

pymenu : A general purpose menu API

[image: Build Status] [https://travis-ci.org/cblegare/pymenu] [image: Released on PyPI] [https://pypi.python.org/pypi/pymenu] [image: Latest Documentation] [https://pymenu.readthedocs.io/en/latest/?badge=latest] [image: Coverage Report] [https://codecov.io/gh/cblegare/pymenu] [image: GNU Lesser General Public License v3] [http://www.gnu.org/licenses/lgpl-3.0]

An API for menu definitions.

Warning

Before 1.0 release, this project will not follow any reliable
versioning scheme. Do not expect backward-compatibility between versions!

Warning

This project is not stable at all! Parts of it might be moved to
external packages without notice.

This project was intented to be used with the extensible dmenu wrapper [https://github.com/cblegare/xdmenu] as a
menu API for Qtile [http://www.qtile.org].

pymenu is free software and licensed under the GNU Lesser General Public
License v3.

Features

	Simple python interfaces for menus

	Easy to configure using simple dictionaries and the filesystem

	Extension available for XDG-based menus (including launching applications
defined in desktop files).

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the cblegare/pythontemplate [https://github.com/cblegare/pythontemplate]
project template.

User manual

	Installation
	Stable release

	From sources

	Basic Usage
	A silly command line file manager

	Leveraging xdmenu

	Leveraging XDG

	Performance Issues

Project Information

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	History
	1.0 (2017-05-09)

	License

	Credits
	Contributors

Development resources

	setup module
	running tests

	checking code style

	building source distirbutions

	building binary distributions

	building html documentation

	cleaning your workspace

	Automated tests
	Unit tests

	Integration tests

	Functional tests

	Regression tests

	pymenu
	pymenu package

	tests package

Indices and tables

	Index

	Module Index

	Search Page

Installation

Stable release

To install pymenu, run this command in your terminal:

$ pip install pymenu

This is the preferred method to install pymenu, as it will always install the
most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for pymenu can be downloaded from the Github repo [https://github.com/cblegare/pymenu].

You can either clone the public repository:

$ git clone git://github.com/cblegare/pymenu

Or download the tarball [https://github.com/cblegare/pymenu/tarball/master]:

$ curl -OL https://github.com/cblegare/pymenu/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Basic Usage

A menu from with pymenu is made of two things:

	The root menu entry

	Menu entries are trees where each branch is a submenu and each leaf is an
item.

	Prompt

	pymenu needs to know how to display the menu to the user. This is what a
prompt is used to.

A silly command line file manager

Given the following directory structure:

.
├── demo.py
├── folder
│ ├── deepfile
│ └── subfolder
│ └── deeperfile
└── some_file

2 directories, 4 files

Here is a simple script that makes a file manager for browsing folder and
printing the chosen file name.

#!/usr/bin/python

from pymenu import Menu, FileSystemMenuEntry, SimpleCommandPrompt

menu_entry = FileSystemMenuEntry('.')
prompt = SimpleCommandPrompt()

my_menu = Menu(menu_entry, prompt)

choice = my_menu.choose_value()
print(choice)

You can see it in action in the following animated gif.

[image: _images/animated_demo.gif]

Leveraging xdmenu

pymenu provides a simple API for building menus. It leverages xdmenu [https://github.com/cblegare/xdmenu] (must
be installed) for delegating the display to an implementation of dmenu [http://tools.suckless.org/dmenu].

Lets change the above silly example in order to browse our files using dmenu.

#!/usr/bin/python

from pymenu import Menu, FileSystemMenuEntry
from pymenu.ext.xdmenu import DmenuPrompt

menu_entry = FileSystemMenuEntry('.')
prompt = DmenuPrompt()

my_menu = Menu(menu_entry, prompt)

choice = my_menu.choose_value()
print(choice)

Changes are emphasized. Simple enough, right?

Leveraging XDG

pymenu ships with an extension providing support for XDG [https://www.freedesktop.org/wiki/] menu definitons.
This can be useful when using a simple window manager that is not
XDG-compliant, such as Qtile [http://www.qtile.org] and still wanting a XDG-based applications menu.

Here is a simple script for launching an application based on XDG menu
definitons.

#!/usr/bin/python

from pymenu import Menu
from pymenu.ext.xdmenu import DmenuPrompt
from pymenu.ext.pyxdg import make_xdg_menu_entry, launch_xdg_menu_entry

menu_entry = make_xdg_menu_entry()
prompt = DmenuPrompt()

my_menu = Menu(menu_entry, prompt)

choice = my_menu.choose_value()
launch_xdg_menu_entry(choice)

Note

pymenu has all you need for launching default applications as per
the XDG specification. Do not rely on this API, because it may (will) be
moved to another package!

Performance Issues

pymenu do not implement lazy loading of menu entries. This means that a menu
can use up a lot of RAM. Also, Creating a menu may take some time, especially
when using XDG because of all the heavy XML files that needs parsing in the
process.

Please help! See Contributing for more informations.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at
https://github.com/cblegare/pymenu/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

pymenu could always use more documentation, whether as part of the official
pymenu docs, in docstrings, or even on the web in blog posts, articles, and
such.

Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/cblegare/pymenu/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pymenu for
local development.

	Fork the pymenu repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pymenu.git

	Install your local copy into a virtualenv. Assuming you have Python 3.5
installed, this is how you set up your fork for local development:

$ python3 -m venv pymenu
$ cd pymenu/
$ bin/pip install --editable . # or bin/python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and
the tests, including testing other Python versions with tox:

$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7 and up. Check
https://travis-ci.org/cblegare/pymenu/pull_requests
and make sure that the tests pass for all supported Python versions.

Thanks :)

History

1.0 (2017-05-09)

	First release on PyPI.

License

GNU LESSER GENERAL PUBLIC LICENSE

 Version 3, 29 June 2007

 pymenu
 Copyright (C) 2017 Charles Bouchard-Légaré

 pymenu is free software: you can redistribute it and/or modify
 it under the terms of the GNU Lesser General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 pymenu is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public License
 along with pymenu. If not, see <http://www.gnu.org/licenses/>.

Credits

Contributors

	Charles Bouchard-Légaré <cblegare.atl@ntis.ca>

setup module

The setup.py file is a swiss knife for various tasks.

Start by creating a virtual python environment:

$ python -m venv .

You now can use this isolated clean python environment:

$ bin/python --version
Python 3.5.2

You may also activate it for the current shell. POSIX shells would use:

$. bin/activate

running tests

We use py.test [http://doc.pytest.org/en/latest/] for running tests because it is amazing. Run it by invoking
the simple test alias of setup.py:

$ bin/python setup.py test

This will also check codestyle and test coverage.

checking code style

We use flake8 [https://flake8.readthedocs.io/en/latest/] for enforcing coding standards. Run it by invoking
the simple lint alias of setup.py:

$ bin/python setup.py lint

building source distirbutions

Standard sdist is supported:

$ bin/python setup.py sdist

building binary distributions

Use the wheel distribution standard [http://pythonwheels.com/]:

$ bin/python setup.py bdist_wheel

building html documentation

Use setup.py to build the documentation:

$ bin/python setup.py docs

A make [https://www.gnu.org/software/make/] implementation is not required on any platform, thanks to the
setup.Documentation class.

	
class setup.Documentation(dist, **kw)

	Make the documentation (without the Make program).

Note

This command will not allow any warning from Sphinx [http://www.sphinx-doc.org/], treating
them as errors.

Construct the command for dist, updating
vars(self) with any keyword parameters.

cleaning your workspace

We also included a custom command which you can invoke through setup.py:

$ bin/python setup.py clean

The setup.Clean command is set to clean the following file patterns:

	
class setup.Clean(dist, **kw)

	Custom clean command to tidy up the project.

Construct the command for dist, updating
vars(self) with any keyword parameters.

	
default_patterns = ['build', 'dist', '*.egg-info', '*.egg', '*.pyc', '*.pyo', '*~', '__pycache__', '.tox', '.coverage', 'htmlcov']

	

Automated tests

The tests package provides automated testing for
`pymenu`.

Tests are known to assess software behavior and find bugs. They are also
used as part of the code’s documentation, as a design tool or for preventing
regressions.

See also:

	http://stackoverflow.com/questions/4904096/whats-the-difference-between-unit-functional-acceptance-and-integration-test

	http://stackoverflow.com/questions/520064/what-is-unit-test-integration-test-smoke-test-regression-test

Unit tests

Exercise the smallest pieces of testable software in the application to
determine whether they behave as expected.

Unit tests should not

	call out into (non-trivial) collaborators,

	access the network,

	hit a database,

	use the file system or

	spin up a thread.

Most of the unit tests can be found directory in the code documentation
and are run using doctest [https://docs.python.org/3/library/doctest.html]. When they cannot be simple or extensible
enough with impeding readability, they should be written in the
tests.unit package.

Integration tests

Verify the communication paths and interactions between components to detect
interface defects.

The line between unit and integration tests may become blurry. When in doubt,
you are most certainly thinking integration tests. Write those in the
tests.integration package.

Functional tests

Functional tests check a particular feature for correctness by comparing
the results for a given input against the specification. They are often used
as an executable definition of a user story. Write those in the
tests.functional package.

Regression tests

A test that was written when a bug was found (and then fixed). It ensures
that this specific bug will not occur again. The full name is non-regression
test. It can also be a test made prior to changing an application to make
sure the application provides the same outcome. Put these in the
tests.regression package.

pymenu

	pymenu package
	Subpackages
	pymenu.ext package
	Subpackages

	tests package
	Subpackages
	tests.functional package

	tests.integration package

	tests.regression package

	tests.unit package
	Subpackages

pymenu package

Package main definition.

	
class pymenu.DictMenuEntry(name, data, parent=None)

	Bases: pymenu.MenuEntry

A menu tree node made of a dictionary structure.

	Parameters:	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of this node.

	data (dict [https://docs.python.org/3.4/library/stdtypes.html#dict]) – The value of this node. If this is a dictionary,
child nodes will be created from it.

	parent (pymenu.MenuEntry) – Parent entry node.

	
class pymenu.FileSystemMenuEntry(path, parent=None)

	Bases: pymenu.MenuEntry

A menu tree node made from a filesystem path.

	Parameters:	
	path (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Filesystem path from which to build the menu tree.

	parent (pymenu.MenuEntry) – Paren entry node.

Note

The creation of child nodes if not lazy. This means that
creating an instance of this class from a top level folder of a
large file sets will consumes a lot of RAM.

	
class pymenu.Menu(root_entry, prompt)

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

	Parameters:	
	root_entry (pymenu.MenuEntry) –

	prompt (pymenu.Prompt) –

	
choose_menu()

	Prompt for a choice of menu items.

	Returns:	The chosen menu object

	Return type:	pymenu.Menu

	
choose_value()

	Prompt until a leaf menu item is choosen.

	Returns:	The associated value for the chosen item.

	Return type:	Any

	
entry

	Returns – pymenu.MenuEntry

	
class pymenu.MenuEntry(name, value=None, parent=None)

	Bases: anytree.node.Node [https://anytree.readthedocs.io/en/latest/apidoc/anytree.node.html#anytree.node.Node]

A menu tree node.

This is essentially a tree node, as inherited by
anytree.node.Node [https://anytree.readthedocs.io/en/latest/apidoc/anytree.node.html#anytree.node.Node]. Sub classes may require to implement the
creation of child entries.

	Parameters:	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – A name for this node.

	value (Any) – Associated value.

	parent (pymenu.MenuEntry) – Parent entry node.

	
value

	

	
class pymenu.Prompt

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Abstract class for defining menu user interfaces.

	
prompt_for_one(choices)

	

	Parameters:	choices (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – List from which to choose from.

	Returns:	str

	
class pymenu.SimpleCommandPrompt(question=None, prompt=None)

	Bases: pymenu.Prompt

Simply prompt a user for choices in command line.

	Parameters:	
	question (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Header question displayed before the choices.

	prompt (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Actual prompt message for the user.

	
prompt_for_one(choices)

	

	Parameters:	choices (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – List from which to choose from.

	Returns:	Chosen key

	Return type:	str [https://docs.python.org/3.4/library/stdtypes.html#str]

	Raises:	KeyError [https://docs.python.org/3.4/library/exceptions.html#KeyError] – when the select item in not a valid choice.

Subpackages

	pymenu.ext package
	Subpackages
	pymenu.ext.pyxdg package

	pymenu.ext.xdmenu package

pymenu.ext package

Subpackages

	pymenu.ext.pyxdg package

	pymenu.ext.xdmenu package

pymenu.ext.pyxdg package

	
class pymenu.ext.pyxdg.Application(entry, parser=None, term_args=None)

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

A launchable application defined by a XDG desktop entry.

	Parameters:	
	entry (xdg.Menu.MenuEntry [https://pyxdg.readthedocs.io/en/latest/menu.html#xdg.Menu.MenuEntry]) – The desktop entry for this application.

	parser (Callable) – A function that parses an Exec string of a
desktop entry and returns an abstract syntax tree (AST) of it.
The AST is expected to be made of lists and have the following
structure (given the input app arg1 arg2):

[
 ['a', 'p', 'p'],
 [
 ['a', 'r', 'g', '1'],
 ['a', 'r', 'g', '2']
]
]

The default parser should work in most cases.

	term_args (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – Command line argument prefixes for terminal
applications. In XDG compliant desktop environments, the
default (['x-terminal-emulator', '-e']) should be enough
since it work on any setup that implements the Debian
Alternatives System [https://wiki.debian.org/DebianAlternatives#noqa:E501] which is common in many UNIX
distributions and most popular desktop environments.

If you do not use this from of a XDG compliant environment (in
Qtile [http://www.qtile.org], for instance) you will need to set this manually.

	
arguments

	Provide the command line arguments for this application.

Some (%i, %c, %k) fieldcode placeholders are replaced.
Target-like fieldcodes placeholders like %f, %F, %u and
%U are not replaced.

	Returns:	list

	
entry

	

	
executable

	Provide the command line executables part for this application.

This may include terminal-specific executables and arguments, such as
['x-terminal-emulator', '-e'] in addition to the actual executable
if this is a terminal application.

	Returns:	list

	
launch(*target_uris, **popen_kwargs)

	Launch this application with provided targets.

	Parameters:	
	*target_uris – Positional arguments are used as URI targets for this
application. If this application can handle multiple URIs at
once, they are all parametrized in one subprocess. If this
application can only handle one URI at a time, multiple
processes are launched. If this application cannot handle
target URIs, this argument is ignored.

	**popen_kwargs – This application is launched as subprocesses using
subprocess.Popen [https://docs.python.org/3.4/library/subprocess.html#subprocess.Popen]. These keyword arguments are simply
passed along to this subprocess constructor.

	Returns:	All subprocesses launched.

	Return type:	list [https://docs.python.org/3.4/library/stdtypes.html#list]

	
class pymenu.ext.pyxdg.XdgMenuEntry(wrapped_entry, app_factory=None, parent=None)

	Bases: pymenu.MenuEntry

Wrap an XDG menu entry.

	Parameters:	
	wrapped_entry – An object defined in the xdg.Menu [https://pyxdg.readthedocs.io/en/latest/menu.html#module-xdg.Menu] module.

	app_factory (Callable) – A function that takes a
xdg.Menu.MenuEntry [https://pyxdg.readthedocs.io/en/latest/menu.html#xdg.Menu.MenuEntry] and returns a Application.

	parent –

See also

xdg.Menu.Menu [https://pyxdg.readthedocs.io/en/latest/menu.html#xdg.Menu.Menu]

	
classmethod from_xdg_menu_file(menu_def_file)

	Constructor for a .menu file.

See also

make_xdg_menu_entry()

	
pymenu.ext.pyxdg.exec_parser(exec_string)

	Make the AST for a XDG Exec string.

	Parameters:	exec_string (str [https://docs.python.org/3.4/library/stdtypes.html#str]) –

	Returns:	AST

	Return type:	list [https://docs.python.org/3.4/library/stdtypes.html#list]

	
pymenu.ext.pyxdg.launch_xdg_menu_entry(entry, *targets)

	A convenient launcher for desktop entries.

This uses the Application with default values.

	Parameters:	entry (xdg.Menu.MenuEntry [https://pyxdg.readthedocs.io/en/latest/menu.html#xdg.Menu.MenuEntry]) –

	Returns:	None

	
pymenu.ext.pyxdg.make_xdg_menu_entry(menu_def_file=None, cls=None)

	Make a pymenu.MenuEntry based on a XDG .menu file.

This is usually located in /etc/xdg/menus/applications.menu.

	Parameters:	
	menu_def_file (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Path to a .menu file as defined in the Desktop
Menu Specification [https://specifications.freedesktop.org/menu-spec/menu-spec-1.0.html#noqa:E501]. Defaults to
/etc/xdg/menus/applications.menu

This file can usually be found in the /etc/xdg/menus folder.
The following command is a good start to list these .menu files:

These .menu file may not include applications that installed
their desktop entries in a user folder such as
~/.local/share/applications. In order to add additional
directories to the desktop entries search path, you need to add
a <AppDir> tag to the .menu file for the relevant directory.

	cls (type [https://docs.python.org/3.4/library/functions.html#type]) – The subclass of pymenu.MenuEntry to create. The
default is XdgMenuEntry.

See also

pymenu.MenuEntry

pymenu.ext.xdmenu package

	
class pymenu.ext.xdmenu.DmenuPrompt(dmenu=None)

	Bases: pymenu.Prompt

	Parameters:	dmenu (xdmenu.BaseMenu [https://xdmenu.readthedocs.io/en/latest/xdmenu.html#xdmenu.BaseMenu]) –

	
prompt_for_one(menu)

	

	Parameters:	menu (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – List from which to choose from.

	Returns:	str

tests package

Subpackages

	tests.functional package

	tests.integration package

	tests.regression package

	tests.unit package
	Subpackages
	tests.unit.ext package
	Submodules

	tests.unit.ext.test_pyxdg module

tests.functional package

tests.integration package

tests.regression package

tests.unit package

Subpackages

	tests.unit.ext package
	Submodules

	tests.unit.ext.test_pyxdg module

tests.unit.ext package

Submodules

tests.unit.ext.test_pyxdg module

	
class tests.unit.ext.test_pyxdg.TestData(input, expected)

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

	
tests.unit.ext.test_pyxdg.exec_string(request)

	

	
tests.unit.ext.test_pyxdg.test_exec_parser(exec_string)

	Check that the exec_parser properly parse the input from exec_string.

	Parameters:	exec_string (TestData) –

Returns:

 Python Module Index

 p |
 t

 		 	

 		
 p	

 	[image: -]
 	
 pymenu	

 	
 	
 pymenu.ext	

 	
 	
 pymenu.ext.pyxdg	

 	
 	
 pymenu.ext.xdmenu	

 		 	

 		
 t	

 	[image: -]
 	
 tests	

 	
 	
 tests.functional	

 	
 	
 tests.integration	

 	
 	
 tests.regression	

 	
 	
 tests.unit	

 	
 	
 tests.unit.ext	

 	
 	
 tests.unit.ext.test_pyxdg	

Index

 A
 | C
 | D
 | E
 | F
 | L
 | M
 | P
 | S
 | T
 | V
 | X

A

 	
 	Application (class in pymenu.ext.pyxdg)

 	
 	arguments (pymenu.ext.pyxdg.Application attribute)

C

 	
 	choose_menu() (pymenu.Menu method)

 	
 	choose_value() (pymenu.Menu method)

 	Clean (class in setup)

D

 	
 	default_patterns (setup.Clean attribute)

 	DictMenuEntry (class in pymenu)

 	
 	DmenuPrompt (class in pymenu.ext.xdmenu)

 	Documentation (class in setup)

E

 	
 	entry (pymenu.ext.pyxdg.Application attribute)

 	(pymenu.Menu attribute)

 	
 	exec_parser() (in module pymenu.ext.pyxdg)

 	exec_string() (in module tests.unit.ext.test_pyxdg)

 	executable (pymenu.ext.pyxdg.Application attribute)

F

 	
 	FileSystemMenuEntry (class in pymenu)

 	
 	from_xdg_menu_file() (pymenu.ext.pyxdg.XdgMenuEntry class method)

L

 	
 	launch() (pymenu.ext.pyxdg.Application method)

 	
 	launch_xdg_menu_entry() (in module pymenu.ext.pyxdg)

M

 	
 	make_xdg_menu_entry() (in module pymenu.ext.pyxdg)

 	
 	Menu (class in pymenu)

 	MenuEntry (class in pymenu)

P

 	
 	Prompt (class in pymenu)

 	prompt_for_one() (pymenu.ext.xdmenu.DmenuPrompt method)

 	(pymenu.Prompt method)

 	(pymenu.SimpleCommandPrompt method)

 	
 	pymenu (module)

 	pymenu.ext (module)

 	pymenu.ext.pyxdg (module)

 	pymenu.ext.xdmenu (module)

S

 	
 	SimpleCommandPrompt (class in pymenu)

T

 	
 	test_exec_parser() (in module tests.unit.ext.test_pyxdg)

 	TestData (class in tests.unit.ext.test_pyxdg)

 	tests (module)

 	tests.functional (module)

 	
 	tests.integration (module)

 	tests.regression (module)

 	tests.unit (module)

 	tests.unit.ext (module)

 	tests.unit.ext.test_pyxdg (module)

V

 	
 	value (pymenu.MenuEntry attribute)

X

 	
 	XdgMenuEntry (class in pymenu.ext.pyxdg)

 _static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

nav.xhtml

 Table of Contents

 		pymenu : A general purpose menu API

 		Installation

 		Stable release

 		From sources

 		Basic Usage

 		A silly command line file manager

 		Leveraging xdmenu

 		Leveraging XDG

 		Performance Issues

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		History

 		1.0 (2017-05-09)

 		License

 		Credits

 		Contributors

 		setup module

 		running tests

 		checking code style

 		building source distirbutions

 		building binary distributions

 		building html documentation

 		cleaning your workspace

 		Automated tests

 		Unit tests

 		Integration tests

 		Functional tests

 		Regression tests

 		pymenu

 		pymenu package

 		Subpackages

 		tests package

 		Subpackages

_static/comment-close.png

_images/animated_demo.gif
[]
I [../github/cblegare/pymenu 1 [git master dirty] [21:56:27]
|

$

_static/animated_demo.gif
[]
I [../github/cblegare/pymenu 1 [git master dirty] [21:56:27]
|

$

_static/up.png

_static/minus.png

_static/down-pressed.png

