list. Include just the highest level packages, all sub-packages will be read recursively. For example, if package foo includes packages bar and baz, just list foo.

	unobfuscated_folders

	Non-python folders required by the project plus any Python packages copied into your project’s root directory that should not be obfuscated. For example, a folder fonts of fonts could be in this list. Also, if a Python package like peewee is used in your project and is copied into your project root instead of using site-packages, then include it here too.

	obfuscated_root_files

	Required files that are in the project root folder that should be obfuscated. Use a wild card to specify the extension type. For example, “main.py” and “*.kv”.

	unobfuscated_root_files

	Required files that are in the project root folder that should not be obfuscated. Use a wild card to specify the extension type. For example, “*.ini” and “setup.py”.

Identify the obfuscation directories

The project’s root directory and the working directories needed for obfuscating the project must also be specified. These are also defined in common/setup.py. A project is obfuscated using the following steps:

	It is imported into IMPORTED.

	The imported project is obfuscated and placed in OBFUSCATED.

	The obfuscated project is exported into EXPORTED for testing.

	The exported project is deployed into DEPLOYED.

	Extra files required for the deployed project will be copied from EXTRAS.

These are directories are defined using the following variables. (By default, the directories for these five steps end with /IMPORTED, /OBFUSCATED, /EXPORTED, /DEPLOYED, and /EXTRAS respectively, although this is not required. See Folder Structure for Source Files for a graphic of the directory tree.)

	project_name

	The root directory of the project. For example, the project_name for a project ~/projects/MyProject would be “MyProject”.

	project_base_dir

	The directory which contains the root directory of the development project. For example, the project_base_dir for project ~/projects/MyProject would be “~/projects”.

	imported_dir

	The working directory that the development project will be imported into.

	obfuscated_dir

	The working directory the obfuscated project will be placed in.

	exported_dir

	The directory to hold obfuscated projects that are ready to test.

	deployed_dir

	The directory to deploy the obfuscated project to.

	extras_dir

	Location for extra files, packages, and folders that the deployed project will need. For example, add files, Python modules, or whole folders to this folder for which there is no “recipe” to include as part of the platform build. The entire file, module, or folder will be copied to the platform without modification.

NOTE: These base directories must exist before running the project. That is, pymixup expects the basic project structure to be in place; it does not create the imported_dir, obfuscated_dir, exported_dir, deployed_dir, and extras_dir base directories. pymixup will create all required sub-folders of these base directories.

Specify names that should not be obfuscated

pymixup builds a database of all the names used in a project. Some names, like Python key names, should not be obfuscated. Identify these names in the following lists found in data/builddb.py package.

	reserved_list

	These names will not be obfuscated. For convenience, the loading of reserved_list has been broken up into sections matching the library the reserved name is part of.

If the name is a module name, then any imported name from the module and any attribute from one of those names will be considered reserved as well. For example,
with reserved name “foo”:

from foo import bar

x = bar.baz

“bar” and “baz” will be reserved as well.

The following should be included in reserved_list:

	Python reserved names.

	Libraries you are importing that that should not be obfuscated (that is, libraries you did not write as part of your project).

	Names (methods, class names, etc.) from imported libraries that are not either specifically imported using a “from somelibrary import name1, name2, ...” statement, or an attribute of a reserved name.

	Parameter names in reserved methods and classes.

For example, consider the following code for reserved library foo where bar is a class in foo:

from foo import *

x = bar.baz(parm1=True)
y = x.something

In this case, the following describes whether the names have to be added to reserved_list:

	“foo”: yes, to designate the module as reserved,

	“bar”: yes, it’s not identified as a reserved name in the import statement,

	“baz”: no, it’s an attribute of “bar”,

	“parm1”: yes, parameter names in reserved objects have to be added,

	“x”: optional, if it is added, then “something” does not need to be added. If you want the variable “x” itself to be obfuscated, then add it.

	“something”, yes, unless “x” is added

	Database variable names (fields), named tuple fields, and other variables that exist both as quoted names (which makes it a string) and unquoted names in your programs or external tables. For example, the variable name amount cannot be obfuscated if it is used both as row.amount and row[“amount”].

	identifiers_list

	There may be a few names in a project that should not be obfuscated, but should not be reserved. For example, in most Python projects, self is not reserved and can be named anything. However, for Kivy projects, self is a keyword. In this case, add “self” to identifiers_list; it will then be added to Identifier with the parameter do_obfuscate equal to False. This will keep the name self intact and allow its attributes to be obfuscated. So in the Kivy example, self will work as expected, and attributes of self can still be obfuscated (since self is not reserved).

There should be a very limited number of names in this list.

Specify work files and directories to exclude

Some files and directories may be generated by your working environment that should not be included in the deployed version (for example, the .git folder). These are specified in the skip lists found in <obfuscate/obfuscate.py.

	skip_directories

	Directories to skip (exclude from final project). For example, the .git repository.

	skip_files

	Files to skip (exclude from the final project).

Specify modules and files to add

Some deployed platforms, for example Android and iOS, may require additional modules and files that are not needed in the development platform. Add the actual files and folders to the folder extras_dir (defined in the obfuscation directories above). In export/fabfile.py define an extra_paths list for each destination platform.

	extra_paths

	The names of the files, modules, and folders that are in extras_dir that are required for the specific platform.

For example, to use a Python library called “somelibrary”, for which there is no Android recipe, plus a “bin” folder and a “buildozer.spec” file in your Android build, copy the entire library somelibrary, the directory bin, and the file buildozer.spec into the extras_dir library and add them to the extra_paths list in export/fabfile.py:

if platform is 'android':
 extra_paths = [
 'somelibrary',
 'bin',
 'buildozer.spec',
]

These will be copied into the EXPORTED project as a final step when exporting to the “android” platform.

 Copyright 2016, Richard DeVost.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pymixup 1.0.2 documentation

Steps to Obfuscate a Project

Obfuscating a project <MyProject> requires that:

	The project files are copied into a working folder.

	All unreserved variables, method names, modules names, and folder names are discovered and assigned new obfuscated names.

	A new obfuscated version of the program is created.

The steps to accomplish this are described next, with an assumed name of <MyProject> for your project.

Setup the project

Perform the setup steps described in Setup to prepare the project.

Use Fabric tasks to facilitate the steps

These Fabric tasks have been set up (they’re described below):

	import_proj in the file import_project/fabfile.py

	obfuscate_proj in the file obfuscate/fabfile.py

	export_proj in the file export/fabfile.py

	save_deployed in the file deploy/fabfile.py

A Fabric task is run like this:

fab --fabfile=<relative path to fabfile> <method to run>:<parm1>=<value1>,<parm2>=<value2>,...

For example, to run the export_proj method in the fabric file export/fabfile.py with parameter platform set to “android” and the parameter do_obfuscate set to True:

fab --fabfile=export/fabfile.py export_proj:platform=android,do_import=True

Import a development project

The import task copies files from your development project into the folders pymixup uses to obfuscate.

This task copies the source from <MyProject> into IMPORTED/<MyProject>. It must be run every time a source code change is made in your project:

$ fab --fabfile=import_project/fabfile.py import_proj

Obfuscate the project

The obfuscate task obfuscates the source code. This will:

	Discover all names used in the project and assign them obfuscated values. These will be stored in an SQLite database.

	Obfuscate the source and write it to the folder OBFUSCATED/<MyProject>/<platform>/obfuscated.

	Put a copy of the unobfuscated source in OBFUSCATED/<MyProject>/<platform>/unobfuscated.

	Save a copy of the names database in OBFUSCATED/<MyProject>/obfuscated/<platform>/db.

For more information on the directories, see Folder Structure for Source Files.

Task parameters

	platform

	
	A string for the destination platform. For example, “android” or “ios”.

	This will be used to apply the platform directives.

	If no platform is specified, “default” will be used.

	do_rebuild

	
	Rebuild the identifiers and reserved name tables. Can be “True” or “False”.

	If set to False, existing obfuscated identifiers and reserved names will retain their prior randomized names. New identifiers and reserved names may be be added.

	Default is to rebuild tables.

	is_verbose

	
	Print verbose messages. Can be “True” or “False”.

	Default is to print verbose messages.

	do_import

	
	Run the import_proj task before obfuscating. Can be “True” or “False”.

	Default is False.

Examples

To obfuscate with all the defaults:

$ fab --fabfile=obfuscate/fabfile.py obfuscate_proj

To obfuscate for the Android platform while retaining the existing Identifier dictionary (that is, not rebuilding the dictionary from scratch):

 $ fab --fabfile=obfuscate/fabfile.py obfuscate_proj:platform=android,do_rebuild=False

Use the **do_import** parameter to run the **import_project** step beforehand::

 $ fab --fabfile=obfuscate/fabfile.py obfuscate_proj:do_import=True

Export and test in your development platform

Part of setting up the project is to identify all the files, directories, and modules needed on the destination platform to run your project. Test this collection of files to make sure that everything needed has been identified.

Run the export_proj task to collect all the obfuscated code and other resources and copy them to the destination platform.

Task parameters

	platform

	
	A string for the destination platform. For example, “android” or “ios”.

	This will be used to apply the platform directives.

	If no platform is specified, “default” will be used.

	do_obfuscate

	
	Run the obfuscate_proj task before exporting. Can be “True” or “False”.

	Defaults to False.

	do_import

	
	Run the import_proj task before running the do_obfuscate task. Can be “True” or “False”.

	This parameter is disregarded if do_obfuscate is False.

	Defaults to False.

	do_rebuild

	
	Rebuild the Reserved and Identifier tables if when obfuscating.

	This parameter is disregarded if do_obfuscate is False.

	Defaults to True.

	is_verbose

	
	Print verbose messages while obfuscating.

	This parameter is disregarded if do_obfuscate is False.

	Defaults to True.

	do_copy_obfuscated

	
	Create an obfuscated project in the EXPORTED/obfuscated directory.

	If set to false, an unobfuscated project will be created there.

	This could be helpful if the destination platform is configured to use only one directory. For example, if an iOS Xcode environment is setup to rebuild when it discovers changes in .../EXPORTED/obfuscated, then set do_copy_obfuscated to False to test unobfuscated code on iOS devices.

	WARNING: Set this to False only for special cases. Then re-export your project with the default of True.

	Default is True (export the obfuscated project).

Steps

	Run the export_proj task to create full obfuscated and unobfuscated projects in EXPORTED/<MyProject>/<platform>.

	Run the unit tests in the unobfuscated project folder EXPORTED/<MyProject>/<platform>/unobfuscated.

	After successfully completing the unobfuscated unit tests, run the unit test in the obfuscated folder. These tests are the most valuable resource to discover names that were obfuscated that should not have been.

For example, to export for the Android platform:

$ fab --fabfile=export/fabfile.py export_proj:platform=android

Use the do_import and do_obfuscate parameters to run the import_project and obfuscate_proj tasks beforehand:

$ fab --fabfile=export/fabfile.py export_proj:platform=android,do_obfuscate=True,do_import=True

Export and test on the destination platform

Once testing is successful for the obfuscated project on the development platform, copy it into the destination platform and test it there.

	Copy and test the unobfuscated project on the destination platform.

	Copy and test the obfuscated project on the destination platform.

NOTE: If the unobfuscated build works, but the obfuscated does not, it is very likely due to a keyword that was obfuscated that should not have been. Often, the traceback will tell you which name is at fault.

Deploy the obfuscated project

Once a build is submitted as a release, run deploy/fabfile.py/save_deployed(platform=<platform>) to keep a copy of the original source, the obfuscated source, and the database of reserved names and identifiers. This option will ask for a version number, which will be used to create a folder under DEPLOYED/<MyProject>/<platform>/<version number>.

For example, to deploy an exported iOS project with version number 1.2.1a:

$ fab --fabfile=deploy/fabfile.py save_deployed:platform=ios

You will be prompted for the version number. Enter the version number and the project files will be saved.

 Copyright 2016, Richard DeVost.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pymixup 1.0.2 documentation

Folder Structure for Source Files

Each step in obfuscating a project writes files into a set of designated folders. In addition to capturing the obfuscation step in the folder name (e.g., “IMPORTED”), the folder structure also uses the project name (e.g., “MyProject”) and the name of the destination platform it is intended for (e.g., “android”).

The default names for each step are specified in common/settings.py.

If using the defaults names, the obfuscation steps populate the folders as follows:

	Copies the development project into IMPORTED.

	Obfuscates the IMPORTED project, which writes the obfuscated code into OBFUSCATED.

	To test, the OBFUSCATED project (plus some other needed files from EXTRAS) is copied into EXPORTED.

	After deploying, the EXPORTED project is copied into DEPLOYED under a version number.

Note that files in IMPORTED, OBFUSCATED, and EXPORTED are overwritten when the steps are repeated. For deployed projects, however, permanent copies are retained under their version numbers.

The folder structure looks like:

~projects
 ├── <MyProject> (The development project.)
 │ └── ...
 ├── IMPORTED (Projects to obfuscate; imported from <MyProject>.)
 │ └── <MyProject>
 │ ├── to_obfuscate (Files and packages to be obfuscated.)
 │ └── to_not_obfuscate (Files and folders that are not to be obfuscated.)
 ├── OBFUSCATED (Obfuscated projects.)
 │ └── <MyProject>
 │ ├── <platform>
 │ │ ├── obfuscated (The obfuscated project files.)
 │ │ ├── unobfuscated (The unobfuscated project files.)
 │ │ │ ├── to_obfuscate (A copy of the files that will be obfuscated.)
 │ │ │ └── to_not_obfuscate (A copy of the files that are not obfuscated.)
 │ │ └── db (A copy of the db.)
 │ └── db (The db of Identifier and Reserved name tables.)
 ├── EXPORTED ... (Contains exported copies of folders in OBFUSCATED.)
 │ └── <MyProject>
 │ └── <platform>
 │ ├── obfuscated (The obfuscated project files.)
 │ ├── unobfuscated (All project files, before obfuscation.)
 │ └── db (A copy of the db.)
 ├── DEPLOYED ... (Contains deployed copies of folders in EXPORTED.)
 │ └── <MyProject>
 │ └── <platform>
 │ └── <version number>
 │ ├── obfuscated (The obfuscated project files.)
 │ ├── unobfuscated (All project files, before obfuscation.)
 │ └── db (A copy of the db.)
 └── EXTRAS (Additional packages, files, and folders needed for the project.)
 └── ...

 Copyright 2016, Richard DeVost.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Pymixup 1.0.2 documentation

Command Line Options

The pymixup.py program can be run from the command line. For example, to obfuscate the project specified in common/settings.py, enter:

$ python pymixup.py

However, fabric files have been setup to automate a lot of the file copying. It’s more convenient to use the fabric tasks than running pymixup.py from the command line. See Steps to Obfuscate a Project for details on running the fabric tasks.

Parameters

All parameters must be preceded by a double dash. Some parameter may use a supplied value (as in the brackets (<>) below).

	platform <platform name>

	
	The destination platform.

	This will be used to apply the platform directives.

	Optional.

	Example:

$ python pymixup.py --platform android

	norebuild

	
	Do not rebuild the identifiers and reserved name tables.

	If specified, existing obfuscated identifiers and reserved names will retain their prior randomized names. New identifiers and reserved names may be be added.

	Default is to rebuild tables.

	Example:

$ python pymixup.py --norebuild

	verbose

	
	Print verbose messages.

	Optional.

	Example:

$ python pymixup.py --verbose

	doimport

	
	Import source files before obfuscating.

	Optional.

	Example:

$ python pymixup.py --doimport

Fabric automated tasks

The import, obfuscate, export, and deploy tasks are automated using Fabric. See Steps to Obfuscate a Project for a description of their use.

 Copyright 2016, Richard DeVost.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Pymixup 1.0.2 documentation

Index

 Copyright 2016, Richard DeVost.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/down.png

search.html

 Navigation

 		
 index

 		Pymixup 1.0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Richard DeVost.
 Created using Sphinx 1.3.5.

_static/up.png

