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PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning
which focuses on advanced Markov chain Monte Carlo and variational fitting
algorithms. Its flexibility and extensibility make it applicable to a
large suite of problems.

Check out the getting started
guide [http://pymc-devs.github.io/pymc3/notebooks/getting_started.html]!




Features


	Intuitive model specification syntax, for example, x ~ N(0,1)
translates to x = Normal('x',0,1)

	Powerful sampling algorithms, such as the No U-Turn
Sampler [http://www.jmlr.org/papers/v15/hoffman14a.html], allow complex models
with thousands of parameters with little specialized knowledge of
fitting algorithms.

	Variational inference: ADVI [http://www.jmlr.org/papers/v18/16-107.html]
for fast approximate posterior estimation as well as mini-batch ADVI
for large data sets.

	
	Relies on Theano [http://deeplearning.net/software/theano/] which provides:

	
	Computation optimization and dynamic C compilation

	Numpy broadcasting and advanced indexing

	Linear algebra operators

	Simple extensibility









	Transparent support for missing value imputation






Getting started


If you already know about Bayesian statistics:


	API quickstart guide [http://pymc-devs.github.io/pymc3/notebooks/api_quickstart.html]

	The PyMC3 tutorial [http://pymc-devs.github.io/pymc3/notebooks/getting_started.html]

	PyMC3 examples [http://pymc-devs.github.io/pymc3/examples.html]
and the API reference [http://pymc-devs.github.io/pymc3/api.html]






Learn Bayesian statistics with a book together with PyMC3:


	Probabilistic Programming and Bayesian Methods for Hackers [https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers]: Fantastic book with many applied code examples.

	PyMC3 port of the book “Doing Bayesian Data Analysis” by John Kruschke [https://github.com/aloctavodia/Doing_bayesian_data_analysis] as well as the second edition [https://github.com/JWarmenhoven/DBDA-python]: Principled introduction to Bayesian data analysis.

	PyMC3 port of the book “Statistical Rethinking A Bayesian Course with Examples in R and Stan” by Richard McElreath [https://github.com/aloctavodia/Statistical-Rethinking-with-Python-and-PyMC3]

	PyMC3 port of the book “Bayesian Cognitive Modeling” by Michael Lee and EJ Wagenmakers [https://github.com/junpenglao/Bayesian-Cognitive-Modeling-in-Pymc3]: Focused on using Bayesian statistics in cognitive modeling.

	Bayesian Analysis with Python by Osvaldo Martin [https://www.packtpub.com/big-data-and-business-intelligence/bayesian-analysis-python] (and errata [https://github.com/aloctavodia/BAP]): Great introductory book.






PyMC3 talks

There are also several talks on PyMC3 which are gathered in this YouTube playlist [https://www.youtube.com/playlist?list=PL1Ma_1DBbE82OVW8Fz_6Ts1oOeyOAiovy]






Installation

The latest release of PyMC3 can be installed from PyPI using pip:

pip install pymc3





Note: Running pip install pymc will install PyMC 2.3, not PyMC3,
from PyPI.

Or via conda-forge:

conda install -c conda-forge pymc3





The current development branch of PyMC3 can be installed from GitHub, also using pip:

pip install git+https://github.com/pymc-devs/pymc3





To ensure the development branch of Theano is installed alongside PyMC3
(recommended), you can install PyMC3 using the requirements.txt
file. This requires cloning the repository to your computer:

git clone https://github.com/pymc-devs/pymc3
cd pymc3
pip install -r requirements.txt





However, if a recent version of Theano has already been installed on
your system, you can install PyMC3 directly from GitHub.

Another option is to clone the repository and install PyMC3 using
python setup.py install or python setup.py develop.




Dependencies

PyMC3 is tested on Python 2.7 and 3.6 and depends on Theano, NumPy,
SciPy, Pandas, and Matplotlib (see requirements.txt for version
information).


Optional

In addtion to the above dependencies, the GLM submodule relies on
Patsy [http://patsy.readthedocs.io/en/latest/].

scikits.sparse [https://github.com/njsmith/scikits-sparse]
enables sparse scaling matrices which are useful for large problems.






Citing PyMC3

Salvatier J, Wiecki TV, Fonnesbeck C. (2016) Probabilistic programming
in Python using PyMC3. PeerJ Computer Science 2:e55
https://doi.org/10.7717/peerj-cs.55




Contact

We are using discourse.pymc.io [https://discourse.pymc.io/] as our main communication channel. You can also follow us on Twitter @pymc_devs [https://twitter.com/pymc_devs] for updates and other announcements.

To ask a question regarding modeling or usage of PyMC3 we encourage posting to our Discourse forum under the “Questions” Category [https://discourse.pymc.io/c/questions]. You can also suggest feature in the “Development” Category [https://discourse.pymc.io/c/development].

To report an issue with PyMC3 please use the issue tracker [https://github.com/pymc-devs/pymc3/issues].

Finally, if you need to get in touch for non-technical information about the project, send us an e-mail.




License

Apache License, Version
2.0 [https://github.com/pymc-devs/pymc3/blob/master/LICENSE]




Software using PyMC3



	sampled [https://github.com/ColCarroll/sampled]: Decorator for PyMC3.

	Bambi [https://github.com/bambinos/bambi]: BAyesian Model-Building Interface (BAMBI) in Python.

	gelato [https://github.com/ferrine/gelato]: Bayesian Neural Networks with PyMC3 and Lasagne.

	NiPyMC [https://github.com/PsychoinformaticsLab/nipymc]: Bayesian mixed-effects modeling of fMRI data in Python.

	beat [https://github.com/hvasbath/beat]: Bayesian Earthquake Analysis Tool.






Please contact us if your software is not listed here.




Papers citing PyMC3

See Google Scholar [https://scholar.google.de/scholar?oi=bibs&hl=en&authuser=1&cites=6936955228135731011] for a continuously updated list.




Contributors

See the GitHub contributor
page [https://github.com/pymc-devs/pymc3/graphs/contributors]




Support

PyMC3 is a non-profit project under NumFOCUS umbrella. If you want to support PyMC3 financially, you can donate here [https://www.flipcause.com/widget/widget_home/MTE4OTc=].




Sponsors

[image: NumFOCUS] [http://www.numfocus.org/]

[image: Quantopian] [https://quantopian.com]
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Getting started with PyMC3

Authors: John Salvatier, Thomas V. Wiecki, Christopher Fonnesbeck

Note: This text is taken from the PeerJ CS publication on
PyMC3 [https://peerj.com/articles/cs-55/].


Abstract

Probabilistic Programming allows for automatic Bayesian inference on
user-defined probabilistic models. Recent advances in Markov chain Monte
Carlo (MCMC) sampling allow inference on increasingly complex models.
This class of MCMC, known as Hamliltonian Monte Carlo, requires gradient
information which is often not readily available. PyMC3 is a new open
source Probabilistic Programming framework written in Python that uses
Theano to compute gradients via automatic differentiation as well as
compile probabilistic programs on-the-fly to C for increased speed.
Contrary to other Probabilistic Programming languages, PyMC3 allows
model specification directly in Python code. The lack of a domain
specific language allows for great flexibility and direct interaction
with the model. This paper is a tutorial-style introduction to this
software package.




Introduction

Probabilistic programming (PP) allows flexible specification of Bayesian
statistical models in code. PyMC3 is a new, open-source PP framework
with an intuitive and readable, yet powerful, syntax that is close to
the natural syntax statisticians use to describe models. It features
next-generation Markov chain Monte Carlo (MCMC) sampling algorithms such
as the No-U-Turn Sampler (NUTS; Hoffman, 2014), a self-tuning variant of
Hamiltonian Monte Carlo (HMC; Duane, 1987). This class of samplers works
well on high dimensional and complex posterior distributions and allows
many complex models to be fit without specialized knowledge about
fitting algorithms. HMC and NUTS take advantage of gradient information
from the likelihood to achieve much faster convergence than traditional
sampling methods, especially for larger models. NUTS also has several
self-tuning strategies for adaptively setting the tunable parameters of
Hamiltonian Monte Carlo, which means you usually don’t need to have
specialized knowledge about how the algorithms work. PyMC3, Stan (Stan
Development Team, 2014), and the LaplacesDemon package for R are
currently the only PP packages to offer HMC.

Probabilistic programming in Python confers a number of advantages
including multi-platform compatibility, an expressive yet clean and
readable syntax, easy integration with other scientific libraries, and
extensibility via C, C++, Fortran or Cython. These features make it
relatively straightforward to write and use custom statistical
distributions, samplers and transformation functions, as required by
Bayesian analysis.

While most of PyMC3’s user-facing features are written in pure Python,
it leverages Theano (Bergstra et al., 2010) to transparently transcode
models to C and compile them to machine code, thereby boosting
performance. Theano is a library that allows expressions to be defined
using generalized vector data structures called tensors, which are
tightly integrated with the popular NumPy ndarray data structure,
and similarly allow for broadcasting and advanced indexing, just as
NumPy arrays do. Theano also automatically optimizes the likelihood’s
computational graph for speed and provides simple GPU integration.

Here, we present a primer on the use of PyMC3 for solving general
Bayesian statistical inference and prediction problems. We will first
see the basics of how to use PyMC3, motivated by a simple example:
installation, data creation, model definition, model fitting and
posterior analysis. Then we will cover two case studies and use them to
show how to define and fit more sophisticated models. Finally we will
show how to extend PyMC3 and discuss other useful features: the
Generalized Linear Models subpackage, custom distributions, custom
transformations and alternative storage backends.




Installation

Running PyMC3 requires a working Python interpreter, either version 2.7
(or more recent) or 3.4 (or more recent); we recommend that new users
install version 3.4. A complete Python installation for Mac OSX, Linux
and Windows can most easily be obtained by downloading and installing
the free
`Anaconda Python Distribution <https://store.continuum.io/cshop/anaconda/>`__
by ContinuumIO.

PyMC3 can be installed using pip
(https://pip.pypa.io/en/latest/installing.html):

pip install git+https://github.com/pymc-devs/pymc3





PyMC3 depends on several third-party Python packages which will be
automatically installed when installing via pip. The four required
dependencies are: Theano, NumPy, SciPy, and Matplotlib.

To take full advantage of PyMC3, the optional dependencies Pandas
and Patsy should also be installed. These are not automatically
installed, but can be installed by:

pip install patsy pandas





The source code for PyMC3 is hosted on GitHub at
https://github.com/pymc-devs/pymc3 and is distributed under the liberal
Apache License
2.0 [https://github.com/pymc-devs/pymc3/blob/master/LICENSE]. On the
GitHub site, users may also report bugs and other issues, as well as
contribute code to the project, which we actively encourage.




A Motivating Example: Linear Regression

To introduce model definition, fitting and posterior analysis, we first
consider a simple Bayesian linear regression model with normal priors
for the parameters. We are interested in predicting outcomes \(Y\)
as normally-distributed observations with an expected value \(\mu\)
that is a linear function of two predictor variables, \(X_1\) and
\(X_2\).


\[\begin{split}\begin{aligned}
Y  &\sim \mathcal{N}(\mu, \sigma^2) \\
\mu &= \alpha + \beta_1 X_1 + \beta_2 X_2
\end{aligned}\end{split}\]

where \(\alpha\) is the intercept, and \(\beta_i\) is the
coefficient for covariate \(X_i\), while \(\sigma\) represents
the observation error. Since we are constructing a Bayesian model, the
unknown variables in the model must be assigned a prior distribution. We
choose zero-mean normal priors with variance of 100 for both regression
coefficients, which corresponds to weak information regarding the true
parameter values. We choose a half-normal distribution (normal
distribution bounded at zero) as the prior for \(\sigma\).


\[\begin{split}\begin{aligned}
\alpha &\sim \mathcal{N}(0, 100) \\
\beta_i &\sim \mathcal{N}(0, 100) \\
\sigma &\sim \lvert\mathcal{N}(0, 1){\rvert}
\end{aligned}\end{split}\]


Generating data

We can simulate some artificial data from this model using only NumPy’s
random module, and then use PyMC3 to try to recover the
corresponding parameters. We are intentionally generating the data to
closely correspond the PyMC3 model structure.



In [1]:






import numpy as np
import matplotlib.pyplot as plt

# Initialize random number generator
np.random.seed(123)

# True parameter values
alpha, sigma = 1, 1
beta = [1, 2.5]

# Size of dataset
size = 100

# Predictor variable
X1 = np.random.randn(size)
X2 = np.random.randn(size) * 0.2

# Simulate outcome variable
Y = alpha + beta[0]*X1 + beta[1]*X2 + np.random.randn(size)*sigma







Here is what the simulated data look like. We use the pylab module
from the plotting library matplotlib.



In [2]:






%matplotlib inline

fig, axes = plt.subplots(1, 2, sharex=True, figsize=(10,4))
axes[0].scatter(X1, Y)
axes[1].scatter(X2, Y)
axes[0].set_ylabel('Y'); axes[0].set_xlabel('X1'); axes[1].set_xlabel('X2');
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Model Specification

Specifying this model in PyMC3 is straightforward because the syntax is
as close to the statistical notation. For the most part, each line of
Python code corresponds to a line in the model notation above.

First, we import PyMC. We use the convention of importing it as pm.



In [3]:






import pymc3 as pm







Now we build our model, which we will present in full first, then
explain each part line-by-line.



In [4]:






basic_model = pm.Model()

with basic_model:

    # Priors for unknown model parameters
    alpha = pm.Normal('alpha', mu=0, sd=10)
    beta = pm.Normal('beta', mu=0, sd=10, shape=2)
    sigma = pm.HalfNormal('sigma', sd=1)

    # Expected value of outcome
    mu = alpha + beta[0]*X1 + beta[1]*X2

    # Likelihood (sampling distribution) of observations
    Y_obs = pm.Normal('Y_obs', mu=mu, sd=sigma, observed=Y)







The first line,

basic_model = Model()





creates a new Model object which is a container for the model random
variables.

Following instantiation of the model, the subsequent specification of
the model components is performed inside a with statement:

with basic_model:





This creates a context manager, with our basic_model as the
context, that includes all statements until the indented block ends.
This means all PyMC3 objects introduced in the indented code block below
the with statement are added to the model behind the scenes. Absent
this context manager idiom, we would be forced to manually associate
each of the variables with basic_model right after we create them.
If you try to create a new random variable without a with model:
statement, it will raise an error since there is no obvious model for
the variable to be added to.

The first three statements in the context manager:

alpha = Normal('alpha', mu=0, sd=10)
beta = Normal('beta', mu=0, sd=10, shape=2)
sigma = HalfNormal('sigma', sd=1)





create a stochastic random variables with a Normal prior
distributions for the regression coefficients with a mean of 0 and
standard deviation of 10 for the regression coefficients, and a
half-normal distribution for the standard deviation of the observations,
\(\sigma\). These are stochastic because their values are partly
determined by its parents in the dependency graph of random variables,
which for priors are simple constants, and partly random (or
stochastic).

We call the Normal constructor to create a random variable to use as
a normal prior. The first argument is always the name of the random
variable, which should almost always match the name of the Python
variable being assigned to, since it sometimes used to retrieve the
variable from the model for summarizing output. The remaining required
arguments for a stochastic object are the parameters, in this case
mu, the mean, and sd, the standard deviation, which we assign
hyperparameter values for the model. In general, a distribution’s
parameters are values that determine the location, shape or scale of the
random variable, depending on the parameterization of the distribution.
Most commonly used distributions, such as Beta, Exponential,
Categorical, Gamma, Binomial and many others, are available
in PyMC3.

The beta variable has an additional shape argument to denote it
as a vector-valued parameter of size 2. The shape argument is
available for all distributions and specifies the length or shape of the
random variable, but is optional for scalar variables, since it defaults
to a value of one. It can be an integer, to specify an array, or a
tuple, to specify a multidimensional array (e.g. shape=(5,7) makes
random variable that takes on 5 by 7 matrix values).

Detailed notes about distributions, sampling methods and other PyMC3
functions are available via the help function.



In [5]:






help(pm.Normal) #try help(Model), help(Uniform) or help(basic_model)













Help on class Normal in module pymc3.distributions.continuous:

class Normal(pymc3.distributions.distribution.Continuous)
 |  Univariate normal log-likelihood.
 |
 |  .. math::
 |
 |     f(x \mid \mu, \tau) =
 |         \sqrt{\frac{\tau}{2\pi}}
 |         \exp\left\{ -\frac{\tau}{2} (x-\mu)^2 \right\}
 |
 |  ========  ==========================================
 |  Support   :math:`x \in \mathbb{R}`
 |  Mean      :math:`\mu`
 |  Variance  :math:`\dfrac{1}{\tau}` or :math:`\sigma^2`
 |  ========  ==========================================
 |
 |  Normal distribution can be parameterized either in terms of precision
 |  or standard deviation. The link between the two parametrizations is
 |  given by
 |
 |  .. math::
 |
 |     \tau = \dfrac{1}{\sigma^2}
 |
 |  Parameters
 |  ----------
 |  mu : float
 |      Mean.
 |  sd : float
 |      Standard deviation (sd > 0).
 |  tau : float
 |      Precision (tau > 0).
 |
 |  Method resolution order:
 |      Normal
 |      pymc3.distributions.distribution.Continuous
 |      pymc3.distributions.distribution.Distribution
 |      builtins.object
 |
 |  Methods defined here:
 |
 |  __init__(self, mu=0, sd=None, tau=None, **kwargs)
 |      Initialize self.  See help(type(self)) for accurate signature.
 |
 |  logp(self, value)
 |
 |  random(self, point=None, size=None, repeat=None)
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from pymc3.distributions.distribution.Distribution:
 |
 |  __getnewargs__(self)
 |
 |  default(self)
 |
 |  get_test_val(self, val, defaults)
 |
 |  getattr_value(self, val)
 |
 |  ----------------------------------------------------------------------
 |  Class methods inherited from pymc3.distributions.distribution.Distribution:
 |
 |  dist(*args, **kwargs) from builtins.type
 |
 |  ----------------------------------------------------------------------
 |  Static methods inherited from pymc3.distributions.distribution.Distribution:
 |
 |  __new__(cls, name, *args, **kwargs)
 |      Create and return a new object.  See help(type) for accurate signature.
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from pymc3.distributions.distribution.Distribution:
 |
 |  __dict__
 |      dictionary for instance variables (if defined)
 |
 |  __weakref__
 |      list of weak references to the object (if defined)







Having defined the priors, the next statement creates the expected value
mu of the outcomes, specifying the linear relationship:

mu = alpha + beta[0]*X1 + beta[1]*X2





This creates a deterministic random variable, which implies that its
value is completely determined by its parents’ values. That is, there
is no uncertainty beyond that which is inherent in the parents’ values.
Here, mu is just the sum of the intercept alpha and the two
products of the coefficients in beta and the predictor variables,
whatever their values may be.

PyMC3 random variables and data can be arbitrarily added, subtracted,
divided, multiplied together and indexed-into to create new random
variables. This allows for great model expressivity. Many common
mathematical functions like sum, sin, exp and linear algebra
functions like dot (for inner product) and inv (for inverse) are
also provided.

The final line of the model, defines Y_obs, the sampling
distribution of the outcomes in the dataset.

Y_obs = Normal('Y_obs', mu=mu, sd=sigma, observed=Y)





This is a special case of a stochastic variable that we call an
observed stochastic, and represents the data likelihood of the
model. It is identical to a standard stochastic, except that its
observed argument, which passes the data to the variable, indicates
that the values for this variable were observed, and should not be
changed by any fitting algorithm applied to the model. The data can be
passed in the form of either a numpy.ndarray or pandas.DataFrame
object.

Notice that, unlike for the priors of the model, the parameters for the
normal distribution of Y_obs are not fixed values, but rather are
the deterministic object mu and the stochastic sigma. This
creates parent-child relationships between the likelihood and these two
variables.




Model fitting

Having completely specified our model, the next step is to obtain
posterior estimates for the unknown variables in the model. Ideally, we
could calculate the posterior estimates analytically, but for most
non-trivial models, this is not feasible. We will consider two
approaches, whose appropriateness depends on the structure of the model
and the goals of the analysis: finding the maximum a posteriori (MAP)
point using optimization methods, and computing summaries based on
samples drawn from the posterior distribution using Markov Chain Monte
Carlo (MCMC) sampling methods.


Maximum a posteriori methods

The maximum a posteriori (MAP) estimate for a model, is the mode of
the posterior distribution and is generally found using numerical
optimization methods. This is often fast and easy to do, but only gives
a point estimate for the parameters and can be biased if the mode isn’t
representative of the distribution. PyMC3 provides this functionality
with the find_MAP function.

Below we find the MAP for our original model. The MAP is returned as a
parameter point, which is always represented by a Python dictionary
of variable names to NumPy arrays of parameter values.



In [6]:






map_estimate = pm.find_MAP(model=basic_model)

map_estimate













Optimization terminated successfully.
         Current function value: 149.017982
         Iterations: 16
         Function evaluations: 21
         Gradient evaluations: 21








Out[6]:






{'alpha': array(0.9065985497559482),
 'beta': array([ 0.94848602,  2.60705514]),
 'sigma_log__': array(-0.03278147017403063)}







By default, find_MAP uses the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) optimization algorithm to find the maximum of the log-posterior
but also allows selection of other optimization algorithms from the
scipy.optimize module. For example, below we use Powell’s method to
find the MAP.



In [7]:






from scipy import optimize

map_estimate = pm.find_MAP(model=basic_model, fmin=optimize.fmin_powell)

map_estimate













Optimization terminated successfully.
         Current function value: 149.019762
         Iterations: 4
         Function evaluations: 176








Out[7]:






{'alpha': array(0.90905218989771),
 'beta': array([ 0.95140146,  2.61437458]),
 'sigma_log__': array(-0.03000977520297042)}







It is important to note that the MAP estimate is not always reasonable,
especially if the mode is at an extreme. This can be a subtle issue;
with high dimensional posteriors, one can have areas of extremely high
density but low total probability because the volume is very small. This
will often occur in hierarchical models with the variance parameter for
the random effect. If the individual group means are all the same, the
posterior will have near infinite density if the scale parameter for the
group means is almost zero, even though the probability of such a small
scale parameter will be small since the group means must be extremely
close together.

Most techniques for finding the MAP estimate also only find a local
optimum (which is often good enough), but can fail badly for multimodal
posteriors if the different modes are meaningfully different.




Sampling methods

Though finding the MAP is a fast and easy way of obtaining estimates of
the unknown model parameters, it is limited because there is no
associated estimate of uncertainty produced with the MAP estimates.
Instead, a simulation-based approach such as Markov chain Monte Carlo
(MCMC) can be used to obtain a Markov chain of values that, given the
satisfaction of certain conditions, are indistinguishable from samples
from the posterior distribution.

To conduct MCMC sampling to generate posterior samples in PyMC3, we
specify a step method object that corresponds to a particular MCMC
algorithm, such as Metropolis, Slice sampling, or the No-U-Turn Sampler
(NUTS). PyMC3’s step_methods submodule contains the following
samplers: NUTS, Metropolis, Slice, HamiltonianMC, and
BinaryMetropolis. These step methods can be assigned manually, or
assigned automatically by PyMC3. Auto-assignment is based on the
attributes of each variable in the model. In general:


	Binary variables will be assigned to BinaryMetropolis

	Discrete variables will be assigned to Metropolis

	Continuous variables will be assigned to NUTS



Auto-assignment can be overriden for any subset of variables by
specifying them manually prior to sampling.




Gradient-based sampling methods

PyMC3 has the standard sampling algorithms like adaptive
Metropolis-Hastings and adaptive slice sampling, but PyMC3’s most
capable step method is the No-U-Turn Sampler. NUTS is especially useful
on models that have many continuous parameters, a situation where other
MCMC algorithms work very slowly. It takes advantage of information
about where regions of higher probability are, based on the gradient of
the log posterior-density. This helps it achieve dramatically faster
convergence on large problems than traditional sampling methods achieve.
PyMC3 relies on Theano to analytically compute model gradients via
automatic differentiation of the posterior density. NUTS also has
several self-tuning strategies for adaptively setting the tunable
parameters of Hamiltonian Monte Carlo. For random variables that are
undifferentiable (namely, discrete variables) NUTS cannot be used, but
it may still be used on the differentiable variables in a model that
contains undifferentiable variables.

NUTS requires a scaling matrix parameter, which is analogous to the
variance parameter for the jump proposal distribution in
Metropolis-Hastings, although NUTS uses it somewhat differently. The
matrix gives the rough shape of the distribution so that NUTS does not
make jumps that are too large in some directions and too small in other
directions. It is important to set this scaling parameter to a
reasonable value to facilitate efficient sampling. This is especially
true for models that have many unobserved stochastic random variables or
models with highly non-normal posterior distributions. Poor scaling
parameters will slow down NUTS significantly, sometimes almost stopping
it completely. A reasonable starting point for sampling can also be
important for efficient sampling, but not as often.

Fortunately PyMC3 automatically initializes NUTS using another
inference algorithm called ADVI (auto-diff variational inference).
Moreover, PyMC3 will automatically assign an appropriate sampler if
we don’t supply it via the step keyword argument (see below for an
example of how to explicitly assign step methods).



In [8]:






from scipy import optimize

with basic_model:
    # draw 500 posterior samples
    trace = pm.sample()













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 156.13:   5%|▌         | 10884/200000 [00:01<00:19, 9870.68it/s]
Convergence archived at 11100
Interrupted at 11,100 [5%]: Average Loss = 237.04
100%|██████████| 1000/1000 [00:00<00:00, 1156.78it/s]






The sample function runs the step method(s) assigned (or passed) to
it for the given number of iterations and returns a Trace object
containing the samples collected, in the order they were collected. The
trace object can be queried in a similar way to a dict
containing a map from variable names to numpy.arrays. The first
dimension of the array is the sampling index and the later dimensions
match the shape of the variable. We can see the last 5 values for the
alpha variable as follows:



In [9]:






trace['alpha'][-5:]









Out[9]:






array([ 0.80339734,  0.94747946,  0.93063514,  0.89569059,  0.89569059])







If we wanted to use the slice sampling algorithm to sigma instead of
NUTS (which was assigned automatically), we could have specified this as
the step argument for sample.



In [10]:






with basic_model:

    # obtain starting values via MAP
    start = pm.find_MAP(fmin=optimize.fmin_powell)

    # instantiate sampler
    step = pm.Slice(vars=[sigma])

    # draw 5000 posterior samples
    trace = pm.sample(5000, step=step, start=start)













Assigned NUTS to alpha
Assigned NUTS to beta












Optimization terminated successfully.
         Current function value: 149.019762
         Iterations: 4
         Function evaluations: 176












100%|██████████| 5500/5500 [00:08<00:00, 616.63it/s]











Posterior analysis

PyMC3 provides plotting and summarization functions for inspecting
the sampling output. A simple posterior plot can be created using
traceplot.



In [11]:






_ = pm.traceplot(trace)
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The left column consists of a smoothed histogram (using kernel density
estimation) of the marginal posteriors of each stochastic random
variable while the right column contains the samples of the Markov chain
plotted in sequential order. The beta variable, being vector-valued,
produces two histograms and two sample traces, corresponding to both
predictor coefficients.

In addition, the summary function provides a text-based output of
common posterior statistics:



In [12]:






pm.summary(trace)














alpha:

  Mean             SD               MC Error         95% HPD interval
  -------------------------------------------------------------------

  0.907            0.099            0.001            [0.708, 1.096]

  Posterior quantiles:
  2.5            25             50             75             97.5
  |--------------|==============|==============|--------------|

  0.711          0.840          0.907          0.973          1.101


beta:

  Mean             SD               MC Error         95% HPD interval
  -------------------------------------------------------------------

  0.949            0.087            0.001            [0.789, 1.129]
  2.619            0.509            0.016            [1.613, 3.601]

  Posterior quantiles:
  2.5            25             50             75             97.5
  |--------------|==============|==============|--------------|

  0.777          0.891          0.948          1.006          1.119
  1.620          2.280          2.621          2.970          3.611


sigma:

  Mean             SD               MC Error         95% HPD interval
  -------------------------------------------------------------------

  0.990            0.070            0.001            [0.858, 1.130]

  Posterior quantiles:
  2.5            25             50             75             97.5
  |--------------|==============|==============|--------------|

  0.863          0.941          0.985          1.034          1.136












Case study 1: Stochastic volatility

We present a case study of stochastic volatility, time varying stock
market volatility, to illustrate PyMC3’s use in addressing a more
realistic problem. The distribution of market returns is highly
non-normal, which makes sampling the volatilities significantly more
difficult. This example has 400+ parameters so using common sampling
algorithms like Metropolis-Hastings would get bogged down, generating
highly autocorrelated samples. Instead, we use NUTS, which is
dramatically more efficient.


The Model

Asset prices have time-varying volatility (variance of day over day
returns). In some periods, returns are highly variable, while in
others they are very stable. Stochastic volatility models address this
with a latent volatility variable, which changes over time. The
following model is similar to the one described in the NUTS paper
(Hoffman 2014, p. 21).


\[\begin{split}\begin{aligned}
  \sigma &\sim exp(50) \\
  \nu &\sim exp(.1) \\
  s_i &\sim \mathcal{N}(s_{i-1}, \sigma^{-2}) \\
  log(y_i) &\sim t(\nu, 0, exp(-2 s_i))
\end{aligned}\end{split}\]

Here, \(y\) is the daily return series which is modeled with a
Student-t distribution with an unknown degrees of freedom parameter, and
a scale parameter determined by a latent process \(s\). The
individual \(s_i\) are the individual daily log volatilities in the
latent log volatility process.




The Data

Our data consist of daily returns of the S&P 500 during the 2008
financial crisis. Here, we use pandas-datareader to obtain the price
data from Yahoo!-Finance; it can be installed with
pip install pandas-datareader.



In [13]:






from pandas_datareader import data









In [14]:






import pandas as pd

returns = data.get_data_google('SPY', start='2008-5-1', end='2009-12-1')['Close'].pct_change()

len(returns)









Out[14]:






400









In [15]:






returns.plot(figsize=(10, 6))
plt.ylabel('daily returns in %');
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Model Specification

As with the linear regression example, specifying the model in PyMC3
mirrors its statistical specification. This model employs several new
distributions: the Exponential distribution for the \(\nu\) and
\(\sigma\) priors, the Student-T (StudentT) distribution for
distribution of returns, and the GaussianRandomWalk for the prior
for the latent volatilities.

In PyMC3, variables with purely positive priors like Exponential are
transformed with a log transform. This makes sampling more robust.
Behind the scenes, a variable in the unconstrained space (named
“variableName_log”) is added to the model for sampling. In this model
this happens behind the scenes for both the degrees of freedom, nu,
and the scale parameter for the volatility process, sigma, since
they both have exponential priors. Variables with priors that constrain
them on two sides, like Beta or Uniform, are also transformed to
be unconstrained but with a log odds transform.

Although, unlike model specification in PyMC2, we do not typically
provide starting points for variables at the model specification stage,
we can also provide an initial value for any distribution (called a
“test value”) using the testval argument. This overrides the default
test value for the distribution (usually the mean, median or mode of the
distribution), and is most often useful if some values are illegal and
we want to ensure we select a legal one. The test values for the
distributions are also used as a starting point for sampling and
optimization by default, though this is easily overriden.

The vector of latent volatilities s is given a prior distribution by
GaussianRandomWalk. As its name suggests GaussianRandomWalk is a
vector valued distribution where the values of the vector form a random
normal walk of length n, as specified by the shape argument. The
scale of the innovations of the random walk, sigma, is specified in
terms of the precision of the normally distributed innovations and can
be a scalar or vector.



In [16]:






with pm.Model() as sp500_model:
    nu = pm.Exponential('nu', 1./10, testval=5.)
    sigma = pm.Exponential('sigma', 1./.02, testval=.1)

    s = pm.GaussianRandomWalk('s', sigma**-2, shape=len(returns))
    volatility_process = pm.Deterministic('volatility_process', pm.math.exp(-2*s))

    r = pm.StudentT('r', nu, lam=1/volatility_process, observed=returns)







Notice that we transform the log volatility process s into the
volatility process by exp(-2*s). Here, exp is a Theano function,
rather than the corresponding function in NumPy; Theano provides a large
subset of the mathematical functions that NumPy does.

Also note that we have declared the Model name sp500_model in
the first occurrence of the context manager, rather than splitting it
into two lines, as we did for the first example.




Fitting



In [17]:






with sp500_model:
    trace = pm.sample(2000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = -868.31:  32%|███▏      | 63343/200000 [00:21<00:47, 2879.06it/s]
Convergence archived at 63600
Interrupted at 63,600 [31%]: Average Loss = 559.54
100%|██████████| 2500/2500 [02:31<00:00, 13.50it/s]






We can check our samples by looking at the traceplot for nu and
sigma.



In [18]:






_ = pm.traceplot(trace, [nu, sigma])
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Finally we plot the distribution of volatility paths by plotting many of
our sampled volatility paths on the same graph. Each is rendered
partially transparent (via the alpha argument in Matplotlib’s
plot function) so the regions where many paths overlap are shaded
more darkly.



In [19]:






fig, ax = plt.subplots(figsize=(15, 8))
returns.plot(ax=ax)
ax.plot(returns.index, 1/np.exp(trace['s',::5].T), 'r', alpha=.03);
ax.set(title='volatility_process', xlabel='time', ylabel='volatility');
ax.legend(['S&P500', 'stochastic volatility process'])









Out[19]:






<matplotlib.legend.Legend at 0x7fe2ffe57f98>












[image: ../_images/notebooks_getting_started_42_1.png]




As you can see, the model correctly infers the increase in volatility
during the 2008 financial crash. Moreover, note that this model is quite
complex because of its high dimensionality and dependency-structure in
the random walk distribution. NUTS as implemented in PyMC3, however,
correctly infers the posterior distribution with ease.






Case study 2: Coal mining disasters

Consider the following time series of recorded coal mining disasters in
the UK from 1851 to 1962 (Jarrett, 1979). The number of disasters is
thought to have been affected by changes in safety regulations during
this period. Unfortunately, we also have pair of years with missing
data, identified as missing by a NumPy MaskedArray using -999 as the
marker value.

Next we will build a model for this series and attempt to estimate when
the change occurred. At the same time, we will see how to handle missing
data, use multiple samplers and sample from discrete random variables.



In [20]:






disaster_data = np.ma.masked_values([4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6,
                            3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5,
                            2, 2, 3, 4, 2, 1, 3, -999, 2, 1, 1, 1, 1, 3, 0, 0,
                            1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1,
                            0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2,
                            3, 3, 1, -999, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4,
                            0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1], value=-999)
year = np.arange(1851, 1962)

plt.plot(year, disaster_data, 'o', markersize=8);
plt.ylabel("Disaster count")
plt.xlabel("Year")









Out[20]:






<matplotlib.text.Text at 0x7fe306de7a58>
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Occurrences of disasters in the time series is thought to follow a
Poisson process with a large rate parameter in the early part of the
time series, and from one with a smaller rate in the later part. We are
interested in locating the change point in the series, which perhaps is
related to changes in mining safety regulations.

In our model,


\[\begin{split}\begin{aligned}
  D_t &\sim \text{Pois}(r_t), r_t= \begin{cases}
   l, & \text{if } t \lt s \\
   e, & \text{if } t \ge s
   \end{cases} \\
  s &\sim \text{Unif}(t_l, t_h)\\
  e &\sim \text{exp}(1)\\
  l &\sim \text{exp}(1)
\end{aligned}\end{split}\]

the parameters are defined as follows: * \(D_t\): The number of
disasters in year \(t\) * \(r_t\): The rate parameter of the
Poisson distribution of disasters in year \(t\). * \(s\): The
year in which the rate parameter changes (the switchpoint). *
\(e\): The rate parameter before the switchpoint \(s\). *
\(l\): The rate parameter after the switchpoint \(s\). *
\(t_l\), \(t_h\): The lower and upper boundaries of year
\(t\).

This model is built much like our previous models. The major differences
are the introduction of discrete variables with the Poisson and
discrete-uniform priors and the novel form of the deterministic random
variable rate.



In [21]:






with pm.Model() as disaster_model:

    switchpoint = pm.DiscreteUniform('switchpoint', lower=year.min(), upper=year.max(), testval=1900)

    # Priors for pre- and post-switch rates number of disasters
    early_rate = pm.Exponential('early_rate', 1)
    late_rate = pm.Exponential('late_rate', 1)

    # Allocate appropriate Poisson rates to years before and after current
    rate = pm.math.switch(switchpoint >= year, early_rate, late_rate)

    disasters = pm.Poisson('disasters', rate, observed=disaster_data)







The logic for the rate random variable,

rate = switch(switchpoint >= year, early_rate, late_rate)





is implemented using switch, a Theano function that works like an if
statement. It uses the first argument to switch between the next two
arguments.

Missing values are handled transparently by passing a MaskedArray or
a pandas.DataFrame with NaN values to the observed argument when
creating an observed stochastic random variable. Behind the scenes,
another random variable, disasters.missing_values is created to
model the missing values. All we need to do to handle the missing values
is ensure we sample this random variable as well.

Unfortunately because they are discrete variables and thus have no
meaningful gradient, we cannot use NUTS for sampling switchpoint or
the missing disaster observations. Instead, we will sample using a
Metroplis step method, which implements adaptive
Metropolis-Hastings, because it is designed to handle discrete values.
PyMC3 automatically assigns the correct sampling algorithms.



In [22]:






with disaster_model:
    trace = pm.sample(10000)













Assigned Metropolis to switchpoint
Assigned NUTS to early_rate_log__
Assigned NUTS to late_rate_log__
Assigned Metropolis to disasters_missing
100%|██████████| 10500/10500 [00:11<00:00, 929.53it/s]






In the trace plot below we can see that there’s about a 10 year span
that’s plausible for a significant change in safety, but a 5 year span
that contains most of the probability mass. The distribution is jagged
because of the jumpy relationship between the year switchpoint and the
likelihood and not due to sampling error.



In [23]:






_ = pm.traceplot(trace)
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Arbitrary deterministics

Due to its reliance on Theano, PyMC3 provides many mathematical
functions and operators for transforming random variables into new
random variables. However, the library of functions in Theano is not
exhaustive, therefore Theano and PyMC3 provide functionality for
creating arbitrary Theano functions in pure Python, and including these
functions in PyMC models. This is supported with the as_op function
decorator.

Theano needs to know the types of the inputs and outputs of a function,
which are specified for as_op by itypes for inputs and
otypes for outputs. The Theano documentation includes an overview
of the available
types [http://deeplearning.net/software/theano/library/tensor/basic.html#all-fully-typed-constructors].



In [24]:






import theano.tensor as tt
from theano.compile.ops import as_op

@as_op(itypes=[tt.lscalar], otypes=[tt.lscalar])
def crazy_modulo3(value):
    if value > 0:
        return value % 3
    else :
        return (-value + 1) % 3

with pm.Model() as model_deterministic:
    a = pm.Poisson('a', 1)
    b = crazy_modulo3(a)







An important drawback of this approach is that it is not possible for
theano to inspect these functions in order to compute the gradient
required for the Hamiltonian-based samplers. Therefore, it is not
possible to use the HMC or NUTS samplers for a model that uses such an
operator. However, it is possible to add a gradient if we inherit from
theano.Op instead of using as_op. The PyMC example set includes
a more elaborate example of the usage of
as_op [https://github.com/pymc-devs/pymc3/blob/master/pymc3/examples/disaster_model_arbitrary_deterministic.py].




Arbitrary distributions

Similarly, the library of statistical distributions in PyMC3 is not
exhaustive, but PyMC allows for the creation of user-defined functions
for an arbitrary probability distribution. For simple statistical
distributions, the DensityDist function takes as an argument any
function that calculates a log-probability \(log(p(x))\). This
function may employ other random variables in its calculation. Here is
an example inspired by a blog post by Jake Vanderplas on which priors to
use for a linear regression (Vanderplas, 2014).

import theano.tensor as tt

with pm.Model() as model:
    alpha = pm.Uniform('intercept', -100, 100)

    # Create custom densities
    beta = pm.DensityDist('beta', lambda value: -1.5 * tt.log(1 + value**2), testval=0)
    eps = pm.DensityDist('eps', lambda value: -tt.log(tt.abs_(value)), testval=1)

    # Create likelihood
    like = pm.Normal('y_est', mu=alpha + beta * X, sd=eps, observed=Y)





For more complex distributions, one can create a subclass of
Continuous or Discrete and provide the custom logp function,
as required. This is how the built-in distributions in PyMC are
specified. As an example, fields like psychology and astrophysics have
complex likelihood functions for a particular process that may require
numerical approximation. In these cases, it is impossible to write the
function in terms of predefined theano operators and we must use a
custom theano operator using as_op or inheriting from theano.Op.

Implementing the beta variable above as a Continuous subclass is
shown below, along with a sub-function.



In [25]:






class Beta(pm.Continuous):
    def __init__(self, mu, *args, **kwargs):
        super(Beta, self).__init__(*args, **kwargs)
        self.mu = mu
        self.mode = mu

    def logp(self, value):
        mu = self.mu
        return beta_logp(value - mu)


def beta_logp(value):
    return -1.5 * np.log(1 + (value)**2)


with pm.Model() as model:
    beta = Beta('slope', mu=0, testval=0)







If your logp can not be expressed in Theano, you can decorate the
function with as_op as follows:
@as_op(itypes=[tt.dscalar], otypes=[tt.dscalar]). Note, that this
will create a blackbox Python function that will be much slower and not
provide the gradients necessary for e.g. NUTS.




Generalized Linear Models

Generalized Linear Models (GLMs) are a class of flexible models that are
widely used to estimate regression relationships between a single
outcome variable and one or multiple predictors. Because these models
are so common, PyMC3 offers a glm submodule that allows flexible
creation of various GLMs with an intuitive R-like syntax that is
implemented via the patsy module.

The glm submodule requires data to be included as a pandas
DataFrame. Hence, for our linear regression example:



In [26]:






# Convert X and Y to a pandas DataFrame
import pandas

df = pandas.DataFrame({'x1': X1, 'x2': X2, 'y': Y})







The model can then be very concisely specified in one line of code.



In [27]:






from pymc3.glm import GLM

with pm.Model() as model_glm:
    GLM.from_formula('y ~ x1 + x2', df)
    trace = pm.sample()













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 164.07:   5%|▌         | 10879/200000 [00:01<00:18, 9972.08it/s]
Convergence archived at 11100
Interrupted at 11,100 [5%]: Average Loss = 220.44
100%|██████████| 1000/1000 [00:00<00:00, 1162.95it/s]






The error distribution, if not specified via the family argument, is
assumed to be normal. In the case of logistic regression, this can be
modified by passing in a Binomial family object.



In [28]:






from pymc3.glm.families import Binomial

df_logistic = pandas.DataFrame({'x1': X1, 'y': Y > np.median(Y)})

with pm.Model() as model_glm_logistic:
    GLM.from_formula('y ~ x1', df_logistic, family=Binomial())







For a more complete and flexible formula interface, including
hierarchical GLMs, see Bambi [https://github.com/bambinos/bambi].




Backends

PyMC3 has support for different ways to store samples during and
after sampling, called backends, including in-memory (default), text
file, and SQLite. These can be found in pymc.backends:

By default, an in-memory ndarray is used but if the samples would
get too large to be held in memory we could use the hdf5 backend:



In [29]:






from pymc3.backends import HDF5

with pm.Model() as model_glm_logistic:
    GLM.from_formula('y ~ x1', df_logistic, family=Binomial())

    backend = HDF5('trace.h5')
    trace = pm.sample(trace=backend)
    backend.close()













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 60.878:   3%|▎         | 5381/200000 [00:00<00:17, 10824.12it/s]
Convergence archived at 6200
Interrupted at 6,200 [3%]: Average Loss = 67.827
100%|██████████| 1000/1000 [00:05<00:00, 194.65it/s]








In [30]:






pm.summary(trace, varnames=['x1'])














x1:

  Mean             SD               MC Error         95% HPD interval
  -------------------------------------------------------------------

  -1.404           0.283            0.016            [-1.950, -0.862]

  Posterior quantiles:
  2.5            25             50             75             97.5
  |--------------|==============|==============|--------------|

  -2.020         -1.582         -1.401         -1.208         -0.891







The stored trace can then later be loaded using the load command:



In [31]:






from pymc3.backends.hdf5 import load

with basic_model:
    trace_loaded = load('trace.h5')







More information about backends can be found in the docstring of
pymc.backends.




Discussion

Probabilistic programming is an emerging paradigm in statistical
learning, of which Bayesian modeling is an important sub-discipline. The
signature characteristics of probabilistic programming–specifying
variables as probability distributions and conditioning variables on
other variables and on observations–makes it a powerful tool for
building models in a variety of settings, and over a range of model
complexity. Accompanying the rise of probabilistic programming has been
a burst of innovation in fitting methods for Bayesian models that
represent notable improvement over existing MCMC methods. Yet, despite
this expansion, there are few software packages available that have kept
pace with the methodological innovation, and still fewer that allow
non-expert users to implement models.

PyMC3 provides a probabilistic programming platform for quantitative
researchers to implement statistical models flexibly and succinctly. A
large library of statistical distributions and several pre-defined
fitting algorithms allows users to focus on the scientific problem at
hand, rather than the implementation details of Bayesian modeling. The
choice of Python as a development language, rather than a
domain-specific language, means that PyMC3 users are able to work
interactively to build models, introspect model objects, and debug or
profile their work, using a dynamic, high-level programming language
that is easy to learn. The modular, object-oriented design of PyMC3
means that adding new fitting algorithms or other features is
straightforward. In addition, PyMC3 comes with several features not
found in most other packages, most notably Hamiltonian-based samplers as
well as automatical transforms of constrained random variables which is
only offered by STAN. Unlike STAN, however, PyMC3 supports discrete
variables as well as non-gradient based sampling algorithms like
Metropolis-Hastings and Slice sampling.

Development of PyMC3 is an ongoing effort and several features are
planned for future versions. Most notably, variational inference
techniques are often more efficient than MCMC sampling, at the cost of
generalizability. More recently, however, black-box variational
inference algorithms have been developed, such as automatic
differentiation variational inference (ADVI; Kucukelbir et al., in
prep). This algorithm is slated for addition to PyMC3. As an open-source
scientific computing toolkit, we encourage researchers developing new
fitting algorithms for Bayesian models to provide reference
implementations in PyMC3. Since samplers can be written in pure Python
code, they can be implemented generally to make them work on arbitrary
PyMC3 models, giving authors a larger audience to put their methods into
use.
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API quickstart



In [1]:






%matplotlib inline
import numpy as np
import theano.tensor as tt
import pymc3 as pm

import seaborn as sns
import matplotlib.pyplot as plt
sns.set_context('notebook')








1. Model creation

Models in PyMC3 are centered around the Model class. It has
references to all random variables (RVs) and computes the model logp and
its gradients. Usually, you would instantiate it as part of a with
context:



In [2]:






with pm.Model() as model:
    # Model definition
    pass







We discuss RVs further below but let’s create a simple model to explore
the Model class.



In [3]:






with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    obs = pm.Normal('obs', mu=mu, sd=1, observed=np.random.randn(100))









In [4]:






model.basic_RVs









Out[4]:






[mu, obs]









In [5]:






model.free_RVs









Out[5]:






[mu]









In [6]:






model.observed_RVs









Out[6]:






[obs]









In [7]:






model.logp({'mu': 0})









Out[7]:






array(-130.93385991219947)










2. Probability Distributions

Every probabilistic program consists of observed and unobserved Random
Variables (RVs). Observed RVs are defined via likelihood distributions,
while unobserved RVs are defined via prior distributions. In PyMC3,
probability distributions are available from the main module space:



In [8]:






help(pm.Normal)













Help on class Normal in module pymc3.distributions.continuous:

class Normal(pymc3.distributions.distribution.Continuous)
 |  Univariate normal log-likelihood.
 |
 |  .. math::
 |
 |     f(x \mid \mu, \tau) =
 |         \sqrt{\frac{\tau}{2\pi}}
 |         \exp\left\{ -\frac{\tau}{2} (x-\mu)^2 \right\}
 |
 |  ========  ==========================================
 |  Support   :math:`x \in \mathbb{R}`
 |  Mean      :math:`\mu`
 |  Variance  :math:`\dfrac{1}{\tau}` or :math:`\sigma^2`
 |  ========  ==========================================
 |
 |  Normal distribution can be parameterized either in terms of precision
 |  or standard deviation. The link between the two parametrizations is
 |  given by
 |
 |  .. math::
 |
 |     \tau = \dfrac{1}{\sigma^2}
 |
 |  Parameters
 |  ----------
 |  mu : float
 |      Mean.
 |  sd : float
 |      Standard deviation (sd > 0).
 |  tau : float
 |      Precision (tau > 0).
 |
 |  Method resolution order:
 |      Normal
 |      pymc3.distributions.distribution.Continuous
 |      pymc3.distributions.distribution.Distribution
 |      builtins.object
 |
 |  Methods defined here:
 |
 |  __init__(self, mu=0, sd=None, tau=None, **kwargs)
 |      Initialize self.  See help(type(self)) for accurate signature.
 |
 |  logp(self, value)
 |
 |  random(self, point=None, size=None, repeat=None)
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from pymc3.distributions.distribution.Distribution:
 |
 |  __getnewargs__(self)
 |
 |  default(self)
 |
 |  get_test_val(self, val, defaults)
 |
 |  getattr_value(self, val)
 |
 |  ----------------------------------------------------------------------
 |  Class methods inherited from pymc3.distributions.distribution.Distribution:
 |
 |  dist(*args, **kwargs) from builtins.type
 |
 |  ----------------------------------------------------------------------
 |  Static methods inherited from pymc3.distributions.distribution.Distribution:
 |
 |  __new__(cls, name, *args, **kwargs)
 |      Create and return a new object.  See help(type) for accurate signature.
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from pymc3.distributions.distribution.Distribution:
 |
 |  __dict__
 |      dictionary for instance variables (if defined)
 |
 |  __weakref__
 |      list of weak references to the object (if defined)







In the PyMC3 module, the structure for probability distributions looks
like this:

pymc3.distributions [http://pymc-devs.github.io/pymc3/api/distributions.html]|-
continuous [http://pymc-devs.github.io/pymc3/api/distributions/continuous.html]|-
discrete [http://pymc-devs.github.io/pymc3/api/distributions/discrete.html]|-
timeseries [http://pymc-devs.github.io/pymc3/api/distributions/timeseries.html]|-
mixture [http://pymc-devs.github.io/pymc3/api/distributions/mixture.html]



In [9]:






dir(pm.distributions.mixture)









Out[9]:






['Discrete',
 'Distribution',
 'Mixture',
 'Normal',
 'NormalMixture',
 '__builtins__',
 '__cached__',
 '__doc__',
 '__file__',
 '__loader__',
 '__name__',
 '__package__',
 '__spec__',
 'all_discrete',
 'bound',
 'draw_values',
 'generate_samples',
 'get_tau_sd',
 'logsumexp',
 'np',
 'tt']








Unobserved Random Variables

Every unobserved RV has the following calling signature: name (str),
parameter keyword arguments. Thus, a normal prior can be defined in a
model context like this:



In [10]:






with pm.Model():
    x = pm.Normal('x', mu=0, sd=1)







As with the model, we can evaluate its logp:



In [11]:






x.logp({'x': 0})









Out[11]:






array(-0.9189385332046727)










Observed Random Variables

Observed RVs are defined just like unobserved RVs but require data to be
passed into the observed keyword argument:



In [12]:






with pm.Model():
    obs = pm.Normal('x', mu=0, sd=1, observed=np.random.randn(100))







observed supports lists, numpy.ndarray, theano and
pandas data structures.




Deterministic transforms

PyMC3 allows you to freely do algebra with RVs in all kinds of ways:



In [13]:






with pm.Model():
    x = pm.Normal('x', mu=0, sd=1)
    y = pm.Gamma('y', alpha=1, beta=1)
    plus_2 = x + 2
    summed = x + y
    squared = x**2
    sined = pm.math.sin(x)







While these transformations work seamlessly, its results are not stored
automatically. Thus, if you want to keep track of a transformed
variable, you have to use pm.Determinstic:



In [14]:






with pm.Model():
    x = pm.Normal('x', mu=0, sd=1)
    plus_2 = pm.Deterministic('x plus 2', x + 2)







Note that plus_2 can be used in the identical way to above, we only
tell PyMC3 to keep track of this RV for us.




Automatic transforms of bounded RVs

In order to sample models more efficiently, PyMC3 automatically
transforms bounded RVs to be unbounded.



In [15]:






with pm.Model() as model:
    x = pm.Uniform('x', lower=0, upper=1)







When we look at the RVs of the model, we would expect to find x
there, however:



In [16]:






model.free_RVs









Out[16]:






[x_interval__]







x_interval__ represents x transformed to accept parameter values
between -inf and +inf. In the case of an upper and a lower bound, a
LogOdds transform is applied. Sampling in this transformed space
makes it easier for the sampler. PyMC3 also keeps track of the
non-transformed, bounded parameters. These are common determinstics (see
above):



In [17]:






model.deterministics









Out[17]:






[x]







When displaying results, PyMC3 will usually hide transformed parameters.
You can pass the include_transformed=True parameter to many
functions to see the transformed parameters that are used for sampling.

You can also turn transforms off:



In [18]:






with pm.Model() as model:
    x = pm.Uniform('x', lower=0, upper=1, transform=None)

print(model.free_RVs)













[x]









Lists of RVs / higher-dimensional RVs

Above we have seen to how to create scalar RVs. In many models, you want
multiple RVs. There is a tendency (mainly inherited from PyMC 2.x) to
create list of RVs, like this:



In [19]:






with pm.Model():
    x = [pm.Normal('x_{}'.format(i), mu=0, sd=1) for i in range(10)] # bad







However, even though this works it is quite slow and not recommended.
Instead, use the shape kwarg:



In [20]:






with pm.Model() as model:
    x = pm.Normal('x', mu=0, sd=1, shape=10) # good







x is now a random vector of length 10. We can index into it or do
linear algebra operations on it:



In [21]:






with model:
    y = x[0] * x[1] # full indexing is supported
    x.dot(x.T) # Linear algebra is supported










Initialization with test_values

While PyMC3 tries to automatically initialize models it is sometimes
helpful to define initial values for RVs. This can be done via the
testval kwarg:



In [22]:






with pm.Model():
    x = pm.Normal('x', mu=0, sd=1, shape=5)

x.tag.test_value









Out[22]:






array([ 0.,  0.,  0.,  0.,  0.])









In [23]:






with pm.Model():
    x = pm.Normal('x', mu=0, sd=1, shape=5, testval=np.random.randn(5))

x.tag.test_value









Out[23]:






array([ 0.51093099,  0.78646267, -1.02921232,  0.65820029,  0.70385385])







This technique is quite useful to identify problems with model
specification or initialization.






3. Inference

Once we have defined our model, we have to perform inference to
approximate the posterior distribution. PyMC3 supports two broad classes
of inference: sampling and variational inference.


3.1 Sampling

The main entry point to MCMC sampling algorithms is via the
pm.sample() function. By default, this function tries to auto-assign
the right sampler(s) and auto-initialize if you don’t pass anything.



In [24]:






with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    obs = pm.Normal('obs', mu=mu, sd=1, observed=np.random.randn(100))

    trace = pm.sample(1000, tune=500)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 143.54:  10%|█         | 20024/200000 [00:01<00:12, 14337.29it/s]
Convergence archived at 21000
Interrupted at 21,000 [10%]: Average Loss = 144.89
100%|██████████| 1500/1500 [00:00<00:00, 2730.61it/s]






As you can see, on a continuous model, PyMC3 assigns the NUTS sampler,
which is very efficient even for complex models. PyMC3 also runs
variational inference (i.e. ADVI) to find good starting parameters for
the sampler. Here we draw 1000 samples from the posterior and allow the
sampler to adjust its parameters in an additional 500 iterations. These
500 samples are discarded by default:



In [25]:






len(trace)









Out[25]:






1000







You can also run multiple chains in parallel using the njobs kwarg:



In [26]:






with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    obs = pm.Normal('obs', mu=mu, sd=1, observed=np.random.randn(100))

    trace = pm.sample(njobs=4)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 142.41:  22%|██▏       | 44484/200000 [00:02<00:08, 18649.61it/s]
Convergence archived at 46000
Interrupted at 46,000 [23%]: Average Loss = 143.02
100%|██████████| 1000/1000 [00:01<00:00, 928.24it/s]






Note, that we are now drawing 2000 samples, 500 samples for 4 chains
each. The 500 tuning samples are discarded by default.



In [27]:






trace['mu'].shape









Out[27]:






(2000,)









In [28]:






trace.nchains









Out[28]:






4









In [29]:






trace.get_values('mu', chains=1).shape # get values of a single chain









Out[29]:






(500,)







PyMC3, offers a variety of other samplers, found in pm.step_methods.



In [30]:






list(filter(lambda x: x[0].isupper(), dir(pm.step_methods)))









Out[30]:






['BinaryGibbsMetropolis',
 'BinaryMetropolis',
 'CategoricalGibbsMetropolis',
 'CauchyProposal',
 'CompoundStep',
 'ElemwiseCategorical',
 'EllipticalSlice',
 'HamiltonianMC',
 'LaplaceProposal',
 'Metropolis',
 'MultivariateNormalProposal',
 'NUTS',
 'NormalProposal',
 'PoissonProposal',
 'SMC',
 'Slice']







Commonly used step-methods besides NUTS are Metropolis and
Slice. For almost all continuous models, ``NUTS`` should be
preferred. There are hard-to-sample models for which NUTS will be
very slow causing many users to use Metropolis instead. This
practice, however, is rarely successful. NUTS is fast on simple models
but can be slow if the model is very complex or it is badly initialized.
In the case of a complex model that is hard for NUTS, Metropolis, while
faster, will have a very low effective sample size or not converge
properly at all. A better approach is to instead try to improve
initialization of NUTS, or reparameterize the model.

For completeness, other sampling methods can be passed to sample:



In [31]:






with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    obs = pm.Normal('obs', mu=mu, sd=1, observed=np.random.randn(100))

    step = pm.Metropolis()
    trace = pm.sample(1000, step=step)













100%|██████████| 1500/1500 [00:00<00:00, 9343.52it/s]






You can also assign variables to different step methods.



In [32]:






with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    sd = pm.HalfNormal('sd', sd=1)
    obs = pm.Normal('obs', mu=mu, sd=sd, observed=np.random.randn(100))

    step1 = pm.Metropolis(vars=[mu])
    step2 = pm.Slice(vars=[sd])
    trace = pm.sample(10000, step=[step1, step2], njobs=4)













100%|██████████| 10500/10500 [00:11<00:00, 890.12it/s]









3.2 Analyze sampling results

The most common used plot to analyze sampling results is the so-called
trace-plot:



In [33]:






pm.traceplot(trace);












[image: ../_images/notebooks_api_quickstart_64_0.png]




Another common metric to look at is R-hat, also known as the
Gelman-Rubin statistic:



In [34]:






pm.gelman_rubin(trace)









Out[34]:






{'mu': 1.0003808153475398,
 'sd': 0.99997655090314819,
 'sd_log__': 0.9999720004991266}







These are also part of the forestplot:



In [35]:






pm.forestplot(trace);












[image: ../_images/notebooks_api_quickstart_68_0.png]




Finally, for a plot of the posterior that is inspired by the book Doing
Bayesian Data
Analysis [http://www.indiana.edu/~kruschke/DoingBayesianDataAnalysis/],
you can use the:



In [36]:






pm.plot_posterior(trace);












[image: ../_images/notebooks_api_quickstart_70_0.png]




For high-dimensional models it becomes cumbersome to look at all
parameter’s traces. When using NUTS we can look at the energy plot
to assess problems of convergence:



In [37]:






with pm.Model() as model:
    x = pm.Normal('x', mu=0, sd=1, shape=100)
    trace = pm.sample(njobs=4)

pm.energyplot(trace);













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 0.056672: 100%|██████████| 200000/200000 [00:14<00:00, 13997.00it/s]
Finished [100%]: Average Loss = 0.054276
100%|██████████| 1000/1000 [00:06<00:00, 163.63it/s]











[image: ../_images/notebooks_api_quickstart_72_1.png]




For more information on sampler stats and the energy plot, see
here [http://pymc-devs.github.io/pymc3/notebooks/sampler-stats.html].
For more information on identifying sampling problems and what to do
about them, see
here [http://pymc-devs.github.io/pymc3/notebooks/Diagnosing_biased_Inference_with_Divergences.html].




3.3 Variational inference

PyMC3 supports various Variational Inference techniques. While these
methods are much faster, they are often also less accurate and can lead
to biased inference. The main entry point is pymc3.fit().



In [38]:






with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    sd = pm.HalfNormal('sd', sd=1)
    obs = pm.Normal('obs', mu=mu, sd=sd, observed=np.random.randn(100))

    approx = pm.fit()













Average Loss = 146.58: 100%|██████████| 10000/10000 [00:00<00:00, 15134.18it/s]
Finished [100%]: Average Loss = 146.57






The returned Approximation object has various capabilities, like
drawing samples from the approximated posterior, which we can analyse
like a regular sampling run:



In [39]:






approx.sample(500)









Out[39]:






<MultiTrace: 1 chains, 500 iterations, 2 variables>







The variational submodule offers a lot of flexibility in which VI to
use and follows an object oriented design. For example, full-rank ADVI
estimates a full covariance matrix:



In [40]:






mu = pm.floatX([0., 0.])
cov = pm.floatX([[1, .5], [.5, 1.]])
with pm.Model() as model:
    pm.MvNormal('x', mu=mu, cov=cov, shape=2)
    approx = pm.fit(method='fullrank_advi')













Average Loss = 0.00061705: 100%|██████████| 10000/10000 [00:02<00:00, 3763.84it/s]
Finished [100%]: Average Loss = 0.00090201






An equivalent expression using the object-oriented interface is:



In [41]:






with pm.Model() as model:
    pm.MvNormal('x', mu=mu, cov=cov, shape=2)
    approx = pm.FullRankADVI().fit()













Average Loss = 0.0016698: 100%|██████████| 10000/10000 [00:02<00:00, 3345.98it/s]
Finished [100%]: Average Loss = 0.001701








In [42]:






plt.figure()
trace = approx.sample(10000)
sns.kdeplot(trace['x'])









Out[42]:






<matplotlib.axes._subplots.AxesSubplot at 0x11f4f2eb8>












[image: ../_images/notebooks_api_quickstart_82_1.png]




Stein Variational Gradient Descent (SVGD) uses particles to estimate the
posterior:



In [43]:






w = pm.floatX([.2, .8])
mu = pm.floatX([-.3, .5])
sd = pm.floatX([.1, .1])
with pm.Model() as model:
    pm.NormalMixture('x', w=w, mu=mu, sd=sd)
    approx = pm.fit(method=pm.SVGD(n_particles=200, jitter=1.))













100%|██████████| 10000/10000 [00:53<00:00, 188.00it/s]








In [44]:






plt.figure()
trace = approx.sample(10000)
sns.distplot(trace['x']);












[image: ../_images/notebooks_api_quickstart_85_0.png]




For more information on variational inference, see these
examples [http://pymc-devs.github.io/pymc3/examples.html#variational-inference].






4. Posterior Predictive Sampling

The sample_ppc() function performs prediction on hold-out data and
posterior predictive checks.



In [45]:






data = np.random.randn(100)
with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    sd = pm.HalfNormal('sd', sd=1)
    obs = pm.Normal('obs', mu=mu, sd=sd, observed=data)

    trace = pm.sample()













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 141.37: 100%|██████████| 200000/200000 [00:15<00:00, 12799.60it/s]
Finished [100%]: Average Loss = 141.37
100%|██████████| 1000/1000 [00:00<00:00, 1963.58it/s]








In [46]:






with model:
    post_pred = pm.sample_ppc(trace, samples=500, size=len(data))













100%|██████████| 500/500 [00:06<00:00, 73.82it/s]






sample_ppc() returns a dict with a key for every observed node:



In [47]:






post_pred['obs'].shape









Out[47]:






(500, 100)









In [48]:






plt.figure()
ax = sns.distplot(post_pred['obs'].mean(axis=1), label='Posterior predictive means')
ax.axvline(data.mean(), color='r', ls='--', label='True mean')
ax.legend()









Out[48]:






<matplotlib.legend.Legend at 0x125eac748>












[image: ../_images/notebooks_api_quickstart_92_1.png]







4.1 Predicting on hold-out data

In many cases you want to predict on unseen / hold-out data. This is
especially relevant in Probabilistic Machine Learning and Bayesian Deep
Learning. While we plan to improve the API in this regard, this can
currently be achieved with a theano.shared variable. These are
theano tensors whose values can be changed later. Otherwise they can be
passed into PyMC3 just like any other numpy array or tensor.



In [49]:






import theano

x = np.random.randn(100)
y = x > 0

x_shared = theano.shared(x)
y_shared = theano.shared(y)

with pm.Model() as model:
    coeff = pm.Normal('x', mu=0, sd=1)
    logistic = pm.math.sigmoid(coeff * x_shared)
    pm.Bernoulli('obs', p=logistic, observed=y_shared)
    trace = pm.sample()













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 21.931:   7%|▋         | 14453/200000 [00:01<00:12, 15315.19it/s]
Convergence archived at 15000
Interrupted at 15,000 [7%]: Average Loss = 26.836
100%|██████████| 1000/1000 [00:00<00:00, 2842.64it/s]






Now assume we want to predict on unseen data. For this we have to change
the values of x_shared and y_shared. Theoretically we don’t need
to set y_shared as we want to predict it but it has to match the
shape of x_shared.



In [50]:






x_shared.set_value([-1, 0, 1.])
y_shared.set_value([0, 0, 0]) # dummy values

with model:
    post_pred = pm.sample_ppc(trace, samples=500)













100%|██████████| 500/500 [00:02<00:00, 178.87it/s]








In [51]:






post_pred['obs'].mean(axis=0)









Out[51]:






array([ 0.016,  0.474,  0.972])













          

      

      

    

  

    
      
          
            
  


Variational API quickstart

VI API is focused on solving regular problems when utilizing posterior
distributions. Common usecases that can be solved with this module are
the following:


	Get Random Generator that samples from posterior and computes some
expression

	Get Monte Carlo approximation of expectation, variance and other
statistics

	Remove symbolic dependence on PyMC3 random nodes and be able to call
.eval()

	Make a bridge to arbitrary theano code



Sounds good, doesn’t it?

Moreover there are a lot of inference methods that have similar API so
you are free to choose what fits the best for the problem



In [1]:






%matplotlib inline
import matplotlib.pyplot as plt
import pymc3 as pm
import theano
import numpy as np
np.random.seed(42)
pm.set_tt_rng(42)








Basic setup

We do not need complex models to play with VI API, instead we’ll have a
simple mixture model



In [2]:






w = pm.floatX([.2, .8])
mu = pm.floatX([-.3, .5])
sd = pm.floatX([.1, .1])
with pm.Model() as model:
    x = pm.NormalMixture('x', w=w, mu=mu, sd=sd, dtype=theano.config.floatX)
    x2 = x ** 2
    sin_x = pm.math.sin(x)







We can’t compute analytical expectations quickly here. Instead we can
get approximations for it with MC methods. Lets use NUTS first. It
required these variables to be in deterministic list



In [3]:






with model:
    pm.Deterministic('x2', x2)
    pm.Deterministic('sin_x', sin_x)









In [4]:






with model:
    trace = pm.sample(50000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 5.7775:   1%|          | 1941/200000 [00:00<00:21, 9272.58it/s]
Convergence archived at 2900
Interrupted at 2,900 [1%]: Average Loss = 6.0938
100%|██████████| 50500/50500 [00:24<00:00, 2071.58it/s]








In [5]:






pm.traceplot(trace);












[image: ../_images/notebooks_variational_api_quickstart_7_0.png]




Looks good, we can see multimodality matters. Moreover we have samples
for \(x^2\) and \(sin(x)\). There is one drawback, you should
know in advance what exactly you want to see in trace and call
Deterministic(.) on it.

VI API is about the opposite approach. You do inference on model, then
experiments come after. Let’s do the same setup without deterministics



In [6]:






with pm.Model() as model:
    x = pm.NormalMixture('x', w=w, mu=mu, sd=sd, dtype=theano.config.floatX)
    x2 = x ** 2
    sin_x = pm.math.sin(x)







And calculate ADVI approximation



In [7]:






with model:
    mean_field = pm.fit(method='advi')













Average Loss = 2.2413: 100%|██████████| 10000/10000 [00:00<00:00, 11143.17it/s]
Finished [100%]: Average Loss = 2.2687








In [8]:






pm.plot_posterior(mean_field.sample(1000));
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You can see no multimodality here. ADVI will fail to approximate
multimodal distribution as it uses simple Gaussian distribution that has
a single mode.

Notice that we did a lot more iterations as we did not check convergence
of inference. That can be done via callbacks.



In [9]:






help(pm.callbacks.CheckParametersConvergence)













Help on class CheckParametersConvergence in module pymc3.variational.callbacks:

class CheckParametersConvergence(Callback)
 |  Convergence stopping check
 |
 |  Parameters
 |  ----------
 |  every : int
 |      check frequency
 |  tolerance : float
 |      if diff norm < tolerance : break
 |  diff : str
 |      difference type one of {'absolute', 'relative'}
 |  ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional
 |      see more info in :func:`numpy.linalg.norm`
 |
 |  Examples
 |  --------
 |  >>> with model:
 |  ...     approx = pm.fit(
 |  ...         n=10000, callbacks=[
 |  ...             CheckParametersConvergence(
 |  ...                 every=50, diff='absolute',
 |  ...                 tolerance=1e-4)
 |  ...         ]
 |  ...     )
 |
 |  Method resolution order:
 |      CheckParametersConvergence
 |      Callback
 |      builtins.object
 |
 |  Methods defined here:
 |
 |  __call__(self, approx, _, i)
 |      Call self as a function.
 |
 |  __init__(self, every=100, tolerance=0.001, diff='relative', ord=inf)
 |      Initialize self.  See help(type(self)) for accurate signature.
 |
 |  ----------------------------------------------------------------------
 |  Static methods defined here:
 |
 |  flatten_shared(shared_list)
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from Callback:
 |
 |  __dict__
 |      dictionary for instance variables (if defined)
 |
 |  __weakref__
 |      list of weak references to the object (if defined)







Let’s use defaults as they seem to be reasonable



In [10]:






with model:
    mean_field = pm.fit(method='advi', callbacks=[pm.callbacks.CheckParametersConvergence()])













Average Loss = 2.2559: 100%|██████████| 10000/10000 [00:01<00:00, 9938.76it/s]
Finished [100%]: Average Loss = 2.2763








In [11]:






plt.plot(mean_field.hist);
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Hmm, something went wrong, we again did a lot of iterations. The reason
is that mean of ADVI approximation is close to 0 and taking relative
difference is unstable for checking convergence



In [12]:






with model:
    mean_field = pm.fit(method='advi', callbacks=[pm.callbacks.CheckParametersConvergence(diff='absolute')])













Average Loss = 3.6063:  40%|████      | 4029/10000 [00:00<00:00, 10150.26it/s]
Convergence archived at 4700
Interrupted at 4,700 [47%]: Average Loss = 4.7995






We can access inference history via .hist attribute.



In [13]:






plt.plot(mean_field.hist);
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Tracking parameters

That’s much better. There is another usefull callback in pymc3. It
allows tracking of arbitrary statistics during inference. One of them
(but sometimes memory consuming) is tracking parameters. In function
pm.fit we do not have direct access to approximation before
inference. But tracking parameters requires it. To cope with this
problem we can use Object Oriented API for inference.



In [14]:






with model:
    advi = pm.ADVI()









In [15]:






advi.approx









Out[15]:






<pymc3.variational.approximations.MeanField at 0x11c9444e0>







Different approximations have different parameters. In MeanField case we
use \(\rho\) and \(\mu\) (inspired by Bayes by
BackProp [https://arxiv.org/abs/1505.05424])



In [16]:






advi.approx.shared_params









Out[16]:






{'mu': mu, 'rho': rho}







But having convinient shortcuts happens to be usefull sometimes. One of
most frequent cases is specifying mass matrix for NUTS



In [17]:






advi.approx.mean.eval(), advi.approx.std.eval()









Out[17]:






(array([ 0.34], dtype=float32), array([ 0.69314718], dtype=float32))







That’s what we want



In [18]:






tracker = pm.callbacks.Tracker(
    mean=advi.approx.mean.eval,  # callable that returns mean
    std=advi.approx.std.eval  # callable that returns std
)









In [19]:






print(pm.callbacks.Tracker.__doc__)














    Helper class to record arbitrary stats during VI

    It is possible to pass a function that takes no arguments
    If call fails then (approx, hist, i) are passed


    Parameters
    ----------
    kwargs : key word arguments
        keys mapping statname to callable that records the stat

    Examples
    --------
    Consider we want time on each iteration
    >>> import time
    >>> tracker = Tracker(time=time.time)
    >>> with model:
    ...     approx = pm.fit(callbacks=[tracker])

    Time can be accessed via :code:`tracker['time']` now
    For more complex summary one can use callable that takes
    (approx, hist, i) as arguments
    >>> with model:
    ...     my_callable = lambda ap, h, i: h[-1]
    ...     tracker = Tracker(some_stat=my_callable)
    ...     approx = pm.fit(callbacks=[tracker])

    Multiple stats are valid too
    >>> with model:
    ...     tracker = Tracker(some_stat=my_callable, time=time.time)
    ...     approx = pm.fit(callbacks=[tracker])







Now, calling advi.fit will make inference but in a slightly more
flexible way.



In [20]:






approx = advi.fit(20000, callbacks=[tracker])













Average Loss = 1.9568: 100%|██████████| 20000/20000 [00:02<00:00, 7952.04it/s]
Finished [100%]: Average Loss = 1.9589






We can now plot inference results and trace for parameters



In [21]:






fig = plt.figure(figsize=(16, 9))
mu_ax = fig.add_subplot(221)
std_ax = fig.add_subplot(222)
hist_ax = fig.add_subplot(212)
mu_ax.plot(tracker['mean'])
mu_ax.set_title('Mean track')
std_ax.plot(tracker['std'])
std_ax.set_title('Std track')
hist_ax.plot(advi.hist)
hist_ax.set_title('Negative ELBO track');
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That picture is very informative. We can see how poor mean converges and
that different values for it do not change elbo significantly. As we are
using OO API, we can continue inference to get some visual convergence



In [22]:






approx = advi.fit(100000, callbacks=[tracker])













Average Loss = 1.8638: 100%|██████████| 100000/100000 [00:17<00:00, 5645.84it/s]
Finished [100%]: Average Loss = 1.8422






And this picture again



In [23]:






fig = plt.figure(figsize=(16, 9))
mu_ax = fig.add_subplot(221)
std_ax = fig.add_subplot(222)
hist_ax = fig.add_subplot(212)
mu_ax.plot(tracker['mean'])
mu_ax.set_title('Mean track')
std_ax.plot(tracker['std'])
std_ax.set_title('Std track')
hist_ax.plot(advi.hist)
hist_ax.set_title('Negative ELBO track');
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Eventually mean went up and started to behave like a random walk. We
are still uncertain for the true optimum of ADVI inference. Such picture
can be an evidence for poor algorithm chosen to make inference on the
model. It is unstable and can produce significantly different results
with different random seeds even.

Let’s compare results with old NUTS trace



In [24]:






import seaborn as sns
ax = sns.kdeplot(trace['x'], label='NUTS');
sns.kdeplot(approx.sample(10000)['x'], label='ADVI');
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To cope with multimodality we can instead use SVGD that creates
approximation based on large number of particles



In [25]:






with model:
    svgd_approx = pm.fit(300, method='svgd', inf_kwargs=dict(n_particles=1000),
                         obj_optimizer=pm.sgd(learning_rate=0.01))













100%|██████████| 300/300 [00:39<00:00,  7.55it/s]








In [26]:






ax = sns.kdeplot(trace['x'], label='NUTS');
sns.kdeplot(approx.sample(10000)['x'], label='ADVI');
sns.kdeplot(svgd_approx.sample(2000)['x'], label='SVGD');
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Seems like our SVGD got stuck in the mode. The reason is just bad
initialization. We can solve the problem using larger jitter in init



In [27]:






with model:
    svgd_approx = pm.fit(300, method='svgd',
                         inf_kwargs=dict(n_particles=1000, jitter=1),
                         obj_optimizer=pm.sgd(learning_rate=0.01))













100%|██████████| 300/300 [00:38<00:00,  8.00it/s]








In [28]:






ax = sns.kdeplot(trace['x'], label='NUTS');
sns.kdeplot(approx.sample(10000)['x'], label='ADVI');
sns.kdeplot(svgd_approx.sample(2000)['x'], label='SVGD');
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Looks much better. We have multimodal approximation with SVGD. Now it is
possible to do arbitrary things with this variational approximation. For
example we can create the same things as in the first model: \(x^2\)
and \(sin(x)\)



In [29]:






# recall x ~ NormalMixture
a = x**2
b = pm.math.sin(x)










Replacements

To apply approximation to an arbitrary expression you should use
approx.apply_replacements or approx.sample_node methods



In [30]:






help(svgd_approx.apply_replacements)













Help on method apply_replacements in module pymc3.variational.opvi:

apply_replacements(node, deterministic=False, include=None, exclude=None, more_replacements=None) method of pymc3.variational.approximations.Empirical instance
    Replace variables in graph with variational approximation. By default, replaces all variables

    Parameters
    ----------
    node : Theano Variables (or Theano expressions)
        node or nodes for replacements
    deterministic : bool
        whether to use zeros as initial distribution
        if True - zero initial point will produce constant latent variables
    include : `list`
        latent variables to be replaced
    exclude : `list`
        latent variables to be excluded for replacements
    more_replacements : `dict`
        add custom replacements to graph, e.g. change input source

    Returns
    -------
    node(s) with replacements








basic usage



In [31]:






a_sample = svgd_approx.apply_replacements(a)









In [32]:






a_sample.eval()









Out[32]:






array(0.12294609099626541, dtype=float32)









In [33]:






a_sample.eval()









Out[33]:






array(0.08086667209863663, dtype=float32)









In [34]:






a_sample.eval()









Out[34]:






array(0.047388263046741486, dtype=float32)







Every time we get different value for the same theano node. That is
because it is stochastic. After replacements we are free and do not
depend on pymc3 model. We now depend on approximation. Changing it will
change the distribution for stochastic nodes



In [35]:






sns.kdeplot(np.array([a_sample.eval() for _ in range(2000)]));
plt.title('$x^2$ distribution');
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There is a more convinient way to get lots of samples at once:
sample_node



In [36]:






a_samples = svgd_approx.sample_node(a, size=1000)









In [37]:






sns.kdeplot(a_samples.eval());
plt.title('$x^2$ distribution');
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We get approximately the same picture



In [38]:






a_samples.eval().shape









Out[38]:






(1000,)









In [39]:






a_sample.eval().shape









Out[39]:






()







In sample_node function additional dimension is added in the first
position. So taking expectations, calculating variance is done by
axis=0



In [40]:






a_samples.var(0).eval()  # variance









Out[40]:






array(0.14864803850650787, dtype=float32)









In [41]:






a_samples.mean(0).eval()  # mean









Out[41]:






array(0.2578691840171814, dtype=float32)







Symbolic sample size is OK too



In [44]:






i = theano.tensor.iscalar('i')
i.tag.test_value = 1
a_samples_i = svgd_approx.sample_node(a, size=i)









In [45]:






a_samples_i.eval({i: 100}).shape









Out[45]:






(100,)









In [46]:






a_samples_i.eval({i: 10000}).shape









Out[46]:






(10000,)







But unfortunately only scalar size is supported.




converting trace to Approximation

There is a neat feature to convert any trace to Approximation. It will
have the same API as approximations above with same
apply_replacemets/sample_node methods



In [47]:






trace_approx = pm.Empirical(trace, model=model)









In [48]:






trace_approx









Out[48]:






<pymc3.variational.approximations.Empirical at 0x121bc4eb8>









In [49]:






pm.plot_posterior(trace_approx.sample(10000));
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Multilabel logistic regression

Favorite Iris dataset. One of the best illustrative example for using
Tracker can be done with Iris. We’ll do multilabel classification
there and compute expected accuracy score.



In [50]:






# First of all
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import theano.tensor as tt
import pandas as pd
X, y = load_iris(True)
X_train, X_test, y_train, y_test = train_test_split(X, y)








[image: ]


Complex model for this illustratice example is is not needed as data
classes are roughly linearly separable. Thus we are going to fit
multinomial logistic regression.



In [51]:






Xt = theano.shared(X_train)
yt = theano.shared(y_train)
with pm.Model() as model:
    β = pm.Normal('β', 0, 1e2, shape=(4, 3))
    a = pm.Flat('a', shape=(3,))
    z = tt.nnet.softmax(Xt.dot(β) + a)
    observed = pm.Categorical('obs', p=z, observed=yt)








Applying replacements in practice

Models defined with pymc3 have symbolic inputs for latent variables. To
evaluate an espression that requires knoledge about latents one needs to
pass values for latent variables. In VI setup we have an approximation
for these variables ant it happens to be very usefull in practice.
Having a simple functions that removes all symbolic dependencies is
valuable. These functions are sample_node and apply_replacements
described above. Before we did not use the full power of replacements.
There is a usefull shortcut for applying even more replacements at once.

To get accuracy under approximate posterior we need to use
apply_replacements or sample_node. It’s better to get the whole
distribution at each step to draw neat plot so sample_node is our
choice. As mentioned above we can apply more replacements in single
function call. It can be done with readable kwarg more_replacements
in both replacement functions.

HINT: You can use more_replacements argument when calling
fit too


	pm.fit(more_replacements={full_data: minibatch_data})

	inference.fit(more_replacements={full_data: minibatch_data})





In [52]:






with model:
    # We'll use SVGD
    inference = pm.SVGD(n_particles=500, jitter=1)
    # shortcut reference to approximation
    approx = inference.approx
    # Here we need `more_replacements` to change train_set to test_set
    test_probs = approx.sample_node(z, more_replacements={
        Xt: X_test
    })
    # For train set no more replacements needed
    train_probs = approx.sample_node(z)
    # Now we have 100 sampled probabilities (default argument) for each observation







Next we create symbolic expressions for sampled accuracy scores



In [53]:






test_ok = tt.eq(test_probs.argmax(-1), y_test)
train_ok = tt.eq(train_probs.argmax(-1), y_train)
test_accuracy = test_ok.mean(-1)
train_accuracy = train_ok.mean(-1)







Tracker expects callables so we can pass .eval method of theano node
that is function itself. Call to this function is cached and will be
reused.



In [54]:






eval_tracker = pm.callbacks.Tracker(
    test_accuracy=test_accuracy.eval,
    train_accuracy=train_accuracy.eval
)









In [55]:






inference.fit(
    100,
    callbacks=[eval_tracker]
)













100%|██████████| 100/100 [00:08<00:00, 12.50it/s]








Out[55]:






<pymc3.variational.approximations.Empirical at 0x1226bda20>









In [56]:






import seaborn as sns
sns.tsplot(np.asarray(eval_tracker['test_accuracy']).T, color='red')
sns.tsplot(np.asarray(eval_tracker['train_accuracy']).T, color='blue')
plt.legend(['test_accuracy', 'train_accuracy'])
plt.title('Training Progress')









Out[56]:






<matplotlib.text.Text at 0x123176be0>
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We have no training progress here. We are likely to change optimization
method and increase learning rate.



In [57]:






inference.fit(
    400, obj_optimizer=pm.sgd(learning_rate=0.1),
    callbacks=[eval_tracker]
);













100%|██████████| 400/400 [00:27<00:00, 14.39it/s]








In [58]:






sns.tsplot(np.asarray(eval_tracker['test_accuracy']).T, color='red', alpha=.5)
sns.tsplot(np.asarray(eval_tracker['train_accuracy']).T, color='blue', alpha=.5)
plt.legend(['test_accuracy', 'train_accuracy'])
plt.title('Training Progress');
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Much better. With Tracker we were able to track our progress and
choose good training schedule






Minibatches

Another usefull feature is Minibatch training. When your data is too
large there is no reason to use full dataset to compute gradients. There
is a nice API in pymc3 to handle these cases. You can reference
pm.Minibatch for details



In [59]:






# easy workflow like with regular tensor
issubclass(pm.Minibatch, theano.tensor.TensorVariable)









Out[59]:






True








Data



In [60]:






data = np.random.rand(400000, 100)    # initial
data *= np.random.randint(1, 10, size=(100,))# our std
data += np.random.rand(100) * 10    # our mean










no minibatch inference



In [61]:






with pm.Model() as model:
    mu = pm.Flat('mu', shape=(100,))
    sd = pm.HalfNormal('sd', shape=(100,))
    lik = pm.Normal('lik', mu, sd, observed=data)







One can create a custom special purpose callback. Here we define hard
stop callback that helps stopping very slow inference not by hand but
after concrete iteration. Signature is pretty simple



In [62]:






def stop_after_10(approx, loss_history, i):
    if (i > 0) and (i % 10) == 0:
        raise StopIteration('I was slow, sorry')









In [63]:






with model:
    advifit = pm.fit(callbacks=[stop_after_10])













Average Loss = 6.0648e+09:   0%|          | 10/10000 [00:22<6:03:15,  2.18s/it]
I was slow, sorry
Interrupted at 10 [0%]: Average Loss = 6.5297e+09






Inference is too slow, 2.18 seconds per iteration :(




minibatch inference



In [64]:






X = pm.Minibatch(data, batch_size=500)

with pm.Model() as model:
    mu = pm.Flat('mu', shape=(100,))
    sd = pm.HalfNormal('sd', shape=(100,))
    lik = pm.Normal('lik', mu, sd, observed=X, total_size=data.shape)









In [65]:






with model:
    advifit = pm.fit()













Average Loss = 1.2496e+08: 100%|██████████| 10000/10000 [00:11<00:00, 870.31it/s]
Finished [100%]: Average Loss = 1.2489e+08








In [66]:






plt.plot(advifit.hist);
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Minibatch inference is drasticaly faster. Full documentation for
minibatch can be accessed via docstring. Multidimensional minibatches
may be needed for some corner cases where you do matrix factorization or
model is very wide.



In [67]:






print(pm.Minibatch.__doc__)













Multidimensional minibatch that is pure TensorVariable

    Parameters
    ----------
    data : :class:`ndarray`
        initial data
    batch_size : `int` or `List[int|tuple(size, random_seed)]`
        batch size for inference, random seed is needed
        for child random generators
    dtype : `str`
        cast data to specific type
    broadcastable : tuple[bool]
        change broadcastable pattern that defaults to `(False, ) * ndim`
    name : `str`
        name for tensor, defaults to "Minibatch"
    random_seed : `int`
        random seed that is used by default
    update_shared_f : `callable`
        returns :class:`ndarray` that will be carefully
        stored to underlying shared variable
        you can use it to change source of
        minibatches programmatically
    in_memory_size : `int` or `List[int|slice|Ellipsis]`
        data size for storing in theano.shared

    Attributes
    ----------
    shared : shared tensor
        Used for storing data
    minibatch : minibatch tensor
        Used for training

    Examples
    --------
    Consider we have data
    >>> data = np.random.rand(100, 100)

    if we want 1d slice of size 10 we do
    >>> x = Minibatch(data, batch_size=10)

    Note, that your data is cast to `floatX` if it is not integer type
    But you still can add `dtype` kwarg for :class:`Minibatch`

    in case we want 10 sampled rows and columns
    `[(size, seed), (size, seed)]` it is
    >>> x = Minibatch(data, batch_size=[(10, 42), (10, 42)], dtype='int32')
    >>> assert str(x.dtype) == 'int32'

    or simpler with default random seed = 42
    `[size, size]`
    >>> x = Minibatch(data, batch_size=[10, 10])

    x is a regular :class:`TensorVariable` that supports any math
    >>> assert x.eval().shape == (10, 10)

    You can pass it to your desired model
    >>> with pm.Model() as model:
    ...     mu = pm.Flat('mu')
    ...     sd = pm.HalfNormal('sd')
    ...     lik = pm.Normal('lik', mu, sd, observed=x, total_size=(100, 100))

    Then you can perform regular Variational Inference out of the box
    >>> with model:
    ...     approx = pm.fit()

    Notable thing is that :class:`Minibatch` has `shared`, `minibatch`, attributes
    you can call later
    >>> x.set_value(np.random.laplace(size=(100, 100)))

    and minibatches will be then from new storage
    it directly affects `x.shared`.
    the same thing would be but less convenient
    >>> x.shared.set_value(pm.floatX(np.random.laplace(size=(100, 100))))

    programmatic way to change storage is as follows
    I import `partial` for simplicity
    >>> from functools import partial
    >>> datagen = partial(np.random.laplace, size=(100, 100))
    >>> x = Minibatch(datagen(), batch_size=10, update_shared_f=datagen)
    >>> x.update_shared()

    To be more concrete about how we get minibatch, here is a demo
    1) create shared variable
    >>> shared = theano.shared(data)

    2) create random slice of size 10
    >>> ridx = pm.tt_rng().uniform(size=(10,), low=0, high=data.shape[0]-1e-10).astype('int64')

    3) take that slice
    >>> minibatch = shared[ridx]

    That's done. Next you can use this minibatch somewhere else.
    You can see that implementation does not require fixed shape
    for shared variable. Feel free to use that if needed.

    Suppose you need some replacements in the graph, e.g. change minibatch to testdata
    >>> node = x ** 2  # arbitrary expressions on minibatch `x`
    >>> testdata = pm.floatX(np.random.laplace(size=(1000, 10)))

    Then you should create a dict with replacements
    >>> replacements = {x: testdata}
    >>> rnode = theano.clone(node, replacements)
    >>> assert (testdata ** 2 == rnode.eval()).all()

    To replace minibatch with it's shared variable you should do
    the same things. Minibatch variable is accessible as an attribute
    as well as shared, associated with minibatch
    >>> replacements = {x.minibatch: x.shared}
    >>> rnode = theano.clone(node, replacements)

    For more complex slices some more code is needed that can seem not so clear
    >>> moredata = np.random.rand(10, 20, 30, 40, 50)

    default `total_size` that can be passed to `PyMC3` random node
    is then `(10, 20, 30, 40, 50)` but can be less verbose in some cases

    1) Advanced indexing, `total_size = (10, Ellipsis, 50)`
    >>> x = Minibatch(moredata, [2, Ellipsis, 10])

    We take slice only for the first and last dimension
    >>> assert x.eval().shape == (2, 20, 30, 40, 10)

    2) Skipping particular dimension, `total_size = (10, None, 30)`
    >>> x = Minibatch(moredata, [2, None, 20])
    >>> assert x.eval().shape == (2, 20, 20, 40, 50)

    3) Mixing that all, `total_size = (10, None, 30, Ellipsis, 50)`
    >>> x = Minibatch(moredata, [2, None, 20, Ellipsis, 10])
    >>> assert x.eval().shape == (2, 20, 20, 40, 10)
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API quickstart



In [1]:






%matplotlib inline
import numpy as np
import theano.tensor as tt
import pymc3 as pm

import seaborn as sns
import matplotlib.pyplot as plt
sns.set_context('notebook')








1. Model creation

Models in PyMC3 are centered around the Model class. It has
references to all random variables (RVs) and computes the model logp and
its gradients. Usually, you would instantiate it as part of a with
context:



In [2]:






with pm.Model() as model:
    # Model definition
    pass







We discuss RVs further below but let’s create a simple model to explore
the Model class.



In [3]:






with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    obs = pm.Normal('obs', mu=mu, sd=1, observed=np.random.randn(100))









In [4]:






model.basic_RVs









Out[4]:






[mu, obs]









In [5]:






model.free_RVs









Out[5]:






[mu]









In [6]:






model.observed_RVs









Out[6]:






[obs]









In [7]:






model.logp({'mu': 0})









Out[7]:






array(-130.93385991219947)










2. Probability Distributions

Every probabilistic program consists of observed and unobserved Random
Variables (RVs). Observed RVs are defined via likelihood distributions,
while unobserved RVs are defined via prior distributions. In PyMC3,
probability distributions are available from the main module space:



In [8]:






help(pm.Normal)













Help on class Normal in module pymc3.distributions.continuous:

class Normal(pymc3.distributions.distribution.Continuous)
 |  Univariate normal log-likelihood.
 |
 |  .. math::
 |
 |     f(x \mid \mu, \tau) =
 |         \sqrt{\frac{\tau}{2\pi}}
 |         \exp\left\{ -\frac{\tau}{2} (x-\mu)^2 \right\}
 |
 |  ========  ==========================================
 |  Support   :math:`x \in \mathbb{R}`
 |  Mean      :math:`\mu`
 |  Variance  :math:`\dfrac{1}{\tau}` or :math:`\sigma^2`
 |  ========  ==========================================
 |
 |  Normal distribution can be parameterized either in terms of precision
 |  or standard deviation. The link between the two parametrizations is
 |  given by
 |
 |  .. math::
 |
 |     \tau = \dfrac{1}{\sigma^2}
 |
 |  Parameters
 |  ----------
 |  mu : float
 |      Mean.
 |  sd : float
 |      Standard deviation (sd > 0).
 |  tau : float
 |      Precision (tau > 0).
 |
 |  Method resolution order:
 |      Normal
 |      pymc3.distributions.distribution.Continuous
 |      pymc3.distributions.distribution.Distribution
 |      builtins.object
 |
 |  Methods defined here:
 |
 |  __init__(self, mu=0, sd=None, tau=None, **kwargs)
 |      Initialize self.  See help(type(self)) for accurate signature.
 |
 |  logp(self, value)
 |
 |  random(self, point=None, size=None, repeat=None)
 |
 |  ----------------------------------------------------------------------
 |  Methods inherited from pymc3.distributions.distribution.Distribution:
 |
 |  __getnewargs__(self)
 |
 |  default(self)
 |
 |  get_test_val(self, val, defaults)
 |
 |  getattr_value(self, val)
 |
 |  ----------------------------------------------------------------------
 |  Class methods inherited from pymc3.distributions.distribution.Distribution:
 |
 |  dist(*args, **kwargs) from builtins.type
 |
 |  ----------------------------------------------------------------------
 |  Static methods inherited from pymc3.distributions.distribution.Distribution:
 |
 |  __new__(cls, name, *args, **kwargs)
 |      Create and return a new object.  See help(type) for accurate signature.
 |
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from pymc3.distributions.distribution.Distribution:
 |
 |  __dict__
 |      dictionary for instance variables (if defined)
 |
 |  __weakref__
 |      list of weak references to the object (if defined)







In the PyMC3 module, the structure for probability distributions looks
like this:

pymc3.distributions [http://pymc-devs.github.io/pymc3/api/distributions.html]|-
continuous [http://pymc-devs.github.io/pymc3/api/distributions/continuous.html]|-
discrete [http://pymc-devs.github.io/pymc3/api/distributions/discrete.html]|-
timeseries [http://pymc-devs.github.io/pymc3/api/distributions/timeseries.html]|-
mixture [http://pymc-devs.github.io/pymc3/api/distributions/mixture.html]



In [9]:






dir(pm.distributions.mixture)









Out[9]:






['Discrete',
 'Distribution',
 'Mixture',
 'Normal',
 'NormalMixture',
 '__builtins__',
 '__cached__',
 '__doc__',
 '__file__',
 '__loader__',
 '__name__',
 '__package__',
 '__spec__',
 'all_discrete',
 'bound',
 'draw_values',
 'generate_samples',
 'get_tau_sd',
 'logsumexp',
 'np',
 'tt']








Unobserved Random Variables

Every unobserved RV has the following calling signature: name (str),
parameter keyword arguments. Thus, a normal prior can be defined in a
model context like this:



In [10]:






with pm.Model():
    x = pm.Normal('x', mu=0, sd=1)







As with the model, we can evaluate its logp:



In [11]:






x.logp({'x': 0})









Out[11]:






array(-0.9189385332046727)










Observed Random Variables

Observed RVs are defined just like unobserved RVs but require data to be
passed into the observed keyword argument:



In [12]:






with pm.Model():
    obs = pm.Normal('x', mu=0, sd=1, observed=np.random.randn(100))







observed supports lists, numpy.ndarray, theano and
pandas data structures.




Deterministic transforms

PyMC3 allows you to freely do algebra with RVs in all kinds of ways:



In [13]:






with pm.Model():
    x = pm.Normal('x', mu=0, sd=1)
    y = pm.Gamma('y', alpha=1, beta=1)
    plus_2 = x + 2
    summed = x + y
    squared = x**2
    sined = pm.math.sin(x)







While these transformations work seamlessly, its results are not stored
automatically. Thus, if you want to keep track of a transformed
variable, you have to use pm.Determinstic:



In [14]:






with pm.Model():
    x = pm.Normal('x', mu=0, sd=1)
    plus_2 = pm.Deterministic('x plus 2', x + 2)







Note that plus_2 can be used in the identical way to above, we only
tell PyMC3 to keep track of this RV for us.




Automatic transforms of bounded RVs

In order to sample models more efficiently, PyMC3 automatically
transforms bounded RVs to be unbounded.



In [15]:






with pm.Model() as model:
    x = pm.Uniform('x', lower=0, upper=1)







When we look at the RVs of the model, we would expect to find x
there, however:



In [16]:






model.free_RVs









Out[16]:






[x_interval__]







x_interval__ represents x transformed to accept parameter values
between -inf and +inf. In the case of an upper and a lower bound, a
LogOdds transform is applied. Sampling in this transformed space
makes it easier for the sampler. PyMC3 also keeps track of the
non-transformed, bounded parameters. These are common determinstics (see
above):



In [17]:






model.deterministics









Out[17]:






[x]







When displaying results, PyMC3 will usually hide transformed parameters.
You can pass the include_transformed=True parameter to many
functions to see the transformed parameters that are used for sampling.

You can also turn transforms off:



In [18]:






with pm.Model() as model:
    x = pm.Uniform('x', lower=0, upper=1, transform=None)

print(model.free_RVs)













[x]









Lists of RVs / higher-dimensional RVs

Above we have seen to how to create scalar RVs. In many models, you want
multiple RVs. There is a tendency (mainly inherited from PyMC 2.x) to
create list of RVs, like this:



In [19]:






with pm.Model():
    x = [pm.Normal('x_{}'.format(i), mu=0, sd=1) for i in range(10)] # bad







However, even though this works it is quite slow and not recommended.
Instead, use the shape kwarg:



In [20]:






with pm.Model() as model:
    x = pm.Normal('x', mu=0, sd=1, shape=10) # good







x is now a random vector of length 10. We can index into it or do
linear algebra operations on it:



In [21]:






with model:
    y = x[0] * x[1] # full indexing is supported
    x.dot(x.T) # Linear algebra is supported










Initialization with test_values

While PyMC3 tries to automatically initialize models it is sometimes
helpful to define initial values for RVs. This can be done via the
testval kwarg:



In [22]:






with pm.Model():
    x = pm.Normal('x', mu=0, sd=1, shape=5)

x.tag.test_value









Out[22]:






array([ 0.,  0.,  0.,  0.,  0.])









In [23]:






with pm.Model():
    x = pm.Normal('x', mu=0, sd=1, shape=5, testval=np.random.randn(5))

x.tag.test_value









Out[23]:






array([ 0.51093099,  0.78646267, -1.02921232,  0.65820029,  0.70385385])







This technique is quite useful to identify problems with model
specification or initialization.






3. Inference

Once we have defined our model, we have to perform inference to
approximate the posterior distribution. PyMC3 supports two broad classes
of inference: sampling and variational inference.


3.1 Sampling

The main entry point to MCMC sampling algorithms is via the
pm.sample() function. By default, this function tries to auto-assign
the right sampler(s) and auto-initialize if you don’t pass anything.



In [24]:






with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    obs = pm.Normal('obs', mu=mu, sd=1, observed=np.random.randn(100))

    trace = pm.sample(1000, tune=500)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 143.54:  10%|█         | 20024/200000 [00:01<00:12, 14337.29it/s]
Convergence archived at 21000
Interrupted at 21,000 [10%]: Average Loss = 144.89
100%|██████████| 1500/1500 [00:00<00:00, 2730.61it/s]






As you can see, on a continuous model, PyMC3 assigns the NUTS sampler,
which is very efficient even for complex models. PyMC3 also runs
variational inference (i.e. ADVI) to find good starting parameters for
the sampler. Here we draw 1000 samples from the posterior and allow the
sampler to adjust its parameters in an additional 500 iterations. These
500 samples are discarded by default:



In [25]:






len(trace)









Out[25]:






1000







You can also run multiple chains in parallel using the njobs kwarg:



In [26]:






with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    obs = pm.Normal('obs', mu=mu, sd=1, observed=np.random.randn(100))

    trace = pm.sample(njobs=4)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 142.41:  22%|██▏       | 44484/200000 [00:02<00:08, 18649.61it/s]
Convergence archived at 46000
Interrupted at 46,000 [23%]: Average Loss = 143.02
100%|██████████| 1000/1000 [00:01<00:00, 928.24it/s]






Note, that we are now drawing 2000 samples, 500 samples for 4 chains
each. The 500 tuning samples are discarded by default.



In [27]:






trace['mu'].shape









Out[27]:






(2000,)









In [28]:






trace.nchains









Out[28]:






4









In [29]:






trace.get_values('mu', chains=1).shape # get values of a single chain









Out[29]:






(500,)







PyMC3, offers a variety of other samplers, found in pm.step_methods.



In [30]:






list(filter(lambda x: x[0].isupper(), dir(pm.step_methods)))









Out[30]:






['BinaryGibbsMetropolis',
 'BinaryMetropolis',
 'CategoricalGibbsMetropolis',
 'CauchyProposal',
 'CompoundStep',
 'ElemwiseCategorical',
 'EllipticalSlice',
 'HamiltonianMC',
 'LaplaceProposal',
 'Metropolis',
 'MultivariateNormalProposal',
 'NUTS',
 'NormalProposal',
 'PoissonProposal',
 'SMC',
 'Slice']







Commonly used step-methods besides NUTS are Metropolis and
Slice. For almost all continuous models, ``NUTS`` should be
preferred. There are hard-to-sample models for which NUTS will be
very slow causing many users to use Metropolis instead. This
practice, however, is rarely successful. NUTS is fast on simple models
but can be slow if the model is very complex or it is badly initialized.
In the case of a complex model that is hard for NUTS, Metropolis, while
faster, will have a very low effective sample size or not converge
properly at all. A better approach is to instead try to improve
initialization of NUTS, or reparameterize the model.

For completeness, other sampling methods can be passed to sample:



In [31]:






with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    obs = pm.Normal('obs', mu=mu, sd=1, observed=np.random.randn(100))

    step = pm.Metropolis()
    trace = pm.sample(1000, step=step)













100%|██████████| 1500/1500 [00:00<00:00, 9343.52it/s]






You can also assign variables to different step methods.



In [32]:






with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    sd = pm.HalfNormal('sd', sd=1)
    obs = pm.Normal('obs', mu=mu, sd=sd, observed=np.random.randn(100))

    step1 = pm.Metropolis(vars=[mu])
    step2 = pm.Slice(vars=[sd])
    trace = pm.sample(10000, step=[step1, step2], njobs=4)













100%|██████████| 10500/10500 [00:11<00:00, 890.12it/s]









3.2 Analyze sampling results

The most common used plot to analyze sampling results is the so-called
trace-plot:



In [33]:






pm.traceplot(trace);












[image: ../_images/notebooks_api_quickstart_64_0.png]




Another common metric to look at is R-hat, also known as the
Gelman-Rubin statistic:



In [34]:






pm.gelman_rubin(trace)









Out[34]:






{'mu': 1.0003808153475398,
 'sd': 0.99997655090314819,
 'sd_log__': 0.9999720004991266}







These are also part of the forestplot:



In [35]:






pm.forestplot(trace);












[image: ../_images/notebooks_api_quickstart_68_0.png]




Finally, for a plot of the posterior that is inspired by the book Doing
Bayesian Data
Analysis [http://www.indiana.edu/~kruschke/DoingBayesianDataAnalysis/],
you can use the:



In [36]:






pm.plot_posterior(trace);












[image: ../_images/notebooks_api_quickstart_70_0.png]




For high-dimensional models it becomes cumbersome to look at all
parameter’s traces. When using NUTS we can look at the energy plot
to assess problems of convergence:



In [37]:






with pm.Model() as model:
    x = pm.Normal('x', mu=0, sd=1, shape=100)
    trace = pm.sample(njobs=4)

pm.energyplot(trace);













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 0.056672: 100%|██████████| 200000/200000 [00:14<00:00, 13997.00it/s]
Finished [100%]: Average Loss = 0.054276
100%|██████████| 1000/1000 [00:06<00:00, 163.63it/s]











[image: ../_images/notebooks_api_quickstart_72_1.png]




For more information on sampler stats and the energy plot, see
here [http://pymc-devs.github.io/pymc3/notebooks/sampler-stats.html].
For more information on identifying sampling problems and what to do
about them, see
here [http://pymc-devs.github.io/pymc3/notebooks/Diagnosing_biased_Inference_with_Divergences.html].




3.3 Variational inference

PyMC3 supports various Variational Inference techniques. While these
methods are much faster, they are often also less accurate and can lead
to biased inference. The main entry point is pymc3.fit().



In [38]:






with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    sd = pm.HalfNormal('sd', sd=1)
    obs = pm.Normal('obs', mu=mu, sd=sd, observed=np.random.randn(100))

    approx = pm.fit()













Average Loss = 146.58: 100%|██████████| 10000/10000 [00:00<00:00, 15134.18it/s]
Finished [100%]: Average Loss = 146.57






The returned Approximation object has various capabilities, like
drawing samples from the approximated posterior, which we can analyse
like a regular sampling run:



In [39]:






approx.sample(500)









Out[39]:






<MultiTrace: 1 chains, 500 iterations, 2 variables>







The variational submodule offers a lot of flexibility in which VI to
use and follows an object oriented design. For example, full-rank ADVI
estimates a full covariance matrix:



In [40]:






mu = pm.floatX([0., 0.])
cov = pm.floatX([[1, .5], [.5, 1.]])
with pm.Model() as model:
    pm.MvNormal('x', mu=mu, cov=cov, shape=2)
    approx = pm.fit(method='fullrank_advi')













Average Loss = 0.00061705: 100%|██████████| 10000/10000 [00:02<00:00, 3763.84it/s]
Finished [100%]: Average Loss = 0.00090201






An equivalent expression using the object-oriented interface is:



In [41]:






with pm.Model() as model:
    pm.MvNormal('x', mu=mu, cov=cov, shape=2)
    approx = pm.FullRankADVI().fit()













Average Loss = 0.0016698: 100%|██████████| 10000/10000 [00:02<00:00, 3345.98it/s]
Finished [100%]: Average Loss = 0.001701








In [42]:






plt.figure()
trace = approx.sample(10000)
sns.kdeplot(trace['x'])









Out[42]:






<matplotlib.axes._subplots.AxesSubplot at 0x11f4f2eb8>












[image: ../_images/notebooks_api_quickstart_82_1.png]




Stein Variational Gradient Descent (SVGD) uses particles to estimate the
posterior:



In [43]:






w = pm.floatX([.2, .8])
mu = pm.floatX([-.3, .5])
sd = pm.floatX([.1, .1])
with pm.Model() as model:
    pm.NormalMixture('x', w=w, mu=mu, sd=sd)
    approx = pm.fit(method=pm.SVGD(n_particles=200, jitter=1.))













100%|██████████| 10000/10000 [00:53<00:00, 188.00it/s]








In [44]:






plt.figure()
trace = approx.sample(10000)
sns.distplot(trace['x']);












[image: ../_images/notebooks_api_quickstart_85_0.png]




For more information on variational inference, see these
examples [http://pymc-devs.github.io/pymc3/examples.html#variational-inference].






4. Posterior Predictive Sampling

The sample_ppc() function performs prediction on hold-out data and
posterior predictive checks.



In [45]:






data = np.random.randn(100)
with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    sd = pm.HalfNormal('sd', sd=1)
    obs = pm.Normal('obs', mu=mu, sd=sd, observed=data)

    trace = pm.sample()













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 141.37: 100%|██████████| 200000/200000 [00:15<00:00, 12799.60it/s]
Finished [100%]: Average Loss = 141.37
100%|██████████| 1000/1000 [00:00<00:00, 1963.58it/s]








In [46]:






with model:
    post_pred = pm.sample_ppc(trace, samples=500, size=len(data))













100%|██████████| 500/500 [00:06<00:00, 73.82it/s]






sample_ppc() returns a dict with a key for every observed node:



In [47]:






post_pred['obs'].shape









Out[47]:






(500, 100)









In [48]:






plt.figure()
ax = sns.distplot(post_pred['obs'].mean(axis=1), label='Posterior predictive means')
ax.axvline(data.mean(), color='r', ls='--', label='True mean')
ax.legend()









Out[48]:






<matplotlib.legend.Legend at 0x125eac748>












[image: ../_images/notebooks_api_quickstart_92_1.png]







4.1 Predicting on hold-out data

In many cases you want to predict on unseen / hold-out data. This is
especially relevant in Probabilistic Machine Learning and Bayesian Deep
Learning. While we plan to improve the API in this regard, this can
currently be achieved with a theano.shared variable. These are
theano tensors whose values can be changed later. Otherwise they can be
passed into PyMC3 just like any other numpy array or tensor.



In [49]:






import theano

x = np.random.randn(100)
y = x > 0

x_shared = theano.shared(x)
y_shared = theano.shared(y)

with pm.Model() as model:
    coeff = pm.Normal('x', mu=0, sd=1)
    logistic = pm.math.sigmoid(coeff * x_shared)
    pm.Bernoulli('obs', p=logistic, observed=y_shared)
    trace = pm.sample()













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 21.931:   7%|▋         | 14453/200000 [00:01<00:12, 15315.19it/s]
Convergence archived at 15000
Interrupted at 15,000 [7%]: Average Loss = 26.836
100%|██████████| 1000/1000 [00:00<00:00, 2842.64it/s]






Now assume we want to predict on unseen data. For this we have to change
the values of x_shared and y_shared. Theoretically we don’t need
to set y_shared as we want to predict it but it has to match the
shape of x_shared.



In [50]:






x_shared.set_value([-1, 0, 1.])
y_shared.set_value([0, 0, 0]) # dummy values

with model:
    post_pred = pm.sample_ppc(trace, samples=500)













100%|██████████| 500/500 [00:02<00:00, 178.87it/s]








In [51]:






post_pred['obs'].mean(axis=0)









Out[51]:






array([ 0.016,  0.474,  0.972])













          

      

      

    

  

    
      
          
            
  


Sampler statistics

When checking for convergence or when debugging a badly behaving
sampler, it is often helpful to take a closer look at what the sampler
is doing. For this purpose some samplers export statistics for each
generated sample.



In [1]:






import numpy as np
import matplotlib.pyplot as plt
import seaborn as sb
import pandas as pd
import pymc3 as pm

%matplotlib inline







As a minimal example we sample from a standard normal distribution:



In [2]:






model = pm.Model()
with model:
    mu1 = pm.Normal("mu1", mu=0, sd=1, shape=10)









In [3]:






with model:
    step = pm.NUTS()
    trace = pm.sample(2000, tune=1000, init=None, step=step, njobs=2)













100%|██████████| 2000/2000 [00:01<00:00, 1361.25it/s]






NUTS provides the following statistics:



In [4]:






trace.stat_names









Out[4]:






{'depth',
 'diverging',
 'energy',
 'energy_error',
 'max_energy_error',
 'mean_tree_accept',
 'step_size',
 'step_size_bar',
 'tree_size',
 'tune'}








	mean_tree_accept: The mean acceptance probability for the tree
that generated this sample. The mean of these values across all
samples but the burn-in should be approximately target_accept
(the default for this is 0.8).

	diverging: Whether the trajectory for this sample diverged. If
there are many diverging samples, this usually indicates that a
region of the posterior has high curvature. Reparametrization can
often help, but you can also try to increase target_accept to
something like 0.9 or 0.95.

	energy: The energy at the point in phase-space where the sample
was accepted. This can be used to identify posteriors with
problematically long tails. See below for an example.

	energy_error: The difference in energy between the start and the
end of the trajectory. For a perfect integrator this would always be
zero.

	max_energy_error: The maximum difference in energy along the
whole trajectory.

	depth: The depth of the tree that was used to generate this
sample

	tree_size: The number of leafs of the sampling tree, when the
sample was accepted. This is usually a bit less than
\(2 ^ \text{depth}\). If the tree size is large, the sampler is
using a lot of leapfrog steps to find the next sample. This can for
example happen if there are strong correlations in the posterior, if
the posterior has long tails, if there are regions of high curvature
(“funnels”), or if the variance estimates in the mass matrix are
inaccurate. Reparametrisation of the model or estimating the
posterior variances from past samples might help.

	tune: This is True, if step size adaptation was turned on
when this sample was generated.

	step_size: The step size used for this sample.

	step_size_bar: The current best known step-size. After the tuning
samples, the step size is set to this value. This should converge
during tuning.



If the name of the statistic does not clash with the name of one of the
variables, we can use indexing to get the values. The values for the
chains will be concatenated.

We can see that the step sizes converged after the 1000 tuning samples
for both chains to about the same value. The first 2000 values are from
chain 1, the second 2000 from chain 2.



In [5]:






plt.plot(trace['step_size_bar'])









Out[5]:






[<matplotlib.lines.Line2D at 0x7f234bfd5588>]












[image: ../_images/notebooks_sampler-stats_9_1.png]




The get_sampler_stats method provides more control over which values
should be returned, and it also works if the name of the statistic is
the same as the name of one of the variables. We can use the chains
option, to control values from which chain should be returned, or we can
set combine=False to get the values for the individual chains:



In [6]:






sizes1, sizes2 = trace.get_sampler_stats('depth', combine=False)
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, sharey=True)
ax1.plot(sizes1)
ax2.plot(sizes2)









Out[6]:






[<matplotlib.lines.Line2D at 0x7f23417d0dd8>]
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In [7]:






accept = trace.get_sampler_stats('mean_tree_accept', burn=1000)
sb.distplot(accept, kde=False)









Out[7]:






<matplotlib.axes._subplots.AxesSubplot at 0x7f23480810f0>
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In [8]:






accept.mean()









Out[8]:






0.80329863296935067







Find the index of all diverging transitions:



In [9]:






trace['diverging'].nonzero()









Out[9]:






(array([], dtype=int64),)







It is often useful to compare the overall distribution of the energy
levels with the change of energy between successive samples. Ideally,
they should be very similar:



In [10]:






energy = trace['energy']
energy_diff = np.diff(energy)
sb.distplot(energy - energy.mean(), label='energy')
sb.distplot(energy_diff, label='energy diff')
plt.legend()









Out[10]:






<matplotlib.legend.Legend at 0x7f234168ada0>
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If the overall distribution of energy levels has longer tails, the
efficiency of the sampler will deteriorate quickly.




Multiple samplers

If multiple samplers are used for the same model (e.g. for continuous
and discrete variables), the exported values are merged or stacked along
a new axis.



In [11]:






model = pm.Model()
with model:
    mu1 = pm.Bernoulli("mu1", p=0.8)
    mu2 = pm.Normal("mu2", mu=0, sd=1, shape=10)









In [12]:






with model:
    step1 = pm.BinaryMetropolis([mu1])
    step2 = pm.Metropolis([mu2])
    trace = pm.sample(10000, init=None, step=[step1, step2], njobs=2, tune=1000)













100%|██████████| 10000/10000 [00:02<00:00, 3695.88it/s]








In [13]:






trace.stat_names









Out[13]:






{'accept', 'p_jump', 'tune'}







Both samplers export accept, so we get one acceptance probability
for each sampler:



In [14]:






trace.get_sampler_stats('accept')









Out[14]:






array([[  1.00000000e+00,   2.99250475e-05],
       [  2.50000000e-01,   2.58944314e-04],
       [  1.00000000e+00,   5.89596665e-03],
       ...,
       [  2.50000000e-01,   7.71917301e-02],
       [  1.00000000e+00,   2.43450517e-01],
       [  1.00000000e+00,   2.40661294e-02]])











          

      

      

    

  

    
      
          
            
  


Diagnosing Biased Inference with Divergences

** PyMC3 port of Michael Betancourt’s post on
ms-stan [http://mc-stan.org/documentation/case-studies/divergences_and_bias.html].
For detailed explanation of the underlying mechanism please check the
original
post [http://mc-stan.org/documentation/case-studies/divergences_and_bias.html]
and Betancourt’s excellent
paper [https://arxiv.org/abs/1701.02434].**

Bayesian statistics is all about building your model and estimating the
parameters in the model. However, due to limitations in our current
mathematical understanding and computation capacity, naive or direct
parameterization of our probability model often ran into problem (you
can check out Thomas Wiecki’s blog post on the same issue in
PyMC3 [http://twiecki.github.io/blog/2017/02/08/bayesian-hierchical-non-centered/]).
Suboptimal parameterization is often lead to slow sampling, and more
problematic, biased MCMC estimators.


** More formally, as explained in the original
post [http://mc-stan.org/documentation/case-studies/divergences_and_bias.html]
(in markdown block, same below):**

> Markov chain Monte Carlo (MCMC) approximates expectations with
respect to a given target distribution,





\[\mathbb{E}{\pi} [ f ] = \int \mathrm{d}q \, \pi (q) \, f(q),\]

using the states of a Markov chain, \({q{0}, \ldots, q_{N} }\),


\[\mathbb{E}{\pi} [ f ] \approx \hat{f}{N} = \frac{1}{N + 1} \sum_{n = 0}^{N} f(q_{n}).\]





> >These estimators, however, are guaranteed to be accurate only
asymptotically as the chain grows to be infinitely long,





\[\lim_{N \rightarrow \infty} \hat{f}{N} = \mathbb{E}{\pi} [ f ].\]





> To be useful in applied analyses, we need MCMC estimators to
converge to the true expectation values sufficiently quickly that they
are reasonably accurate before we exhaust our finite computational
resources. This fast convergence requires strong ergodicity conditions
to hold, in particular geometric ergodicity between a Markov
transition and a target distribution. Geometric ergodicity is usually
the necessary condition for MCMC estimators to follow a central limit
theorem, which ensures not only that they are unbiased even after only
a finite number of iterations but also that we can empirically
quantify their precision using the MCMC standard error. >
Unfortunately, proving geometric ergodicity theoretically is
infeasible for any nontrivial problem. Instead we must rely on
empirical diagnostics that identify obstructions to geometric
ergodicity, and hence well-behaved MCMC estimators. For a general
Markov transition and target distribution, the best known diagnostic
is the split \(\hat{R}\) statistic over an ensemble of Markov
chains initialized from diffuse points in parameter space; to do any
better we need to exploit the particular structure of a given
transition or target distribution. > Hamiltonian Monte Carlo, for
example, is especially powerful in this regard as its failures to be
geometrically ergodic with respect to any target distribution manifest
in distinct behaviors that have been developed into sensitive
diagnostics. One of these behaviors is the appearance of divergences
that indicate the Hamiltonian Markov chain has encountered regions of
high curvature in the target distribution which it cannot adequately
explore.



In this notebook we aim to replicated the identification of divergences
sample and the underlying pathologies in PyMC3 similar to the
original
post [http://mc-stan.org/documentation/case-studies/divergences_and_bias.html].



In [1]:






import numpy as np
import matplotlib.pyplot as plt
import seaborn as sb
import pandas as pd
import pymc3 as pm

%config InlineBackend.figure_format = 'retina'
%matplotlib inline








The Eight Schools Model


The hierarchical model of the the Eight Schools dataset (Rubin 1981)
as seen in Stan:


\[\mu \sim \mathcal{N}(0, 5)\]


\[\tau \sim \text{Half-Cauchy}(0, 5)\]


\[\theta_{n} \sim \mathcal{N}(\mu, \tau)\]


\[y_{n} \sim \mathcal{N}(\theta_{n}, \sigma_{n}),\]

where \(n \in \{1, \ldots, 8 \}\) and the
\(\{ y_{n}, \sigma_{n} \}\) are given as data.

Inferring the hierarchical hyperparameters, \(\mu\) and
\(\sigma\), together with the group-level parameters,
\(\theta_{1}, \ldots, \theta_{8}\), allows the model to pool
data across the groups and reduce their posterior variance.
Unfortunately, the direct centered parameterization also squeezes
the posterior distribution into a particularly challenging geometry
that obstructs geometric ergodicity and hence biases MCMC
estimation.






In [2]:






# Data of the Eight Schools Model
J = 8
y = np.asarray([28,  8, -3,  7, -1,  1, 18, 12], dtype=float)
sigma = np.asarray([15, 10, 16, 11,  9, 11, 10, 18], dtype=float)
# tau = 25.










A Centered Eight Schools Implementation

Stan model:

data {
  int<lower=0> J;
  real y[J];
  real<lower=0> sigma[J];
}

parameters {
  real mu;
  real<lower=0> tau;
  real theta[J];
}

model {
  mu ~ normal(0, 5);
  tau ~ cauchy(0, 5);
  theta ~ normal(mu, tau);
  y ~ normal(theta, sigma);
}





Similarly, we can easily implemented it in PyMC3



In [4]:






with pm.Model() as Centered_eight:
    mu = pm.Normal('mu', mu=0, sd=5)
    tau = pm.HalfCauchy('tau', beta=5)
    theta = pm.Normal('theta', mu=mu, sd=tau, shape=J)
    obs = pm.Normal('obs', mu=theta, sd=sigma, observed=y)




Unfortunately, this direct implementation of the model exhibits a
pathological geometry that frustrates geometric ergodicity. Even
more worrisome, the resulting bias is subtle and may not be obvious
upon inspection of the Markov chain alone. To understand this bias,
let's consider first a short Markov chain, commonly used when
computational expediency is a motivating factor, and only afterwards
a longer Markov chain.








A Dangerously-Short Markov Chain



In [7]:






with Centered_eight:
    short_trace = pm.sample(600, init=None, njobs=2, tune=500)













Assigned NUTS to mu
Assigned NUTS to tau_log_
Assigned NUTS to theta
100%|██████████| 600/600 [00:01<00:00, 354.50it/s]







In the the original
post [http://mc-stan.org/documentation/case-studies/divergences_and_bias.html]
a single chain of 1200 sample is applied. However, since split
\(\hat{R}\) is not implemented in PyMC3 we fit 2 chains with
600 sample each instead.

The Gelman-Rubin diagnostic \(\hat{R}\) doesn’t indicate any
problems (value close to 1) and the effective sample size per
iteration is reasonable





In [20]:






print(pm.diagnostics.gelman_rubin(short_trace))
print('')
print(pm.diagnostics.effective_n(short_trace))













{'theta': array([ 1.01466455,  1.00153203,  1.00351269,  1.009334  ,  0.99977168,
        1.00057635,  1.0159455 ,  1.00228008]), 'tau_log_': 1.0439591442751275, 'mu': 1.0081977447110899, 'tau': 1.0164411689259558}

{'theta': array([ 274.,  384.,  311.,  358.,  282.,  343.,  263.,  409.]), 'tau_log_': 59.0, 'mu': 182.0, 'tau': 88.0}


Moreover, the trace plots all look fine. Let’s consider, for
example, the hierarchical standard deviation \(\tau\), or more
specifically, its logarithm, \(log(\tau)\). Because \(\tau\)
is constrained to be positive, its logarithm will allow us to better
resolve behavior for small values. Indeed the chains seems to be
exploring both small and large values reasonably well,







In [23]:






# plot the trace of log(tau)
pm.traceplot(short_trace, varnames=['tau_log_'])
plt.show()












[image: ../_images/notebooks_Diagnosing_biased_Inference_with_Divergences_13_0.png]
Unfortunately, the resulting estimate for the mean of
\(log(\tau)\) is strongly biased away from the true value, here
shown in grey.







In [27]:






# plot the estimate for the mean of log(τ) cumulating mean
logtau = short_trace['tau_log_']
mlogtau = [np.mean(logtau[:i]) for i in np.arange(1, len(logtau))]
plt.figure(figsize=(15, 4))
plt.axhline(0.7657852, lw=2.5, color='gray')
plt.plot(mlogtau, lw=2.5)
plt.ylim(0, 2)
plt.xlabel('Iteration')
plt.ylabel('MCMC mean of log(tau)')
plt.title('MCMC estimation of log(tau)')
plt.show()












[image: ../_images/notebooks_Diagnosing_biased_Inference_with_Divergences_15_0.png]
Hamiltonian Monte Carlo, however, is not so oblivious to these
issues as 2% of the iterations in our lone Markov chain ended with a
divergence.







In [28]:






# display the total number and percentage of divergent
divergent = short_trace['diverging']
print('Number of Divergent %d' % divergent.nonzero()[0].size)
divperc = divergent.nonzero()[0].size/len(short_trace)
print('Percentage of Divergent %.5f' % divperc)













Number of Divergent 14
Percentage of Divergent 0.02333


Even with a single short chain these divergences are able to
identity the bias and advise skepticism of any resulting MCMC
estimators.

Additionally, because the divergent transitions, here shown here in
green, tend to be located near the pathologies we can use them to
identify the location of the problematic neighborhoods in parameter
space.







In [38]:






# scatter plot between log(tau) and theta[0]
# for the identifcation of the problematic neighborhoods in parameter space
theta_trace = short_trace['theta']
theta0 = theta_trace[:, 0]
plt.figure(figsize=(10, 6))
plt.scatter(theta0[divergent == 0], logtau[divergent == 0], color='r')
plt.scatter(theta0[divergent == 1], logtau[divergent == 1], color='g')
plt.axis([-20, 50, -6, 4])
plt.ylabel('log(tau)')
plt.xlabel('theta[0]')
plt.title('scatter plot between log(tau) and theta[1]')
plt.show()












[image: ../_images/notebooks_Diagnosing_biased_Inference_with_Divergences_19_0.png]




In the current example, the pathological samples from the trace is not
necessary concentrated at the funnel (unlike in Stan), the follow
figure is from the the original
post [http://mc-stan.org/documentation/case-studies/divergences_and_bias.html]
as comparison.

In Stan the divergences are clustering at small values of
\(\tau\) where the hierarchical distribution, and hence all of the
group-level \(\theta_{n}\), are squeezed together. Eventually this
squeezing would yield the funnel geometry infamous to hierarchical
models, but here it appears that the Hamiltonian Markov chain is
diverging before it can fully explore the neck of the funnel.



In [41]:






# A small wrapper function for displaying the MCMC sampler diagnostics as above
def report_trace(trace):
    # plot the trace of log(tau)
    pm.traceplot(trace, varnames=['tau_log_'])

    # plot the estimate for the mean of log(τ) cumulating mean
    logtau = trace['tau_log_']
    mlogtau = [np.mean(logtau[:i]) for i in np.arange(1, len(logtau))]
    plt.figure(figsize=(15, 4))
    plt.axhline(0.7657852, lw=2.5, color='gray')
    plt.plot(mlogtau, lw=2.5)
    plt.ylim(0, 2)
    plt.xlabel('Iteration')
    plt.ylabel('MCMC mean of log(tau)')
    plt.title('MCMC estimation of log(tau)')
    plt.show()

    # display the total number and percentage of divergent
    divergent = trace['diverging']
    print('Number of Divergent %d' % divergent.nonzero()[0].size)
    divperc = divergent.nonzero()[0].size/len(trace)
    print('Percentage of Divergent %.5f' % divperc)

    # scatter plot between log(tau) and theta[0]
    # for the identifcation of the problematic neighborhoods in parameter space
    theta_trace = trace['theta']
    theta0 = theta_trace[:, 0]
    plt.figure(figsize=(10, 6))
    plt.scatter(theta0[divergent == 0], logtau[divergent == 0], color='r')
    plt.scatter(theta0[divergent == 1], logtau[divergent == 1], color='g')
    plt.axis([-20, 50, -6, 4])
    plt.ylabel('log(tau)')
    plt.xlabel('theta[0]')
    plt.title('scatter plot between log(tau) and theta[1]')
    plt.show()










A Safer, Longer Markov Chain


Given the potential insensitivity of split \(\hat{R}\) on single
short chains, Stan recommend always running multiple chains as
long as possible to have the best chance to observe any obstructions
to geometric ergodicity. Because it is not always possible to run
long chains for complex models, however, divergences are an
incredibly powerful diagnostic for biased MCMC estimation.




In [46]:






with Centered_eight:
    longer_trace = pm.sample(5000, init=None, njobs=2, tune=1000)

report_trace(longer_trace)













Assigned NUTS to mu
Assigned NUTS to tau_log_
Assigned NUTS to theta
100%|██████████| 5000/5000 [00:11<00:00, 444.46it/s]
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Number of Divergent 39
Percentage of Divergent 0.00780
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In [47]:






print(pm.diagnostics.gelman_rubin(longer_trace))
print('')
print(pm.diagnostics.effective_n(longer_trace))













{'theta': array([ 1.00037593,  0.99990022,  1.00114791,  0.9999347 ,  1.00259776,
        1.00022565,  1.00152861,  0.99992059]), 'tau_log_': 1.0398125400857179, 'mu': 1.0006934326362604, 'tau': 1.0208315582727976}

{'theta': array([ 1953.,  2127.,  2155.,  2106.,  1382.,  2054.,   988.,  2195.]), 'tau_log_': 72.0, 'mu': 1024.0, 'tau': 101.0}


Similar to the result in Stan, \(\hat{R}\) does not indicate
any serious issues. However, the effective sample size per iteration
has drastically fallen, indicating that we are exploring less
efficiently the longer we run. This odd behavior is a clear sign
that something problematic is afoot. As shown in the trace plot, the
chain occasionally “sticking” as it approaches small values of
\(\tau\), exactly where we saw the divergences concentrating.
This is a clear indication of the underlying pathologies. These
sticky intervals induce severe oscillations in the MCMC estimators
early on, until they seem to finally settle into biased values.

In fact the sticky intervals are the Markov chain trying to correct
the biased exploration. If we ran the chain even longer then it
would eventually get stuck again and drag the MCMC estimator down
towards the true value. Given an infinite number of iterations this
delicate balance asymptotes to the true expectation as we’d expect
given the consistency guarantee of MCMC. Stopping the after any
finite number of iterations, however, destroys this balance and
leaves us with a significant bias.





More details can be found in Betancourt’s recent
paper [https://arxiv.org/abs/1701.02434].






Mitigating Divergences by Adjusting PyMC3’s Adaptation Routine


Divergences in Hamiltonian Monte Carlo arise when the Hamiltonian
transition encounters regions of extremely large curvature, such as
the opening of the hierarchical funnel. Unable to accurate resolve
these regions, the transition malfunctions and flies off towards
infinity. With the transitions unable to completely explore these
regions of extreme curvature, we lose geometric ergodicity and our
MCMC estimators become biased.

Algorithm implemented in Stan uses a heuristic to quickly
identify these misbehaving trajectories, and hence label
divergences, without having to wait for them to run all the way to
infinity. This heuristic can be a bit aggressive, however, and
sometimes label transitions as divergent even when we have not lost
geometric ergodicity.

To resolve this potential ambiguity we can adjust the step size,
\(\epsilon\), of the Hamiltonian transition. The smaller the
step size the more accurate the trajectory and the less likely it
will be mislabeled as a divergence. In other words, if we have
geometric ergodicity between the Hamiltonian transition and the
target distribution then decreasing the step size will reduce and
then ultimately remove the divergences entirely. If we do not have
geometric ergodicity, however, then decreasing the step size will
not completely remove the divergences.




Like Stan, the step size in PyMC3 is tuned automatically during
warm up, but we can coerce smaller step sizes by tweaking the
configuration of PyMC3‘s adaptation routine. In particular, we can
increase the target_accept parameter from its default value of 0.8
closer to its maximum value of 1.


Adjusting Adaptation Routine



In [48]:






with Centered_eight:
    step = pm.NUTS(target_accept=.85)
    fit_cp85 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)
with Centered_eight:
    step = pm.NUTS(target_accept=.90)
    fit_cp90 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)
with Centered_eight:
    step = pm.NUTS(target_accept=.95)
    fit_cp95 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)
with Centered_eight:
    step = pm.NUTS(target_accept=.99)
    fit_cp99 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)













100%|██████████| 5000/5000 [00:11<00:00, 450.42it/s]
100%|██████████| 5000/5000 [00:15<00:00, 325.33it/s]
100%|██████████| 5000/5000 [00:19<00:00, 258.28it/s]
100%|██████████| 5000/5000 [00:36<00:00, 138.24it/s]








In [50]:






df = pd.DataFrame([longer_trace['step_size'].mean(),
                  fit_cp85['step_size'].mean(),
                  fit_cp90['step_size'].mean(),
                  fit_cp95['step_size'].mean(),
                  fit_cp99['step_size'].mean()], columns=['Step_size'])
df['Divergent'] = pd.Series([longer_trace['diverging'].sum(),
                            fit_cp85['diverging'].sum(),
                            fit_cp90['diverging'].sum(),
                            fit_cp95['diverging'].sum(),
                            fit_cp99['diverging'].sum()])
df['delta'] = pd.Series(['.80', '.85', '.90', '.95', '.99'])
print(df)













   Step_size  Divergent delta
0   0.206308         39   .80
1   0.193720         70   .85
2   0.186060         57   .90
3   0.136067         10   .95
4   0.060498          4   .99






Interestingly, unlike in Stan, the number of divergent transitions
decrease since we increased the adapt_delta and decreased the step
size. > This behavior also has a nice geometric intuition. The more we
decrease the step size the more the Hamiltonian Markov chain can explore
the neck of the funnel. Consequently, the marginal posterior
distribution for \(log (\tau)\) stretches further and further
towards negative values with the decreasing step size.

Since in PyMC3 after tuning we have a smaller step size than
Stan, the geometery is better explored. > However, the Hamiltonian
transition is still not geometrically ergodic with respect to the
centered implementation of the Eight Schools model. Indeed, this is
expected given the observed bias.



In [54]:






theta0 = longer_trace['theta'][:, 0]
logtau0 = longer_trace['tau_log_']
divergent0 = longer_trace['diverging']

theta1 = fit_cp99['theta'][:, 0]
logtau1 = fit_cp99['tau_log_']
divergent1 = fit_cp99['diverging']

plt.figure(figsize=(10, 6))
plt.scatter(theta1[divergent1 == 0], logtau1[divergent1 == 0],
            color='r', alpha=.5, label='Centered, delta=0.99')
plt.scatter(theta0[divergent0 == 0], logtau0[divergent0 == 0],
            color=[1, .5, 0], alpha=.5, label='Centered, delta=0.85')
plt.axis([-20, 50, -6, 4])
plt.ylabel('log(tau)')
plt.xlabel('theta[0]')
plt.title('scatter plot between log(tau) and theta[1]')
plt.legend()
plt.show()

logtau2 = fit_cp90['tau_log_']

plt.figure(figsize=(15, 4))
plt.axhline(0.7657852, lw=2.5, color='gray')
mlogtau0 = [np.mean(logtau0[:i]) for i in np.arange(1, len(logtau0))]
plt.plot(mlogtau0, label='Centered, delta=0.85', lw=2.5)
mlogtau2 = [np.mean(logtau2[:i]) for i in np.arange(1, len(logtau2))]
plt.plot(mlogtau2, label='Centered, delta=0.90', lw=2.5)
mlogtau1 = [np.mean(logtau1[:i]) for i in np.arange(1, len(logtau1))]
plt.plot(mlogtau1, label='Centered, delta=0.99', lw=2.5)
plt.ylim(0, 2)
plt.xlabel('Iteration')
plt.ylabel('MCMC mean of log(tau)')
plt.title('MCMC estimation of log(tau)')
plt.legend()
plt.show()
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A Non-Centered Eight Schools Implementation


Although reducing the step size improves exploration, ultimately it
only reveals the true extent the pathology in the centered
implementation. Fortunately, there is another way to implement
hierarchical models that does not suffer from the same pathologies.

In a non-centered parameterization we do not try to fit the
group-level parameters directly, rather we fit a latent Gaussian
variable from which we can recover the group-level parameters with a
scaling and a translation.


\[\mu \sim \mathcal{N}(0, 5)\]


\[\tau \sim \text{Half-Cauchy}(0, 5)\]


\[\tilde{\theta}_{n} \sim \mathcal{N}(0, 1)\]


\[\theta_{n} = \mu + \tau \cdot \tilde{\theta}_{n}.\]




Stan model:

data {
  int<lower=0> J;
  real y[J];
  real<lower=0> sigma[J];
}

parameters {
  real mu;
  real<lower=0> tau;
  real theta_tilde[J];
}

transformed parameters {
  real theta[J];
  for (j in 1:J)
    theta[j] = mu + tau * theta_tilde[j];
}

model {
  mu ~ normal(0, 5);
  tau ~ cauchy(0, 5);
  theta_tilde ~ normal(0, 1);
  y ~ normal(theta, sigma);
}







In [57]:






with pm.Model() as NonCentered_eight:
    mu = pm.Normal('mu', mu=0, sd=5)
    tau = pm.HalfCauchy('tau', beta=5)
    theta_tilde = pm.Normal('theta_t', mu=0, sd=1, shape=J)
    theta = pm.Deterministic('theta', mu + tau * theta_tilde)
    obs = pm.Normal('obs', mu=theta, sd=sigma, observed=y)









In [58]:






with NonCentered_eight:
    step = pm.NUTS(target_accept=.80)
    fit_ncp80 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)













100%|██████████| 5000/5000 [00:05<00:00, 854.95it/s]








In [59]:






print(pm.diagnostics.gelman_rubin(fit_ncp80))
print('')
print(pm.diagnostics.effective_n(fit_ncp80))













{'theta': array([ 0.9999017 ,  0.99990126,  0.99994554,  0.99991853,  0.99992781,
        0.99990295,  0.99990909,  0.99991026]), 'tau_log_': 1.0005729430235684, 'tau': 0.99990735598654512, 'mu': 0.99990583189162452, 'theta_t': array([ 0.99990015,  1.00004939,  0.99990031,  0.99990172,  0.99990554,
        0.99990178,  1.00008856,  0.99991732])}

{'theta': array([  8024.,  10000.,   9338.,  10000.,   9299.,   9330.,   8541.,
         8856.]), 'tau_log_': 3741.0, 'tau': 4488.0, 'mu': 10000.0, 'theta_t': array([ 10000.,  10000.,  10000.,  10000.,  10000.,  10000.,  10000.,
        10000.])}


As shown above, the effective sample size per iteration has
drastically improved, and the trace plots no longer show any
“stickyness”. However, we do still see the rare divergence. These
infrequent divergences do not seem concentrate anywhere in parameter
space, which is indicative of the divergences being false positives.







In [60]:






report_trace(fit_ncp80)
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Number of Divergent 14
Percentage of Divergent 0.00280
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As expected of false positives, we can remove the divergences
entirely by decreasing the step size,







In [61]:






with NonCentered_eight:
    step = pm.NUTS(target_accept=.90)
    fit_ncp90 = pm.sample(5000, step=step, init=None, njobs=2, tune=1000)

# display the total number and percentage of divergent
divergent = fit_ncp90['diverging']
print('Number of Divergent %d' % divergent.nonzero()[0].size)













100%|██████████| 5000/5000 [00:06<00:00, 721.82it/s]












Number of Divergent 0


The more agreeable geometry of the non-centered implementation
allows the Markov chain to explore deep into the neck of the funnel,
capturing even the smallest values of \(\tau\) that are
consistent with the measurements. Consequently, MCMC estimators from
the non-centered chain rapidly converge towards their true
expectation values.







In [65]:






theta0 = fit_cp90['theta'][:, 0]
logtau0 = fit_cp90['tau_log_']
divergent0 = fit_cp90['diverging']

theta1 = fit_cp99['theta'][:, 0]
logtau1 = fit_cp99['tau_log_']
divergent1 = fit_cp99['diverging']

thetan = fit_ncp80['theta'][:, 0]
logtaun = fit_ncp80['tau_log_']
divergentn = fit_ncp80['diverging']

plt.figure(figsize=(10, 6))
plt.scatter(thetan[divergentn == 0], logtaun[divergentn == 0],
            color='b', alpha=.5, label='Non-Centered, delta=0.80')
plt.scatter(theta1[divergent1 == 0], logtau1[divergent1 == 0],
            color='r', alpha=.5, label='Centered, delta=0.99')
plt.scatter(theta0[divergent0 == 0], logtau0[divergent0 == 0],
            color=[1, 0.5, 0], alpha=.5, label='Centered, delta=0.90')
plt.axis([-20, 50, -6, 4])
plt.ylabel('log(tau)')
plt.xlabel('theta[0]')
plt.title('scatter plot between log(tau) and theta[1]')
plt.legend()
plt.show()

plt.figure(figsize=(15, 4))
plt.axhline(0.7657852, lw=2.5, color='gray')
mlogtaun = [np.mean(logtaun[:i]) for i in np.arange(1, len(logtaun))]
plt.plot(mlogtaun, color='b', lw=2.5, label='Non-Centered, delta=0.80')

mlogtau1 = [np.mean(logtau1[:i]) for i in np.arange(1, len(logtau1))]
plt.plot(mlogtau1, color='r', lw=2.5, label='Centered, delta=0.99')

mlogtau0 = [np.mean(logtau0[:i]) for i in np.arange(1, len(logtau0))]
plt.plot(mlogtau0, color=[1, 0.5, 0], lw=2.5, label='Centered, delta=0.90')
plt.ylim(0, 2)
plt.xlabel('Iteration')
plt.ylabel('MCMC mean of log(tau)')
plt.title('MCMC estimation of log(tau)')
plt.legend()
plt.show()
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Posterior Predictive Checks

PPCs are a great way to validate a model. The idea is to generate data
sets from the model using parameter settings from draws from the
posterior.

Elaborating slightly one can say that - Posterior predictive checks
(PPCs) analyze the degree to which data generated from the model deviate
from data generated from the true distribution. So often you’ll want to
know if for example your posterior distribution is approximating your
underlying distribution. The visualization aspect of this model
evaluation method is also great for a ‘sense check’ or explaining your
model to others and getting criticism.

PyMC3 has random number support thanks to Mark
Wibrow [https://github.com/mwibrow] as implemented in
PR784 [https://github.com/pymc-devs/pymc3/pull/784].

Here we will implement a general routine to draw samples from the
observed nodes of a model.



In [1]:






%matplotlib inline
import numpy as np
import pymc3 as pm
import seaborn as sns
import matplotlib.pyplot as plt
from collections import defaultdict







Lets generate a very simple model:



In [2]:






data = np.random.randn(100)

with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1, testval=0)
    sd = pm.HalfNormal('sd', sd=1)
    n = pm.Normal('n', mu=mu, sd=sd, observed=data)

    trace = pm.sample(5000)













Auto-assigning NUTS sampler...
Initializing NUTS using advi...
Average ELBO = -148.20: 100%|██████████| 500000/500000 [00:38<00:00, 13010.69it/s]
Finished [100%]: Average ELBO = -148.18
100%|██████████| 1/1 [00:00<00:00, 4319.57it/s]
100%|██████████| 5000/5000 [00:02<00:00, 2151.11it/s]








In [3]:






pm.traceplot(trace);
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This function will randomly draw 500 samples of parameters from the
trace. Then, for each sample, it will draw 100 random numbers from a
normal distribution specified by the values of mu and std in
that sample.



In [4]:






ppc = pm.sample_ppc(trace, samples=500, model=model, size=100)













100%|██████████| 500/500 [00:04<00:00, 111.40it/s]






Now, ppc contains 500 generated data sets (containing 100 samples
each), each using a different parameter setting from the posterior:



In [5]:






np.asarray(ppc['n']).shape









Out[5]:






(500, 100)







One common way to visualize is to look if the model can reproduce the
patterns observed in the real data. For example, how close are the
inferred means to the actual sample mean:



In [6]:






ax = plt.subplot()
sns.distplot([n.mean() for n in ppc['n']], kde=False, ax=ax)
ax.axvline(data.mean())
ax.set(title='Posterior predictive of the mean', xlabel='mean(x)', ylabel='Frequency');
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Comparison between PPC and other model evaluation methods.

An excellent introduction to this is given on
Edward [http://edwardlib.org/tutorials/ppc] and since I can’t write
this any better I’ll just quote this:

“PPCs are an excellent tool for revising models, simplifying or
expanding the current model as one examines how well it fits the data.
They are inspired by prior checks and classical hypothesis testing,
under the philosophy that models should be criticized under the
frequentist perspective of large sample assessment.

PPCs can also be applied to tasks such as hypothesis testing, model
comparison, model selection, and model averaging. It’s important to note
that while they can be applied as a form of Bayesian hypothesis testing,
hypothesis testing is generally not recommended: binary decision making
from a single test is not as common a use case as one might believe. We
recommend performing many PPCs to get a holistic understanding of the
model fit.”

An important lesson to learn as someone using Probabilistic Programming
is to not overfit your understanding or your criticism of models to only
one metric. Model evaluation is a skill that can be honed with practice.




Prediction

The same pattern can be used for prediction. Here we’re building a
logistic regression model. Note that since we’re dealing the full
posterior, we’re also getting uncertainty in our predictions for free.



In [7]:






# Use a theano shared variable to be able to exchange the data the model runs on
from theano import shared









In [8]:






def invlogit(x):
    return np.exp(x) / (1 + np.exp(x))

n = 4000
n_oos = 50
coeff = 1.

predictors = np.random.normal(size=n)
# Turn predictor into a shared var so that we can change it later
predictors_shared = shared(predictors)

outcomes = np.random.binomial(1, invlogit(coeff * predictors))









In [9]:






outcomes









Out[9]:






array([0, 1, 1, ..., 1, 0, 0])









In [10]:






predictors_oos = np.random.normal(size=50)
outcomes_oos = np.random.binomial(1, invlogit(coeff * predictors_oos))









In [11]:






def tinvlogit(x):
    import theano.tensor as t
    return t.exp(x) / (1 + t.exp(x))

with pm.Model() as model:
    coeff = pm.Normal('coeff', mu=0, sd=1)
    p = tinvlogit(coeff * predictors_shared)

    o = pm.Bernoulli('o', p, observed=outcomes)

    trace = pm.sample(5000, n_init=5000)













Auto-assigning NUTS sampler...
Initializing NUTS using advi...
Average ELBO = -2,454.48: 100%|██████████| 5000/5000 [00:04<00:00, 1205.88it/s]
Finished [100%]: Average ELBO = -2,434.84
100%|██████████| 1/1 [00:00<00:00, 5974.79it/s]
100%|██████████| 5000/5000 [00:06<00:00, 754.55it/s]








In [12]:






# Changing values here will also change values in the model
predictors_shared.set_value(predictors_oos)









In [13]:






# Simply running PPC will use the updated values and do prediction
ppc = pm.sample_ppc(trace, model=model, samples=500)













100%|██████████| 500/500 [00:02<00:00, 190.34it/s]







Mean predicted values plus error bars to give sense of uncertainty in prediction



In [14]:






plt.errorbar(x=predictors_oos, y=np.asarray(ppc['o']).mean(axis=0), yerr=np.asarray(ppc['o']).std(axis=0), linestyle='', marker='o')
plt.plot(predictors_oos, outcomes_oos, 'o')
plt.ylim(-.05, 1.05)
plt.xlabel('predictor')
plt.ylabel('outcome')









Out[14]:






<matplotlib.text.Text at 0x7f5db2aae0f0>
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How to debug a model

There are various levels on which to debug a model. One of the simplest
is to just print out the values that different variables are taking on.

Because PyMC3 uses Theano expressions to build the model, and
not functions, there is no way to place a print statement into a
likelihood function. Instead, you can use the Theano Print
operatator. For more information, see: theano Print operator for this
before:
http://deeplearning.net/software/theano/tutorial/debug_faq.html#how-do-i-print-an-intermediate-value-in-a-function.

Let’s build a simple model with just two parameters:



In [1]:






%matplotlib inline

import pymc3 as pm
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import theano.tensor as T

x = np.random.randn(100)

with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    sd = pm.Normal('sd', mu=0, sd=1)

    obs = pm.Normal('obs', mu=mu, sd=sd, observed=x)
    step = pm.Metropolis()
    trace = pm.sample(5000, step)
pm.traceplot(trace);













 [-----------------100%-----------------] 5000 of 5000 complete in 0.8 sec
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Hm, looks like something has gone wrong, but what? Let’s look at the
values getting proposed using the Print operator:



In [2]:






with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    sd = pm.Normal('sd', mu=0, sd=1)

    mu_print = T.printing.Print('mu')(mu)
    sd_print = T.printing.Print('sd')(sd)

    obs = pm.Normal('obs', mu=mu_print, sd=sd_print, observed=x)
    step = pm.Metropolis()
    trace = pm.sample(3, step) # Make sure not to draw too many samples













mu __str__ = 0.0
sd __str__ = 0.0
sd __str__ = -1.4315792219864252
mu __str__ = 0.0
sd __str__ = 0.0
sd __str__ = 0.0
mu __str__ = 1.3615472322158946
mu __str__ = 0.0
sd __str__ = 0.5322478998286673
mu __str__ = 0.0
sd __str__ = 0.0
sd __str__ = 0.0
mu __str__ = -1.2753319093167306
mu __str__ = 0.0
sd __str__ = -0.4843153880482674
mu __str__ = 0.0
sd __str__ = 0.0
sd __str__ = 0.0
mu __str__ = -0.4478412022208693
mu __str__ = 0.0
 [-----------------100%-----------------] 3 of 3 complete in 0.0 sec






Looks like sd is always 0 which will cause the logp to go to
-inf. Of course, we should not have used a prior that has negative
mass for sd but instead something like a HalfNormal.

We can also redirect the output to a string buffer and access the
proposed values later on (thanks to Lindley
Lentati [https://github.com/LindleyLentati] for providing this
example):



In [9]:






from io import StringIO
import sys


x = np.random.randn(100)


old_stdout = sys.stdout
sys.stdout = mystdout = StringIO()

with pm.Model() as model:
    mu = pm.Normal('mu', mu=0, sd=1)
    sd = pm.Normal('sd', mu=0, sd=1)

    mu_print = T.printing.Print('mu')(mu)
    sd_print = T.printing.Print('sd')(sd)

    obs = pm.Normal('obs', mu=mu_print, sd=sd_print, observed=x)
    step = pm.Metropolis()
    trace = pm.sample(3, step) # Make sure not to draw too many samples


sys.stdout = old_stdout

output = mystdout.getvalue().split('\n')
mulines = [s for s in output if 'mu' in s]

muvals = [line.split()[-1] for line in mulines]
plt.plot(np.arange(0,len(muvals)), muvals);
plt.xlabel('proposal iteration')
plt.ylabel('mu value')









Out[9]:






<matplotlib.text.Text at 0x7f3f1a9f5ba8>
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In [1]:






%pylab inline

import numpy as np
import scipy.stats as stats
import pymc3 as pm
from theano import shared
import theano
import theano.tensor as tt
floatX = "float32"

%config InlineBackend.figure_format = 'retina'
plt.style.use('ggplot')













Populating the interactive namespace from numpy and matplotlib







PyMC3 Modeling tips and heuristic

A walkthrough of implementing a Conditional Autoregressive (CAR) model
in PyMC3, with WinBugs/PyMC2 and STAN code as
references.


	Notebook Written by Junpeng
Lao [https://www.github.com/junpenglao/], inspired by PyMC3
issue#2022 [https://github.com/pymc-devs/pymc3/issues/2022],
issue#2066 [https://github.com/pymc-devs/pymc3/issues/2066] and
comments [https://github.com/pymc-devs/pymc3/issues/2066#issuecomment-296397012].
I would like to thank [@denadai2](https://github.com/denadai2),
[@aseyboldt](https://github.com/aseyboldt), and
[@twiecki](https://github.com/twiecki) for the helpful discussion.



As a probabilistic language, there are some fundamental differences
between PyMC3 and other alternatives such as WinBugs, JAGS,
and STAN. In this notebook, I will summarise some heuristics and
intuition I got over the past two years using PyMC3. I will outline
some thinking process of how I approach a modelling problem using
PyMC3, and how thinking in linear algebra solves most of the
programming problem. I hope this notebook will shed some light into the
design and feature of PyMC3, and similar language built on linear
algebra package with a static world view (e.g., Edward, which is based
on Tensorflow).

For more resources comparing between PyMC3 codes and other probabilistic
languages: * PyMC3 port of “Doing Bayesian Data Analysis” - PyMC3 vs
WinBugs/JAGS/STAN [https://github.com/aloctavodia/Doing_bayesian_data_analysis]
* PyMC3 port of “Bayesian Cognitive Modeling” - PyMC3 vs
WinBugs/JAGS/STAN [https://github.com/junpenglao/Bayesian-Cognitive-Modeling-in-Pymc3]
* [WIP] PyMC3 port of “Statistical Rethinking” - PyMC3 vs
STAN [https://github.com/aloctavodia/Statistical-Rethinking-with-Python-and-PyMC3]


Background information


Supposed we want to implement a Conditional Autoregressive (CAR)
model [http://www.statsref.com/HTML/index.html?car_models.html]
with some reference codes in WinBugs/PyMC2 [http://glau.ca/?p=340]
and
STAN [http://mc-stan.org/documentation/case-studies/mbjoseph-CARStan.html].

For the sake of brevity, I will not go into the details of the CAR
model. The essential idea of this kind model is autocorrelation, which
is informally speaking “correlation with itself”. In a CAR model, the
probability of values estimated at any given location \(y_i\) are
conditional on some neighboring values \(y_j, _{j \neq i}\) (in
another word, correlated/covariated with these values):




\[y_i \mid y_j, j \neq i \sim \mathcal{N}(\alpha \sum_{j = 1}^n b_{ij} y_j, \sigma_i^{2})\]

where \(\sigma_i^{2}\) is a spatially varying covariance parameter,
and \(b_{ii} = 0\).

Here we will demonstrate the implementation of a CAR model using the
canonical example: the lip cancer risk data in Scotland between 1975 and
1980. The original data is from (Kemp et al. 1985). This data set
includes observed lip cancer case counts at 56 spatial units in
Scotland, with the expected number of cases as intercept, and an
area-specific continuous variable coded for the proportion of the
population employed in agriculture, fishing, or forestry (AFF). We want
to model how lip cancer rates (O below) relate to AFF (aff
below), as exposure to sunlight is a risk factor.


\[O_i \sim \mathcal{Poisson}(\text{exp}(\beta_0 + \beta_1*aff + \phi_i + \log(\text{E}_i)))\]


\[\phi_i \mid \phi_j, j \neq i \sim \mathcal{N}(\alpha \sum_{j = 1}^n b_{ij} \phi_j, \sigma_i^{2})\]

Setting up the data:



In [2]:






county = np.array(["skye_lochalsh", "banff_buchan", "caithness,berwickshire", "ross_cromarty",
                   "orkney", "moray", "shetland", "lochaber", "gordon", "western_isles",
                   "sutherland", "nairn", "wigtown", "NE.fife", "kincardine", "badenoch",
                   "ettrick", "inverness", "roxburgh", "angus", "aberdeen", "argyll_bute",
                   "clydesdale", "kirkcaldy", "dunfermline", "nithsdale", "east_lothian",
                   "perth_kinross", "west_lothian", "cumnock_doon", "stewartry", "midlothian",
                   "stirling", "kyle_carrick", "inverclyde", "cunninghame", "monklands",
                   "dumbarton", "clydebank", "renfrew", "falkirk", "clackmannan", "motherwell",
                   "edinburgh", "kilmarnock", "east_kilbride", "hamilton", "glasgow", "dundee",
                   "cumbernauld", "bearsden", "eastwood", "strathkelvin", "tweeddale",
                   "annandale"])

# observed
O = np.array([9, 39, 11, 9, 15, 8, 26, 7, 6, 20, 13, 5, 3, 8, 17, 9, 2, 7, 9, 7, 16,
              31, 11, 7, 19, 15, 7, 10, 16, 11, 5, 3, 7, 8, 11, 9, 11, 8, 6, 4, 10,
              8, 2, 6, 19, 3, 2, 3, 28, 6, 1, 1, 1, 1, 0, 0])
N = len(O)

# expected (E) rates, based on the age of the local population
E = np.array([1.4, 8.7, 3.0, 2.5, 4.3, 2.4, 8.1, 2.3, 2.0, 6.6, 4.4, 1.8, 1.1, 3.3,
              7.8, 4.6, 1.1, 4.2, 5.5, 4.4, 10.5, 22.7, 8.8, 5.6, 15.5, 12.5, 6.0,
              9.0, 14.4, 10.2, 4.8, 2.9, 7.0, 8.5, 12.3, 10.1, 12.7, 9.4, 7.2, 5.3,
              18.8, 15.8, 4.3, 14.6, 50.7, 8.2, 5.6, 9.3, 88.7, 19.6, 3.4, 3.6, 5.7,
              7.0, 4.2, 1.8])
logE = np.log(E)

# proportion of the population engaged in agriculture, forestry, or fishing (AFF)
aff = np.array([16, 16, 10, 24, 10, 24, 10, 7, 7, 16, 7, 16, 10, 24, 7, 16, 10, 7,
                7, 10, 7, 16, 10, 7, 1, 1, 7, 7, 10, 10, 7, 24, 10, 7, 7, 0, 10, 1,
                16, 0, 1, 16, 16, 0, 1, 7, 1, 1, 0, 1, 1, 0, 1, 1, 16, 10])/10.

# Spatial adjacency information
adj = np.array([[5, 9, 11,19],
                [7, 10],
                [6, 12],
                [18,20,28],
                [1, 11,12,13,19],
                [3, 8],
                [2, 10,13,16,17],
                [6],
                [1, 11,17,19,23,29],
                [2, 7, 16,22],
                [1, 5, 9, 12],
                [3, 5, 11],
                [5, 7, 17,19],
                [31,32,35],
                [25,29,50],
                [7, 10,17,21,22,29],
                [7, 9, 13,16,19,29],
                [4,20, 28,33,55,56],
                [1, 5, 9, 13,17],
                [4, 18,55],
                [16,29,50],
                [10,16],
                [9, 29,34,36,37,39],
                [27,30,31,44,47,48,55,56],
                [15,26,29],
                [25,29,42,43],
                [24,31,32,55],
                [4, 18,33,45],
                [9, 15,16,17,21,23,25,26,34,43,50],
                [24,38,42,44,45,56],
                [14,24,27,32,35,46,47],
                [14,27,31,35],
                [18,28,45,56],
                [23,29,39,40,42,43,51,52,54],
                [14,31,32,37,46],
                [23,37,39,41],
                [23,35,36,41,46],
                [30,42,44,49,51,54],
                [23,34,36,40,41],
                [34,39,41,49,52],
                [36,37,39,40,46,49,53],
                [26,30,34,38,43,51],
                [26,29,34,42],
                [24,30,38,48,49],
                [28,30,33,56],
                [31,35,37,41,47,53],
                [24,31,46,48,49,53],
                [24,44,47,49],
                [38,40,41,44,47,48,52,53,54],
                [15,21,29],
                [34,38,42,54],
                [34,40,49,54],
                [41,46,47,49],
                [34,38,49,51,52],
                [18,20,24,27,56],
                [18,24,30,33,45,55]])

# Change to Python indexing (i.e. -1)
for i in range(len(adj)):
    for j in range(len(adj[i])):
        adj[i][j] = adj[i][j]-1

# spatial weight
weights = np.array([[1,1,1,1],
                    [1,1],
                    [1,1],
                    [1,1,1],
                    [1,1,1,1,1],
                    [1,1],
                    [1,1,1,1,1],
                    [1],
                    [1,1,1,1,1,1],
                    [1,1,1,1],
                    [1,1,1,1],
                    [1,1,1],
                    [1,1,1,1],
                    [1,1,1],
                    [1,1,1],
                    [1,1,1,1,1,1],
                    [1,1,1,1,1,1],
                    [1,1,1,1,1,1],
                    [1,1,1,1,1],
                    [1,1,1],
                    [1,1,1],
                    [1,1],
                    [1,1,1,1,1,1],
                    [1,1,1,1,1,1,1,1],
                    [1,1,1],
                    [1,1,1,1],
                    [1,1,1,1],
                    [1,1,1,1],
                    [1,1,1,1,1,1,1,1,1,1,1],
                    [1,1,1,1,1,1],
                    [1,1,1,1,1,1,1],
                    [1,1,1,1],
                    [1,1,1,1],
                    [1,1,1,1,1,1,1,1,1],
                    [1,1,1,1,1],
                    [1,1,1,1],
                    [1,1,1,1,1],
                    [1,1,1,1,1,1],
                    [1,1,1,1,1],
                    [1,1,1,1,1],
                    [1,1,1,1,1,1,1],
                    [1,1,1,1,1,1],
                    [1,1,1,1],
                    [1,1,1,1,1],
                    [1,1,1,1],
                    [1,1,1,1,1,1],
                    [1,1,1,1,1,1],
                    [1,1,1,1],
                    [1,1,1,1,1,1,1,1,1],
                    [1,1,1],
                    [1,1,1,1],
                    [1,1,1,1],
                    [1,1,1,1],
                    [1,1,1,1,1],
                    [1,1,1,1,1],
                    [1,1,1,1,1,1]])

Wplus = np.asarray([sum(w) for w in weights])










A WinBugs/PyMC2 implementation

The classical WinBugs implementation (more information
here [http://glau.ca/?p=340]):

model
{
   for (i in 1 : regions) {
      O[i] ~ dpois(mu[i])
      log(mu[i]) <- log(E[i]) + beta0 + beta1*aff[i]/10 + phi[i] + theta[i]
      theta[i] ~ dnorm(0.0,tau.h)
   }
   phi[1:regions] ~ car.normal(adj[], weights[], Wplus[], tau.c)

   beta0 ~ dnorm(0.0, 1.0E-5)  # vague prior on grand intercept
   beta1 ~ dnorm(0.0, 1.0E-5)  # vague prior on covariate effect

   tau.h ~ dgamma(3.2761, 1.81)
   tau.c ~ dgamma(1.0, 1.0)

   sd.h <- sd(theta[]) # marginal SD of heterogeneity effects
   sd.c <- sd(phi[])   # marginal SD of clustering (spatial) effects

   alpha <- sd.c / (sd.h + sd.c)
}





The main challenge to port this model to PyMC3 is the car.normal
in WinBugs. It is a likelihood function that each realization is
conditioned on some neigbour realization (a smoothed property). In
PyMC2, it could be implemented as a custom likelihood function (a
``@stochastic` node) mu_phi <http://glau.ca/?p=340>`__:

@stochastic
def mu_phi(tau=tau_c, value=np.zeros(N)):
    # Calculate mu based on average of neighbours
    mu = np.array([ sum(weights[i]*value[adj[i]])/Wplus[i] for i in xrange(N)])
    # Scale precision to the number of neighbours
    taux = tau*Wplus
    return normal_like(value,mu,taux)





We can of course just define mu_phi similarly and wrap it in a
pymc3.DensityDist, however, doing so is usually resulting a very
slow model (both in compling and sampling). It is a general challenge of
porting pymc2 code into pymc3 (or even generally porting WinBugs,
JAGS, or STAN code into PyMC3), as using a for-loop
under pm.Model perform poorly in theano, the backend of
PyMC3.

The underlying mechanism in PyMC3 is very different compared to
PyMC2, using for-loop to generate RV or stacking multiple RV
with arguments such as
[pm.Binomial('obs%'%i, p[i], n) for i in range(K)] generate
unnecessary large number of nodes in theano graph, which then slow
down the compiling to an unbearable amount.

The easiest way is to move the for-loop outside of pm.Model. And
usually is not difficult to do. For example, in STAN you can have a
transformed data{} block, in PyMC3 you just need to computed it
before defining your Model.

And if it is absolutely necessary to use a for-loop, you can use a
theano loop (i.e., theano.scan), which you can find some
introduction on the theano
website [http://deeplearning.net/software/theano/tutorial/loop.html]
and see a usecase in PyMC3 timeseries
distribution [https://github.com/pymc-devs/pymc3/blob/master/pymc3/distributions/timeseries.py#L125-L130].




PyMC3 implementation using theano.scan

So lets try to implement the CAR model using theano.scan. First we
create a theano function with theano.scan and check if it really
works by comparing its result to the for-loop.



In [3]:






value = np.asarray(np.random.randn(N,), dtype=theano.config.floatX)

maxwz = max([sum(w) for w in weights])
N = len(weights)
wmat = np.zeros((N, maxwz))
amat = np.zeros((N, maxwz), dtype='int32')
for i, w in enumerate(weights):
    wmat[i, np.arange(len(w))] = w
    amat[i, np.arange(len(w))] = adj[i]

# defining the tensor variables
x = tt.vector("x")
x.tag.test_value = value
w = tt.matrix("w")
# provide Theano with a default test-value
w.tag.test_value = wmat
a = tt.matrix("a", dtype='int32')
a.tag.test_value = amat


def get_mu(w, a):
    a1 = tt.cast(a, 'int32')
    return tt.sum(w*x[a1])/tt.sum(w)

results, _ = theano.scan(fn=get_mu, sequences=[w, a])
compute_elementwise = theano.function(inputs=[x, w, a], outputs=results)

print(compute_elementwise(value, wmat, amat))


def mu_phi(value):
    N = len(weights)
    # Calculate mu based on average of neighbours
    mu = np.array([np.sum(weights[i]*value[adj[i]])/Wplus[i] for i in range(N)])
    return mu

print(mu_phi(value))













[ 0.46166413  0.27288091  0.94453964 -0.17450262  0.5090762   0.35659079
  0.20494082  0.60834486  0.46625792  0.70871439  0.71662603  0.04913053
  0.98132518 -0.05963633  0.06894205  0.20878767  0.71978707 -0.15508163
  0.73405921  0.63064738  0.1563718  -0.62951274 -0.20529308  0.28977918
 -0.39950834 -0.20701539  0.24829285  0.3476569   0.22544902 -0.12026878
  0.04722351 -0.02989762 -0.00294854  0.30080508 -0.31479058 -0.05540867
  0.05782358  0.24994702  0.09105233 -0.14601217 -0.68162777  0.1042316
 -0.67707127  0.14979966 -0.1627405  -0.43826483 -0.25558445  0.31949713
  0.20499627 -0.46003444 -0.60789902 -0.21493054 -0.30499014  0.04729357
  0.06319543  0.3768267 ]
[ 0.46166413  0.27288091  0.94453964 -0.17450262  0.5090762   0.35659079
  0.20494082  0.60834486  0.46625792  0.70871439  0.71662603  0.04913053
  0.98132518 -0.05963633  0.06894205  0.20878767  0.71978707 -0.15508163
  0.73405921  0.63064738  0.1563718  -0.62951274 -0.20529308  0.28977918
 -0.39950834 -0.20701539  0.24829285  0.3476569   0.22544902 -0.12026878
  0.04722351 -0.02989762 -0.00294854  0.30080508 -0.31479058 -0.05540867
  0.05782358  0.24994702  0.09105233 -0.14601217 -0.68162777  0.1042316
 -0.67707127  0.14979966 -0.1627405  -0.43826483 -0.25558445  0.31949713
  0.20499627 -0.46003444 -0.60789902 -0.21493054 -0.30499014  0.04729357
  0.06319543  0.3768267 ]






Since it produce the same result as the orignial for-loop, we now wrap
it as a new distribution with a loglikelihood function in PyMC3.



In [4]:






from theano import scan
floatX = "float32"

from pymc3.distributions import continuous
from pymc3.distributions import distribution









In [5]:






class CAR(distribution.Continuous):
    """
    Conditional Autoregressive (CAR) distribution

    Parameters
    ----------
    a : list of adjacency information
    w : list of weight information
    tau : precision at each location
    """
    def __init__(self, w, a, tau, *args, **kwargs):
        super(CAR, self).__init__(*args, **kwargs)
        self.a = a = tt.as_tensor_variable(a)
        self.w = w = tt.as_tensor_variable(w)
        self.tau = tau*tt.sum(w, axis=1)
        self.mode = 0.

    def get_mu(self, x):

        def weigth_mu(w, a):
            a1 = tt.cast(a, 'int32')
            return tt.sum(w*x[a1])/tt.sum(w)

        mu_w, _ = scan(fn=weigth_mu,
                       sequences=[self.w, self.a])

        return mu_w

    def logp(self, x):
        mu_w = self.get_mu(x)
        tau = self.tau
        return tt.sum(continuous.Normal.dist(mu=mu_w, tau=tau).logp(x))







We then use it in our PyMC3 version of the CAR model:



In [6]:






with pm.Model() as model1:
    # Vague prior on intercept
    beta0 = pm.Normal('beta0', mu=0.0, tau=1.0e-5)
    # Vague prior on covariate effect
    beta1 = pm.Normal('beta1', mu=0.0, tau=1.0e-5)

    # Random effects (hierarchial) prior
    tau_h = pm.Gamma('tau_h', alpha=3.2761, beta=1.81)
    # Spatial clustering prior
    tau_c = pm.Gamma('tau_c', alpha=1.0, beta=1.0)

    # Regional random effects
    theta = pm.Normal('theta', mu=0.0, tau=tau_h, shape=N)
    mu_phi = CAR('mu_phi', w=wmat, a=amat, tau=tau_c, shape=N)

    # Zero-centre phi
    phi = pm.Deterministic('phi', mu_phi-tt.mean(mu_phi))

    # Mean model
    mu = pm.Deterministic('mu', tt.exp(logE + beta0 + beta1*aff + theta + phi))

    # Likelihood
    Yi = pm.Poisson('Yi', mu=mu, observed=O)

    # Marginal SD of heterogeniety effects
    sd_h = pm.Deterministic('sd_h', tt.std(theta))
    # Marginal SD of clustering (spatial) effects
    sd_c = pm.Deterministic('sd_c', tt.std(phi))
    # Proportion sptial variance
    alpha = pm.Deterministic('alpha', sd_c/(sd_h+sd_c))

    trace1 = pm.sample(3e3, njobs=2, tune=1000, nuts_kwargs={'max_treedepth': 15})













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 202.75:   8%|▊         | 16482/200000 [00:11<02:12, 1380.03it/s]
Convergence archived at 16500
Interrupted at 16,500 [8%]: Average Loss = 337
100%|██████████| 4000/4000.0 [13:00<00:00,  5.12it/s]








In [7]:






pm.traceplot(trace1, varnames=['alpha', 'sd_h', 'sd_c']);












[image: ../_images/notebooks_PyMC3_tips_and_heuristic_13_0.png]






In [8]:






pm.plot_posterior(trace1, varnames=['alpha']);












[image: ../_images/notebooks_PyMC3_tips_and_heuristic_14_0.png]




theano.scan is much faster than using a python for loop, but it is
still quite slow. One of the way to improve is to use linear algebra and
matrix multiplication. In another word, we should try to find a way to
use matrix multiplication instead of for-loop (if you have experience in
using MATLAB, it is the same philosophy). In our case, we can totally do
that.

For a similar problem, you can also have a look of my port of Lee and
Wagenmakers’
book [https://github.com/junpenglao/Bayesian-Cognitive-Modeling-in-Pymc3].
For example, in Chapter 19, the STAN code use a for loop to generate
the likelihood
function [https://github.com/stan-dev/example-models/blob/master/Bayesian_Cognitive_Modeling/CaseStudies/NumberConcepts/NumberConcept_1_Stan.R#L28-L59],
and I generate the matrix outside and use matrix multiplication
etc [http://nbviewer.jupyter.org/github/junpenglao/Bayesian-Cognitive-Modeling-in-Pymc3/blob/master/CaseStudies/NumberConceptDevelopment.ipynb#19.1-Knower-level-model-for-Give-N]
to archive the same purpose.




PyMC3 implementation using some matrix “trick”

Again, we try on some simulation data to make sure the implementation is
correct.



In [9]:






maxwz = max([sum(w) for w in weights])
N = len(weights)
wmat2 = np.zeros((N, N))
amat2 = np.zeros((N, N), dtype='int32')
for i, a in enumerate(adj):
    amat2[i, a] = 1
    wmat2[i, a] = weights[i]

value = np.asarray(np.random.randn(N,), dtype=theano.config.floatX)

print(np.sum(value*amat2, axis=1)/np.sum(wmat2, axis=1))


def mu_phi(value):
    N = len(weights)
    # Calculate mu based on average of neighbours
    mu = np.array([np.sum(weights[i]*value[adj[i]])/Wplus[i] for i in range(N)])
    return mu

print(mu_phi(value))













[ 0.31196015 -0.61357254 -0.39801169 -0.29914739  0.10475477 -0.58443596
 -0.16833961 -0.14569348  0.217921   -0.65120513 -0.58776908 -0.73258504
 -0.12999028 -0.58430732  0.19376804 -0.46436916  0.31726523  0.00458538
 -0.36734277  0.46909793 -0.19975836 -0.59468932 -0.0082971   0.56153682
  0.33426322  0.15664349  0.12884245 -0.19992449 -0.23370854 -0.08450199
 -0.17753823  0.22081404 -0.09694617  0.00834465 -0.67318022 -0.39008615
 -0.46966306  0.20615225  0.05952117  0.0694826  -0.37053512  0.11782136
  0.29213334  0.10030141  0.12621373 -0.11455156 -0.19670248  0.24437384
  0.07395046  0.01040834  0.36075119  0.58773701  0.13158094  0.07227536
  0.04784926  0.37265323]
[ 0.31196015 -0.61357254 -0.39801169 -0.29914739  0.10475477 -0.58443596
 -0.16833961 -0.14569348  0.217921   -0.65120513 -0.58776908 -0.73258504
 -0.12999028 -0.58430732  0.19376804 -0.46436916  0.31726523  0.00458538
 -0.36734277  0.46909793 -0.19975836 -0.59468932 -0.0082971   0.56153682
  0.33426322  0.15664349  0.12884245 -0.19992449 -0.23370854 -0.08450199
 -0.17753823  0.22081404 -0.09694617  0.00834465 -0.67318022 -0.39008615
 -0.46966306  0.20615225  0.05952117  0.0694826  -0.37053512  0.11782136
  0.29213334  0.10030141  0.12621373 -0.11455156 -0.19670248  0.24437384
  0.07395046  0.01040834  0.36075119  0.58773701  0.13158094  0.07227536
  0.04784926  0.37265323]






Now create a new CAR distribution with the matrix multiplication instead
of theano.scan to get the mu



In [10]:






class CAR2(distribution.Continuous):
    """
    Conditional Autoregressive (CAR) distribution

    Parameters
    ----------
    a : adjacency matrix
    w : weight matrix
    tau : precision at each location
    """

    def __init__(self, w, a, tau, *args, **kwargs):
        super(CAR2, self).__init__(*args, **kwargs)
        self.a = a = tt.as_tensor_variable(a)
        self.w = w = tt.as_tensor_variable(w)
        self.tau = tau*tt.sum(w, axis=1)
        self.mode = 0.

    def logp(self, x):
        tau = self.tau
        w = self.w
        a = self.a

        mu_w = tt.sum(x*a, axis=1)/tt.sum(w, axis=1)
        return tt.sum(continuous.Normal.dist(mu=mu_w, tau=tau).logp(x))









In [11]:






with pm.Model() as model2:
    # Vague prior on intercept
    beta0 = pm.Normal('beta0', mu=0.0, tau=1.0e-5)
    # Vague prior on covariate effect
    beta1 = pm.Normal('beta1', mu=0.0, tau=1.0e-5)

    # Random effects (hierarchial) prior
    tau_h = pm.Gamma('tau_h', alpha=3.2761, beta=1.81)
    # Spatial clustering prior
    tau_c = pm.Gamma('tau_c', alpha=1.0, beta=1.0)

    # Regional random effects
    theta = pm.Normal('theta', mu=0.0, tau=tau_h, shape=N)
    mu_phi = CAR2('mu_phi', w=wmat2, a=amat2, tau=tau_c, shape=N)

    # Zero-centre phi
    phi = pm.Deterministic('phi', mu_phi-tt.mean(mu_phi))

    # Mean model
    mu = pm.Deterministic('mu', tt.exp(logE + beta0 + beta1*aff + theta + phi))

    # Likelihood
    Yi = pm.Poisson('Yi', mu=mu, observed=O)

    # Marginal SD of heterogeniety effects
    sd_h = pm.Deterministic('sd_h', tt.std(theta))
    # Marginal SD of clustering (spatial) effects
    sd_c = pm.Deterministic('sd_c', tt.std(phi))
    # Proportion sptial variance
    alpha = pm.Deterministic('alpha', sd_c/(sd_h+sd_c))

    trace2 = pm.sample(3e3, njobs=2, tune=1000, nuts_kwargs={'max_treedepth': 15})













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 203.33:   8%|▊         | 16201/200000 [00:02<00:29, 6290.09it/s]
Convergence archived at 16500
Interrupted at 16,500 [8%]: Average Loss = 337
100%|██████████| 4000/4000.0 [01:59<00:00, 33.33it/s]






As you can see, its 6x faster using matrix multiplication.



In [12]:






pm.traceplot(trace2, varnames=['alpha', 'sd_h', 'sd_c']);
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In [13]:






pm.plot_posterior(trace2, varnames=['alpha']);












[image: ../_images/notebooks_PyMC3_tips_and_heuristic_23_0.png]







PyMC3 implementation using Matrix multiplication

There are (almost) always many ways to formulate your model. And some
works better than the others under different context (size of your
dataset, properties of the sampler, etc). In this case, we can expressed
the CAR prior as:


\[\phi \sim \mathcal{N}(0, [D_\tau (I - \alpha B)]^{-1}).\]

For the sake of brevity, you can find more details in the original Stan
case
study [http://mc-stan.org/documentation/case-studies/mbjoseph-CARStan.html].
You might come across similar deviation in Gaussian Process, which
result in a zero-mean Gaussian distribution conditioned on a covariance
function.

In the Stan Code, matrix D is generated in the model using a
transformed data{} block:

transformed data{
  vector[n] zeros;
  matrix<lower = 0>[n, n] D;
  {
    vector[n] W_rowsums;
    for (i in 1:n) {
      W_rowsums[i] = sum(W[i, ]);
    }
    D = diag_matrix(W_rowsums);
  }
  zeros = rep_vector(0, n);
}





We can generate the same matrix quite easily:



In [14]:






X = np.hstack((np.ones((N, 1)), stats.zscore(aff, ddof=1)[:, None]))
W = wmat2
D = np.diag(W.sum(axis=1))
log_offset = logE[:, None]







Then in the STAN model:

model {
  phi ~ multi_normal_prec(zeros, tau * (D - alpha * W));
  ...
}





since the precision matrix just generated by some matrix multiplication,
we can do just that in PyMC3:



In [17]:






with pm.Model() as model3:
    # Vague prior on intercept and effect
    beta = pm.Normal('beta', mu=0.0, tau=1.0, shape=(2, 1))

    # Priors for spatial random effects
    tau = pm.Gamma('tau', alpha=2., beta=2.)
    alpha = pm.Uniform('alpha', lower=0, upper=1)
    phi = pm.MvNormal('phi', mu=0, tau=tau*(D - alpha*W), shape=(1, N))

    # Mean model
    mu = pm.Deterministic('mu', tt.exp(tt.dot(X, beta) + phi.T + log_offset))

    # Likelihood
    Yi = pm.Poisson('Yi', mu=mu.ravel(), observed=O)

    trace3 = pm.sample(3e3, njobs=2, tune=1000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 174.93:   8%|▊         | 16680/200000 [00:23<03:33, 858.62it/s]
Convergence archived at 16700
Interrupted at 16,700 [8%]: Average Loss = 265.66
100%|██████████| 4000/4000.0 [03:00<00:00, 22.15it/s]








In [18]:






pm.traceplot(trace3, varnames=['alpha', 'beta', 'tau']);
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In [19]:






pm.plot_posterior(trace3, varnames=['alpha']);
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Notice that since the model parameterization is different than in the
WinBugs model, the alpha doesn’t bear the same interpretation.




PyMC3 implementation using Sparse Matrix

Note that in the node
\(\phi \sim \mathcal{N}(0, [D_\tau (I - \alpha B)]^{-1})\), we are
computing the log-likelihood for a multivariate Gaussian distribution,
which might not scale well in high-dimension. We can take advantage of
the fact that the covariance matrix here
\([D_\tau (I - \alpha B)]^{-1}\) is sparse, and there are faster
ways to compute log-likelihood.

For example, a more efficient sparse representation of the CAR in
STAN:

functions {
  /**
  * Return the log probability of a proper conditional autoregressive (CAR) prior
  * with a sparse representation for the adjacency matrix
  *
  * @param phi Vector containing the parameters with a CAR prior
  * @param tau Precision parameter for the CAR prior (real)
  * @param alpha Dependence (usually spatial) parameter for the CAR prior (real)
  * @param W_sparse Sparse representation of adjacency matrix (int array)
  * @param n Length of phi (int)
  * @param W_n Number of adjacent pairs (int)
  * @param D_sparse Number of neighbors for each location (vector)
  * @param lambda Eigenvalues of D^{-1/2}*W*D^{-1/2} (vector)
  *
  * @return Log probability density of CAR prior up to additive constant
  */
  real sparse_car_lpdf(vector phi, real tau, real alpha,
    int[,] W_sparse, vector D_sparse, vector lambda, int n, int W_n) {
      row_vector[n] phit_D; // phi' * D
      row_vector[n] phit_W; // phi' * W
      vector[n] ldet_terms;

      phit_D = (phi .* D_sparse)';
      phit_W = rep_row_vector(0, n);
      for (i in 1:W_n) {
        phit_W[W_sparse[i, 1]] = phit_W[W_sparse[i, 1]] + phi[W_sparse[i, 2]];
        phit_W[W_sparse[i, 2]] = phit_W[W_sparse[i, 2]] + phi[W_sparse[i, 1]];
      }

      for (i in 1:n) ldet_terms[i] = log1m(alpha * lambda[i]);
      return 0.5 * (n * log(tau)
                    + sum(ldet_terms)
                    - tau * (phit_D * phi - alpha * (phit_W * phi)));
  }
}





with the data transformed in the model:

transformed data {
  int W_sparse[W_n, 2];   // adjacency pairs
  vector[n] D_sparse;     // diagonal of D (number of neigbors for each site)
  vector[n] lambda;       // eigenvalues of invsqrtD * W * invsqrtD

  { // generate sparse representation for W
  int counter;
  counter = 1;
  // loop over upper triangular part of W to identify neighbor pairs
    for (i in 1:(n - 1)) {
      for (j in (i + 1):n) {
        if (W[i, j] == 1) {
          W_sparse[counter, 1] = i;
          W_sparse[counter, 2] = j;
          counter = counter + 1;
        }
      }
    }
  }
  for (i in 1:n) D_sparse[i] = sum(W[i]);
  {
    vector[n] invsqrtD;
    for (i in 1:n) {
      invsqrtD[i] = 1 / sqrt(D_sparse[i]);
    }
    lambda = eigenvalues_sym(quad_form(W, diag_matrix(invsqrtD)));
  }
}





and the likelihood:

model {
  phi ~ sparse_car(tau, alpha, W_sparse, D_sparse, lambda, n, W_n);
}





There are quite a lot of codes to digest, my general approach is to
compare the intermedia step whenever possible with STAN. In this
case, I will try to compute
tau, alpha, W_sparse, D_sparse, lambda, n, W_n outside of the
STAN model in R and compare with my own implementation.

Below is a Sparse CAR implementation in PyMC3 (see also
here [https://github.com/pymc-devs/pymc3/issues/2066#issuecomment-296397012]).
Again, we try to avoide using any for-loop as in STAN.



In [20]:






import scipy

class Sparse_CAR(distribution.Continuous):
    """
    Sparse Conditional Autoregressive (CAR) distribution

    Parameters
    ----------
    alpha : spatial smoothing term
    W : adjacency matrix
    tau : precision at each location
    """

    def __init__(self, alpha, W, tau, *args, **kwargs):
        self.alpha = alpha = tt.as_tensor_variable(alpha)
        self.tau = tau = tt.as_tensor_variable(tau)
        D = W.sum(axis=0)
        n, m = W.shape
        self.n = n
        self.median = self.mode = self.mean = 0
        super(Sparse_CAR, self).__init__(*args, **kwargs)

        # eigenvalues of D^−1/2 * W * D^−1/2
        Dinv_sqrt = np.diag(1 / np.sqrt(D))
        DWD = np.matmul(np.matmul(Dinv_sqrt, W), Dinv_sqrt)
        self.lam = scipy.linalg.eigvalsh(DWD)

        # sparse representation of W
        w_sparse = scipy.sparse.csr_matrix(W)
        self.W = theano.sparse.as_sparse_variable(w_sparse)
        self.D = tt.as_tensor_variable(D)

        # Presicion Matrix (inverse of Covariance matrix)
        # d_sparse = scipy.sparse.csr_matrix(np.diag(D))
        # self.D = theano.sparse.as_sparse_variable(d_sparse)
        # self.Phi = self.tau * (self.D - self.alpha*self.W)

    def logp(self, x):
        logtau = self.n * tt.log(tau)
        logdet = tt.log(1 - self.alpha * self.lam).sum()

        # tau * ((phi .* D_sparse)' * phi - alpha * (phit_W * phi))
        Wx = theano.sparse.dot(self.W, x)
        tau_dot_x = self.D * x.T - self.alpha * Wx.ravel()
        logquad = self.tau * tt.dot(x.ravel(), tau_dot_x.ravel())

        # logquad = tt.dot(x.T, theano.sparse.dot(self.Phi, x)).sum()
        return 0.5*(logtau + logdet - logquad)









In [21]:






with pm.Model() as model4:
    # Vague prior on intercept and effect
    beta = pm.Normal('beta', mu=0.0, tau=1.0, shape=(2, 1))

    # Priors for spatial random effects
    tau = pm.Gamma('tau', alpha=2., beta=2.)
    alpha = pm.Uniform('alpha', lower=0, upper=1)
    phi = Sparse_CAR('phi', alpha, W, tau, shape=(N, 1))

    # Mean model
    mu = pm.Deterministic('mu', tt.exp(tt.dot(X, beta) + phi + log_offset))

    # Likelihood
    Yi = pm.Poisson('Yi', mu=mu.ravel(), observed=O)

    trace4 = pm.sample(3e3, njobs=2, tune=1000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 164.83:   8%|▊         | 16253/200000 [00:02<00:33, 5513.12it/s]
Convergence archived at 16700
Interrupted at 16,700 [8%]: Average Loss = 255.36
100%|██████████| 4000/4000.0 [00:13<00:00, 298.68it/s]








In [22]:






pm.traceplot(trace4, varnames=['alpha', 'beta', 'tau']);
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In [23]:






pm.plot_posterior(trace4, varnames=['alpha']);
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As you can see above, the sparse representation returns the same
estimation, while being much faster than any other implementation.




A few other warnings

In Stan, there is an option to write a generated quantities
block for sample generation. Doing the similar in pymc3, however, is not
recommended.

Consider the following simple sample:

# Data
x = np.array([1.1, 1.9, 2.3, 1.8])
n = len(x)

with pm.Model() as model1:
    # prior
    mu = pm.Normal('mu', mu=0, tau=.001)
    sigma = pm.Uniform('sigma', lower=0, upper=10)
    # observed
    xi = pm.Normal('xi', mu=mu, tau=1/(sigma**2), observed=x)
    # generation
    p = pm.Deterministic('p', pm.math.sigmoid(mu))
    count = pm.Binomial('count', n=10, p=p, shape=10)





where we intended to use
python count = pm.Binomial('count', n=10, p=p, shape=10) to generate
posterior prediction. However, if the new RV added to the model is a
discrete variable it can cause weird turbulence to the trace. You can
see issue #1990 [https://github.com/pymc-devs/pymc3/issues/1990] for
related discussion.




Final remarks

In this notebook, most of the parameter conventions (e.g., using tau
when defining a Normal distribution) and choice of priors are strictly
matched with the original code in Winbugs or Stan. However, it
is important to note that merely porting the code from one to the other
is not always the best practice. The aims are not just to run the code
in PyMC3, but to make sure the model is appropriate as it returns
correct estimation, and runs efficiently (fast sampling).

For example, as [@aseyboldt](https://github.com/aseyboldt) pointed out
here [https://github.com/pymc-devs/pymc3/pull/2080#issuecomment-297456574]
and
here [https://github.com/pymc-devs/pymc3/issues/1924#issue-215496293],
non-centered parametrizations are often a better choice than the
centered parametrizations. In our case here, phi is following a
zero-mean Normal distribution, thus it can be leaved out in the
beginning and just scale the values afterwards. In many cases doing this
can avoids correlations in the posterior (it will be slower in some
cases, however).

Another thing to keep in mind is that sometimes your model is sensitive
to prior choice: for example, you can have a bad experiences using
Normals with a large sd as prior. Gelman often recommends Cauchy or
StudentT, and more heuristic on prior could be found on the Stan
wiki [https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations].

There are always ways to improve (tidy up the code, more careful on the
matrix multiplication, etc,.). Since our computational graph under
pm.Model() are all theano objects, we can always do
print(VAR_TO_CHECK.tag.test_value) right after the declaration or
computation to check the shape. For example, in our last example, as
suggested by
[@aseyboldt](https://github.com/pymc-devs/pymc3/pull/2080#issuecomment-297456574)
there seem to be a lot of correlations in the posterior. That probably
slows down NUTS quite a bit. As a debugging tool and guide for
reparametrization you can look at the singular value decomposition of
the standardized samples from the trace – basically the eigenvalues of
the correlation matrix. If the problem is high dimensional you can use
stuff from scipy.sparse.linalg to only compute the largest singular
value:

from scipy import linalg, sparse

vals = np.array([model.dict_to_array(v) for v in trace[1000:]]).T
vals[:] -= vals.mean(axis=1)[:, None]
vals[:] /= vals.std(axis=1)[:, None]

U, S, Vh = sparse.linalg.svds(vals, k=20)





Then look at plt.plot(S) to see if any principal components stick
out, and check which variables are involved by looking at the singular
vectors: plt.plot(U[:, -1] ** 2). You can get the indices by looking
at model.bijection.ordering.vmap.

Another great way to check the correlations in the posterior is to do a
pairplot of the posterior (if your model doesn’t contain too many
parameters). You can see quite clearly if and where the the posterior
parameters are correlated.



In [24]:






import seaborn as sns
tracedf1 = pm.trace_to_dataframe(trace1, varnames=['beta0', 'beta1', 'tau_h', 'tau_c'])
sns.pairplot(tracedf1);
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In [25]:






tracedf2 = pm.trace_to_dataframe(trace2, varnames=['beta0', 'beta1', 'tau_h', 'tau_c'])
sns.pairplot(tracedf2);
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In [26]:






tracedf3 = pm.trace_to_dataframe(trace3, varnames=['beta', 'tau', 'alpha'])
sns.pairplot(tracedf3);
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In [27]:






tracedf4 = pm.trace_to_dataframe(trace4, varnames=['beta', 'tau', 'alpha'])
sns.pairplot(tracedf4);
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LKJ Prior for fitting a Multivariate Normal Model

Author: Austin Rochford [http://www.austinrochford.com]

Outside of the
beta [https://en.wikipedia.org/wiki/Beta_distribution]-binomial [https://en.wikipedia.org/wiki/Binomial_distribution]
model, the multivariate normal model is likely the most studied Bayesian
model in history. PyMC3 supports sampling from the LKJ
distribution [http://www.sciencedirect.com/science/article/pii/S0047259X09000876].
The LKJ distribution represents the distribution on correlation matrices
and is conjugate to the multivariate normal distribution. This post will
show how to fit a simple multivariate normal model using pymc3 with
a normal-LKJ prior.

First, we generate some two-dimensional sample data.



In [1]:






%matplotlib inline









In [2]:






from matplotlib.patches import Ellipse
from matplotlib import pyplot as plt
import numpy as np
import pymc3 as pm
import scipy as sp
import seaborn as sns
from theano import tensor as tt









In [3]:






np.random.seed(3264602) # from random.org









In [4]:






N = 100

mu_actual = sp.stats.uniform.rvs(-5, 10, size=2)

cov_actual_sqrt = sp.stats.uniform.rvs(0, 2, size=(2, 2))
cov_actual = np.dot(cov_actual_sqrt.T, cov_actual_sqrt)

x = sp.stats.multivariate_normal.rvs(mu_actual, cov_actual, size=N)









In [5]:






var, U = np.linalg.eig(cov_actual)
angle = 180. / np.pi * np.arccos(np.abs(U[0, 0]))









In [6]:






fig, ax = plt.subplots(figsize=(8, 6))

blue = sns.color_palette()[0]

e = Ellipse(mu_actual, 2 * np.sqrt(5.991 * var[0]), 2 * np.sqrt(5.991 * var[1]), angle=-angle)
e.set_alpha(0.5)
e.set_facecolor('gray')
e.set_zorder(10);
ax.add_artist(e);

ax.scatter(x[:, 0], x[:, 1], c='k', alpha=0.5, zorder=11);

rect = plt.Rectangle((0, 0), 1, 1, fc='gray', alpha=0.5)
ax.legend([rect], ['95% true credible region'], loc=2);
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The sampling distribution for our model is
\(x_i \sim N(\mu, \Lambda)\), where \(\Lambda\) is the
precision
matrix [https://en.wikipedia.org/wiki/Precision_(statistics)] of the
distribution. The precision matrix is the inverse of the covariance
matrix. The support of the LKJ distribution is the set of correlation
matrices [https://en.wikipedia.org/wiki/Correlation_and_dependence#Correlation_matrices],
not covariance matrices. We will use the separation strategy from
Barnard et
al. [http://www3.stat.sinica.edu.tw/statistica/oldpdf/A10n416.pdf] to
combine an LKJ prior on the correlation matrix with a prior on the
standard deviations of each dimension to produce a prior on the
covariance matrix.

Let \(\sigma\) be the vector of standard deviations of each
component of our normal distribution, and \(\mathbf{C}\) be the
correlation matrix. The relationship


\[\Sigma = \operatorname{diag}(\sigma)\ \mathbf{C} \operatorname{diag}(\sigma)\]

shows that priors on \(\sigma\) and \(\mathbf{C}\) will induce a
prior on \(\Sigma\). Following Barnard et al., we place a standard
lognormal [https://en.wikipedia.org/wiki/Log-normal_distribution]
prior each the elements \(\sigma\), and an LKJ prior on the
correlation matric \(\mathbf{C}\). The LKJ distribution requires a
shape parameter \(\nu > 0\). If \(\mathbf{C} \sim LKJ(\nu)\),
then \(f(\mathbf{C}) \propto |\mathbf{C}|^{\nu - 1}\) (here
\(|\cdot|\) is the determinant).

We can now begin to build this model in pymc3. As you can see, we
are passing summary statistics to testval which will be used as the
starting point when we do inference further below. When summary
statistics are available, it is always a good idea to use them in this
manner.



In [7]:






init_sigma = np.std(x, axis=0)
init_corr = np.corrcoef(x, rowvar=0)[0, 1]
with pm.Model() as model:
    sigma = pm.Lognormal('sigma', np.zeros(2), np.ones(2), shape=2, testval=init_sigma)

    nu = pm.Uniform('nu', 0, 5)
    C_triu = pm.LKJCorr('C_triu', nu, 2, testval=init_corr)







There is a slight complication in pymc3‘s handling of the
LKJCorr distribution; pymc3 represents the support of this
distribution as a one-dimensional vector of the upper triangular
elements of the full covariance matrix.



In [8]:






C_triu.tag.test_value.shape









Out[8]:






(1,)







In order to build a the full correlation matric \(\mathbf{C}\), we
first build a \(2 \times 2\) tensor whose values are all C_triu
and then set the diagonal entries to one. (Recall that a correlation
matrix must be symmetric and positive definite with all diagonal entries
equal to one.) We can then proceed to build the covariance matrix
\(\Sigma\) and the precision matrix \(\Lambda\).



In [9]:






with model:
    C = pm.Deterministic('C', tt.fill_diagonal(C_triu[np.zeros((2, 2), dtype=np.int64)], 1.))

    sigma_diag = pm.Deterministic('sigma_mat', tt.nlinalg.diag(sigma))
    cov = pm.Deterministic('cov', tt.nlinalg.matrix_dot(sigma_diag, C, sigma_diag))









In [10]:






cov.tag.test_value









Out[10]:






array([[ 0.54737873,  0.88092866],
       [ 0.88092866,  1.98234664]])







While defining C in terms of C_triu was simple in this case
because our sampling distribution is two-dimensional, the example from
this StackOverflow
question [http://stackoverflow.com/questions/29759789/modified-bpmf-in-pymc3-using-lkjcorr-priors-positivedefiniteerror-using-nuts]
shows how to generalize this transformation to arbitrarily many
dimensions.

Finally, we define the prior on \(\mu\) and the sampling
distribution.



In [11]:






with model:
    mu = pm.MvNormal('mu', 0, cov, shape=2, testval=np.mean(x, axis=0))

    x_ = pm.MvNormal('x', mu, cov, observed=x)







We are now ready to fit this model using pymc3.



In [12]:






n_samples = 4000









In [13]:






with model:
    trace_ = pm.sample(n_samples, pm.Metropolis())













100%|██████████| 4000/4000 [00:05<00:00, 718.12it/s]








In [14]:






trace = trace_[50:]







We see that the posterior estimate of \(\mu\) is reasonably
accurate.



In [15]:






pm.traceplot(trace, varnames=['mu']);
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In [16]:






mu_actual









Out[16]:






array([-1.41866859, -4.8018335 ])







The estimates of the standard deviations are certainly biased.



In [17]:






pm.traceplot(trace, varnames=['sigma']);












[image: ../_images/notebooks_LKJ_25_0.png]






In [18]:






trace['sigma'].mean(axis=0)









Out[18]:






array([ 0.75945843,  1.50000803])









In [19]:






np.sqrt(var)









Out[19]:






array([ 0.3522422 ,  1.58192855])







However, the 95% posterior credible region is visually quite close to
the true credible region, so we can be fairly satisfied with our model.



In [20]:






post_cov = trace['cov'].mean(axis=0)

post_sigma, post_U = np.linalg.eig(post_cov)
post_angle = 180. / np.pi * np.arccos(np.abs(post_U[0, 0]))









In [21]:






fig, ax = plt.subplots(figsize=(8, 6))

blue = sns.color_palette()[0]

e = Ellipse(mu_actual, 2 * np.sqrt(5.991 * post_sigma[0]), 2 * np.sqrt(5.991 * post_sigma[1]), angle=-post_angle)
e.set_alpha(0.5)
e.set_facecolor(blue)
e.set_zorder(9);
ax.add_artist(e);

e = Ellipse(mu_actual, 2 * np.sqrt(5.991 * var[0]), 2 * np.sqrt(5.991 * var[1]), angle=-angle)
e.set_alpha(0.5)
e.set_facecolor('gray')
e.set_zorder(10);
ax.add_artist(e);

ax.scatter(x[:, 0], x[:, 1], c='k', alpha=0.5, zorder=11);

rect = plt.Rectangle((0, 0), 1, 1, fc='gray', alpha=0.5)
post_rect = plt.Rectangle((0, 0), 1, 1, fc=blue, alpha=0.5)
ax.legend([rect, post_rect],
          ['95% true credible region',
           '95% posterior credible region'],
          loc=2);
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Live sample plots

This notebook illustrates how we can have live sample plots when calling
the sample function with live_plot=True. It is based on the
“Coal mining disasters” case study in the Getting started
notebook [https://github.com/pymc-devs/pymc3/blob/master/docs/source/notebooks/getting_started.ipynb].



In [ ]:






import numpy as np
from pymc3 import Model, Exponential, DiscreteUniform, Poisson, sample
from pymc3.math import switch

%matplotlib notebook









In [ ]:






disaster_data = np.ma.masked_values([4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6,
                            3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5,
                            2, 2, 3, 4, 2, 1, 3, -999, 2, 1, 1, 1, 1, 3, 0, 0,
                            1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1,
                            0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2,
                            3, 3, 1, -999, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4,
                            0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1], value=-999)
year = np.arange(1851, 1962)









In [ ]:






with Model() as disaster_model:

    switchpoint = DiscreteUniform('switchpoint', lower=year.min(), upper=year.max(), testval=1900)

    # Priors for pre- and post-switch rates number of disasters
    early_rate = Exponential('early_rate', 1)
    late_rate = Exponential('late_rate', 1)

    # Allocate appropriate Poisson rates to years before and after current
    rate = switch(switchpoint >= year, early_rate, late_rate)

    disasters = Poisson('disasters', rate, observed=disaster_data)









In [ ]:






with disaster_model:
    trace = sample(10000, live_plot=True, skip_first=100, refresh_every=300, roll_over=1000)











          

      

      

    

  

    
      
          
            
  


Bayesian Estimation Supersedes the T-Test

This model replicates the example used in: Kruschke, John. (2012)
Bayesian estimation supersedes the t-test. Journal of Experimental
Psychology: General.

The original pymc2 implementation was written by Andrew Straw and can be
found here: https://github.com/strawlab/best

Ported to PyMC3 by Thomas Wiecki [https://twitter.com/twiecki] (c)
2015, updated by Chris Fonnesbeck.


The Problem

Several statistical inference procedures involve the comparison of two
groups. We may be interested in whether one group is larger than
another, or simply different from the other. We require a statistical
model for this because true differences are usually accompanied by
measurement or stochastic noise that prevent us from drawing conclusions
simply from differences calculated from the observed data.

The de facto standard for statistically comparing two (or more)
samples is to use a statistical test. This involves expressing a null
hypothesis, which typically claims that there is no difference between
the groups, and using a chosen test statistic to determine whether the
distribution of the observed data is plausible under the hypothesis.
This rejection occurs when the calculated test statistic is higher than
some pre-specified threshold value.

Unfortunately, it is not easy to conduct hypothesis tests correctly, and
their results are very easy to misinterpret. Setting up a statistical
test involves several subjective choices (e.g. statistical test to
use, null hypothesis to test, significance level) by the user that are
rarely justified based on the problem or decision at hand, but rather,
are usually based on traditional choices that are entirely arbitrary
(Johnson 1999). The evidence that it provides to the user is indirect,
incomplete, and typically overstates the evidence against the null
hypothesis (Goodman 1999).

A more informative and effective approach for comparing groups is one
based on estimation rather than testing, and is driven by
Bayesian probability rather than frequentist. That is, rather than
testing whether two groups are different, we instead pursue an estimate
of how different they are, which is fundamentally more informative.
Moreover, we include an estimate of uncertainty associated with that
difference which includes uncertainty due to our lack of knowledge of
the model parameters (epistemic uncertainty) and uncertainty due to the
inherent stochasticity of the system (aleatory uncertainty).


Example: Drug trial evaluation

To illustrate how this Bayesian estimation approach works in practice,
we will use a fictitious example from Kruschke (2012) concerning the
evaluation of a clinical trial for drug evaluation. The trial aims to
evaluate the efficacy of a “smart drug” that is supposed to increase
intelligence by comparing IQ scores of individuals in a treatment arm
(those receiving the drug) to those in a control arm (those recieving a
placebo). There are 47 individuals and 42 individuals in the treatment
and control arms, respectively.



In [1]:






%matplotlib inline
import numpy as np
import pymc3 as pm
import pandas as pd
import seaborn as sns
sns.set(color_codes=True)

np.random.seed(20090425)









In [2]:






drug = (101,100,102,104,102,97,105,105,98,101,100,123,105,103,100,95,102,106,
        109,102,82,102,100,102,102,101,102,102,103,103,97,97,103,101,97,104,
        96,103,124,101,101,100,101,101,104,100,101)
placebo = (99,101,100,101,102,100,97,101,104,101,102,102,100,105,88,101,100,
           104,100,100,100,101,102,103,97,101,101,100,101,99,101,100,100,
           101,100,99,101,100,102,99,100,99)

y1 = np.array(drug)
y2 = np.array(placebo)
y = pd.DataFrame(dict(value=np.r_[y1, y2], group=np.r_[['drug']*len(drug), ['placebo']*len(placebo)]))

y.hist('value', by='group');
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The first step in a Bayesian approach to inference is to specify the
full probability model that corresponds to the problem. For this
example, Kruschke chooses a Student-t distribution to describe the
distributions of the scores in each group. This choice adds robustness
to the analysis, as a T distribution is less sensitive to outlier
observations, relative to a normal distribution. The three-parameter
Student-t distribution allows for the specification of a mean
\(\mu\), a precision (inverse-variance) \(\lambda\) and a
degrees-of-freedom parameter \(\nu\):


\[f(x|\mu,\lambda,\nu) = \frac{\Gamma(\frac{\nu + 1}{2})}{\Gamma(\frac{\nu}{2})} \left(\frac{\lambda}{\pi\nu}\right)^{\frac{1}{2}} \left[1+\frac{\lambda(x-\mu)^2}{\nu}\right]^{-\frac{\nu+1}{2}}\]

the degrees-of-freedom parameter essentially specifies the “normality”
of the data, since larger values of \(\nu\) make the distribution
converge to a normal distribution, while small values (close to zero)
result in heavier tails.

Thus, the likelihood functions of our model are specified as follows:


\[y^{(treat)}_i \sim T(\nu, \mu_1, \sigma_1)\]


\[y^{(placebo)}_i \sim T(\nu, \mu_2, \sigma_2)\]

As a simplifying assumption, we will assume that the degree of normality
\(\nu\) is the same for both groups. We will, of course, have
separate parameters for the means \(\mu_k, k=1,2\) and standard
deviations \(\sigma_k\).

Since the means are real-valued, we will apply normal priors on them,
and arbitrarily set the hyperparameters to the pooled empirical mean of
the data and twice the pooled empirical standard deviation, which
applies very diffuse information to these quantities (and importantly,
does not favor one or the other a priori).


\[\mu_k \sim N(\bar{x}, 2s)\]



In [3]:






μ_m = y.value.mean()
μ_s = y.value.std() * 2

with pm.Model() as model:
    group1_mean = pm.Normal('group1_mean', μ_m, sd=μ_s)
    group2_mean = pm.Normal('group2_mean', μ_m, sd=μ_s)







The group standard deviations will be given a uniform prior over a
plausible range of values for the variability of the outcome variable,
IQ.

In Kruschke’s original model, he uses a very wide uniform prior for the
group standard deviations, from the pooled empirical standard deviation
divided by 1000 to the pooled standard deviation multiplied by 1000.
This is a poor choice of prior, because very basic prior knowledge about
measures of human coginition dictate that the variation cannot ever be
as high as this upper bound. IQ is a standardized measure, and hence
this constrains how variable a given population’s IQ values can be. When
you place such a wide uniform prior on these values, you are essentially
giving a lot of prior weight on inadmissable values. In this example,
there is little practical difference, but in general it is best to apply
as much prior information that you have available to the
parameterization of prior distributions.

We will instead set the group standard deviations to have a
\(\text{Uniform}(1,10)\) prior:



In [4]:






σ_low = 1
σ_high = 10

with model:
    group1_std = pm.Uniform('group1_std', lower=σ_low, upper=σ_high)
    group2_std = pm.Uniform('group2_std', lower=σ_low, upper=σ_high)







We follow Kruschke by making the prior for \(\mu\) exponentially
distributed with a mean of 30; this allocates high prior probability
over the regions of the parameter that describe the range from normal to
heavy-tailed data under the Student-T distribution.



In [5]:






with model:
    ν = pm.Exponential('ν_minus_one', 1/29.) + 1

sns.distplot(np.random.exponential(30, size=10000), kde=False);
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Since PyMC3 parameterizes the Student-T in terms of precision, rather
than standard deviation, we must transform the standard deviations
before specifying our likelihoods.



In [6]:






with model:
    λ1 = group1_std**-2
    λ2 = group2_std**-2

    group1 = pm.StudentT('drug', nu=ν, mu=group1_mean, lam=λ1, observed=y1)
    group2 = pm.StudentT('placebo', nu=ν, mu=group2_mean, lam=λ2, observed=y2)







Having fully specified our probabilistic model, we can turn our
attention to calculating the comparisons of interest in order to
evaluate the effect of the drug. To this end, we can specify
deterministic nodes in our model for the difference between the group
means and the difference between the group standard deviations. Wrapping
them in named Deterministic objects signals to PyMC that we wish to
record the sampled values as part of the output.

As a joint measure of the groups, we will also estimate the “effect
size”, which is the difference in means scaled by the pooled estimates
of standard deviation. This quantity can be harder to interpret, since
it is no longer in the same units as our data, but the quantity is a
function of all four estimated parameters.



In [7]:






with model:
    diff_of_means = pm.Deterministic('difference of means', group1_mean - group2_mean)
    diff_of_stds = pm.Deterministic('difference of stds', group1_std - group2_std)
    effect_size = pm.Deterministic('effect size',
                                   diff_of_means / np.sqrt((group1_std**2 + group2_std**2) / 2))








Now, we can fit the model and evaluate its output.



In [8]:






with model:
    trace = pm.sample(2000, init=None, njobs=2)













Assigned NUTS to group1_mean
Assigned NUTS to group2_mean
Assigned NUTS to group1_std_interval_
Assigned NUTS to group2_std_interval_
Assigned NUTS to ν_minus_one_log_
100%|██████████| 2000/2000 [00:22<00:00, 89.46it/s]






We can plot the stochastic parameters of the model. PyMC’s
plot_posterior function replicates the informative histograms
portrayed in Kruschke (2012). These summarize the posterior
distributions of the parameters, and present a 95% credible interval and
the posterior mean. The plots below are constructed with the final 1000
samples from each of the 2 chains, pooled together.



In [9]:






pm.plot_posterior(trace[100:],
                  varnames=['group1_mean', 'group2_mean', 'group1_std', 'group2_std', 'ν_minus_one'],
                  color='#87ceeb');
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Looking at the group differences, we can conclude that there are
meaningful differences between the two groups for all three measures.
For these comparisons, it is useful to use zero as a reference value
(ref_val); providing this reference value yields cumulative
probabilities for the posterior distribution on either side of the
value. Thus, for the difference in means, 99.4% of the posterior
probability is greater than zero, which suggests the group means are
credibly different. The effect size and differences in standard
deviation are similarly positive.

These estimates suggest that the “smart drug” increased both the
expected scores, but also the variability in scores across the sample.
So, this does not rule out the possibility that some recipients may be
adversely affected by the drug at the same time others benefit.



In [10]:






pm.plot_posterior(trace[1000:],
                  varnames=['difference of means', 'difference of stds', 'effect size'],
                  ref_val=0,
                  color='#87ceeb');
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When forestplot is called on a trace with more than one chain, it
also plots the potential scale reduction parameter, which is used to
reveal evidence for lack of convergence; values near one, as we have
here, suggest that the model has converged.



In [11]:






pm.forestplot(trace[1000:], varnames=[v.name for v in model.vars[:2]])









Out[11]:






<matplotlib.gridspec.GridSpec at 0x11d91a320>
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In [12]:






pm.forestplot(trace[1000:], varnames=[v.name for v in model.vars[2:]])









Out[12]:






<matplotlib.gridspec.GridSpec at 0x11b9bd5f8>
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In [13]:






pm.summary(trace[1000:],
                 varnames=['difference of means', 'difference of stds', 'effect size'])














difference of means:

  Mean             SD               MC Error         95% HPD interval
  -------------------------------------------------------------------

  1.003            0.441            0.011            [0.200, 1.917]

  Posterior quantiles:
  2.5            25             50             75             97.5
  |--------------|==============|==============|--------------|

  0.083          0.718          1.007          1.301          1.873


difference of stds:

  Mean             SD               MC Error         95% HPD interval
  -------------------------------------------------------------------

  0.910            0.458            0.015            [0.022, 1.780]

  Posterior quantiles:
  2.5            25             50             75             97.5
  |--------------|==============|==============|--------------|

  0.105          0.591          0.875          1.183          1.908


effect size:

  Mean             SD               MC Error         95% HPD interval
  -------------------------------------------------------------------

  0.602            0.279            0.008            [0.107, 1.194]

  Posterior quantiles:
  2.5            25             50             75             97.5
  |--------------|==============|==============|--------------|

  0.044          0.412          0.594          0.799          1.155
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A Primer on Bayesian Methods for Multilevel Modeling

Hierarchical or multilevel modeling is a generalization of regression
modeling.

Multilevel models are regression models in which the constituent model
parameters are given probability models. This implies that model
parameters are allowed to vary by group.

Observational units are often naturally clustered. Clustering
induces dependence between observations, despite random sampling of
clusters and random sampling within clusters.

A hierarchical model is a particular multilevel model where parameters
are nested within one another.

Some multilevel structures are not hierarchical.


	e.g. “country” and “year” are not nested, but may represent separate,
but overlapping, clusters of parameters



We will motivate this topic using an environmental epidemiology example.


Example: Radon contamination (Gelman and Hill 2006)

Radon is a radioactive gas that enters homes through contact points with
the ground. It is a carcinogen that is the primary cause of lung cancer
in non-smokers. Radon levels vary greatly from household to household.


[image: radon]
radon



The EPA did a study of radon levels in 80,000 houses. Two important
predictors:


	measurement in basement or first floor (radon higher in basements)

	county uranium level (positive correlation with radon levels)



We will focus on modeling radon levels in Minnesota.

The hierarchy in this example is households within county.




Data organization

First, we import the data from a local file, and extract Minnesota’s
data.



In [1]:






%matplotlib inline
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_context('notebook')
sns.set_style('white')

from pymc3 import get_data

# Import radon data
srrs2 = pd.read_csv(get_data('srrs2.dat'))
srrs2.columns = srrs2.columns.map(str.strip)
srrs_mn = srrs2[srrs2.state=='MN'].copy()







Next, obtain the county-level predictor, uranium, by combining two
variables.



In [2]:






srrs_mn['fips'] = srrs_mn.stfips*1000 + srrs_mn.cntyfips
cty = pd.read_csv(get_data('cty.dat'))
cty_mn = cty[cty.st=='MN'].copy()
cty_mn[ 'fips'] = 1000*cty_mn.stfips + cty_mn.ctfips







Use the merge method to combine home- and county-level information
in a single DataFrame.



In [3]:






srrs_mn = srrs_mn.merge(cty_mn[['fips', 'Uppm']], on='fips')
srrs_mn = srrs_mn.drop_duplicates(subset='idnum')
u = np.log(srrs_mn.Uppm)

n = len(srrs_mn)









In [4]:






srrs_mn.head()









Out[4]:








  
    
      	
      	idnum
      	state
      	state2
      	stfips
      	zip
      	region
      	typebldg
      	floor
      	room
      	basement
      	...
      	stopdt
      	activity
      	pcterr
      	adjwt
      	dupflag
      	zipflag
      	cntyfips
      	county
      	fips
      	Uppm
    

  
  
    
      	0
      	5081
      	MN
      	MN
      	27
      	55735
      	5
      	1
      	1
      	3
      	N
      	...
      	12288
      	2.2
      	9.7
      	1146.499190
      	1
      	0
      	1
      	AITKIN
      	27001
      	0.502054
    

    
      	1
      	5082
      	MN
      	MN
      	27
      	55748
      	5
      	1
      	0
      	4
      	Y
      	...
      	12088
      	2.2
      	14.5
      	471.366223
      	0
      	0
      	1
      	AITKIN
      	27001
      	0.502054
    

    
      	2
      	5083
      	MN
      	MN
      	27
      	55748
      	5
      	1
      	0
      	4
      	Y
      	...
      	21188
      	2.9
      	9.6
      	433.316718
      	0
      	0
      	1
      	AITKIN
      	27001
      	0.502054
    

    
      	3
      	5084
      	MN
      	MN
      	27
      	56469
      	5
      	1
      	0
      	4
      	Y
      	...
      	123187
      	1.0
      	24.3
      	461.623670
      	0
      	0
      	1
      	AITKIN
      	27001
      	0.502054
    

    
      	4
      	5085
      	MN
      	MN
      	27
      	55011
      	3
      	1
      	0
      	4
      	Y
      	...
      	13088
      	3.1
      	13.8
      	433.316718
      	0
      	0
      	3
      	ANOKA
      	27003
      	0.428565
    

  


5 rows × 27 columns






We also need a lookup table (dict) for each unique county, for
indexing.



In [5]:






srrs_mn.county = srrs_mn.county.map(str.strip)
mn_counties = srrs_mn.county.unique()
counties = len(mn_counties)
county_lookup = dict(zip(mn_counties, range(len(mn_counties))))







Finally, create local copies of variables.



In [6]:






county = srrs_mn['county_code'] = srrs_mn.county.replace(county_lookup).values
radon = srrs_mn.activity
srrs_mn['log_radon'] = log_radon = np.log(radon + 0.1).values
floor_measure = srrs_mn.floor.values







Distribution of radon levels in MN (log scale):



In [7]:






srrs_mn.activity.apply(lambda x: np.log(x+0.1)).hist(bins=25);












[image: ../_images/notebooks_multilevel_modeling_16_0.png]





Conventional approaches

The two conventional alternatives to modeling radon exposure represent
the two extremes of the bias-variance tradeoff:

*Complete pooling*:

Treat all counties the same, and estimate a single radon level.


\[y_i = \alpha + \beta x_i + \epsilon_i\]

*No pooling*:

Model radon in each county independently.


\[y_i = \alpha_{j[i]} + \beta x_i + \epsilon_i\]

where \(j = 1,\ldots,85\)

The errors \(\epsilon_i\) may represent measurement error, temporal
within-house variation, or variation among houses.

Here are the point estimates of the slope and intercept for the complete
pooling model:



In [8]:






from pymc3 import Model, sample, Normal, HalfCauchy, Uniform

floor = srrs_mn.floor.values
log_radon = srrs_mn.log_radon.values

with Model() as pooled_model:

    beta = Normal('beta', 0, sd=1e5, shape=2)
    sigma = HalfCauchy('sigma', 5)

    theta = beta[0] + beta[1]*floor

    y = Normal('y', theta, sd=sigma, observed=log_radon)









In [9]:






with pooled_model:
    pooled_trace = sample(2000, n_init=50000, tune=1000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 1,121.1:  53%|█████▎    | 26617/50000 [00:03<00:03, 7258.34it/s]
Convergence archived at 27000
Interrupted at 27,000 [54%]: Average Loss = 1,201.3
100%|██████████| 2000/2000 [00:02<00:00, 798.65it/s]








In [10]:






b0, m0 = pooled_trace['beta', 1000:].mean(axis=0)









In [11]:






plt.scatter(srrs_mn.floor, np.log(srrs_mn.activity+0.1))
xvals = np.linspace(-0.2, 1.2)
plt.plot(xvals, m0*xvals+b0, 'r--');
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Estimates of county radon levels for the unpooled model:



In [12]:






with Model() as unpooled_model:

    beta0 = Normal('beta0', 0, sd=1e5, shape=counties)
    beta1 = Normal('beta1', 0, sd=1e5)
    sigma = HalfCauchy('sigma', 5)

    theta = beta0[county] + beta1*floor

    y = Normal('y', theta, sd=sigma, observed=log_radon)









In [14]:






with unpooled_model:
    unpooled_trace = sample(2000, n_init=50000, tune=1000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 2,069.3: 100%|██████████| 50000/50000 [00:11<00:00, 4504.30it/s]
Finished [100%]: Average Loss = 2,069.3
100%|██████████| 2000/2000 [00:13<00:00, 145.16it/s]






Here are the unpooled county expected values



In [15]:






from pymc3 import forestplot

plt.figure(figsize=(6,14))
forestplot(unpooled_trace, varnames=['beta0']);
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In [16]:






unpooled_estimates = pd.Series(unpooled_trace['beta0'].mean(axis=0), index=mn_counties)
unpooled_se = pd.Series(unpooled_trace['beta0'].std(axis=0), index=mn_counties)







We can plot the ordered estimates to identify counties with high radon
levels:



In [17]:






order = unpooled_estimates.order().index

plt.scatter(range(len(unpooled_estimates)), unpooled_estimates[order])
for i, m, se in zip(range(len(unpooled_estimates)), unpooled_estimates[order], unpooled_se[order]):
    plt.plot([i,i], [m-se, m+se], 'b-')
plt.xlim(-1,86); plt.ylim(-1,4)
plt.ylabel('Radon estimate');plt.xlabel('Ordered county');













/Users/fonnescj/anaconda3/envs/dev/lib/python3.6/site-packages/ipykernel_launcher.py:1: FutureWarning: order is deprecated, use sort_values(...)
  """Entry point for launching an IPython kernel.
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Here are visual comparisons between the pooled and unpooled estimates
for a subset of counties representing a range of sample sizes.



In [18]:






sample_counties = ('LAC QUI PARLE', 'AITKIN', 'KOOCHICHING',
                    'DOUGLAS', 'CLAY', 'STEARNS', 'RAMSEY', 'ST LOUIS')

fig, axes = plt.subplots(2, 4, figsize=(12, 6), sharey=True, sharex=True)
axes = axes.ravel()
m = unpooled_trace['beta1'].mean()
for i,c in enumerate(sample_counties):
    y = srrs_mn.log_radon[srrs_mn.county==c]
    x = srrs_mn.floor[srrs_mn.county==c]
    axes[i].scatter(x + np.random.randn(len(x))*0.01, y, alpha=0.4)

    # No pooling model
    b = unpooled_estimates[c]

    # Plot both models and data
    xvals = np.linspace(-0.2, 1.2)
    axes[i].plot(xvals, m*xvals+b)
    axes[i].plot(xvals, m0*xvals+b0, 'r--')
    axes[i].set_xticks([0,1])
    axes[i].set_xticklabels(['basement', 'floor'])
    axes[i].set_ylim(-1, 3)
    axes[i].set_title(c)
    if not i%2:
        axes[i].set_ylabel('log radon level')
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Neither of these models are satisfactory:


	if we are trying to identify high-radon counties, pooling is useless

	we do not trust extreme unpooled estimates produced by models using
few observations






Multilevel and hierarchical models

When we pool our data, we imply that they are sampled from the same
model. This ignores any variation among sampling units (other than
sampling variance):


[image: pooled]
pooled



When we analyze data unpooled, we imply that they are sampled
independently from separate models. At the opposite extreme from the
pooled case, this approach claims that differences between sampling
units are to large to combine them:


[image: unpooled]
unpooled



In a hierarchical model, parameters are viewed as a sample from a
population distribution of parameters. Thus, we view them as being
neither entirely different or exactly the same. This is *parital
pooling*.


[image: hierarchical]
hierarchical



We can use PyMC to easily specify multilevel models, and fit them using
Markov chain Monte Carlo.




Partial pooling model

The simplest partial pooling model for the household radon dataset is
one which simply estimates radon levels, without any predictors at any
level. A partial pooling model represents a compromise between the
pooled and unpooled extremes, approximately a weighted average (based on
sample size) of the unpooled county estimates and the pooled estimates.


\[\hat{\alpha} \approx \frac{(n_j/\sigma_y^2)\bar{y}_j + (1/\sigma_{\alpha}^2)\bar{y}}{(n_j/\sigma_y^2) + (1/\sigma_{\alpha}^2)}\]

Estimates for counties with smaller sample sizes will shrink towards the
state-wide average.

Estimates for counties with larger sample sizes will be closer to the
unpooled county estimates.



In [19]:






with Model() as partial_pooling:

    # Priors
    mu_a = Normal('mu_a', mu=0., sd=1e5)
    sigma_a = HalfCauchy('sigma_a', 5)

    # Random intercepts
    a = Normal('a', mu=mu_a, sd=sigma_a, shape=counties)

    # Model error
    sigma_y = HalfCauchy('sigma_y',5)

    # Expected value
    y_hat = a[county]

    # Data likelihood
    y_like = Normal('y_like', mu=y_hat, sd=sigma_y, observed=log_radon)









In [20]:






with partial_pooling:
    partial_pooling_trace = sample(2000, n_init=50000, tune=1000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 1,115.5: 100%|██████████| 50000/50000 [00:13<00:00, 3590.55it/s]
Finished [100%]: Average Loss = 1,115.5
100%|██████████| 2000/2000 [00:07<00:00, 253.79it/s]








In [21]:






sample_trace = partial_pooling_trace['a', 1000:]

fig, axes = plt.subplots(1, 2, figsize=(14,6), sharex=True, sharey=True)
samples, counties = sample_trace.shape
jitter = np.random.normal(scale=0.1, size=counties)

n_county = srrs_mn.groupby('county')['idnum'].count()
unpooled_means = srrs_mn.groupby('county')['log_radon'].mean()
unpooled_sd = srrs_mn.groupby('county')['log_radon'].std()
unpooled = pd.DataFrame({'n':n_county, 'm':unpooled_means, 'sd':unpooled_sd})
unpooled['se'] = unpooled.sd/np.sqrt(unpooled.n)

axes[0].plot(unpooled.n + jitter, unpooled.m, 'b.')
for j, row in zip(jitter, unpooled.iterrows()):
    name, dat = row
    axes[0].plot([dat.n+j,dat.n+j], [dat.m-dat.se, dat.m+dat.se], 'b-')
axes[0].set_xscale('log')
axes[0].hlines(sample_trace.mean(), 0.9, 100, linestyles='--')


samples, counties = sample_trace.shape
means = sample_trace.mean(axis=0)
sd = sample_trace.std(axis=0)
axes[1].scatter(n_county.values + jitter, means)
axes[1].set_xscale('log')
axes[1].set_xlim(1,100)
axes[1].set_ylim(0, 3)
axes[1].hlines(sample_trace.mean(), 0.9, 100, linestyles='--')
for j,n,m,s in zip(jitter, n_county.values, means, sd):
    axes[1].plot([n+j]*2, [m-s, m+s], 'b-')
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Notice the difference between the unpooled and partially-pooled
estimates, particularly at smaller sample sizes. The former are both
more extreme and more imprecise.




Varying intercept model

This model allows intercepts to vary across county, according to a
random effect.


\[y_i = \alpha_{j[i]} + \beta x_{i} + \epsilon_i\]

where


\[\epsilon_i \sim N(0, \sigma_y^2)\]

and the intercept random effect:


\[\alpha_{j[i]} \sim N(\mu_{\alpha}, \sigma_{\alpha}^2)\]

As with the the “no-pooling” model, we set a separate intercept for each
county, but rather than fitting separate least squares regression models
for each county, multilevel modeling shares strength among counties,
allowing for more reasonable inference in counties with little data.



In [22]:






with Model() as varying_intercept:

    # Priors
    mu_a = Normal('mu_a', mu=0., tau=0.0001)
    sigma_a = HalfCauchy('sigma_a', 5)


    # Random intercepts
    a = Normal('a', mu=mu_a, sd=sigma_a, shape=counties)
    # Common slope
    b = Normal('b', mu=0., sd=1e5)

    # Model error
    sd_y = HalfCauchy('sd_y', 5)

    # Expected value
    y_hat = a[county] + b * floor_measure

    # Data likelihood
    y_like = Normal('y_like', mu=y_hat, sd=sd_y, observed=log_radon)







We can fit the above model using MCMC.



In [23]:






with varying_intercept:
    varying_intercept_trace = sample(2000, n_init=50000, tune=1000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 1,077.4: 100%|██████████| 50000/50000 [00:11<00:00, 4206.38it/s]
Finished [100%]: Average Loss = 1,077.5
100%|██████████| 2000/2000 [00:06<00:00, 296.67it/s]








In [24]:






from pymc3 import forestplot, traceplot, plot_posterior

plt.figure(figsize=(6,14))
forestplot(varying_intercept_trace[1000:], varnames=['a'])









Out[24]:






<matplotlib.gridspec.GridSpec at 0x12feda6d8>
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In [25]:






plot_posterior(varying_intercept_trace[1000:], varnames=['sigma_a', 'b'])









Out[25]:






array([<matplotlib.axes._subplots.AxesSubplot object at 0x1307c6d68>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x1308f4710>], dtype=object)
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The estimate for the floor coefficient is approximately -0.66, which
can be interpreted as houses without basements having about half
(\(\exp(-0.66) = 0.52\)) the radon levels of those with basements,
after accounting for county.



In [26]:






from pymc3 import summary

summary(varying_intercept_trace, varnames=['b'])














b:

  Mean             SD               MC Error         95% HPD interval
  -------------------------------------------------------------------

  -0.660           0.068            0.002            [-0.794, -0.532]

  Posterior quantiles:
  2.5            25             50             75             97.5
  |--------------|==============|==============|--------------|

  -0.787         -0.706         -0.661         -0.615         -0.525









In [27]:






xvals = np.arange(2)
bp = varying_intercept_trace[a, 1000:].mean(axis=0)
mp = varying_intercept_trace[b, 1000:].mean()
for bi in bp:
    plt.plot(xvals, mp*xvals + bi, 'bo-', alpha=0.4)
plt.xlim(-0.1,1.1);
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It is easy to show that the partial pooling model provides more
objectively reasonable estimates than either the pooled or unpooled
models, at least for counties with small sample sizes.



In [28]:






fig, axes = plt.subplots(2, 4, figsize=(12, 6), sharey=True, sharex=True)
axes = axes.ravel()
for i,c in enumerate(sample_counties):

    # Plot county data
    y = srrs_mn.log_radon[srrs_mn.county==c]
    x = srrs_mn.floor[srrs_mn.county==c]
    axes[i].scatter(x + np.random.randn(len(x))*0.01, y, alpha=0.4)

    # No pooling model
    m,b = unpooled_estimates[['floor', c]]

    xvals = np.linspace(-0.2, 1.2)
    # Unpooled estimate
    axes[i].plot(xvals, m*xvals+b)
    # Pooled estimate
    axes[i].plot(xvals, m0*xvals+b0, 'r--')
    # Partial pooling esimate
    axes[i].plot(xvals, mp*xvals+bp[county_lookup[c]], 'k:')
    axes[i].set_xticks([0,1])
    axes[i].set_xticklabels(['basement', 'floor'])
    axes[i].set_ylim(-1, 3)
    axes[i].set_title(c)
    if not i%2:
        axes[i].set_ylabel('log radon level')
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Varying slope model

Alternatively, we can posit a model that allows the counties to vary
according to how the location of measurement (basement or floor)
influences the radon reading.


\[y_i = \alpha + \beta_{j[i]} x_{i} + \epsilon_i\]



In [29]:






with Model() as varying_slope:

    # Priors
    mu_b = Normal('mu_b', mu=0., sd=1e5)
    sigma_b = HalfCauchy('sigma_b', 5)

    # Common intercepts
    a = Normal('a', mu=0., sd=1e5)
    # Random slopes
    b = Normal('b', mu=mu_b, sd=sigma_b, shape=counties)

    # Model error
    sigma_y = HalfCauchy('sigma_y',5)

    # Expected value
    y_hat = a + b[county] * floor_measure

    # Data likelihood
    y_like = Normal('y_like', mu=y_hat, sd=sigma_y, observed=log_radon)









In [30]:






with varying_slope:
    varying_slope_trace = sample(2000, n_init=50000, tune=1000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 1,124.6: 100%|██████████| 50000/50000 [00:13<00:00, 3759.25it/s]
Finished [100%]: Average Loss = 1,124.6
100%|█████████▉| 1998/2000 [00:12<00:00, 172.69it/s]/Users/fonnescj/Repos/pymc3/pymc3/step_methods/hmc/nuts.py:268: UserWarning: The acceptance probability in chain 0 does not match the target. It is 0.655412161099, but should be close to 0.8. Try to increase the number of tuning steps.
  % (chain, mean_accept, target_accept))
100%|██████████| 2000/2000 [00:12<00:00, 160.72it/s]








In [38]:






plt.figure(figsize=(6,14))
forestplot(varying_slope_trace[1000:], varnames=['b'])









Out[38]:






<matplotlib.gridspec.GridSpec at 0x13497aef0>
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In [32]:






xvals = np.arange(2)
b = varying_slope_trace['a', 1000:].mean()
m = varying_slope_trace['b', 1000:].mean(axis=0)
for mi in m:
    plt.plot(xvals, mi*xvals + b, 'bo-', alpha=0.4)
plt.xlim(-0.2, 1.2);
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Varying intercept and slope model

The most general model allows both the intercept and slope to vary by
county:


\[y_i = \alpha_{j[i]} + \beta_{j[i]} x_{i} + \epsilon_i\]



In [33]:






with Model() as varying_intercept_slope:

    # Priors
    mu_a = Normal('mu_a', mu=0., sd=1e5)
    sigma_a = HalfCauchy('sigma_a', 5)
    mu_b = Normal('mu_b', mu=0., sd=1e5)
    sigma_b = HalfCauchy('sigma_b', 5)

    # Random intercepts
    a = Normal('a', mu=mu_a, sd=sigma_a, shape=counties)
    # Random slopes
    b = Normal('b', mu=mu_b, sd=sigma_b, shape=counties)

    # Model error
    sigma_y = Uniform('sigma_y', lower=0, upper=100)

    # Expected value
    y_hat = a[county] + b[county] * floor_measure

    # Data likelihood
    y_like = Normal('y_like', mu=y_hat, sd=sigma_y, observed=log_radon)









In [34]:






with varying_intercept_slope:
    varying_intercept_slope_trace = sample(2000, n_init=50000, tune=1000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 1,093.1: 100%|██████████| 50000/50000 [00:19<00:00, 2551.95it/s]
Finished [100%]: Average Loss = 1,093.1
100%|██████████| 2000/2000 [00:17<00:00, 116.26it/s]








In [35]:






plt.figure(figsize=(6,16))
forestplot(varying_intercept_slope_trace[1000:], varnames=['a','b'])









Out[35]:






<matplotlib.gridspec.GridSpec at 0x12fd556d8>
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In [36]:






xvals = np.arange(2)
b = varying_intercept_slope_trace['a', 1000:].mean(axis=0)
m = varying_intercept_slope_trace['b', 1000:].mean(axis=0)
for bi,mi in zip(b,m):
    plt.plot(xvals, mi*xvals + bi, 'bo-', alpha=0.4)
plt.xlim(-0.1, 1.1);
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Adding group-level predictors

A primary strength of multilevel models is the ability to handle
predictors on multiple levels simultaneously. If we consider the
varying-intercepts model above:


\[y_i = \alpha_{j[i]} + \beta x_{i} + \epsilon_i\]

we may, instead of a simple random effect to describe variation in the
expected radon value, specify another regression model with a
county-level covariate. Here, we use the county uranium reading
\(u_j\), which is thought to be related to radon levels:


\[\alpha_j = \gamma_0 + \gamma_1 u_j + \zeta_j\]


\[\zeta_j \sim N(0, \sigma_{\alpha}^2)\]

Thus, we are now incorporating a house-level predictor (floor or
basement) as well as a county-level predictor (uranium).

Note that the model has both indicator variables for each county, plus a
county-level covariate. In classical regression, this would result in
collinearity. In a multilevel model, the partial pooling of the
intercepts towards the expected value of the group-level linear model
avoids this.

Group-level predictors also serve to reduce group-level variation
\(\sigma_{\alpha}\). An important implication of this is that the
group-level estimate induces stronger pooling.



In [39]:






from pymc3 import Deterministic

with Model() as hierarchical_intercept:

    # Priors
    sigma_a = HalfCauchy('sigma_a', 5)

    # County uranium model for slope
    gamma_0 = Normal('gamma_0', mu=0., sd=1e5)
    gamma_1 = Normal('gamma_1', mu=0., sd=1e5)


    # Uranium model for intercept
    mu_a = gamma_0 + gamma_1*u
    # County variation not explained by uranium
    eps_a = Normal('eps_a', mu=0, sd=sigma_a, shape=counties)
    a = Deterministic('a', mu_a + eps_a[county])

    # Common slope
    b = Normal('b', mu=0., sd=1e5)

    # Model error
    sigma_y = Uniform('sigma_y', lower=0, upper=100)

    # Expected value
    y_hat = a + b * floor_measure

    # Data likelihood
    y_like = Normal('y_like', mu=y_hat, sd=sigma_y, observed=log_radon)









In [40]:






with hierarchical_intercept:
    hierarchical_intercept_trace = sample(2000, n_init=50000, tune=1000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 1,081.6: 100%|██████████| 50000/50000 [00:12<00:00, 3866.91it/s]
Finished [100%]: Average Loss = 1,081.6
100%|██████████| 2000/2000 [00:08<00:00, 228.08it/s]








In [41]:






a_means = hierarchical_intercept_trace['a', 1000:].mean(axis=0)
plt.scatter(u, a_means)
g0 = hierarchical_intercept_trace['gamma_0'].mean()
g1 = hierarchical_intercept_trace['gamma_1'].mean()
xvals = np.linspace(-1, 0.8)
plt.plot(xvals, g0+g1*xvals, 'k--')
plt.xlim(-1, 0.8)

a_se = hierarchical_intercept_trace['a', 1000:].std(axis=0)
for ui, m, se in zip(u, a_means, a_se):
    plt.plot([ui,ui], [m-se, m+se], 'b-')
plt.xlabel('County-level uranium'); plt.ylabel('Intercept estimate');
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The standard errors on the intercepts are narrower than for the
partial-pooling model without a county-level covariate.






Correlations among levels

In some instances, having predictors at multiple levels can reveal
correlation between individual-level variables and group residuals. We
can account for this by including the average of the individual
predictors as a covariate in the model for the group intercept.


\[\alpha_j = \gamma_0 + \gamma_1 u_j + \gamma_2 \bar{x} + \zeta_j\]

These are broadly referred to as *contextual effects*.



In [42]:






# Create new variable for mean of floor across counties
xbar = srrs_mn.groupby('county')['floor'].mean().rename(county_lookup).values









In [43]:






with Model() as contextual_effect:

    # Priors
    sigma_a = HalfCauchy('sigma_a', 5)

    # County uranium model for slope
    gamma = Normal('gamma', mu=0., sd=1e5, shape=3)

    # Uranium model for intercept
    mu_a = Deterministic('mu_a', gamma[0] + gamma[1]*u.values + gamma[2]*xbar[county])

    # County variation not explained by uranium
    eps_a = Normal('eps_a', mu=0, sd=sigma_a, shape=counties)
    a = Deterministic('a', mu_a + eps_a[county])

    # Common slope
    b = Normal('b', mu=0., sd=1e15)

    # Model error
    sigma_y = Uniform('sigma_y', lower=0, upper=100)

    # Expected value
    y_hat = a + b * floor_measure

    # Data likelihood
    y_like = Normal('y_like', mu=y_hat, sd=sigma_y, observed=log_radon)









In [44]:






with contextual_effect:
    contextual_effect_trace = sample(2000, n_init=50000, tune=1000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 1,116.3: 100%|██████████| 50000/50000 [00:12<00:00, 4108.64it/s]
Finished [100%]: Average Loss = 1,116.3
100%|██████████| 2000/2000 [00:11<00:00, 168.51it/s]








In [45]:






forestplot(contextual_effect_trace[1000:], varnames=['gamma'])









Out[45]:






<matplotlib.gridspec.GridSpec at 0x132e21b00>
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In [46]:






summary(contextual_effect_trace[1000:], varnames=['gamma'])














gamma:

  Mean             SD               MC Error         95% HPD interval
  -------------------------------------------------------------------

  1.424            0.047            0.003            [1.337, 1.519]
  0.697            0.081            0.003            [0.537, 0.853]
  0.395            0.183            0.010            [0.026, 0.754]

  Posterior quantiles:
  2.5            25             50             75             97.5
  |--------------|==============|==============|--------------|

  1.335          1.392          1.424          1.456          1.519
  0.537          0.645          0.696          0.752          0.853
  0.015          0.281          0.396          0.513          0.753







So, we might infer from this that counties with higher proportions of
houses without basements tend to have higher baseline levels of radon.
Perhaps this is related to the soil type, which in turn might influence
what type of structures are built.




Prediction

Gelman (2006) used cross-validation tests to check the prediction error
of the unpooled, pooled, and partially-pooled models

root mean squared cross-validation prediction errors:


	unpooled = 0.86

	pooled = 0.84

	multilevel = 0.79



There are two types of prediction that can be made in a multilevel
model:


	a new individual within an existing group

	a new individual within a new group



For example, if we wanted to make a prediction for a new house with no
basement in St. Louis county, we just need to sample from the radon
model with the appropriate intercept.



In [47]:






county_lookup['ST LOUIS']









Out[47]:






69







That is,


\[\tilde{y}_i \sim N(\alpha_{69} + \beta (x_i=1), \sigma_y^2)\]

This is simply a matter of adding a single additional line in PyMC:



In [48]:






with Model() as contextual_pred:

    # Priors
    sigma_a = HalfCauchy('sigma_a', 5)

    # County uranium model for slope
    gamma = Normal('gamma', mu=0., sd=1e5, shape=3)

    # Uranium model for intercept
    mu_a = Deterministic('mu_a', gamma[0] + gamma[1]*u.values + gamma[2]*xbar[county])

    # County variation not explained by uranium
    eps_a = Normal('eps_a', mu=0, sd=sigma_a, shape=counties)
    a = Deterministic('a', mu_a + eps_a[county])

    # Common slope
    b = Normal('b', mu=0., sd=1e15)

    # Model error
    sigma_y = Uniform('sigma_y', lower=0, upper=100)

    # Expected value
    y_hat = a + b * floor_measure

    # Data likelihood
    y_like = Normal('y_like', mu=y_hat, sd=sigma_y, observed=log_radon)

    # St Louis county prediction
    stl_pred = Normal('stl_pred', mu=a[69] + b, sd=sigma_y)









In [49]:






with contextual_pred:
    contextual_pred_trace = sample(2000, n_init=50000, tune=1000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 1,116.3: 100%|██████████| 50000/50000 [00:12<00:00, 3890.22it/s]
Finished [100%]: Average Loss = 1,116.3
100%|██████████| 2000/2000 [00:15<00:00, 131.23it/s]








In [50]:






plot_posterior(contextual_pred_trace[1000:], varnames=['stl_pred'])









Out[50]:






array([<matplotlib.axes._subplots.AxesSubplot object at 0x12d950208>], dtype=object)
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Benefits of Multilevel Models

Accounting for natural hierarchical structure of observational data

Estimation of coefficients for (under-represented) groups

Incorporating individual- and group-level information when estimating
group-level coefficients

Allowing for variation among individual-level coefficients across groups
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Stochastic Volatility model



In [1]:






import numpy as np
import pymc3 as pm
from pymc3.distributions.timeseries import GaussianRandomWalk

from scipy import optimize

%pylab inline













Populating the interactive namespace from numpy and matplotlib






Asset prices have time-varying volatility (variance of day over day
returns). In some periods, returns are highly variable, while in
others very stable. Stochastic volatility models model this with a
latent volatility variable, modeled as a stochastic process. The
following model is similar to the one described in the No-U-Turn Sampler
paper, Hoffman (2011) p21.


\[\sigma \sim Exponential(50)\]


\[\nu \sim Exponential(.1)\]


\[s_i \sim Normal(s_{i-1}, \sigma^{-2})\]


\[log(\frac{y_i}{y_{i-1}}) \sim t(\nu, 0, exp(-2 s_i))\]

Here, \(y\) is the daily return series and \(s\) is the latent
log volatility process.


Build Model

First we load some daily returns of the S&P 500.



In [2]:






n = 400
returns = np.genfromtxt(pm.get_data("SP500.csv"))[-n:]
returns[:5]









Out[2]:






array([-0.00637 , -0.004045, -0.02547 ,  0.005102, -0.047733])









In [3]:






plt.plot(returns)









Out[3]:






[<matplotlib.lines.Line2D at 0x7fae8c869a20>]
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Specifying the model in pymc3 mirrors its statistical specification.



In [4]:






model = pm.Model()
with model:
    sigma = pm.Exponential('sigma', 1./.02, testval=.1)

    nu = pm.Exponential('nu', 1./10)
    s = GaussianRandomWalk('s', sigma**-2, shape=n)

    r = pm.StudentT('r', nu, lam=pm.math.exp(-2*s), observed=returns)










Fit Model

For this model, the full maximum a posteriori (MAP) point is degenerate
and has infinite density. To get good convergence with NUTS we use ADVI
(autodiff variational inference) for initialization.



In [9]:






with model:
    trace = pm.sample(2000, tune=1000)[1000:]













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 7.9136: 100%|██████████| 200000/200000 [01:14<00:00, 2691.66it/s]
Finished [100%]: Average Loss = 7.896
100%|██████████| 2000/2000 [04:47<00:00,  8.48it/s]/home/jovyan/pymc3/pymc3/step_methods/hmc/nuts.py:255: UserWarning: Chain 0 reached the maximum tree depth. Increase max_treedepth, increase target_accept or reparameterize.
  'reparameterize.' % chain)
/home/jovyan/pymc3/pymc3/step_methods/hmc/nuts.py:268: UserWarning: The acceptance probability in chain 0 does not match the target. It is 0.688505126364, but should be close to 0.8. Try to increase the number of tuning steps.
  % (chain, mean_accept, target_accept))









In [10]:






figsize(12,6)
pm.traceplot(trace, model.vars[:-1]);
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In [11]:






figsize(12,6)
title(str(s))
plot(trace[s][::10].T, 'b', alpha=.03);
xlabel('time')
ylabel('log volatility')









Out[11]:






<matplotlib.text.Text at 0x7fae6019f8d0>
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Looking at the returns over time and overlaying the estimated standard
deviation we can see how the model tracks the volatility over time.



In [12]:






plot(np.abs(returns))
plot(np.exp(trace[s][::10].T), 'r', alpha=.03);
sd = np.exp(trace[s].T)
xlabel('time')
ylabel('absolute returns')









Out[12]:






<matplotlib.text.Text at 0x7fae64197c50>
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A Hierarchical model for Rugby prediction


	@Author: Peadar Coyle

	@email: peadarcoyle@googlemail.com

	@date: 31/12/15



I came across the following blog post on
http://danielweitzenfeld.github.io/passtheroc/blog/2014/10/28/bayes-premier-league/


	Based on the work of Baio and
Blangiardo



In this example, we’re going to reproduce the first model described in
the paper using PyMC3.

Since I am a rugby fan I decide to apply the results of the paper
Bayesian Football to the Six Nations. Rugby is a physical sport popular
worldwide.


	Six Nations consists of Italy, Ireland, Scotland, England, France and
Wales

	Game consists of scoring tries (similar to touch downs) or kicking
the goal.

	Average player is something like 100kg and 1.82m tall.

	Paul O’Connell the Irish captain is Height: 6’ 6” (1.98 m) Weight:
243 lbs (110 kg)



We will use a data set only consisting of the Six Nations 2014 data, and
use this to build a generative and explainable model about the Six
Nations 2015.


Motivation

Your estimate of the strength of a team depends on your estimates of the
other strengths

Ireland are a stronger team than Italy for example - but by how much?

Source for Results 2014 are Wikipedia.


	We want to infer a latent parameter - that is the ‘strength’ of a
team based only on their scoring intensity, and all we have are
their scores and results, we can’t accurately measure the ‘strength’
of a team.

	Probabilistic Programming is a brilliant paradigm for modeling these
latent parameters





In [1]:






!date

import numpy as np
import pandas as pd
try:
    from StringIO import StringIO
except ImportError:
    from io import StringIO
%matplotlib inline
import pymc3 as pm, theano.tensor as tt













Fr 2. Jun 03:22:20 CEST 2017






This is a Rugby prediction exercise. So we’ll input some data



In [2]:






data_csv = StringIO("""home_team,away_team,home_score,away_score
Wales,Italy,23,15
France,England,26,24
Ireland,Scotland,28,6
Ireland,Wales,26,3
Scotland,England,0,20
France,Italy,30,10
Wales,France,27,6
Italy,Scotland,20,21
England,Ireland,13,10
Ireland,Italy,46,7
Scotland,France,17,19
England,Wales,29,18
Italy,England,11,52
Wales,Scotland,51,3
France,Ireland,20,22""")










What do we want to infer?


	We want to infer the latent paremeters (every team’s strength) that
are generating the data we observe (the scorelines).

	Moreover, we know that the scorelines are a noisy measurement of team
strength, so ideally, we want a model that makes it easy to quantify
our uncertainty about the underlying strengths.

	Often we don’t know what the Bayesian Model is explicitly, so we have
to ‘estimate’ the Bayesian Model’

	If we can’t solve something, approximate it.

	Markov-Chain Monte Carlo (MCMC) instead draws samples from the
posterior.

	Fortunately, this algorithm can be applied to almost any model.






What do we want?


	We want to quantify our uncertainty

	We want to also use this to generate a model

	We want the answers as distributions not point estimates






What assumptions do we know for our ‘generative story’?


	We know that the Six Nations in Rugby only has 6 teams - they each
play each other once

	We have data from last year!

	We also know that in sports scoring is modelled as a Poisson
distribution

	We consider home advantage to be a strong effect in sports






The model.

The league is made up by a total of T= 6 teams, playing each other once
in a season. We indicate the number of points scored by the home and the
away team in the g-th game of the season (15 games) as \(y_{g1}\)
and \(y_{g2}\) respectively.
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Bayesian Survival Analysis

Author: Austin Rochford

Survival analysis [https://en.wikipedia.org/wiki/Survival_analysis]
studies the distribution of the time to an event. Its applications span
many fields across medicine, biology, engineering, and social science.
This tutorial shows how to fit and analyze a Bayesian survival model in
Python using PyMC3 [https://pymc-devs.github.io/pymc3].

We illustrate these concepts by analyzing a mastectomy data
set [https://vincentarelbundock.github.io/Rdatasets/doc/HSAUR/mastectomy.html]
from R‘s
HSAUR [https://cran.r-project.org/web/packages/HSAUR/index.html]
package.



In [1]:






%matplotlib inline









In [2]:






from matplotlib import pyplot as plt
import numpy as np
import pymc3 as pm
from pymc3.distributions.timeseries import GaussianRandomWalk
import seaborn as sns
from statsmodels import datasets
from theano import tensor as T













Couldn't import dot_parser, loading of dot files will not be possible.






Fortunately,
statsmodels.datasets [http://statsmodels.sourceforge.net/0.6.0/datasets/index.html]
makes it quite easy to load a number of data sets from R.



In [3]:






df = datasets.get_rdataset('mastectomy', 'HSAUR', cache=True).data
df.event = df.event.astype(np.int64)
df.metastized = (df.metastized == 'yes').astype(np.int64)
n_patients = df.shape[0]
patients = np.arange(n_patients)









In [4]:






df.head()









Out[4]:








  
    
      	
      	time
      	event
      	metastized
    

  
  
    
      	0
      	23
      	1
      	0
    

    
      	1
      	47
      	1
      	0
    

    
      	2
      	69
      	1
      	0
    

    
      	3
      	70
      	0
      	0
    

    
      	4
      	100
      	0
      	0
    

  









In [5]:






n_patients









Out[5]:






44







Each row represents observations from a woman diagnosed with breast
cancer that underwent a mastectomy. The column time represents the
time (in months) post-surgery that the woman was observed. The column
event indicates whether or not the woman died during the observation
period. The column metastized represents whether the cancer had
metastized [https://en.wikipedia.org/wiki/Metastatic_breast_cancer]
prior to surgery.

This tutorial analyzes the relationship between survival time
post-mastectomy and whether or not the cancer had metastized.


A crash course in survival analysis

First we introduce a (very little) bit of theory. If the random variable
\(T\) is the time to the event we are studying, survival analysis is
primarily concerned with the survival function


\[S(t) = P(T > t) = 1 - F(t),\]

where \(F\) is the
CDF [https://en.wikipedia.org/wiki/Cumulative_distribution_function]
of \(T\). It is mathematically convenient to express the survival
function in terms of the hazard
rate [https://en.wikipedia.org/wiki/Survival_analysis#Hazard_function_and_cumulative_hazard_function],
\(\lambda(t)\). The hazard rate is the instantaneous probability
that the event occurs at time \(t\) given that it has not yet
occured. That is,


\[\begin{split}\begin{align*}
\lambda(t)
    & = \lim_{\Delta t \to 0} \frac{P(t < T < t + \Delta t\ |\ T > t)}{\Delta t} \\
    & = \lim_{\Delta t \to 0} \frac{P(t < T < t + \Delta t)}{\Delta t \cdot P(T > t)} \\
    & = \frac{1}{S(t)} \cdot \lim_{\Delta t \to 0} \frac{S(t + \Delta t) - S(t)}{\Delta t}
      = -\frac{S'(t)}{S(t)}.
\end{align*}\end{split}\]

Solving this differential equation for the survival function shows that


\[S(t) = \exp\left(-\int_0^s \lambda(s)\ ds\right).\]

This representation of the survival function shows that the cumulative
hazard function


\[\Lambda(t) = \int_0^t \lambda(s)\ ds\]

is an important quantity in survival analysis, since we may consicesly
write \(S(t) = \exp(-\Lambda(t)).\)

An important, but subtle, point in survival analysis is
censoring [https://en.wikipedia.org/wiki/Survival_analysis#Censoring].
Even though the quantity we are interested in estimating is the time
between surgery and death, we do not observe the death of every subject.
At the point in time that we perform our analysis, some of our subjects
will thankfully still be alive. In the case of our mastectomy study,
df.event is one if the subject’s death was observed (the observation
is not censored) and is zero if the death was not observed (the
observation is censored).



In [6]:






df.event.mean()









Out[6]:






0.59090909090909094







Just over 40% of our observations are censored. We visualize the
observed durations and indicate which observations are censored below.



In [7]:






fig, ax = plt.subplots(figsize=(8, 6))

blue, _, red = sns.color_palette()[:3]

ax.hlines(patients[df.event.values == 0], 0, df[df.event.values == 0].time,
          color=blue, label='Censored')

ax.hlines(patients[df.event.values == 1], 0, df[df.event.values == 1].time,
          color=red, label='Uncensored')

ax.scatter(df[df.metastized.values == 1].time, patients[df.metastized.values == 1],
           color='k', zorder=10, label='Metastized')

ax.set_xlim(left=0)
ax.set_xlabel('Months since mastectomy')
ax.set_yticks([])
ax.set_ylabel('Subject')

ax.set_ylim(-0.25, n_patients + 0.25)

ax.legend(loc='center right');
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When an observation is censored (df.event is zero), df.time is
not the subject’s survival time. All we can conclude from such a
censored obsevation is that the subject’s true survival time exceeds
df.time.

This is enough basic surival analysis theory for the purposes of this
tutorial; for a more extensive introduction, consult Aalen et al. [1]_




	[1]	Aalen, Odd, Ornulf Borgan, and Hakon Gjessing. Survival and event
history analysis: a process point of view. Springer Science &
Business Media, 2008.







Bayesian proportional hazards model

The two most basic estimators in survial analysis are the Kaplan-Meier
estimator [https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator]
of the survival function and the Nelson-Aalen
estimator [https://en.wikipedia.org/wiki/Nelson%E2%80%93Aalen_estimator]
of the cumulative hazard function. However, since we want to understand
the impact of metastization on survival time, a risk regression model is
more appropriate. Perhaps the most commonly used risk regression model
is Cox’s proportional hazards
model [https://en.wikipedia.org/wiki/Proportional_hazards_model]. In
this model, if we have covariates \(\mathbf{x}\) and regression
coefficients \(\beta\), the hazard rate is modeled as


\[\lambda(t) = \lambda_0(t) \exp(\mathbf{x} \beta).\]

Here \(\lambda_0(t)\) is the baseline hazard, which is independent
of the covariates \(\mathbf{x}\). In this example, the covariates
are the one-dimensonal vector df.metastized.

Unlike in many regression situations, \(\mathbf{x}\) should not
include a constant term corresponding to an intercept. If
\(\mathbf{x}\) includes a constant term corresponding to an
intercept, the model becomes
unidentifiable [https://en.wikipedia.org/wiki/Identifiability]. To
illustrate this unidentifiability, suppose that


\[\lambda(t) = \lambda_0(t) \exp(\beta_0 + \mathbf{x} \beta) = \lambda_0(t) \exp(\beta_0) \exp(\mathbf{x} \beta).\]

If \(\tilde{\beta}_0 = \beta_0 + \delta\) and
\(\tilde{\lambda}_0(t) = \lambda_0(t) \exp(-\delta)\), then
\(\lambda(t) = \tilde{\lambda}_0(t) \exp(\tilde{\beta}_0 + \mathbf{x} \beta)\)
as well, making the model with \(\beta_0\) unidentifiable.

In order to perform Bayesian inference with the Cox model, we must
specify priors on \(\beta\) and \(\lambda_0(t)\). We place a
normal prior on \(\beta\),
\(\beta \sim N(\mu_{\beta}, \sigma_{\beta}^2),\) where
\(\mu_{\beta} \sim N(0, 10^2)\) and
\(\sigma_{\beta} \sim U(0, 10)\).

A suitable prior on \(\lambda_0(t)\) is less obvious. We choose a
semiparametric prior, where \(\lambda_0(t)\) is a piecewise constant
function. This prior requires us to partition the time range in question
into intervals with endpoints \(0 \leq s_1 < s_2 < \cdots < s_N\).
With this partition, \(\lambda_0 (t) = \lambda_j\) if
\(s_j \leq t < s_{j + 1}\). With \(\lambda_0(t)\) constrained to
have this form, all we need to do is choose priors for the \(N - 1\)
values \(\lambda_j\). We use independent vague priors
\(\lambda_j \sim \operatorname{Gamma}(10^{-2}, 10^{-2}).\) For our
mastectomy example, we make each interval three months long.



In [8]:






interval_length = 3
interval_bounds = np.arange(0, df.time.max() + interval_length + 1, interval_length)
n_intervals = interval_bounds.size - 1
intervals = np.arange(n_intervals)







We see how deaths and censored observations are distributed in these
intervals.



In [9]:






fig, ax = plt.subplots(figsize=(8, 6))

ax.hist(df[df.event == 1].time.values, bins=interval_bounds,
        color=red, alpha=0.5, lw=0,
        label='Uncensored');
ax.hist(df[df.event == 0].time.values, bins=interval_bounds,
        color=blue, alpha=0.5, lw=0,
        label='Censored');

ax.set_xlim(0, interval_bounds[-1]);
ax.set_xlabel('Months since mastectomy');

ax.set_yticks([0, 1, 2, 3]);
ax.set_ylabel('Number of observations');

ax.legend();
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With the prior distributions on \(\beta\) and \(\lambda_0(t)\)
chosen, we now show how the model may be fit using MCMC simulation with
pymc3. The key observation is that the piecewise-constant
proportional hazard model is closely
related [http://data.princeton.edu/wws509/notes/c7s4.html] to a
Poisson regression model. (The models are not identical, but their
likelihoods differ by a factor that depends only on the observed data
and not the parameters \(\beta\) and \(\lambda_j\). For details,
see Germán Rodríguez’s WWS 509 course
notes [http://data.princeton.edu/wws509/notes/c7s4.html].)

We define indicator variables based on whether or the \(i\)-th
suject died in the \(j\)-th interval,


\[\begin{split}d_{i, j} = \begin{cases}
    1 & \textrm{if subject } i \textrm{ died in interval } j \\
    0 & \textrm{otherwise}
\end{cases}.\end{split}\]



In [10]:






last_period = np.floor((df.time - 0.01) / interval_length).astype(int)

death = np.zeros((n_patients, n_intervals))
death[patients, last_period] = df.event







We also define \(t_{i, j}\) to be the amount of time the
\(i\)-th subject was at risk in the \(j\)-th interval.



In [11]:






exposure = np.greater_equal.outer(df.time, interval_bounds[:-1]) * interval_length
exposure[patients, last_period] = df.time - interval_bounds[last_period]







Finally, denote the risk incurred by the \(i\)-th subject in the
\(j\)-th interval as
\(\lambda_{i, j} = \lambda_j \exp(\mathbf{x}_i \beta)\).

We may approximate \(d_{i, j}\) with a Possion random variable with
mean \(t_{i, j}\ \lambda_{i, j}\). This approximation leads to the
following pymc3 model.



In [12]:






SEED = 5078864 # from random.org









In [13]:






with pm.Model() as model:

    lambda0 = pm.Gamma('lambda0', 0.01, 0.01, shape=n_intervals)

    beta = pm.Normal('beta', 0, sd=1000)

    lambda_ = pm.Deterministic('lambda_', T.outer(T.exp(beta * df.metastized), lambda0))
    mu = pm.Deterministic('mu', exposure * lambda_)

    obs = pm.Poisson('obs', mu, observed=death)













Applied log-transform to lambda0 and added transformed lambda0_log to model.






We now sample from the model.



In [14]:






n_samples = 1000









In [15]:






with model:
    trace_ = pm.sample(n_samples,random_seed=SEED)













Assigned NUTS to lambda0_log
Assigned NUTS to beta
 [-----------------100%-----------------] 1001 of 1000 complete in 246.7 sec








In [17]:






trace = trace_[100:]







We see that the hazard rate for subjects whose cancer has metastized is
about double the rate of those whose cancer has not metastized.



In [34]:






np.exp(trace['beta'].mean())









Out[34]:






2.1839971003209597









In [18]:






pm.plot_posterior(trace, varnames=['beta'], color='#87ceeb');
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In [19]:






pm.autocorrplot(trace, varnames=['beta']);
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We now examine the effect of metastization on both the cumulative hazard
and on the survival function.



In [20]:






base_hazard = trace['lambda0']
met_hazard = trace['lambda0'] * np.exp(np.atleast_2d(trace['beta']).T)









In [21]:






def cum_hazard(hazard):
    return (interval_length * hazard).cumsum(axis=-1)

def survival(hazard):
    return np.exp(-cum_hazard(hazard))









In [22]:






def plot_with_hpd(x, hazard, f, ax, color=None, label=None, alpha=0.05):
    mean = f(hazard.mean(axis=0))

    percentiles = 100 * np.array([alpha / 2., 1. - alpha / 2.])
    hpd = np.percentile(f(hazard), percentiles, axis=0)

    ax.fill_between(x, hpd[0], hpd[1], color=color, alpha=0.25)
    ax.step(x, mean, color=color, label=label);









In [23]:






fig, (hazard_ax, surv_ax) = plt.subplots(ncols=2, sharex=True, sharey=False, figsize=(16, 6))

plot_with_hpd(interval_bounds[:-1], base_hazard, cum_hazard,
              hazard_ax, color=blue, label='Had not metastized')
plot_with_hpd(interval_bounds[:-1], met_hazard, cum_hazard,
              hazard_ax, color=red, label='Metastized')

hazard_ax.set_xlim(0, df.time.max());
hazard_ax.set_xlabel('Months since mastectomy');

hazard_ax.set_ylabel(r'Cumulative hazard $\Lambda(t)$');

hazard_ax.legend(loc=2);

plot_with_hpd(interval_bounds[:-1], base_hazard, survival,
              surv_ax, color=blue)
plot_with_hpd(interval_bounds[:-1], met_hazard, survival,
              surv_ax, color=red)

surv_ax.set_xlim(0, df.time.max());
surv_ax.set_xlabel('Months since mastectomy');

surv_ax.set_ylabel('Survival function $S(t)$');

fig.suptitle('Bayesian survival model');
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We see that the cumulative hazard for metastized subjects increases more
rapidly initially (through about seventy months), after which it
increases roughly in parallel with the baseline cumulative hazard.

These plots also show the pointwise 95% high posterior density interval
for each function. One of the distinct advantages of the Bayesian model
fit with pymc3 is the inherent quantification of uncertainty in our
estimates.


Time varying effects

Another of the advantages of the model we have built is its flexibility.
From the plots above, we may reasonable believe that the additional
hazard due to metastization varies over time; it seems plausible that
cancer that has metastized increases the hazard rate immediately after
the mastectomy, but that the risk due to metastization decreases over
time. We can accomodate this mechanism in our model by allowing the
regression coefficients to vary over time. In the time-varying
coefficent model, if \(s_j \leq t < s_{j + 1}\), we let
\(\lambda(t) = \lambda_j \exp(\mathbf{x} \beta_j).\) The sequence of
regression coefficients \(\beta_1, \beta_2, \ldots, \beta_{N - 1}\)
form a normal random walk with \(\beta_1 \sim N(0, 1)\),
\(\beta_j\ |\ \beta_{j - 1} \sim N(\beta_{j - 1}, 1)\).

We implement this model in pymc3 as follows.



In [24]:






with pm.Model() as time_varying_model:

    lambda0 = pm.Gamma('lambda0', 0.01, 0.01, shape=n_intervals)
    beta = GaussianRandomWalk('beta', tau=1., shape=n_intervals)

    lambda_ = pm.Deterministic('h', lambda0 * T.exp(T.outer(T.constant(df.metastized), beta)))
    mu = pm.Deterministic('mu', exposure * lambda_)

    obs = pm.Poisson('obs', mu, observed=death)













Applied log-transform to lambda0 and added transformed lambda0_log to model.






We proceed to sample from this model.



In [25]:






with time_varying_model:
    time_varying_trace_ = pm.sample(n_samples, random_seed=SEED)













Assigned NUTS to lambda0_log
Assigned NUTS to beta
 [-----------------100%-----------------] 1001 of 1000 complete in 949.5 sec








In [26]:






time_varying_trace = time_varying_trace_[100:]









In [27]:






pm.forestplot(time_varying_trace, varnames=['beta']);
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We see from the plot of \(\beta_j\) over time below that initially
\(\beta_j > 0\), indicating an elevated hazard rate due to
metastization, but that this risk declines as \(\beta_j < 0\)
eventually.



In [28]:






fig, ax = plt.subplots(figsize=(8, 6))

beta_hpd = np.percentile(time_varying_trace['beta'], [2.5, 97.5], axis=0)
beta_low = beta_hpd[0]
beta_high = beta_hpd[1]
ax.fill_between(interval_bounds[:-1], beta_low, beta_high,
                color=blue, alpha=0.25);
beta_hat = time_varying_trace['beta'].mean(axis=0)
ax.step(interval_bounds[:-1], beta_hat, color=blue);
ax.scatter(interval_bounds[last_period[(df.event.values == 1) & (df.metastized == 1)]],
           beta_hat[last_period[(df.event.values == 1) & (df.metastized == 1)]],
           c=red, zorder=10, label='Died, cancer metastized');
ax.scatter(interval_bounds[last_period[(df.event.values == 0) & (df.metastized == 1)]],
           beta_hat[last_period[(df.event.values == 0) & (df.metastized == 1)]],
           c=blue, zorder=10, label='Censored, cancer metastized');

ax.set_xlim(0, df.time.max());
ax.set_xlabel('Months since mastectomy');

ax.set_ylabel(r'$\beta_j$');

ax.legend();
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The coefficients \(\beta_j\) begin declining rapidly around one
hundred months post-mastectomy, which seems reasonable, given that only
three of twelve subjects whose cancer had metastized lived past this
point died during the study.

The change in our estimate of the cumulative hazard and survival
functions due to time-varying effects is also quite apparent in the
following plots.



In [29]:






tv_base_hazard = time_varying_trace['lambda0']
tv_met_hazard = time_varying_trace['lambda0'] * np.exp(np.atleast_2d(time_varying_trace['beta']))









In [30]:






fig, ax = plt.subplots(figsize=(8, 6))

ax.step(interval_bounds[:-1], cum_hazard(base_hazard.mean(axis=0)),
        color=blue, label='Had not metastized');
ax.step(interval_bounds[:-1], cum_hazard(met_hazard.mean(axis=0)),
        color=red, label='Metastized');

ax.step(interval_bounds[:-1], cum_hazard(tv_base_hazard.mean(axis=0)),
        color=blue, linestyle='--', label='Had not metastized (time varying effect)');
ax.step(interval_bounds[:-1], cum_hazard(tv_met_hazard.mean(axis=0)),
        color=red, linestyle='--', label='Metastized (time varying effect)');

ax.set_xlim(0, df.time.max() - 4);
ax.set_xlabel('Months since mastectomy');

ax.set_ylim(0, 2);
ax.set_ylabel(r'Cumulative hazard $\Lambda(t)$');

ax.legend(loc=2);
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In [31]:






fig, (hazard_ax, surv_ax) = plt.subplots(ncols=2, sharex=True, sharey=False, figsize=(16, 6))

plot_with_hpd(interval_bounds[:-1], tv_base_hazard, cum_hazard,
              hazard_ax, color=blue, label='Had not metastized')
plot_with_hpd(interval_bounds[:-1], tv_met_hazard, cum_hazard,
              hazard_ax, color=red, label='Metastized')

hazard_ax.set_xlim(0, df.time.max());
hazard_ax.set_xlabel('Months since mastectomy');

hazard_ax.set_ylim(0, 2);
hazard_ax.set_ylabel(r'Cumulative hazard $\Lambda(t)$');

hazard_ax.legend(loc=2);

plot_with_hpd(interval_bounds[:-1], tv_base_hazard, survival,
              surv_ax, color=blue)
plot_with_hpd(interval_bounds[:-1], tv_met_hazard, survival,
              surv_ax, color=red)

surv_ax.set_xlim(0, df.time.max());
surv_ax.set_xlabel('Months since mastectomy');

surv_ax.set_ylabel('Survival function $S(t)$');

fig.suptitle('Bayesian survival model with time varying effects');
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We have really only scratched the surface of both survival analysis and
the Bayesian approach to survival analysis. More information on Bayesian
survival analysis is available in Ibrahim et al. [1]_ (For example, we
may want to account for individual frailty in either or original or
time-varying models.)

This tutorial is available as an IPython [http://ipython.org/]
notebook
here [https://gist.github.com/AustinRochford/4c6b07e51a2247d678d6].
It is adapted from a blog post that first appeared
here [http://austinrochford.com/posts/2015-10-05-bayes-survival.html].




	[1]	Ibrahim, Joseph G., Ming‐Hui Chen, and Debajyoti Sinha. Bayesian
survival analysis. John Wiley & Sons, Ltd, 2005.












          

      

      

    

  

  
    
    
    The Dawid-Skene model with priors
    
    

    
 
  
  

    
      
          
            
  


The Dawid-Skene model with priors

The Dawid-Skene model (1979) is perhaps one of the first models to
discover true item states/effects from multiple noisy measurements.
Since then, there have been multiple models that improve over the basic
model. This notebook covers the Dawid-Skene model which has been
enhanced with priors.

The model follows implementation in Rebecca J. Passonneau, Bob
Carpenter, “The Benefits of a Model of Annotation”, TACL, 2014.


Introduction

In healthcare, a number of patients can receive potentially noisy
judgments from several professionals. In computer science, work items of
different difficulty get labeled by multiple annotators of different
skill. In this notebook we will attempt to recover true work item labels
from noisy annotator input.

The primary goal is to recover the true item states. The secondary goal
is to estimate various additional factors of potential interest. We will
use probabilistic programming approach in attempt to solve the problem.



In [1]:






%matplotlib inline

import pymc3 as pm
import numpy as np
import matplotlib.pyplot as plt

from sklearn.metrics import confusion_matrix










Data

Load also the data matrix with following dimensions: work items,
annotators, categories. The data for this notebook has been taken from
https://github.com/abhishekmalali/questioning-strategy-classification/tree/master/data

Note: The data in this notebook is organized in matrix where each work
item gets exactly one response for each work item. This is often not
possible in practice. The discussed model accepts triplets of data:
(work item, annotator, response) which relaxes the constraint to have
all observations.



In [2]:






data = np.load(pm.get_data('extrahard_MC_500_5_4.npz.npy'))
z_true = np.load(pm.get_data('extrahard_MC_500_5_4_reference_classes.npy'))

I = data.shape[0]               # number of items
J = data.shape[1]               # number of annotators
K = data.shape[2]               # number of classes
N = I * J







Let’s create the necessary data structures. In particular, we will
convert the data cube into triplet format. One data point with index n
allows to access the following information: jj[n] as annotator ID,
providing his/her vote y[n] for item ii[n].

At the same time, we compute the majority vote estimate. This will serve
both as a baseline and as initialization for our model.



In [3]:






# create data triplets
jj = list()  # annotator IDs
ii = list()  # item IDs
y = list()   # response

# initialize true category with majority votes
z_init = np.zeros( I, dtype=np.int64 )

# create data triplets
for i in range( I ):
    ks = list()
    for j in range( J ):
        dat = data[ i, j, : ]
        k = np.where( dat == 1 )[0][0]
        ks.append( k )
        ii.append( i )
        jj.append( j )
        y.append( k )

    # getting maj vote for work item i (dealing with numpy casts)
    z_init[ i ] = np.bincount( np.array( ks ) ).argmax()







Comparing true item labels and majority vote estimated labels one by one
is tedious. Computing accuracy gives a single performance metric but
does not reveal where the mistakes are made (e.g. which categories tend
to be confused) and by how much. A confusion matrix with majority vote
estimates will serve as our baseline:



In [4]:






confMat = confusion_matrix( z_true, z_init )
print( "Majority vote estimate of true category:\n" , confMat )













Majority vote estimate of true category:
 [[120   2   1   2]
 [  5 116   4   0]
 [  4   6 113   2]
 [  4   3   3 115]]









Model

With the data loaded and baseline set, we can now start building the
Dawid-Skene model. We will start by setting the top level priors: class
prevalence and annotator-specific confusion matrices. The two priors are
of secondary interest.

The class prevalence prior tells the proportion of categories in the
data. Since we are completely ignorant about category proportions, it is
meaningful to set a flat distribution.

The annotator-specific confusion matrices will “describe” every
annotator. Notably, a confusion matrix for an annotator j tells us which
categories the annotator is expert (very high value on diagonal) and
where his expertise is limited (relatively small value on diagonal and
relatively big values off-diagonal). We will initialize confusion
matrices with uniform values with slightly dominant diagonal – our
annotators are expected to provide meaningful labels.



In [5]:






# class prevalence (flat prior)
alpha = np.ones( K )

# individual annotator confusion matrices - dominant diagonal
beta = np.ones( (K,K) ) + np.diag( np.ones(K) )







Now, the interesting part – the definition of the model.

First, we will need two random variables to encode class prevalence (pi)
and annotator confusion matrices (theta). The two random variables can
be naturally modeled with Dirichlet.

Second, we will define a variable for the true/hidden category for each
work item. The Categorical distribution fits well our purpose to model a
work item with K possible states.

Finally, a special variable for observed data brings together all random
variables. This is the variable (Categorical) where the data is
injected. The parametrization of the variable needs to be explained: the
observation y[n] is generated according to Categorical distribution by
worker y[n] for item ii[n], where the true label is z[ ii[n] ].

The following block will build the model only but won’t do any
inference.



In [6]:






model = pm.Model()

with model:
    pi = pm.Dirichlet( 'pi', a=alpha, shape=K )
    theta = pm.Dirichlet( 'theta', a=beta, shape=(J,K,K) )
    z = pm.Categorical( 'z', p=pi, shape=I, testval=z_init )
    y_obs = pm.Categorical( 'y_obs', p=theta[ jj, z[ ii ] ], observed=y )







With model defined, we also need to set up the inference machinery. The
variables of interest (pi, theta and z) will be divided in two groups:
continuous (pi,theta) and discrete (z). The step methods are different:
Metropolis or NUTS for former and CategoricalGibbsMetropolis for latter.

Note: Running the following block will perform inference for our
variables of interest and store results in the trace variable. The trace
variable will contain a wealth of information that will be useful to
perfom diagnostics and get posteriors for our three hidden variables –
class prevalence, annotator confusion matrices and true categories for
all work items.



In [7]:






with model:
    step1 = pm.Metropolis( vars=[pi,theta] )
    step2 = pm.CategoricalGibbsMetropolis( vars=[z] )
    trace = pm.sample( 5000, step=[step1, step2], progressbar=True )













100%|██████████| 5000/5000 [28:06<00:00,  4.73it/s]









Results

Let’s get a global overview of the trace. On the left side of the
figure, posterior distributions; on the right - individual samples. The
samples subplots should show “uniform band of noise” as the sampler
locks around the true variable state. It is important to not see any
jumps, switches or steady increase/decrease.

Besides the class prevalence variable (“pi”), the categories and theta
posteriors, the plots are of little utility. We will explore other
variables in other form.



In [8]:






pm.traceplot( trace, varnames=['pi'] )









Out[8]:






array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f245d5c2048>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7f2456cb76a0>]], dtype=object)
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We will take 1000 last samples from posterior for random variable (“z”).
The majority vote from 1000 samples will give us our estimate of true
item labels.



In [9]:






z = trace['z'][-1000:,:]

z_hat = np.zeros( I )
for i in range( I ):
    z_hat[ i ] = np.bincount( z[:,i] ).argmax()







The confusion matrix tells us how good our estimate is with respect to
the ground truth. Compare it to the baseline: a better estimate has less
off diagonal values (and more on main diagonal).



In [10]:






confMat = confusion_matrix( z_true, z_hat )
print( "Dawid-Skene estimate of true category:\n", confMat )













Dawid-Skene estimate of true category:
 [[122   1   1   1]
 [  0 121   1   3]
 [  4   1 115   5]
 [  2   1   1 121]]






Finally, let’s plot the confusion matrices of annotators. Notice the
dominant diagonal nature of matrices – measure of annotator
performance. Compare the first annotator (j=0) and the last one (j=4).



In [11]:






np.set_printoptions(precision=2)
for j in range( J ):
    print( "Annotator j=" + str(j) )
    Cj = trace['theta'][-1,j]
    print( Cj )













Annotator j=0
[[ 0.89  0.    0.07  0.03]
 [ 0.    0.97  0.03  0.  ]
 [ 0.02  0.01  0.95  0.02]
 [ 0.06  0.02  0.    0.92]]
Annotator j=1
[[ 0.62  0.13  0.09  0.16]
 [ 0.15  0.61  0.09  0.16]
 [ 0.11  0.18  0.66  0.04]
 [ 0.06  0.15  0.1   0.68]]
Annotator j=2
[[ 0.57  0.17  0.15  0.11]
 [ 0.13  0.5   0.25  0.12]
 [ 0.11  0.02  0.68  0.19]
 [ 0.13  0.14  0.12  0.62]]
Annotator j=3
[[ 0.68  0.14  0.1   0.07]
 [ 0.09  0.73  0.08  0.11]
 [ 0.12  0.05  0.74  0.1 ]
 [ 0.07  0.07  0.12  0.73]]
Annotator j=4
[[ 0.56  0.17  0.15  0.12]
 [ 0.14  0.53  0.22  0.11]
 [ 0.12  0.19  0.51  0.18]
 [ 0.22  0.12  0.13  0.53]]
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GLM: Linear regression

Author: Thomas Wiecki

This tutorial is adapted from a blog post by Thomas Wiecki called “The
Inference Button: Bayesian GLMs made easy with
PyMC3” [http://twiecki.github.io/blog/2013/08/12/bayesian-glms-1/].

This tutorial appeared as a post in a small series on Bayesian GLMs on
my blog:


	The Inference Button: Bayesian GLMs made easy with
PyMC3 [http://twiecki.github.com/blog/2013/08/12/bayesian-glms-1/]

	This world is far from Normal(ly distributed): Robust Regression in
PyMC3 [http://twiecki.github.io/blog/2013/08/27/bayesian-glms-2/]

	The Best Of Both Worlds: Hierarchical Linear Regression in
PyMC3 [http://twiecki.github.io/blog/2014/03/17/bayesian-glms-3/]



In this blog post I will talk about:


	How the Bayesian Revolution in many scientific disciplines is
hindered by poor usability of current Probabilistic Programming
languages.

	A gentle introduction to Bayesian linear regression and how it
differs from the frequentist approach.

	A preview of PyMC3 [https://github.com/pymc-devs/pymc/tree/pymc3]
(currently in alpha) and its new GLM submodule I wrote to allow
creation and estimation of Bayesian GLMs as easy as frequentist GLMs
in R.



Ready? Lets get started!

There is a huge paradigm shift underway in many scientific disciplines:
The Bayesian Revolution.

While the theoretical benefits of Bayesian over Frequentist stats have
been discussed at length elsewhere (see Further Reading below), there
is a major obstacle that hinders wider adoption – usability (this is
one of the reasons DARPA wrote out a huge grant to improve
Probabilistic
Programming [http://www.darpa.mil/program/probabilistic-programming-for-advancing-machine-Learning]).

This is mildly ironic because the beauty of Bayesian statistics is their
generality. Frequentist stats have a bazillion different tests for every
different scenario. In Bayesian land you define your model exactly as
you think is appropriate and hit the Inference Button(TM) (i.e.
running the magical MCMC sampling algorithm).

Yet when I ask my colleagues why they use frequentist stats (even though
they would like to use Bayesian stats) the answer is that software
packages like SPSS or R make it very easy to run all those individuals
tests with a single command (and more often then not, they don’t know
the exact model and inference method being used).

While there are great Bayesian software packages like
JAGS [http://mcmc-jags.sourceforge.net/],
BUGS [http://www.mrc-bsu.cam.ac.uk/bugs/],
Stan [http://mc-stan.org/] and
PyMC [http://pymc-devs.github.io/pymc/], they are written for
Bayesians statisticians who know very well what model they want to
build.

Unfortunately, “the vast majority of statistical analysis is not
performed by
statisticians” [http://simplystatistics.org/2013/06/14/the-vast-majority-of-statistical-analysis-is-not-performed-by-statisticians/]
– so what we really need are tools for scientists and not for
statisticians.

In the interest of putting my code where my mouth is I wrote a submodule
for the upcoming
PyMC3 [https://github.com/pymc-devs/pymc/tree/pymc3] that makes
construction of Bayesian Generalized Linear Models (GLMs) as easy as
Frequentist ones in R.


Linear Regression

While future blog posts will explore more complex models, I will start
here with the simplest GLM – linear regression. In general,
frequentists think about Linear Regression as follows:


\[Y = X\beta + \epsilon\]

where \(Y\) is the output we want to predict (or dependent
variable), \(X\) is our predictor (or independent variable), and
\(\beta\) are the coefficients (or parameters) of the model we want
to estimate. \(\epsilon\) is an error term which is assumed to be
normally distributed.

We can then use Ordinary Least Squares or Maximum Likelihood to find the
best fitting \(\beta\).




Probabilistic Reformulation

Bayesians take a probabilistic view of the world and express this model
in terms of probability distributions. Our above linear regression can
be rewritten to yield:


\[Y \sim \mathcal{N}(X \beta, \sigma^2)\]

In words, we view \(Y\) as a random variable (or random vector) of
which each element (data point) is distributed according to a Normal
distribution. The mean of this normal distribution is provided by our
linear predictor with variance \(\sigma^2\).

While this is essentially the same model, there are two critical
advantages of Bayesian estimation:


	Priors: We can quantify any prior knowledge we might have by placing
priors on the paramters. For example, if we think that \(\sigma\)
is likely to be small we would choose a prior with more probability
mass on low values.

	Quantifying uncertainty: We do not get a single estimate of
\(\beta\) as above but instead a complete posterior distribution
about how likely different values of \(\beta\) are. For example,
with few data points our uncertainty in \(\beta\) will be very
high and we’d be getting very wide posteriors.






Bayesian GLMs in PyMC3

With the new GLM module in PyMC3 it is very easy to build this and much
more complex models.

First, lets import the required modules.



In [1]:






%matplotlib inline

from pymc3 import  *

import numpy as np
import matplotlib.pyplot as plt








Generating data

Create some toy data to play around with and scatter-plot it.

Essentially we are creating a regression line defined by intercept and
slope and add data points by sampling from a Normal with the mean set to
the regression line.



In [2]:






size = 200
true_intercept = 1
true_slope = 2

x = np.linspace(0, 1, size)
# y = a + b*x
true_regression_line = true_intercept + true_slope * x
# add noise
y = true_regression_line + np.random.normal(scale=.5, size=size)

data = dict(x=x, y=y)









In [3]:






fig = plt.figure(figsize=(7, 7))
ax = fig.add_subplot(111, xlabel='x', ylabel='y', title='Generated data and underlying model')
ax.plot(x, y, 'x', label='sampled data')
ax.plot(x, true_regression_line, label='true regression line', lw=2.)
plt.legend(loc=0);












[image: ../_images/notebooks_GLM-linear_6_0.png]







Estimating the model

Lets fit a Bayesian linear regression model to this data. As you can
see, model specifications in PyMC3 are wrapped in a with
statement.

Here we use the awesome new NUTS
sampler [http://arxiv.org/abs/1111.4246] (our Inference Button) to
draw 2000 posterior samples.



In [4]:






with Model() as model: # model specifications in PyMC3 are wrapped in a with-statement
    # Define priors
    sigma = HalfCauchy('sigma', beta=10, testval=1.)
    intercept = Normal('Intercept', 0, sd=20)
    x_coeff = Normal('x', 0, sd=20)

    # Define likelihood
    likelihood = Normal('y', mu=intercept + x_coeff * x,
                        sd=sigma, observed=y)

    # Inference!
    trace = sample(3000, njobs=2) # draw 3000 posterior samples using NUTS sampling













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 175.98:   6%|▋         | 12609/200000 [00:00<00:11, 15847.31it/s]
Convergence archived at 13800
Interrupted at 13,800 [6%]: Average Loss = 359.45
100%|██████████| 3500/3500 [00:04<00:00, 804.61it/s]






This should be fairly readable for people who know probabilistic
programming. However, would my non-statistican friend know what all this
does? Moreover, recall that this is an extremely simple model that would
be one line in R. Having multiple, potentially transformed regressors,
interaction terms or link-functions would also make this much more
complex and error prone.

The new glm() function instead takes a
Patsy [http://patsy.readthedocs.org/en/latest/quickstart.html]
linear model specifier from which it creates a design matrix. glm()
then adds random variables for each of the coefficients and an
appopriate likelihood to the model.



In [5]:






with Model() as model:
    # specify glm and pass in data. The resulting linear model, its likelihood and
    # and all its parameters are automatically added to our model.
    glm.GLM.from_formula('y ~ x', data)
    trace = sample(3000, njobs=2) # draw 3000 posterior samples using NUTS sampling













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 171.74:   7%|▋         | 13463/200000 [00:00<00:12, 14993.68it/s]
Convergence archived at 14100
Interrupted at 14,100 [7%]: Average Loss = 341.38
100%|██████████| 3500/3500 [00:04<00:00, 809.71it/s]






Much shorter, but this code does the exact same thing as the above model
specification (you can change priors and everything else too if we
wanted). glm() parses the Patsy model string, adds random
variables for each regressor (Intercept and slope x in this
case), adds a likelihood (by default, a Normal is chosen), and all other
variables (sigma). Finally, glm() then initializes the
parameters to a good starting point by estimating a frequentist linear
model using statsmodels [http://statsmodels.sourceforge.net/devel/].

If you are not familiar with R’s syntax, 'y ~ x' specifies that we
have an output variable y that we want to estimate as a linear
function of x.




Analyzing the model

Bayesian inference does not give us only one best fitting line (as
maximum likelihood does) but rather a whole posterior distribution of
likely parameters. Lets plot the posterior distribution of our
parameters and the individual samples we drew.



In [6]:






plt.figure(figsize=(7, 7))
traceplot(trace[100:])
plt.tight_layout();












<matplotlib.figure.Figure at 0x7f4122bcf908>
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The left side shows our marginal posterior – for each parameter value
on the x-axis we get a probability on the y-axis that tells us how
likely that parameter value is.

There are a couple of things to see here. The first is that our sampling
chains for the individual parameters (left side) seem well converged and
stationary (there are no large drifts or other odd patterns).

Secondly, the maximum posterior estimate of each variable (the peak in
the left side distributions) is very close to the true parameters used
to generate the data (x is the regression coefficient and sigma
is the standard deviation of our normal).

In the GLM we thus do not only have one best fitting regression line,
but many. A posterior predictive plot takes multiple samples from the
posterior (intercepts and slopes) and plots a regression line for each
of them. Here we are using the plot_posterior_predictive_glm()
convenience function for this.



In [7]:






plt.figure(figsize=(7, 7))
plt.plot(x, y, 'x', label='data')
plot_posterior_predictive_glm(trace, samples=100,
                              label='posterior predictive regression lines')
plt.plot(x, true_regression_line, label='true regression line', lw=3., c='y')

plt.title('Posterior predictive regression lines')
plt.legend(loc=0)
plt.xlabel('x')
plt.ylabel('y');
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As you can see, our estimated regression lines are very similar to the
true regression line. But since we only have limited data we have
uncertainty in our estimates, here expressed by the variability of the
lines.






Summary


	Usability is currently a huge hurdle for wider adoption of Bayesian
statistics.

	PyMC3 allows GLM specification with convenient syntax borrowed
from R.

	Posterior predictive plots allow us to evaluate fit and our
uncertainty in it.




Further reading

This is the first post of a small series on Bayesian GLMs I am
preparing. Next week I will describe how the Student T distribution can
be used to perform robust linear regression.

Then there are also other good resources on Bayesian statistics:


	The excellent book Doing Bayesian Data Analysis by John
Kruschke [http://www.indiana.edu/~kruschke/DoingBayesianDataAnalysis/].

	Andrew Gelman’s blog [http://andrewgelman.com/]

	Baeu Cronins blog post on Probabilistic
Programming [https://plus.google.com/u/0/107971134877020469960/posts/KpeRdJKR6Z1]
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GLM: Robust Linear Regression

Author: Thomas Wiecki [https://twitter.com/twiecki]

This tutorial first appeard as a post in small series on Bayesian GLMs
on my blog:


	The Inference Button: Bayesian GLMs made easy with
PyMC3 [http://twiecki.github.com/blog/2013/08/12/bayesian-glms-1/]

	This world is far from Normal(ly distributed): Robust Regression in
PyMC3 [http://twiecki.github.io/blog/2013/08/27/bayesian-glms-2/]

	The Best Of Both Worlds: Hierarchical Linear Regression in
PyMC3 [http://twiecki.github.io/blog/2014/03/17/bayesian-glms-3/]



In this blog post I will write about:


	How a few outliers can largely affect the fit of linear regression
models.

	How replacing the normal likelihood with Student T distribution
produces robust regression.

	How this can easily be done with PyMC3 and its new glm module
by passing a family object.



This is the second part of a series on Bayesian GLMs (click here for
part I about linear
regression [http://twiecki.github.io/blog/2013/08/12/bayesian-glms-1/]).
In this prior post I described how minimizing the squared distance of
the regression line is the same as maximizing the likelihood of a Normal
distribution with the mean coming from the regression line. This latter
probabilistic expression allows us to easily formulate a Bayesian linear
regression model.

This worked splendidly on simulated data. The problem with simulated
data though is that it’s, well, simulated. In the real world things tend
to get more messy and assumptions like normality are easily violated by
a few outliers.

Lets see what happens if we add some outliers to our simulated data from
the last post.

Again, import our modules.



In [1]:






%matplotlib inline

import pymc3 as pm

import matplotlib.pyplot as plt
import numpy as np

import theano







Create some toy data but also add some outliers.



In [2]:






size = 100
true_intercept = 1
true_slope = 2

x = np.linspace(0, 1, size)
# y = a + b*x
true_regression_line = true_intercept + true_slope * x
# add noise
y = true_regression_line + np.random.normal(scale=.5, size=size)

# Add outliers
x_out = np.append(x, [.1, .15, .2])
y_out = np.append(y, [8, 6, 9])

data = dict(x=x_out, y=y_out)







Plot the data together with the true regression line (the three points
in the upper left corner are the outliers we added).



In [3]:






fig = plt.figure(figsize=(7, 7))
ax = fig.add_subplot(111, xlabel='x', ylabel='y', title='Generated data and underlying model')
ax.plot(x_out, y_out, 'x', label='sampled data')
ax.plot(x, true_regression_line, label='true regression line', lw=2.)
plt.legend(loc=0);
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Robust Regression

Lets see what happens if we estimate our Bayesian linear regression
model using the glm() function as before. This function takes a
`Patsy <http://patsy.readthedocs.org/en/latest/quickstart.html>`__
string to describe the linear model and adds a Normal likelihood by
default.



In [4]:






with pm.Model() as model:
    pm.glm.GLM.from_formula('y ~ x', data)
    trace = pm.sample(2000, njobs=2)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 180.79:   6%|▌         | 11551/200000 [00:01<00:18, 9990.61it/s]
Convergence archived at 11900
Interrupted at 11,900 [5%]: Average Loss = 260.51
100%|██████████| 2500/2500 [00:04<00:00, 576.68it/s]






To evaluate the fit, I am plotting the posterior predictive regression
lines by taking regression parameters from the posterior distribution
and plotting a regression line for each (this is all done inside of
plot_posterior_predictive()).



In [5]:






plt.figure(figsize=(7, 5))
plt.plot(x_out, y_out, 'x', label='data')
pm.plot_posterior_predictive_glm(trace, samples=100,
                                 label='posterior predictive regression lines')
plt.plot(x, true_regression_line,
         label='true regression line', lw=3., c='y')

plt.legend(loc=0);
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As you can see, the fit is quite skewed and we have a fair amount of
uncertainty in our estimate as indicated by the wide range of different
posterior predictive regression lines. Why is this? The reason is that
the normal distribution does not have a lot of mass in the tails and
consequently, an outlier will affect the fit strongly.

A Frequentist would estimate a Robust
Regression [http://en.wikipedia.org/wiki/Robust_regression] and use a
non-quadratic distance measure to evaluate the fit.

But what’s a Bayesian to do? Since the problem is the light tails of the
Normal distribution we can instead assume that our data is not normally
distributed but instead distributed according to the Student T
distribution [http://en.wikipedia.org/wiki/Student%27s_t-distribution]
which has heavier tails as shown next (I read about this trick in “The
Kruschke” [http://www.indiana.edu/~kruschke/DoingBayesianDataAnalysis/],
aka the puppy-book; but I think
Gelman [http://www.stat.columbia.edu/~gelman/book/] was the first to
formulate this).

Lets look at those two distributions to get a feel for them.



In [6]:






normal_dist = pm.Normal.dist(mu=0, sd=1)
t_dist = pm.StudentT.dist(mu=0, lam=1, nu=1)
x_eval = np.linspace(-8, 8, 300)
plt.plot(x_eval, theano.tensor.exp(normal_dist.logp(x_eval)).eval(), label='Normal', lw=2.)
plt.plot(x_eval, theano.tensor.exp(t_dist.logp(x_eval)).eval(), label='Student T', lw=2.)
plt.xlabel('x')
plt.ylabel('Probability density')
plt.legend();
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As you can see, the probability of values far away from the mean (0 in
this case) are much more likely under the T distribution than under
the Normal distribution.

To define the usage of a T distribution in PyMC3 we can pass a
family object – T – that specifies that our data is Student
T-distributed (see glm.families for more choices). Note that this is
the same syntax as R and statsmodels use.



In [7]:






with pm.Model() as model_robust:
    family = pm.glm.families.StudentT()
    pm.glm.GLM.from_formula('y ~ x', data, family=family)
    trace_robust = pm.sample(2000, njobs=2)

plt.figure(figsize=(7, 5))
plt.plot(x_out, y_out, 'x')
pm.plot_posterior_predictive_glm(trace_robust,
                                 label='posterior predictive regression lines')
plt.plot(x, true_regression_line,
         label='true regression line', lw=3., c='y')
plt.legend();













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 130.42:   6%|▌         | 11719/200000 [00:01<00:21, 8618.18it/s]
Convergence archived at 12100
Interrupted at 12,100 [6%]: Average Loss = 174.94
100%|█████████▉| 2496/2500 [00:06<00:00, 416.64it/s]/usr/local/lib/python3.5/dist-packages/pymc3/step_methods/hmc/nuts.py:440: UserWarning: The acceptance probability in chain 0 does not match the target. It is 0.880527316986, but should be close to 0.8. Try to increase the number of tuning steps.
  % (self._chain_id, mean_accept, target_accept))
100%|██████████| 2500/2500 [00:06<00:00, 391.78it/s]
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There, much better! The outliers are barely influencing our estimation
at all because our likelihood function assumes that outliers are much
more probable than under the Normal distribution.




Summary


	PyMC3‘s glm() function allows you to pass in a family
object that contains information about the likelihood.

	By changing the likelihood from a Normal distribution to a Student T
distribution – which has more mass in the tails – we can perform
Robust Regression.



The next post will be about logistic regression in PyMC3 and what the
posterior and oatmeal have in common.

Extensions:


	The Student-T distribution has, besides the mean and variance, a
third parameter called degrees of freedom that describes how much
mass should be put into the tails. Here it is set to 1 which gives
maximum mass to the tails (setting this to infinity results in a
Normal distribution!). One could easily place a prior on this rather
than fixing it which I leave as an exercise for the reader ;).

	T distributions can be used as priors as well. I will show this in a
future post on hierarchical GLMs.

	How do we test if our data is normal or violates that assumption in
an important way? Check out this great blog
post [http://allendowney.blogspot.com/2013/08/are-my-data-normal.html]
by Allen Downey.
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GLM: Robust Regression with Outlier Detection

A minimal reproducable example of Robust Regression with Outlier
Detection using Hogg 2010 Signal vs Noise method.


	This is a complementary approach to the Student-T robust regression
as illustrated in Thomas Wiecki’s notebook in the PyMC3
documentation [http://pymc-devs.github.io/pymc3/GLM-robust/], that
approach is also compared here.

	This model returns a robust estimate of linear coefficients and an
indication of which datapoints (if any) are outliers.

	The likelihood evaluation is essentially a copy of eqn 17 in “Data
analysis recipes: Fitting a model to data” - Hogg
2010 [http://arxiv.org/abs/1008.4686].

	The model is adapted specifically from Jake Vanderplas’
implementation [http://www.astroml.org/book_figures/chapter8/fig_outlier_rejection.html]
(3rd model tested).

	The dataset is tiny and hardcoded into this Notebook. It contains
errors in both the x and y, but we will deal here with only errors in
y.



Note:


	Python 3.4 project using latest available
PyMC3 [https://github.com/pymc-devs/pymc3]

	Developed using ContinuumIO
Anaconda [https://www.continuum.io/downloads] distribution on a
Macbook Pro 3GHz i7, 16GB RAM, OSX 10.10.5.

	During development I’ve found that 3 data points are always indicated
as outliers, but the remaining ordering of datapoints by decreasing
outlier-hood is slightly unstable between runs: the posterior surface
appears to have a small number of solutions with similar probability.

	Finally, if runs become unstable or Theano throws weird errors, try
clearing the cache $> theano-cache clear and rerunning the
notebook.



Package Requirements (shown as a conda-env YAML):

$> less conda_env_pymc3_examples.yml

name: pymc3_examples
    channels:
      - defaults
    dependencies:
      - python=3.4
      - ipython
      - ipython-notebook
      - ipython-qtconsole
      - numpy
      - scipy
      - matplotlib
      - pandas
      - seaborn
      - patsy
      - pip

$> conda env create --file conda_env_pymc3_examples.yml

$> source activate pymc3_examples

$> pip install --process-dependency-links git+https://github.com/pymc-devs/pymc3






Setup



In [1]:






%matplotlib inline

import warnings
warnings.filterwarnings('ignore')









In [2]:






import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from scipy import optimize
import pymc3 as pm
import theano as thno
import theano.tensor as T

# configure some basic options
sns.set(style="darkgrid", palette="muted")
pd.set_option('display.notebook_repr_html', True)
plt.rcParams['figure.figsize'] = 12, 8
np.random.seed(0)








Load and Prepare Data

We’ll use the Hogg 2010 data available at
https://github.com/astroML/astroML/blob/master/astroML/datasets/hogg2010test.py

It’s a very small dataset so for convenience, it’s hardcoded below



In [3]:






#### cut & pasted directly from the fetch_hogg2010test() function
## identical to the original dataset as hardcoded in the Hogg 2010 paper

dfhogg = pd.DataFrame(np.array([[1, 201, 592, 61, 9, -0.84],
                                 [2, 244, 401, 25, 4, 0.31],
                                 [3, 47, 583, 38, 11, 0.64],
                                 [4, 287, 402, 15, 7, -0.27],
                                 [5, 203, 495, 21, 5, -0.33],
                                 [6, 58, 173, 15, 9, 0.67],
                                 [7, 210, 479, 27, 4, -0.02],
                                 [8, 202, 504, 14, 4, -0.05],
                                 [9, 198, 510, 30, 11, -0.84],
                                 [10, 158, 416, 16, 7, -0.69],
                                 [11, 165, 393, 14, 5, 0.30],
                                 [12, 201, 442, 25, 5, -0.46],
                                 [13, 157, 317, 52, 5, -0.03],
                                 [14, 131, 311, 16, 6, 0.50],
                                 [15, 166, 400, 34, 6, 0.73],
                                 [16, 160, 337, 31, 5, -0.52],
                                 [17, 186, 423, 42, 9, 0.90],
                                 [18, 125, 334, 26, 8, 0.40],
                                 [19, 218, 533, 16, 6, -0.78],
                                 [20, 146, 344, 22, 5, -0.56]]),
                   columns=['id','x','y','sigma_y','sigma_x','rho_xy'])


## for convenience zero-base the 'id' and use as index
dfhogg['id'] = dfhogg['id'] - 1
dfhogg.set_index('id', inplace=True)

## standardize (mean center and divide by 1 sd)
dfhoggs = (dfhogg[['x','y']] - dfhogg[['x','y']].mean(0)) / dfhogg[['x','y']].std(0)
dfhoggs['sigma_y'] = dfhogg['sigma_y'] / dfhogg['y'].std(0)
dfhoggs['sigma_x'] = dfhogg['sigma_x'] / dfhogg['x'].std(0)

## create xlims ylims for plotting
xlims = (dfhoggs['x'].min() - np.ptp(dfhoggs['x'])/5
                 ,dfhoggs['x'].max() + np.ptp(dfhoggs['x'])/5)
ylims = (dfhoggs['y'].min() - np.ptp(dfhoggs['y'])/5
                 ,dfhoggs['y'].max() + np.ptp(dfhoggs['y'])/5)

## scatterplot the standardized data
g = sns.FacetGrid(dfhoggs, size=8)
_ = g.map(plt.errorbar, 'x', 'y', 'sigma_y', 'sigma_x', marker="o", ls='')
_ = g.axes[0][0].set_ylim(ylims)
_ = g.axes[0][0].set_xlim(xlims)

plt.subplots_adjust(top=0.92)
_ = g.fig.suptitle('Scatterplot of Hogg 2010 dataset after standardization', fontsize=16)
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Observe:


	Even judging just by eye, you can see these datapoints mostly fall on
/ around a straight line with positive gradient

	It looks like a few of the datapoints may be outliers from such a
line








Create Conventional OLS Model

The linear model is really simple and conventional:


\[\bf{y} = \beta^{T} \bf{X} + \bf{\sigma}\]

where:


\(\beta\) = coefs = \(\{1, \beta_{j \in X_{j}}\}\)

\(\sigma\) = the measured error in \(y\) in the dataset
sigma_y




Define model

NOTE: + We’re using a simple linear OLS model with Normally
distributed priors so that it behaves like a ridge regression



In [4]:






with pm.Model() as mdl_ols:

    ## Define weakly informative Normal priors to give Ridge regression
    b0 = pm.Normal('b0_intercept', mu=0, sd=100)
    b1 = pm.Normal('b1_slope', mu=0, sd=100)

    ## Define linear model
    yest = b0 + b1 * dfhoggs['x']

    ## Use y error from dataset, convert into theano variable
    sigma_y = thno.shared(np.asarray(dfhoggs['sigma_y'],
                            dtype=thno.config.floatX), name='sigma_y')

    ## Define Normal likelihood
    likelihood = pm.Normal('likelihood', mu=yest, sd=sigma_y, observed=dfhoggs['y'])











Sample



In [5]:






with mdl_ols:
    ## take samples
    traces_ols = pm.sample(2000, tune=1000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 168.87:   4%|▍         | 7828/200000 [00:00<00:09, 19595.48it/s]
Convergence archived at 9500
Interrupted at 9,500 [4%]: Average Loss = 237.62
100%|██████████| 3000/3000 [00:00<00:00, 3118.55it/s]









View Traces

NOTE: I’ll ‘burn’ the traces to only retain the final 1000 samples



In [7]:






_ = pm.traceplot(traces_ols[-1000:], figsize=(12,len(traces_ols.varnames)*1.5),
                lines={k: v['mean'] for k, v in pm.df_summary(traces_ols[-1000:]).iterrows()})
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NOTE: We’ll illustrate this OLS fit and compare to the datapoints in
the final plot










Create Robust Model: Student-T Method

I’ve added this brief section in order to directly compare the Student-T
based method exampled in Thomas Wiecki’s notebook in the PyMC3
documentation [http://pymc-devs.github.io/pymc3/GLM-robust/]

Instead of using a Normal distribution for the likelihood, we use a
Student-T, which has fatter tails. In theory this allows outliers to
have a smaller mean square error in the likelihood, and thus have less
influence on the regression estimation. This method does not produce
inlier / outlier flags but is simpler and faster to run than the Signal
Vs Noise model below, so a comparison seems worthwhile.

Note: we’ll constrain the Student-T ‘degrees of freedom’ parameter
nu to be an integer, but otherwise leave it as just another
stochastic to be inferred: no need for prior knowledge.


Define Model



In [8]:






with pm.Model() as mdl_studentt:

    ## Define weakly informative Normal priors to give Ridge regression
    b0 = pm.Normal('b0_intercept', mu=0, sd=100)
    b1 = pm.Normal('b1_slope', mu=0, sd=100)

    ## Define linear model
    yest = b0 + b1 * dfhoggs['x']

    ## Use y error from dataset, convert into theano variable
    sigma_y = thno.shared(np.asarray(dfhoggs['sigma_y'],
                            dtype=thno.config.floatX), name='sigma_y')

    ## define prior for Student T degrees of freedom
    nu = pm.Uniform('nu', lower=1, upper=100)

    ## Define Student T likelihood
    likelihood = pm.StudentT('likelihood', mu=yest, sd=sigma_y, nu=nu,
                             observed=dfhoggs['y'])











Sample



In [9]:






with mdl_studentt:
    ## take samples
    traces_studentt = pm.sample(2000, tune=1000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 41.822:   8%|▊         | 15829/200000 [00:01<00:14, 13016.12it/s]
Convergence archived at 16100
Interrupted at 16,100 [8%]: Average Loss = 83.741
100%|██████████| 3000/3000 [00:02<00:00, 1441.38it/s]







View Traces



In [11]:






_ = pm.traceplot(traces_studentt[-1000:],
                 figsize=(12,len(traces_studentt.varnames)*1.5),
                 lines={k: v['mean'] for k, v in pm.df_summary(traces_studentt[-1000:]).iterrows()})
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Observe:


	Both parameters b0 and b1 show quite a skew to the right,
possibly this is the action of a few samples regressing closer to the
OLS estimate which is towards the left

	The nu parameter seems very happy to stick at nu = 1,
indicating that a fat-tailed Student-T likelihood has a better fit
than a thin-tailed (Normal-like) Student-T likelihood.

	The inference sampling also ran very quickly, almost as quickly as
the conventional OLS



NOTE: We’ll illustrate this Student-T fit and compare to the
datapoints in the final plot












Create Robust Model with Outliers: Hogg Method

Please read the paper (Hogg 2010) and Jake Vanderplas’ code for more
complete information about the modelling technique.

The general idea is to create a ‘mixture’ model whereby datapoints can
be described by either the linear model (inliers) or a modified linear
model with different mean and larger variance (outliers).

The likelihood is evaluated over a mixture of two likelihoods, one for
‘inliers’, one for ‘outliers’. A Bernouilli distribution is used to
randomly assign datapoints in N to either the inlier or outlier groups,
and we sample the model as usual to infer robust model parameters and
inlier / outlier flags:


\[\mathcal{logL} = \sum_{i}^{i=N} log \left[ \frac{(1 - B_{i})}{\sqrt{2 \pi \sigma_{in}^{2}}} exp \left( - \frac{(x_{i} - \mu_{in})^{2}}{2\sigma_{in}^{2}} \right) \right] + \sum_{i}^{i=N} log \left[ \frac{B_{i}}{\sqrt{2 \pi (\sigma_{in}^{2} + \sigma_{out}^{2})}} exp \left( - \frac{(x_{i}- \mu_{out})^{2}}{2(\sigma_{in}^{2} + \sigma_{out}^{2})} \right) \right]\]


where:

\(\bf{B}\) is Bernoulli-distibuted
\(B_{i} \in [0_{(inlier)},1_{(outlier)}]\)




Define model



In [12]:






def logp_signoise(yobs, is_outlier, yest_in, sigma_y_in, yest_out, sigma_y_out):
    '''
    Define custom loglikelihood for inliers vs outliers.
    NOTE: in this particular case we don't need to use theano's @as_op
    decorator because (as stated by Twiecki in conversation) that's only
    required if the likelihood cannot be expressed as a theano expression.
    We also now get the gradient computation for free.
    '''

    # likelihood for inliers
    pdfs_in = T.exp(-(yobs - yest_in + 1e-4)**2 / (2 * sigma_y_in**2))
    pdfs_in /= T.sqrt(2 * np.pi * sigma_y_in**2)
    logL_in = T.sum(T.log(pdfs_in) * (1 - is_outlier))

    # likelihood for outliers
    pdfs_out = T.exp(-(yobs - yest_out + 1e-4)**2 / (2 * (sigma_y_in**2 + sigma_y_out**2)))
    pdfs_out /= T.sqrt(2 * np.pi * (sigma_y_in**2 + sigma_y_out**2))
    logL_out = T.sum(T.log(pdfs_out) * is_outlier)

    return logL_in + logL_out









In [13]:






with pm.Model() as mdl_signoise:

    ## Define weakly informative Normal priors to give Ridge regression
    b0 = pm.Normal('b0_intercept', mu=0, sd=10, testval=pm.floatX(0.1))
    b1 = pm.Normal('b1_slope', mu=0, sd=10, testval=pm.floatX(1.))

    ## Define linear model
    yest_in = b0 + b1 * dfhoggs['x']

    ## Define weakly informative priors for the mean and variance of outliers
    yest_out = pm.Normal('yest_out', mu=0, sd=100, testval=pm.floatX(1.))
    sigma_y_out = pm.HalfNormal('sigma_y_out', sd=100, testval=pm.floatX(1.))

    ## Define Bernoulli inlier / outlier flags according to a hyperprior
    ## fraction of outliers, itself constrained to [0,.5] for symmetry
    frac_outliers = pm.Uniform('frac_outliers', lower=0., upper=.5)
    is_outlier = pm.Bernoulli('is_outlier', p=frac_outliers, shape=dfhoggs.shape[0],
                              testval=np.random.rand(dfhoggs.shape[0]) < 0.2)

    ## Extract observed y and sigma_y from dataset, encode as theano objects
    yobs = thno.shared(np.asarray(dfhoggs['y'], dtype=thno.config.floatX), name='yobs')
    sigma_y_in = thno.shared(np.asarray(dfhoggs['sigma_y'], dtype=thno.config.floatX),
                             name='sigma_y_in')

    ## Use custom likelihood using DensityDist
    likelihood = pm.DensityDist('likelihood', logp_signoise,
                        observed={'yobs': yobs, 'is_outlier': is_outlier,
                                  'yest_in': yest_in, 'sigma_y_in': sigma_y_in,
                                  'yest_out': yest_out, 'sigma_y_out': sigma_y_out})










Sample



In [14]:






with mdl_signoise:
    ## two-step sampling to create Bernoulli inlier/outlier flags
    step1 = pm.Metropolis([frac_outliers, yest_out, sigma_y_out, b0, b1])
    step2 = pm.step_methods.BinaryGibbsMetropolis([is_outlier])

    ## take samples
    traces_signoise = pm.sample(20000, step=[step1, step2], tune=10000, progressbar=True)













100%|██████████| 30000/30000 [00:59<00:00, 505.40it/s]









View Traces



In [15]:






traces_signoise[-10000:]['b0_intercept']









Out[15]:






array([ 0.0024796 ,  0.03499796,  0.03499796, ...,  0.01924202,
        0.01924202,  0.17804247])









In [16]:






_ = pm.traceplot(traces_signoise[-10000:], figsize=(12,len(traces_signoise.varnames)*1.5),
            lines={k: v['mean'] for k, v in pm.df_summary(traces_signoise[-1000:]).iterrows()})
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NOTE:


	During development I’ve found that 3 datapoints id=[1,2,3] are always
indicated as outliers, but the remaining ordering of datapoints by
decreasing outlier-hood is unstable between runs: the posterior
surface appears to have a small number of solutions with very similar
probability.

	The NUTS sampler seems to work okay, and indeed it’s a nice
opportunity to demonstrate a custom likelihood which is possible to
express as a theano function (thus allowing a gradient-based sampler
like NUTS). However, with a more complicated dataset, I would spend
time understanding this instability and potentially prefer using more
samples under Metropolis-Hastings.












Declare Outliers and Compare Plots


View ranges for inliers / outlier predictions

At each step of the traces, each datapoint may be either an inlier or
outlier. We hope that the datapoints spend an unequal time being one
state or the other, so let’s take a look at the simple count of states
for each of the 20 datapoints.



In [18]:






outlier_melt = pd.melt(pd.DataFrame(traces_signoise['is_outlier', -1000:],
                                   columns=['[{}]'.format(int(d)) for d in dfhoggs.index]),
                      var_name='datapoint_id', value_name='is_outlier')
ax0 = sns.pointplot(y='datapoint_id', x='is_outlier', data=outlier_melt,
                   kind='point', join=False, ci=None, size=4, aspect=2)

_ = ax0.vlines([0,1], 0, 19, ['b','r'], '--')

_ = ax0.set_xlim((-0.1,1.1))
_ = ax0.set_xticks(np.arange(0, 1.1, 0.1))
_ = ax0.set_xticklabels(['{:.0%}'.format(t) for t in np.arange(0,1.1,0.1)])

_ = ax0.yaxis.grid(True, linestyle='-', which='major', color='w', alpha=0.4)
_ = ax0.set_title('Prop. of the trace where datapoint is an outlier')
_ = ax0.set_xlabel('Prop. of the trace where is_outlier == 1')
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Observe:


	The plot above shows the number of samples in the traces in which
each datapoint is marked as an outlier, expressed as a percentage.

	In particular, 3 points [1, 2, 3] spend >=95% of their time as
outliers

	Contrastingly, points at the other end of the plot close to 0% are
our strongest inliers.

	For comparison, the mean posterior value of frac_outliers is
~0.35, corresponding to roughly 7 of the 20 datapoints. You can see
these 7 datapoints in the plot above, all those with a value >50% or
thereabouts.

	However, only 3 of these points are outliers >=95% of the time.

	See note above regarding instability between runs.



The 95% cutoff we choose is subjective and arbitrary, but I prefer it
for now, so let’s declare these 3 to be outliers and see how it looks
compared to Jake Vanderplas’ outliers, which were declared in a slightly
different way as points with means above 0.68.




Declare outliers

Note: + I will declare outliers to be datapoints that have value ==
1 at the 5-percentile cutoff, i.e. in the percentiles from 5 up to 100,
their values are 1. + Try for yourself altering cutoff to larger values,
which leads to an objective ranking of outlier-hood.



In [19]:






cutoff = 5
dfhoggs['outlier'] = np.percentile(traces_signoise[-1000:]['is_outlier'],cutoff, axis=0)
dfhoggs['outlier'].value_counts()









Out[19]:






0.0    17
1.0     3
Name: outlier, dtype: int64










Posterior Prediction Plots for OLS vs StudentT vs SignalNoise



In [21]:






g = sns.FacetGrid(dfhoggs, size=8, hue='outlier', hue_order=[True,False],
                  palette='Set1', legend_out=False)

lm = lambda x, samp: samp['b0_intercept'] + samp['b1_slope'] * x

pm.plot_posterior_predictive_glm(traces_ols[-1000:],
        eval=np.linspace(-3, 3, 10), lm=lm, samples=200, color='#22CC00', alpha=.2)

pm.plot_posterior_predictive_glm(traces_studentt[-1000:], lm=lm,
        eval=np.linspace(-3, 3, 10), samples=200, color='#FFA500', alpha=.5)

pm.plot_posterior_predictive_glm(traces_signoise[-1000:], lm=lm,
        eval=np.linspace(-3, 3, 10), samples=200, color='#357EC7', alpha=.3)

_ = g.map(plt.errorbar, 'x', 'y', 'sigma_y', 'sigma_x', marker="o", ls='').add_legend()

_ = g.axes[0][0].annotate('OLS Fit: Green\nStudent-T Fit: Orange\nSignal Vs Noise Fit: Blue',
                          size='x-large', xy=(1,0), xycoords='axes fraction',
                          xytext=(-160,10), textcoords='offset points')
_ = g.axes[0][0].set_ylim(ylims)
_ = g.axes[0][0].set_xlim(xlims)
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Observe:


	The posterior preditive fit for:
	the OLS model is shown in Green and as expected, it
doesn’t appear to fit the majority of our datapoints very well,
skewed by outliers

	the Robust Student-T model is shown in Orange and does
appear to fit the ‘main axis’ of datapoints quite well, ignoring
outliers

	the Robust Signal vs Noise model is shown in Blue and also
appears to fit the ‘main axis’ of datapoints rather well, ignoring
outliers.





	We see that the Robust Signal vs Noise model also yields specific
estimates of which datapoints are outliers:
	17 ‘inlier’ datapoints, in Blue and

	3 ‘outlier’ datapoints shown in Red.

	From a simple visual inspection, the classification seems fair,
and agrees with Jake Vanderplas’ findings.





	Overall, it seems that:
	the Signal vs Noise model behaves as promised, yielding a
robust regression estimate and explicit labelling of inliers /
outliers, but

	the Signal vs Noise model is quite complex and whilst the
regression seems robust and stable, the actual inlier / outlier
labelling seems slightly unstable

	if you simply want a robust regression without inlier / outlier
labelling, the Student-T model may be a good compromise,
offering a simple model, quick sampling, and a very similar
estimate.









Example originally contributed by Jonathan Sedar 2015-12-21
github.com/jonsedar [https://github.com/jonsedar]
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GLM: Model Selection

A fairly minimal reproducable example of Model Selection using DIC and
WAIC.


	This example creates two toy datasets under linear and quadratic
models, and then tests the fit of a range of polynomial linear models
upon those datasets by using the Deviance Information Criterion (DIC)
and Watanabe - Akaike (or Widest Available) Information Criterion
(WAIC).

	DIC (stats.dic) and WAIC (stats.waic) are new additions to
PyMC3, so this example shows their usage in a more concrete fashion,
also usage of the new glm submodule.

	The example was inspired by Jake Vanderplas’ recent
blogpost [https://jakevdp.github.io/blog/2015/08/07/frequentism-and-bayesianism-5-model-selection/]
on model selection, although in this first iteration,
Cross-Validation and Bayes Factor comparison are not implemented.

	The datasets are tiny and generated within this Notebook. They
contain errors in the measured value (y) only.



For more information on Model Selection in PyMC3, and about DIC and
WAIC, you could start with:


	Thomas Wiecki’s detailed
response [https://stats.stackexchange.com/questions/161082/bayesian-model-selection-in-pymc3/166383#166383]
to a question on Cross Validated

	The Deviance Information Criterion: 12 Years On (Speigelhalter et al
2014) [http://onlinelibrary.wiley.com/doi/10.1111/rssb.12062/abstract]

	A Widely Applicable Bayesian Information Criterion (Watanabe
2013) [http://www.jmlr.org/papers/volume14/watanabe13a/watanabe13a.pdf]

	Efficient Implementation of Leave-One-Out Cross-Validation and WAIC
for Evaluating Fitted Bayesian Models (Gelman et al
2015) [http://arxiv.org/abs/1507.04544]
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Note:


	Python 3.4 project using latest available
PyMC3 [https://github.com/pymc-devs/pymc3]

	Developed using ContinuumIO
Anaconda [https://www.continuum.io/downloads] distribution on a
Macbook Pro 3GHz i7, 16GB RAM, OSX 10.10.5.

	Finally, if runs become unstable or Theano throws weird errors, try
clearing the cache $> theano-cache clear and rerunning the
notebook.



Package Requirements (shown as a conda-env YAML):

$> less conda_env_pymc3_examples.yml

name: pymc3_examples
    channels:
      - defaults
    dependencies:
      - python=3.4
      - ipython
      - ipython-notebook
      - ipython-qtconsole
      - numpy
      - scipy
      - matplotlib
      - pandas
      - seaborn
      - patsy
      - pip

$> conda env create --file conda_env_pymc3_examples.yml

$> source activate pymc3_examples

$> pip install --process-dependency-links git+https://github.com/pymc-devs/pymc3






Setup



In [1]:






%matplotlib inline

import warnings
warnings.filterwarnings('ignore')









In [2]:






from collections import OrderedDict
from time import time

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from scipy.optimize import fmin_powell
from scipy import integrate

import pymc3 as pm
import theano as thno
import theano.tensor as T

from IPython.html.widgets import interactive, fixed

# configure some basic options
sns.set(style="darkgrid", palette="muted")
pd.set_option('display.notebook_repr_html', True)
plt.rcParams['figure.figsize'] = 12, 8
rndst = np.random.RandomState(0)








Local Functions



In [43]:






def generate_data(n=20, p=0, a=1, b=1, c=0, latent_sigma_y=20):
    '''
    Create a toy dataset based on a very simple model that we might
    imagine is a noisy physical process:
        1. random x values within a range
        2. latent error aka inherent noise in y
        3. optionally create labelled outliers with larger noise

    Model form: y ~ a + bx + cx^2 + e

    NOTE: latent_sigma_y is used to create a normally distributed,
    'latent error' aka 'inherent noise' in the 'physical process'
    generating thses values, rather than experimental measurement error.
    Please don't use the returned `latent_error` values in inferential
    models, it's returned in e dataframe for interest only.
    '''

    df = pd.DataFrame({'x':rndst.choice(np.arange(100),n,replace=False)})

    ## create linear or quadratic model
    df['y'] = a + b*(df['x']) + c*(df['x'])**2

    ## create latent noise and marked outliers
    df['latent_error'] = rndst.normal(0,latent_sigma_y,n)
    df['outlier_error'] = rndst.normal(0,latent_sigma_y*10,n)
    df['outlier'] = rndst.binomial(1,p,n)

    ## add noise, with extreme noise for marked outliers
    df['y'] += ((1-df['outlier']) * df['latent_error'])
    df['y'] += (df['outlier'] * df['outlier_error'])

    ## round
    for col in ['y','latent_error','outlier_error','x']:
        df[col] = np.round(df[col],3)

    ## add label
    df['source'] = 'linear' if c == 0 else 'quadratic'

    ## create simple linspace for plotting true model
    plotx = np.linspace(df['x'].min() - np.ptp(df['x'])*.1
                        ,df['x'].max() + np.ptp(df['x'])*.1, 100)
    ploty = a + b*plotx + c*plotx**2
    dfp = pd.DataFrame({'x':plotx, 'y':ploty})

    return df, dfp


def interact_dataset(n=20, p=0, a=-30, b=5, c=0, latent_sigma_y=20):
    '''
    Convenience function:
    Interactively generate dataset and plot
    '''

    df, dfp = generate_data(n, p, a, b, c, latent_sigma_y)

    g = sns.FacetGrid(df, size=8, hue='outlier', hue_order=[True,False]
                    ,palette=sns.color_palette('Set1'), legend_out=False)

    _ = g.map(plt.errorbar, 'x', 'y', 'latent_error', marker="o"
              ,ms=10, mec='w', mew=2, ls='', elinewidth=0.7).add_legend()

    _ = plt.plot(dfp['x'], dfp['y'], '--', alpha=0.8)

    plt.subplots_adjust(top=0.92)
    _ = g.fig.suptitle('Sketch of Data Generation ({})'.format(df['source'][0])
                       ,fontsize=16)


def plot_datasets(df_lin, df_quad, dfp_lin, dfp_quad):
    '''
    Convenience function:
    Plot the two generated datasets in facets with generative model
    '''

    df = pd.concat((df_lin, df_quad), axis=0)
    dfp_lin, dfp_quad

    g = sns.FacetGrid(col='source', hue='source', data=df, size=6
                      ,sharey=False, legend_out=False)

    _ = g.map(plt.scatter, 'x', 'y', alpha=0.7, s=100, lw=2, edgecolor='w')

    _ = g.axes[0][0].plot(dfp_lin['x'], dfp_lin['y'], '--', alpha=0.6)
    _ = g.axes[0][1].plot(dfp_quad['x'], dfp_quad['y'], '--', alpha=0.6)


def plot_traces(traces, retain=1000):
    '''
    Convenience function:
    Plot traces with overlaid means and values
    '''

    ax = pm.traceplot(traces[-retain:], figsize=(12,len(traces.varnames)*1.5),
        lines={k: v['mean'] for k, v in pm.df_summary(traces[-retain:]).iterrows()})

    for i, mn in enumerate(pm.df_summary(traces[-retain:])['mean']):
        ax[i,0].annotate('{:.2f}'.format(mn), xy=(mn,0), xycoords='data'
                    ,xytext=(5,10), textcoords='offset points', rotation=90
                    ,va='bottom', fontsize='large', color='#AA0022')


def create_poly_modelspec(k=1):
    '''
    Convenience function:
    Create a polynomial modelspec string for patsy
    '''
    return ('y ~ 1 + x ' + ' '.join(['+ np.power(x,{})'.format(j)
                                     for j in range(2,k+1)])).strip()


def run_models(df, upper_order=5):
    '''
    Convenience function:
    Fit a range of pymc3 models of increasing polynomial complexity.
    Suggest limit to max order 5 since calculation time is exponential.
    '''

    models, traces = OrderedDict(), OrderedDict()

    for k in range(1,upper_order+1):

        nm = 'k{}'.format(k)
        fml = create_poly_modelspec(k)

        with pm.Model() as models[nm]:

            print('\nRunning: {}'.format(nm))
            pm.glm.GLM.from_formula(fml, df, family=pm.glm.families.Normal())

            # For speed, we're using Metropolis here
            traces[nm] = pm.sample(5000, pm.Metropolis())[1000::5]

    return models, traces


def plot_posterior_cr(models, traces, rawdata, xlims,
                      datamodelnm='linear', modelnm='k1'):
    '''
    Convenience function:
    Plot posterior predictions with credible regions shown as filled areas.
    '''

    ## Get traces and calc posterior prediction for npoints in x
    npoints = 100
    mdl = models[modelnm]
    trc = pm.trace_to_dataframe(traces[modelnm][-1000:])
    trc = trc[[str(v) for v in mdl.cont_vars[:-1]]]

    ordr = int(modelnm[-1:])
    x = np.linspace(xlims[0], xlims[1], npoints).reshape((npoints,1))
    pwrs = np.ones((npoints,ordr+1)) * np.arange(ordr+1)
    X = x ** pwrs
    cr = np.dot(X,trc.T)

    ## Calculate credible regions and plot over the datapoints
    dfp = pd.DataFrame(np.percentile(cr,[2.5, 25, 50, 75, 97.5], axis=1).T
                         ,columns=['025','250','500','750','975'])
    dfp['x'] = x

    pal = sns.color_palette('Greens')
    f, ax1d = plt.subplots(1,1, figsize=(7,7))
    f.suptitle('Posterior Predictive Fit -- Data: {} -- Model: {}'.format(
                        datamodelnm, modelnm), fontsize=16)
    plt.subplots_adjust(top=0.95)

    ax1d.fill_between(dfp['x'], dfp['025'], dfp['975'], alpha=0.5
                      ,color=pal[1], label='CR 95%')
    ax1d.fill_between(dfp['x'], dfp['250'], dfp['750'], alpha=0.5
                      ,color=pal[4], label='CR 50%')
    ax1d.plot(dfp['x'], dfp['500'], alpha=0.6, color=pal[5], label='Median')
    _ = plt.legend()
    _ = ax1d.set_xlim(xlims)
    _ = sns.regplot(x='x', y='y', data=rawdata, fit_reg=False
                   ,scatter_kws={'alpha':0.7,'s':100, 'lw':2,'edgecolor':'w'}, ax=ax1d)












Generate Toy Datasets


Interactively Draft Data

Throughout the rest of the Notebook, we’ll use two toy datasets created
by a linear and a quadratic model respectively, so that we can better
evaluate the fit of the model selection.

Right now, lets use an interactive session to play around with the data
generation function in this Notebook, and get a feel for the
possibilities of data we could generate.


\[y_{i} = a + bx_{i} + cx_{i}^{2} + \epsilon_{i}\]


where:

\(i \in n\) datapoints
\(\epsilon \sim \mathcal{N}(0,latent\_sigma\_y)\)



NOTE on outliers:


	We can use value p to set the (approximate) proportion of
‘outliers’ under a bernoulli distribution.

	These outliers have a 10x larger latent_sigma_y

	These outliers are labelled in the returned datasets and may be
useful for other modelling, see another example Notebook
GLM-robust-with-outlier-detection.ipynb





In [4]:






interactive(interact_dataset, n=[5,50,5], p=[0,.5,.05], a=[-50,50]
            ,b=[-10,10], c=[-3,3], latent_sigma_y=[0,1000,50])












[image: ../_images/notebooks_GLM-model-selection_9_0.png]




Observe:


	I’ve shown the latent_error in errorbars, but this is for
interest only, since this shows the inherent noise in whatever
‘physical process’ we imagine created the data.

	There is no measurement error.

	Datapoints created as outliers are shown in red, again for
interest only.






Create Datasets for Modelling

We can use the above interactive plot to get a feel for the effect of
the params. Now we’ll create 2 fixed datasets to use for the remainder
of the Notebook.


	For a start, we’ll create a linear model with small noise. Keep it
simple.

	Secondly, a quadratic model with small noise





In [5]:






n = 12
df_lin, dfp_lin = generate_data(n=n, p=0, a=-30, b=5, c=0, latent_sigma_y=40)
df_quad, dfp_quad = generate_data(n=n, p=0, a=-200, b=2, c=3, latent_sigma_y=500)








Scatterplot against model line



In [6]:






plot_datasets(df_lin, df_quad, dfp_lin, dfp_quad)












[image: ../_images/notebooks_GLM-model-selection_15_0.png]




Observe:


	We now have two datasets df_lin and df_quad created by a
linear model and quadratic model respectively.

	You can see this raw data, the ideal model fit and the effect of the
latent noise in the scatterplots above

	In the folowing plots in this Notebook, the linear-generated data
will be shown in Blue and the quadratic in Green.








Standardize



In [7]:






dfs_lin = df_lin.copy()
dfs_lin['x'] = (df_lin['x'] - df_lin['x'].mean()) / df_lin['x'].std()

dfs_quad = df_quad.copy()
dfs_quad['x'] = (df_quad['x'] - df_quad['x'].mean()) / df_quad['x'].std()








Create ranges for later ylim xim



In [8]:






dfs_lin_xlims = (dfs_lin['x'].min() - np.ptp(dfs_lin['x'])/10,
                 dfs_lin['x'].max() + np.ptp(dfs_lin['x'])/10)

dfs_lin_ylims = (dfs_lin['y'].min() - np.ptp(dfs_lin['y'])/10,
                 dfs_lin['y'].max() + np.ptp(dfs_lin['y'])/10)

dfs_quad_ylims = (dfs_quad['y'].min() - np.ptp(dfs_quad['y'])/10,
                  dfs_quad['y'].max() + np.ptp(dfs_quad['y'])/10)














Demonstrate Simple Linear Model

This linear model is really simple and conventional, an OLS with L2
constraints (Ridge Regression):


\[y = a + bx + \epsilon\]


Define model using ordinary pymc3 method



In [9]:






with pm.Model() as mdl_ols:
    ## define Normal priors to give Ridge regression
    b0 = pm.Normal('b0', mu=0, sd=100)
    b1 = pm.Normal('b1', mu=0, sd=100)

    ## define Linear model
    yest = b0 + b1 * df_lin['x']

    ## define Normal likelihood with HalfCauchy noise (fat tails, equiv to HalfT 1DoF)
    sigma_y = pm.HalfCauchy('sigma_y', beta=10)
    likelihood = pm.Normal('likelihood', mu=yest, sd=sigma_y, observed=df_lin['y'])

    ## sample using NUTS
    traces_ols = pm.sample(2000)













Auto-assigning NUTS sampler...
Initializing NUTS using advi...
Average ELBO = -73.241: 100%|██████████| 200000/200000 [00:16<00:00, 11965.24it/s]
Finished [100%]: Average ELBO = -73.241
100%|██████████| 2000/2000 [00:04<00:00, 402.52it/s]







View Traces after burn-in



In [10]:






plot_traces(traces_ols, retain=1000)












[image: ../_images/notebooks_GLM-model-selection_26_0.png]




Observe:


	This simple OLS manages to make fairly good guesses on the model
parameters - the data has been generated fairly simply after all -
but it does appear to have been fooled slightly by the inherent
noise.








Define model using pymc3 GLM method

PyMC3 has a quite recently developed method - glm - for defining
models using a patsy-style formula syntax. This seems really useful,
especially for defining simple regression models in fewer lines of code.

I couldn’t find a direct comparison in the the examples, so before I
launch into using glm for the rest of the Notebook, here’s the same
OLS model as above, defined using glm.



In [11]:






with pm.Model() as mdl_ols_glm:
    # setup model with Normal likelihood (which uses HalfCauchy for error prior)
    pm.glm.GLM.from_formula('y ~ 1 + x', df_lin, family=pm.glm.families.Normal())

    traces_ols_glm = pm.sample(2000)













Auto-assigning NUTS sampler...
Initializing NUTS using advi...
Average ELBO = -91.638: 100%|██████████| 200000/200000 [00:19<00:00, 10132.78it/s]
Finished [100%]: Average ELBO = -91.636
100%|██████████| 2000/2000 [00:05<00:00, 347.51it/s]







View Traces after burn-in



In [12]:






plot_traces(traces_ols_glm, retain=1000)












[image: ../_images/notebooks_GLM-model-selection_32_0.png]




Observe:


	The output parameters are of course named differently to the custom
naming before. Now we have:


b0 == Intercept

b1 == x

sigma_y_log == sd_log

sigma_y == sd





	However, naming aside, this glm-defined model appears to behave
in a very similar way, and finds the same parameter values as the
conventionally-defined model - any differences are due to the random
nature of the sampling.



	We can quite happily use the glm syntax for further models below,
since it allows us to create a small model factory very easily.
















Create Higher-Order Linear Models

Back to the real purpose of this Notebook: demonstrate model selection.

First, let’s create and run a set of polynomial models on each of our
toy datasets. By default this is for models of order 1 to 5.


Create and run polynomial models

Please see run_models() above for details. Generally, we’re creating
5 polynomial models and fitting each to the chosen dataset



In [44]:






models_lin, traces_lin = run_models(dfs_lin, 5)














Running: k1












100%|██████████| 5000/5000 [00:01<00:00, 3110.85it/s]













Running: k2












100%|██████████| 5000/5000 [00:02<00:00, 2399.09it/s]













Running: k3












100%|██████████| 5000/5000 [00:02<00:00, 2100.65it/s]













Running: k4












100%|██████████| 5000/5000 [00:03<00:00, 1618.59it/s]













Running: k5












100%|██████████| 5000/5000 [00:03<00:00, 1432.95it/s]








In [45]:






models_quad, traces_quad = run_models(dfs_quad, 5)














Running: k1












100%|██████████| 5000/5000 [00:01<00:00, 3223.01it/s]













Running: k2












100%|██████████| 5000/5000 [00:02<00:00, 2122.66it/s]













Running: k3












100%|██████████| 5000/5000 [00:03<00:00, 1611.79it/s]













Running: k4












100%|██████████| 5000/5000 [00:03<00:00, 1256.59it/s]













Running: k5












100%|██████████| 5000/5000 [00:03<00:00, 1369.04it/s]











A really bad method for model selection: compare likelihoods



In [46]:






dfll = pd.DataFrame(index=['k1','k2','k3','k4','k5'], columns=['lin','quad'])
dfll.index.name = 'model'

for nm in dfll.index:
    dfll.loc[nm,'lin'] =-models_lin[nm].logp(pm.df_summary(traces_lin[nm], varnames=traces_lin[nm].varnames)['mean'].to_dict())
    dfll.loc[nm,'quad'] =-models_quad[nm].logp(pm.df_summary(traces_quad[nm], varnames=traces_quad[nm].varnames)['mean'].to_dict())

dfll = pd.melt(dfll.reset_index(), id_vars=['model'], var_name='poly', value_name='log_likelihood')









In [47]:






g = sns.factorplot(x='model', y='log_likelihood', col='poly', hue='poly'
                   ,data=dfll, kind='bar', size=6)












[image: ../_images/notebooks_GLM-model-selection_44_0.png]




Observe:


	Again we’re showing the linear-generated data at left (Blue) and the
quadratic-generated data on the right (Green)

	For both datasets, as the models get more complex, the likelhood
increases monotonically

	This is expected, since the models are more flexible and thus able to
(over)fit more easily.

	This overfitting makes it a terrible idea to simply use the
likelihood to evaluate the model fits.




View posterior predictive fit

Just for the linear, generated data, lets take an interactive look at
the posterior predictive fit for the models k1 through k5.

As indicated by the likelhood plots above, the higher-order polynomial
models exhibit some quite wild swings in the function in order to
(over)fit the data



In [30]:






interactive(plot_posterior_cr, models=fixed(models_lin), traces=fixed(traces_lin)
            ,rawdata=fixed(dfs_lin), xlims=fixed(dfs_lin_xlims), datamodelnm=fixed('linear')
            ,modelnm = ['k1','k2','k3','k4','k5'])












[image: ../_images/notebooks_GLM-model-selection_47_0.png]









Compare Deviance Information Criterion [DIC]

The Deviance Information Criterion (DIC) is a fairly unsophisticated
method for comparing the deviance of likelhood across the the sample
traces of a model run. However, this simplicity apparently yields quite
good results in a variety of cases, see the discussion worth reading in
(Speigelhalter et al
2014) [http://onlinelibrary.wiley.com/doi/10.1111/rssb.12062/abstract]

DIC has recently been added to PyMC3, so lets see what it tells us about
our model fits for both datasets.



In [48]:






dftrc_lin = pm.trace_to_dataframe(traces_lin['k1'], include_transformed=True)
trc_lin_logp = dftrc_lin.apply(lambda x: models_lin['k1'].logp(x.to_dict()), axis=1)
mean_deviance = -2 * trc_lin_logp.mean(0)
mean_deviance









Out[48]:






190.51457821816018









In [49]:






deviance_at_mean = -2 * models_lin['k1'].logp(dftrc_lin.mean(0).to_dict())
deviance_at_mean









Out[49]:






187.44666201867705









In [50]:






dic_k1 = 2 * mean_deviance - deviance_at_mean
dic_k1









Out[50]:






193.58249441764332









In [51]:






pm.stats.dic(model=models_lin['k1'], trace=traces_lin['k1'])









Out[51]:






193.58249441764318







Observe:


	It’s good to see the manual method agrees with the implemented
package method





In [52]:






dfdic = pd.DataFrame(index=['k1','k2','k3','k4','k5'], columns=['lin','quad'])
dfdic.index.name = 'model'

for nm in dfdic.index:
    dfdic.loc[nm, 'lin'] = pm.stats.dic(traces_lin[nm], models_lin[nm])
    dfdic.loc[nm, 'quad'] = pm.stats.dic(traces_quad[nm], models_quad[nm])

dfdic = pd.melt(dfdic.reset_index(), id_vars=['model'], var_name='poly', value_name='dic')

g = sns.factorplot(x='model', y='dic', col='poly', hue='poly', data=dfdic, kind='bar', size=6)
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Observe


	We should prefer the model(s) with lower DIC, which (happily)
directly opposes the increasing likelihood we see above.

	Linear-generated data (lhs):
	The DIC increases monotonically with model complexity, this is
great too see!

	The more complicated the model, the more it would appear we are
overfitting.





	Quadratic-generated data (rhs):
	The DIC dips slightly for the correct model k2

	The difference is slight though!










Compare Watanabe - Akaike Information Criterion [WAIC]

The Widely Applicable Bayesian Information Criterion (WBIC), a.k.a the
Watanabe - Akaike Information Criterion (WAIC) is another simple option
for calculating the goodness-of-fit of amodel using numerical
techniques. See (Watanabe
2013) [http://www.jmlr.org/papers/volume14/watanabe13a/watanabe13a.pdf]
for details.

WAIC has also recently been added to PyMC3, so lets see what it tells us
about our model fits for both datasets.



In [53]:






pm.stats.waic(model=models_lin['k1'], trace=traces_lin['k1'])









Out[53]:






(130.81721528352693, 1.248109623573133)







Observe:


	Well, we get a number... not much to tell from just one though, so
lets compare all models





In [54]:






dfwaic = pd.DataFrame(index=['k1','k2','k3','k4','k5'], columns=['lin','quad'])
dfwaic.index.name = 'model'

for nm in dfwaic.index:
    dfwaic.loc[nm, 'lin'] = pm.stats.waic(traces_lin[nm], models_lin[nm])[0]
    dfwaic.loc[nm, 'quad'] = pm.stats.waic(traces_quad[nm], models_quad[nm])[0]

dfwaic = pd.melt(dfwaic.reset_index(), id_vars=['model'], var_name='poly', value_name='waic')

g = sns.factorplot(x='model', y='waic', col='poly', hue='poly', data=dfwaic, kind='bar', size=6)
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Observe


	We should prefer the model(s) with lower WAIC

	Linear-generated data (lhs):
	The WAIC seems quite flat across models

	The WAIC seems best (lowest) for simpler models, but k1
doesn’t stand out as much as it did when using DIC





	Quadratic-generated data (rhs):
	The WAIC is certainly wrong for k1, but otherwise also quite
flat across the models

	There does appear to be a slight dip in the right place at k2







For these particular models and data, I would prefer to use the DIC
scores in order to choose models.








TODO


K-Fold Cross Validation and/or Leave-One-Out (LOO)


Left for future development - should be easy enough

http://www.stat.columbia.edu/~gelman/research/unpublished/waic_stan.pdf








Bayes Factor

Following text lifted directly from JakeVDP
blogpost [https://jakevdp.github.io/blog/2015/08/07/frequentism-and-bayesianism-5-model-selection/]

The Bayesian approach proceeds very differently. Recall that the
Bayesian model involves computing the odds ratio between two models:


\[O_{21}=\frac{P(M_{2} \;|\; D)}{P(M_{1} \;|\; D)}=\frac{P(D \;|\; M_{2})}{P(D \;|\; M_{1})}\frac{P(M_{2})}{P(M_{1})}\]

Here the ratio \(\frac{P(M2)}{P(M1)}\) is the prior odds ratio, and
is often assumed to be equal to 1 if no compelling prior evidence favors
one model over another. The ratio
\(\frac{P(D \;|\; M2)}{P(D \;|\; M1)}\) is the Bayes factor, and
is the key to Bayesian model selection.

The Bayes factor can be computed by evaluating the integral over the
parameter likelihood:


\[P(D \;|\; M)=\int_{\Omega}P(D \;|\; \theta,M) \; P(\theta \;|\; M) \;d\theta\]

This integral is over the entire parameter space of the model, and thus
can be extremely computationally intensive, especially as the dimension
of the model grows beyond a few.



Example originally contributed by Jonathan Sedar 2016-01-09
github.com/jonsedar [https://github.com/jonsedar]
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Rolling Regression

Author: Thomas Wiecki


	Pairs
trading [https://www.quantopian.com/posts/pairs-trading-algorithm-1]
is a famous technique in algorithmic trading that plays two stocks
against each other.

	For this to work, stocks must be correlated (cointegrated).

	One common example is the price of gold (GLD) and the price of gold
mining operations (GFI).





In [1]:






%matplotlib inline
import pandas as pd
import numpy as np
import pymc3 as pm
import matplotlib.pyplot as plt







Lets load the prices of GFI and GLD.



In [14]:






# from pandas_datareader import data
# prices = data.GoogleDailyReader(symbols=['GLD', 'GFI'], end='2014-8-1').read().loc['Open', :, :]

prices = pd.read_csv(pm.get_data('stock_prices.csv'))
prices['Date'] = pd.DatetimeIndex(prices['Date'])
prices = prices.set_index('Date')
prices.head()









Out[14]:









  
    
      	
      	GFI
      	GLD
    

    
      	Date
      	
      	
    

  
  
    
      	2010-01-04
      	13.55
      	109.82
    

    
      	2010-01-05
      	13.51
      	109.88
    

    
      	2010-01-06
      	13.70
      	110.71
    

    
      	2010-01-07
      	13.63
      	111.07
    

    
      	2010-01-08
      	13.72
      	111.52
    

  









In [15]:






finite_idx = (np.isfinite(prices.GLD.values)) & (np.isfinite(prices.GFI.values))
prices = prices.iloc[finite_idx]







Plotting the prices over time suggests a strong correlation. However,
the correlation seems to change over time.



In [16]:






fig = plt.figure(figsize=(9, 6))
ax = fig.add_subplot(111, xlabel='Price GFI in \$', ylabel='Price GLD in \$')
colors = np.linspace(0.1, 1, len(prices))
mymap = plt.get_cmap("winter")
sc = ax.scatter(prices.GFI, prices.GLD, c=colors, cmap=mymap, lw=0)
cb = plt.colorbar(sc)
cb.ax.set_yticklabels([str(p.date()) for p in prices[::len(prices)//10].index]);












[image: ../_images/notebooks_GLM-rolling-regression_6_0.png]




A naive approach would be to estimate a linear model and ignore the time
domain.



In [5]:






with pm.Model() as model_reg:
    pm.glm.GLM.from_formula('GLD ~ GFI', prices)
    trace_reg = pm.sample(2000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 10,562:   7%|▋         | 14229/200000 [00:01<00:14, 13231.35it/s]
Convergence archived at 15300
Interrupted at 15,300 [7%]: Average Loss = 3.0575e+06
100%|██████████| 2500/2500 [00:04<00:00, 501.23it/s]






The posterior predictive plot shows how bad the fit is.



In [6]:






fig = plt.figure(figsize=(9, 6))
ax = fig.add_subplot(111, xlabel='Price GFI in \$', ylabel='Price GLD in \$',
            title='Posterior predictive regression lines')
sc = ax.scatter(prices.GFI, prices.GLD, c=colors, cmap=mymap, lw=0)
pm.plot_posterior_predictive_glm(trace_reg[100:], samples=100,
                              label='posterior predictive regression lines',
                              lm=lambda x, sample: sample['Intercept'] + sample['GFI'] * x,
                              eval=np.linspace(prices.GFI.min(), prices.GFI.max(), 100))
cb = plt.colorbar(sc)
cb.ax.set_yticklabels([str(p.date()) for p in prices[::len(prices)//10].index]);
ax.legend(loc=0);












[image: ../_images/notebooks_GLM-rolling-regression_10_0.png]





Rolling regression

Next, we will build an improved model that will allow for changes in the
regression coefficients over time. Specifically, we will assume that
intercept and slope follow a random-walk through time. That idea is
similar to the stochastic volatility
model [http://pymc-devs.github.io/pymc3/stochastic_volatility/].


\[\alpha_t \sim \mathcal{N}(\alpha_{t-1}, \sigma_\alpha^2)\]


\[\beta_t \sim \mathcal{N}(\beta_{t-1}, \sigma_\beta^2)\]

First, lets define the hyper-priors for \(\sigma_\alpha^2\) and
\(\sigma_\beta^2\). This parameter can be interpreted as the
volatility in the regression coefficients.



In [7]:






model_randomwalk = pm.Model()
with model_randomwalk:
    # std of random walk, best sampled in log space.
    sigma_alpha = pm.Exponential('sigma_alpha', 1./.02, testval = .1)
    sigma_beta = pm.Exponential('sigma_beta', 1./.02, testval = .1)







Next, we define the regression parameters that are not a single random
variable but rather a random vector with the above stated dependence
structure. So as not to fit a coefficient to a single data point, we
will chunk the data into bins of 50 and apply the same coefficients to
all data points in a single bin.



In [8]:






import theano.tensor as tt
# To make the model simpler, we will apply the same coefficient for 50 data points at a time
subsample_n = 50

lendata = len(prices)
ncoef = lendata // subsample_n
idx = range(ncoef * subsample_n)
with model_randomwalk:
    alpha = pm.GaussianRandomWalk('alpha', sigma_alpha**-2,
                                  shape=ncoef)
    beta = pm.GaussianRandomWalk('beta', sigma_beta**-2,
                                 shape=ncoef)

    # Make coefficients have the same length as prices
    alpha_r = tt.repeat(alpha, subsample_n)
    beta_r = tt.repeat(beta, subsample_n)







Perform the regression given coefficients and data and link to the data
via the likelihood.



In [9]:






with model_randomwalk:
    # Define regression
    regression = alpha_r + beta_r * prices.GFI.values[idx]

    # Assume prices are Normally distributed, the mean comes from the regression.
    sd = pm.Uniform('sd', 0, 20)
    likelihood = pm.Normal('y',
                           mu=regression,
                           sd=sd,
                           observed=prices.GLD.values[idx])







Inference. Despite this being quite a complex model, NUTS handles it
wells.



In [10]:






with model_randomwalk:
    trace_rw = pm.sample(2000, njobs=2)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 6,731.4:  17%|█▋        | 33432/200000 [00:04<00:22, 7349.00it/s]
Convergence archived at 33700
Interrupted at 33,700 [16%]: Average Loss = 25,406
 90%|████████▉ | 2248/2500 [01:26<00:11, 21.24it/s]/usr/local/lib/python3.5/dist-packages/pymc3/step_methods/hmc/nuts.py:448: UserWarning: Chain 1 reached the maximum tree depth. Increase max_treedepth, increase target_accept or reparameterize.
  'reparameterize.' % self._chain_id)
/usr/local/lib/python3.5/dist-packages/pymc3/step_methods/hmc/nuts.py:456: UserWarning: Chain 1 contains 7 diverging samples after tuning. If increasing `target_accept` doesn't help try to reparameterize.
  % (self._chain_id, n_diverging))
100%|█████████▉| 2494/2500 [01:34<00:00, 38.26it/s]/usr/local/lib/python3.5/dist-packages/pymc3/step_methods/hmc/nuts.py:448: UserWarning: Chain 0 reached the maximum tree depth. Increase max_treedepth, increase target_accept or reparameterize.
  'reparameterize.' % self._chain_id)
/usr/local/lib/python3.5/dist-packages/pymc3/step_methods/hmc/nuts.py:456: UserWarning: Chain 0 contains 24 diverging samples after tuning. If increasing `target_accept` doesn't help try to reparameterize.
  % (self._chain_id, n_diverging))
100%|██████████| 2500/2500 [01:34<00:00, 26.36it/s]









Analysis of results

\(\alpha\), the intercept, does not seem to change over time.



In [11]:






fig = plt.figure(figsize=(8, 6))
ax = plt.subplot(111, xlabel='time', ylabel='alpha', title='Change of alpha over time.')
ax.plot(trace_rw[-1000:]['alpha'].T, 'r', alpha=.05);
ax.set_xticklabels([str(p.date()) for p in prices[::len(prices)//5].index]);












[image: ../_images/notebooks_GLM-rolling-regression_22_0.png]




However, the slope does.



In [12]:






fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, xlabel='time', ylabel='beta', title='Change of beta over time')
ax.plot(trace_rw[-1000:]['beta'].T, 'b', alpha=.05);
ax.set_xticklabels([str(p.date()) for p in prices[::len(prices)//5].index]);












[image: ../_images/notebooks_GLM-rolling-regression_24_0.png]




The posterior predictive plot shows that we capture the change in
regression over time much better. Note that we should have used returns
instead of prices. The model would still work the same, but the
visualisations would not be quite as clear.



In [13]:






fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, xlabel='Price GFI in \$', ylabel='Price GLD in \$',
            title='Posterior predictive regression lines')

colors = np.linspace(0.1, 1, len(prices))
colors_sc = np.linspace(0.1, 1, len(trace_rw[-500::10]['alpha'].T))
mymap = plt.get_cmap('winter')
mymap_sc = plt.get_cmap('winter')

xi = np.linspace(prices.GFI.min(), prices.GFI.max(), 50)
for i, (alpha, beta) in enumerate(zip(trace_rw[-500::10]['alpha'].T, trace_rw[-500::10]['beta'].T)):
    for a, b in zip(alpha, beta):
        ax.plot(xi, a + b*xi, alpha=.05, lw=1, c=mymap_sc(colors_sc[i]))

sc = ax.scatter(prices.GFI, prices.GLD, label='data', cmap=mymap, c=colors)
cb = plt.colorbar(sc)
cb.ax.set_yticklabels([str(p.date()) for p in prices[::len(prices)//10].index]);
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GLM: Hierarchical Linear Regression


	2016 by Danne Elbers, Thomas Wiecki



This tutorial is adapted from a blog post by Danne Elbers and Thomas
Wiecki called “The Best Of Both Worlds: Hierarchical Linear Regression
in
PyMC3” [http://twiecki.github.io/blog/2014/03/17/bayesian-glms-3/].

Today’s blog post is co-written by Danne
Elbers [http://www.linkedin.com/pub/danne-elbers/69/3a2/7ba] who is
doing her masters thesis with me on computational psychiatry using
Bayesian modeling. This post also borrows heavily from a
Notebook [http://nbviewer.ipython.org/github/fonnesbeck/multilevel_modeling/blob/master/multilevel_modeling.ipynb?create=1]
by Chris
Fonnesbeck [http://biostat.mc.vanderbilt.edu/wiki/Main/ChrisFonnesbeck].

The power of Bayesian modelling really clicked for me when I was first
introduced to hierarchical modelling. In this blog post we will:


	provide and intuitive explanation of hierarchical/multi-level
Bayesian modeling;

	show how this type of model can easily be built and estimated in
PyMC3 [https://github.com/pymc-devs/pymc];

	demonstrate the advantage of using hierarchical Bayesian modelling as
opposed to non-hierarchical Bayesian modelling by comparing the two;

	visualize the “shrinkage effect” (explained below); and

	highlight connections to the frequentist version of this model.



Having multiple sets of related measurements comes up all the time. In
mathematical psychology, for example, you test multiple subjects on the
same task. We then want to estimate a computational/mathematical model
that describes the behavior on the task by a set of parameters. We could
thus fit a model to each subject individually, assuming they share no
similarities; or, pool all the data and estimate one model assuming all
subjects are identical. Hierarchical modeling allows the best of both
worlds by modeling subjects’ similarities but also allowing estimiation
of individual parameters. As an aside, software from our lab,
HDDM [http://ski.cog.brown.edu/hddm_docs/], allows hierarchical
Bayesian estimation of a widely used decision making model in
psychology. In this blog post, however, we will use a more classical
example of hierarchical linear
regression [http://en.wikipedia.org/wiki/Hierarchical_linear_modeling]
to predict radon levels in houses.

This is the 3rd blog post on the topic of Bayesian modeling in PyMC3,
see here for the previous two:


	The Inference Button: Bayesian GLMs made easy with
PyMC3 [http://twiecki.github.io/blog/2013/08/12/bayesian-glms-1/]

	This world is far from Normal(ly distributed): Bayesian Robust
Regression in
PyMC3 [http://twiecki.github.io/blog/2013/08/27/bayesian-glms-2/]




The data set

Gelman et al.’s (2007) radon dataset is a classic for hierarchical
modeling. In this dataset the amount of the radioactive gas radon has
been measured among different households in all counties of several
states. Radon gas is known to be the highest cause of lung cancer in
non-smokers. It is believed to be more strongly present in households
containing a basement and to differ in amount present among types of
soil. Here we’ll investigate this differences and try to make
predictions of radonlevels in different counties based on the county
itself and the presence of a basement. In this example we’ll look at
Minnesota, a state that contains 85 counties in which different
measurements are taken, ranging from 2 to 116 measurements per county.


[image: radon]
radon



First, we’ll load the data:



In [1]:






%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import pymc3 as pm
import pandas as pd
import theano

data = pd.read_csv(pm.get_data('radon.csv'))
data['log_radon'] = data['log_radon'].astype(theano.config.floatX)
county_names = data.county.unique()
county_idx = data.county_code.values

n_counties = len(data.county.unique())







The relevant part of the data we will model looks as follows:



In [2]:






data[['county', 'log_radon', 'floor']].head()









Out[2]:








  
    
      	
      	county
      	log_radon
      	floor
    

  
  
    
      	0
      	AITKIN
      	0.832909
      	1.0
    

    
      	1
      	AITKIN
      	0.832909
      	0.0
    

    
      	2
      	AITKIN
      	1.098612
      	0.0
    

    
      	3
      	AITKIN
      	0.095310
      	0.0
    

    
      	4
      	ANOKA
      	1.163151
      	0.0
    

  







As you can see, we have multiple radon measurements (log-converted
to be on the real line) – one row for each house – in a county and
whether the house has a basement (floor == 0) or not (floor ==
1). We are interested in whether having a basement increases the
radon measured in the house.




The Models


Pooling of measurements

Now you might say: “That’s easy! I’ll just pool all my data and estimate
one big regression to asses the influence of a basement across all
counties”. In math-speak that model would be:


\[radon_{i, c} = \alpha + \beta*\text{floor}_{i, c} + \epsilon\]

Where \(i\) represents the measurement, \(c\) the county and
floor contains a 0 or 1 if the house has a basement or not,
respectively. If you need a refresher on Linear Regressions in PyMC,
check out my previous blog
post [http://twiecki.github.io/blog/2013/08/12/bayesian-glms-1/].
Critically, we are only estimating one intercept and one slope for
all measurements over all counties pooled together as illustrated in the
graphic below (\(\theta\) represents \((\alpha, \beta)\) in our
case and \(y_i\) are the measurements of the \(i\)th county).


[image: pooled]
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Unpooled measurements: separate regressions

But what if we are interested in whether different counties actually
have different relationships (slope) and different base-rates of radon
(intercept)? Then you might say “OK then, I’ll just estimate \(n\)
(number of counties) different regressions – one for each county”. In
math-speak that model would be:


\[radon_{i, c} = \alpha_{c} + \beta_{c}*\text{floor}_{i, c} + \epsilon_c\]

Note that we added the subindex \(c\) so we are estimating \(n\)
different \(\alpha\)s and \(\beta\)s – one for each county.


[image: unpooled]
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This is the extreme opposite model; where above we assumed all counties
are exactly the same, here we are saying that they share no similarities
whatsoever. As we show below, this type of model can be very noisy when
we have little data per county, as is the case in this data set.




Partial pooling: Hierarchical Regression aka, the best of both worlds

Fortunately, there is a middle ground to both of these extremes.
Specifically, we may assume that while \(\alpha\)s and
\(\beta\)s are different for each county as in the unpooled case,
the coefficients all share similarity. We can model this by assuming
that each individual coefficient comes from a common group distribution:


\[\alpha_{c} \sim \mathcal{N}(\mu_{\alpha}, \sigma_{\alpha}^2)\]


\[\beta_{c} \sim \mathcal{N}(\mu_{\beta}, \sigma_{\beta}^2)\]

We thus assume the intercepts \(\alpha\) and slopes \(\beta\) to
come from a normal distribution centered around their respective group
mean \(\mu\) with a certain standard deviation \(\sigma^2\), the
values (or rather posteriors) of which we also estimate. That’s why this
is called a multilevel, hierarchical or partial-pooling modeling.


[image: hierarchical]
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How do we estimate such a complex model you might ask? Well, that’s the
beauty of Probabilistic Programming – we just formulate the model we
want and press our Inference
Button(TM) [http://twiecki.github.io/blog/2013/08/12/bayesian-glms-1/].

(Note that the above is not a complete Bayesian model specification as
we haven’t defined priors or hyperpriors (i.e. priors for the group
distribution, \(\mu\) and \(\sigma\)). These will be used in the
model implementation below but only distract here.)






Probabilistic Programming


Unpooled/non-hierarchical model

To highlight the effect of the hierarchical linear regression we’ll
first estimate the non-hierarchical, unpooled Bayesian model from above
(separate regressions). For each county we estimate a completely
separate mean (intercept). As we have no prior information on what the
intercept or regressions could be, we will be using a normal
distribution centered around 0 with a wide standard-deviation to
describe the intercept and regressions. We’ll assume the measurements
are normally distributed with noise \(\epsilon\) on which we place a
uniform distribution.



In [3]:






with pm.Model() as unpooled_model:

    # Independent parameters for each county
    a = pm.Normal('a', 0, sd=100, shape=n_counties)
    b = pm.Normal('b', 0, sd=100, shape=n_counties)

    # Model error
    eps = pm.HalfCauchy('eps', 5)

    # Model prediction of radon level
    # a[county_idx] translates to a[0, 0, 0, 1, 1, ...],
    # we thus link multiple household measures of a county
    # to its coefficients.
    radon_est = a[county_idx] + b[county_idx]*data.floor.values

    # Data likelihood
    y = pm.Normal('y', radon_est, sd=eps, observed=data.log_radon)









In [4]:






with unpooled_model:
    unpooled_trace = pm.sample(5000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 1,744.1: 100%|██████████| 200000/200000 [00:40<00:00, 4993.16it/s]
Finished [100%]: Average Loss = 1,744.1
100%|██████████| 5000/5000 [23:20<00:00,  1.85it/s] /home/jovyan/pymc3/pymc3/step_methods/hmc/nuts.py:237: UserWarning: Step size tuning was enabled throughout the whole trace. You might want to specify the number of tuning steps.
  warnings.warn('Step size tuning was enabled throughout the whole '
/opt/conda/lib/python3.5/site-packages/numpy/core/fromnumeric.py:2889: RuntimeWarning: Mean of empty slice.
  out=out, **kwargs)










Hierarchical Model

Instead of creating models separatley, the hierarchical model creates
group parameters that consider the countys not as completely different
but as having an underlying similarity. These distributions are
subsequently used to influence the distribution of each county’s
\(\alpha\) and \(\beta\).



In [5]:






with pm.Model() as hierarchical_model:
    # Hyperpriors for group nodes
    mu_a = pm.Normal('mu_a', mu=0., sd=100**2)
    sigma_a = pm.HalfCauchy('sigma_a', 5)
    mu_b = pm.Normal('mu_b', mu=0., sd=100**2)
    sigma_b = pm.HalfCauchy('sigma_b', 5)

    # Intercept for each county, distributed around group mean mu_a
    # Above we just set mu and sd to a fixed value while here we
    # plug in a common group distribution for all a and b (which are
    # vectors of length n_counties).
    a = pm.Normal('a', mu=mu_a, sd=sigma_a, shape=n_counties)
    # Intercept for each county, distributed around group mean mu_a
    b = pm.Normal('b', mu=mu_b, sd=sigma_b, shape=n_counties)

    # Model error
    eps = pm.HalfCauchy('eps', 5)

    radon_est = a[county_idx] + b[county_idx] * data.floor.values

    # Data likelihood
    radon_like = pm.Normal('radon_like', mu=radon_est, sd=eps, observed=data.log_radon)









In [6]:






# Inference button (TM)!
with hierarchical_model:
    hierarchical_trace = pm.sample(draws=2000, n_init=1000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 2,382: 100%|██████████| 1000/1000 [00:00<00:00, 1687.66it/s]
Finished [100%]: Average Loss = 2,378.9
100%|█████████▉| 1998/2000 [01:03<00:00, 36.82it/s]/home/jovyan/pymc3/pymc3/step_methods/hmc/nuts.py:237: UserWarning: Step size tuning was enabled throughout the whole trace. You might want to specify the number of tuning steps.
  warnings.warn('Step size tuning was enabled throughout the whole '
/opt/conda/lib/python3.5/site-packages/numpy/core/fromnumeric.py:2889: RuntimeWarning: Mean of empty slice.
  out=out, **kwargs)
100%|██████████| 2000/2000 [01:03<00:00, 31.26it/s]






Plotting the hierarchical model trace - its found values - from 2000
iterations onwards (right side plot) and its accumulated marginal values
(left side plot)



In [7]:






pm.traceplot(hierarchical_trace);












[image: ../_images/notebooks_GLM-hierarchical_15_0.png]




The marginal posteriors in the left column are highly informative.
mu_a tells us the group mean (log) radon levels. mu_b tells us
that having no basement decreases radon levels significantly (no mass
above zero). We can also see by looking at the marginals for a that
there is quite some differences in radon levels between counties (each
‘rainbow’ color corresponds to a single county); the different widths
are related to how much confidence we have in each paramter estimate –
the more measurements per county, the higher our confidence will be.






Posterior Predictive Check


The Root Mean Square Deviation

To find out which of the models explains the data better we can
calculate the Root Mean Square Deviaton (RMSD). This posterior
predictive check revolves around recreating the data based on the
parameters found at different moments in the chain. The recreated or
predicted values are subsequently compared to the real data points, the
model that predicts data points closer to the original data is
considered the better one. Thus, the lower the RMSD the better.

When computing the RMSD (code not shown) we get the following result:


	individual/non-hierarchical model: 0.13

	hierarchical model: 0.08



As can be seen above the hierarchical model performs better than the
non-hierarchical model in predicting the radon values. Following this,
we’ll plot some examples of county’s showing the actual radon
measurements, the hierarchial predictions and the non-hierarchical
predictions.



In [8]:






selection = ['CASS', 'CROW WING', 'FREEBORN']
fig, axis = plt.subplots(1, 3, figsize=(12, 6), sharey=True, sharex=True)
axis = axis.ravel()
for i, c in enumerate(selection):
    c_data = data.ix[data.county == c]
    c_data = c_data.reset_index(drop = True)
    c_index = np.where(county_names==c)[0][0]
    z = list(c_data['county_code'])[0]

    xvals = np.linspace(-0.2, 1.2)
    for a_val, b_val in zip(unpooled_trace['a'][1000:, c_index], unpooled_trace['b'][1000:, c_index]):
        axis[i].plot(xvals, a_val + b_val * xvals, 'b', alpha=.1)
    axis[i].plot(xvals, unpooled_trace['a'][1000:, c_index].mean() + unpooled_trace['b'][1000:, c_index].mean() * xvals,
                 'b', alpha=1, lw=2., label='individual')
    for a_val, b_val in zip(hierarchical_trace['a'][1000:][z], hierarchical_trace['b'][1000:][z]):
        axis[i].plot(xvals, a_val + b_val * xvals, 'g', alpha=.1)
    axis[i].plot(xvals, hierarchical_trace['a'][1000:][z].mean() + hierarchical_trace['b'][1000:][z].mean() * xvals,
                 'g', alpha=1, lw=2., label='hierarchical')
    axis[i].scatter(c_data.floor + np.random.randn(len(c_data))*0.01, c_data.log_radon,
                    alpha=1, color='k', marker='.', s=80, label='original data')
    axis[i].set_xticks([0,1])
    axis[i].set_xticklabels(['basement', 'no basement'])
    axis[i].set_ylim(-1, 4)
    axis[i].set_title(c)
    if not i%3:
        axis[i].legend()
        axis[i].set_ylabel('log radon level')
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In the above plot we have the data points in black of three selected
counties. The thick lines represent the mean estimate of the regression
line of the individual (blue) and hierarchical model (in green). The
thinner lines are regression lines of individual samples from the
posterior and give us a sense of how variable the estimates are.

When looking at the county ‘CASS’ we see that the non-hierarchical
estimation is strongly biased: as this county’s data contains only
households with a basement the estimated regression produces the
non-sensical result of a giant negative slope meaning that we would
expect negative radon levels in a house without basement!

Moreover, in the example county’s ‘CROW WING’ and ‘FREEBORN’ the
non-hierarchical model appears to react more strongly than the
hierarchical model to the existance of outliers in the dataset (‘CROW
WING’: no basement upper right. ‘FREEBORN’: basement upper left).
Assuming that there should be a higher amount of radon gas measurable in
households with basements opposed to those without, the county ‘CROW
WING’’s non-hierachical model seems off. Having the group-distribution
constrain the coefficients we get meaningful estimates in all cases as
we apply what we learn from the group to the individuals and vice-versa.






Shrinkage

Shrinkage describes the process by which our estimates are “pulled”
towards the group-mean as a result of the common group distribution –
county-coefficients very far away from the group mean have very low
probability under the normality assumption, moving them closer to the
group mean gives them higher probability. In the non-hierachical model
every county is allowed to differ completely from the others by just
using each county’s data, resulting in a model more prone to outliers
(as shown above).



In [9]:






hier_a = hierarchical_trace['a'][500:].mean(axis=0)
hier_b = hierarchical_trace['b'][500:].mean(axis=0)
indv_a = [unpooled_trace['a'][500:, np.where(county_names==c)[0][0]].mean() for c in county_names]
indv_b = [unpooled_trace['b'][500:, np.where(county_names==c)[0][0]].mean() for c in county_names]









In [10]:






fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111, xlabel='Intercept', ylabel='Floor Measure',
                     title='Hierarchical vs. Non-hierarchical Bayes',
                     xlim=(0, 3), ylim=(-3, 3))

ax.scatter(indv_a, indv_b, s=26, alpha=0.4, label = 'non-hierarchical')
ax.scatter(hier_a,hier_b, c='red', s=26, alpha=0.4, label = 'hierarchical')
for i in range(len(indv_b)):
    ax.arrow(indv_a[i], indv_b[i], hier_a[i] - indv_a[i], hier_b[i] - indv_b[i],
             fc="k", ec="k", length_includes_head=True, alpha=0.4, head_width=.04)
ax.legend();
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In the shrinkage plot above we show the coefficients of each county’s
non-hierarchical posterior mean (blue) and the hierarchical posterior
mean (red). To show the effect of shrinkage on a single coefficient-pair
(alpha and beta) we connect the blue and red points belonging to the
same county by an arrow. Some non-hierarchical posteriors are so far out
that we couldn’t display them in this plot (it makes the axes too wide).
Interestingly, all hierarchical posteriors of the floor-measure seem to
be around -0.6 indicating that having a basement in almost all county’s
is a clear indicator for heightened radon levels. The intercept (which
we take for type of soil) appears to differ among countys. This
information would have been difficult to find if we had only used the
non-hierarchial model.

Critically, many effects that look quite large and significant in the
non-hiearchical model actually turn out to be much smaller when we take
the group distribution into account (this point can also well be seen in
plot In[12] in Chris’
NB [http://nbviewer.ipython.org/github/fonnesbeck/multilevel_modeling/blob/master/multilevel_modeling.ipynb]).
Shrinkage can thus be viewed as a form of smart regularization that
helps reduce false-positives!


Connections to Frequentist statistics

This type of hierarchical, partial pooling model is known as a random
effects model [https://en.wikipedia.org/wiki/Random_effects_model] in
frequentist terms. Interestingly, if we placed uniform priors on the
group mean and variance in the above model, the resulting Bayesian model
would be equivalent to a random effects model. One might imagine that
the difference between a model with uniform or wide normal hyperpriors
should not have a huge impact. However, Gelman
says [http://andrewgelman.com/2014/03/15/problematic-interpretations-confidence-intervals/]
encourages use of weakly-informative priors (like we did above) over
flat priors.






Summary

In this post, co-authored by Danne Elbers, we showed how a multi-level
hierarchical Bayesian model gives the best of both worlds when we have
multiple sets of measurements we expect to have similarity. The naive
approach either pools all data together and ignores the individual
differences, or treats each set as completely separate leading to noisy
estimates, as shown above. By assuming that each individual data set
(each county in our case) is distributed according to a group
distribution – which we simultaneously estimate – we benefit from
increased statistical power and smart regularization via the shrinkage
effect. Probabilistic Programming in
PyMC3 [https://github.com/pymc-devs/pymc3] then makes Bayesian
estimation of this model trivial.

As a follow-up we could also include other states into our model. For
this we could add yet another layer to the hierarchy where each state is
pooled at the country level. Finally, readers of my blog will notice
that we didn’t use glm() here as it does not play nice with
hierarchical models yet.
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GLM: Poisson Regression


A minimal reproducable example of poisson regression to predict counts using dummy data.

This Notebook is basically an excuse to demo poisson regression using
PyMC3, both manually and using the glm library to demo interactions
using the patsy library. We will create some dummy data, poisson
distributed according to a linear model, and try to recover the
coefficients of that linear model through inference.

For more statistical detail see:


	Basic info on
Wikipedia [https://en.wikipedia.org/wiki/Poisson_regression]

	GLMs: Poisson regression, exposure, and overdispersion in Chapter 6.2
of ARM, Gelmann & Hill
2006 [http://www.stat.columbia.edu/%7Egelman/arm/]

	This worked example from ARM 6.2 by Clay
Ford [http://www.clayford.net/statistics/poisson-regression-ch-6-of-gelman-and-hill/]



This very basic model is insipired by a project by Ian
Osvald [http://ianozsvald.com/2016/05/07/statistically-solving-sneezes-and-sniffles-a-work-in-progress-report-at-pydatalondon-2016/],
which is concerend with understanding the various effects of external
environmental factors upon the allergic sneezing of a test subject.
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Package Requirements (shown as a conda-env YAML):

$> less conda_env_pymc3_examples.yml

name: pymc3_examples
channels:
  - defaults
dependencies:
    - python=3.5
    - jupyter
    - ipywidgets
    - numpy
    - scipy
    - matplotlib
    - pandas
    - pytables
    - scikit-learn
    - statsmodels
    - seaborn
    - patsy
    - requests
    - pip
    - pip:
        - regex

$> conda env create --file conda_env_pymc3_examples.yml
$> source activate pymc3_examples
$> pip install --process-dependency-links git+https://github.com/pymc-devs/pymc3








Setup



In [1]:






## Interactive magics
%matplotlib inline









In [2]:






import sys
import warnings
warnings.filterwarnings('ignore')

import re
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import patsy as pt
from scipy import optimize

# pymc3 libraries
import pymc3 as pm
import theano as thno
import theano.tensor as T


sns.set(style="darkgrid", palette="muted")
pd.set_option('display.mpl_style', 'default')
plt.rcParams['figure.figsize'] = 14, 6
np.random.seed(0)










Local Functions



In [3]:






def strip_derived_rvs(rvs):
    '''Convenience fn: remove PyMC3-generated RVs from a list'''
    ret_rvs = []
    for rv in rvs:
        if not (re.search('_log',rv.name) or re.search('_interval',rv.name)):
            ret_rvs.append(rv)
    return ret_rvs


def plot_traces_pymc(trcs, varnames=None):
    ''' Convenience fn: plot traces with overlaid means and values '''

    nrows = len(trcs.varnames)
    if varnames is not None:
        nrows = len(varnames)

    ax = pm.traceplot(trcs, varnames=varnames, figsize=(12,nrows*1.4),
                      lines={k: v['mean'] for k, v in
                             pm.df_summary(trcs,varnames=varnames).iterrows()})

    for i, mn in enumerate(pm.df_summary(trcs, varnames=varnames)['mean']):
        ax[i,0].annotate('{:.2f}'.format(mn), xy=(mn,0), xycoords='data',
                         xytext=(5,10), textcoords='offset points', rotation=90,
                         va='bottom', fontsize='large', color='#AA0022')










Generate Data

This dummy dataset is created to emulate some data created as part of a
study into quantified self, and the real data is more complicated than
this. Ask Ian Osvald if you’d like to know more
https://twitter.com/ianozsvald


Assumptions:


	The subject sneezes N times per day, recorded as nsneeze (int)

	The subject may or may not drink alcohol during that day, recorded as
alcohol (boolean)

	The subject may or may not take an antihistamine medication during
that day, recorded as the negative action nomeds (boolean)

	I postulate (probably incorrectly) that sneezing occurs at some
baseline rate, which increases if an antihistamine is not taken, and
further increased after alcohol is consumed.

	The data is aggegated per day, to yield a total count of sneezes on
that day, with a boolean flag for alcohol and antihistamine usage,
with the big assumption that nsneezes have a direct causal
relationship.



Create 4000 days of data: daily counts of sneezes which are poisson
distributed w.r.t alcohol consumption and antihistamine usage



In [4]:






# decide poisson theta values
theta_noalcohol_meds = 1    # no alcohol, took an antihist
theta_alcohol_meds = 3      # alcohol, took an antihist
theta_noalcohol_nomeds = 6  # no alcohol, no antihist
theta_alcohol_nomeds = 36   # alcohol, no antihist

# create samples
q = 1000
df = pd.DataFrame({
        'nsneeze': np.concatenate((np.random.poisson(theta_noalcohol_meds, q),
                                   np.random.poisson(theta_alcohol_meds, q),
                                   np.random.poisson(theta_noalcohol_nomeds, q),
                                   np.random.poisson(theta_alcohol_nomeds, q))),
        'alcohol': np.concatenate((np.repeat(False, q),
                                   np.repeat(True, q),
                                   np.repeat(False, q),
                                   np.repeat(True, q))),
        'nomeds': np.concatenate((np.repeat(False, q),
                                      np.repeat(False, q),
                                      np.repeat(True, q),
                                      np.repeat(True, q)))})









In [5]:






df.tail()









Out[5]:








  
    
      	
      	alcohol
      	nomeds
      	nsneeze
    

  
  
    
      	3995
      	True
      	True
      	38
    

    
      	3996
      	True
      	True
      	31
    

    
      	3997
      	True
      	True
      	30
    

    
      	3998
      	True
      	True
      	34
    

    
      	3999
      	True
      	True
      	36
    

  








View means of the various combinations (poisson mean values)



In [6]:






df.groupby(['alcohol','nomeds']).mean().unstack()









Out[6]:








  
    
      	
      	nsneeze
    

    
      	nomeds
      	False
      	True
    

    
      	alcohol
      	
      	
    

  
  
    
      	False
      	1.018
      	5.866
    

    
      	True
      	2.938
      	35.889
    

  












Briefly Describe Dataset



In [7]:






g = sns.factorplot(x='nsneeze', row='nomeds', col='alcohol', data=df,
               kind='count', size=4, aspect=1.5)
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Observe:


	This looks a lot like poisson-distributed count data (because it is)

	With nomeds == False and alcohol == False (top-left, akak
antihistamines WERE used, alcohol was NOT drunk) the mean of the
poisson distribution of sneeze counts is low.

	Changing alcohol == True (top-right) increases the sneeze count
nsneeze slightly

	Changing nomeds == True (lower-left) increases the sneeze count
nsneeze further

	Changing both alcohol == True and nomeds == True (lower-right)
increases the sneeze count nsneeze a lot, increasing both the
mean and variance.










Poisson Regression

Our model here is a very simple Poisson regression, allowing for
interaction of terms:


\[\theta = exp(\beta X)\]


\[Y_{sneeze\_count} ~ Poisson(\theta)\]

Create linear model for interaction of terms



In [8]:






fml = 'nsneeze ~ alcohol + antihist + alcohol:antihist'  # full patsy formulation









In [9]:






fml = 'nsneeze ~ alcohol * nomeds'  # lazy, alternative patsy formulation








1. Manual method, create design matrices and manually specify model

Create Design Matrices



In [10]:






(mx_en, mx_ex) = pt.dmatrices(fml, df, return_type='dataframe', NA_action='raise')









In [11]:






pd.concat((mx_ex.head(3),mx_ex.tail(3)))









Out[11]:








  
    
      	
      	Intercept
      	alcohol[T.True]
      	nomeds[T.True]
      	alcohol[T.True]:nomeds[T.True]
    

  
  
    
      	0
      	1.0
      	0.0
      	0.0
      	0.0
    

    
      	1
      	1.0
      	0.0
      	0.0
      	0.0
    

    
      	2
      	1.0
      	0.0
      	0.0
      	0.0
    

    
      	3997
      	1.0
      	1.0
      	1.0
      	1.0
    

    
      	3998
      	1.0
      	1.0
      	1.0
      	1.0
    

    
      	3999
      	1.0
      	1.0
      	1.0
      	1.0
    

  







Create Model



In [12]:






with pm.Model() as mdl_fish:

    # define priors, weakly informative Normal
    b0 = pm.Normal('b0_intercept', mu=0, sd=10)
    b1 = pm.Normal('b1_alcohol[T.True]', mu=0, sd=10)
    b2 = pm.Normal('b2_nomeds[T.True]', mu=0, sd=10)
    b3 = pm.Normal('b3_alcohol[T.True]:nomeds[T.True]', mu=0, sd=10)

    # define linear model and exp link function
    theta = (b0 +
            b1 * mx_ex['alcohol[T.True]'] +
            b2 * mx_ex['nomeds[T.True]'] +
            b3 * mx_ex['alcohol[T.True]:nomeds[T.True]'])

    ## Define Poisson likelihood
    y = pm.Poisson('y', mu=np.exp(theta), observed=mx_en['nsneeze'].values)







Sample Model



In [13]:






with mdl_fish:
    trc_fish = pm.sample(2000, tune=1000, njobs=4)[1000:]













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 8,741.9:  17%|█▋        | 33556/200000 [00:07<00:37, 4436.96it/s]
Convergence archived at 34000
Interrupted at 34,000 [17%]: Average Loss = 12,493
100%|██████████| 2000/2000 [00:53<00:00, 37.07it/s]






View Diagnostics



In [14]:






rvs_fish = [rv.name for rv in strip_derived_rvs(mdl_fish.unobserved_RVs)]
plot_traces_pymc(trc_fish, varnames=rvs_fish)
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Observe:


	The model converges quickly and traceplots looks pretty well mixed






Transform coeffs and recover theta values



In [15]:






np.exp(pm.df_summary(trc_fish, varnames=rvs_fish)[['mean','hpd_2.5','hpd_97.5']])









Out[15]:








  
    
      	
      	mean
      	hpd_2.5
      	hpd_97.5
    

  
  
    
      	b0_intercept
      	1.019115
      	0.960588
      	1.084479
    

    
      	b1_alcohol[T.True]
      	2.883167
      	2.677978
      	3.083394
    

    
      	b2_nomeds[T.True]
      	5.755584
      	5.404332
      	6.166625
    

    
      	b3_alcohol[T.True]:nomeds[T.True]
      	2.122313
      	1.960857
      	2.285519
    

  







Observe:


	The contributions from each feature as a multiplier of the baseline
sneezecount appear to be as per the data generation:


	exp(b0_intercept): mean=1.02 cr=[0.96, 1.08]

Roughly linear baseline count when no alcohol and meds, as per the
generated data:

theta_noalcohol_meds = 1 (as set above) theta_noalcohol_meds =
exp(b0_intercept) = 1



	exp(b1_alcohol): mean=2.88 cr=[2.69, 3.09]

non-zero positive effect of adding alcohol, a ~3x multiplier of
baseline sneeze count, as per the generated data:

theta_alcohol_meds = 3 (as set above) theta_alcohol_meds =
exp(b0_intercept + b1_alcohol) = exp(b0_intercept) *
exp(b1_alcohol) = 1 * 3 = 3



	exp(b2_nomeds[T.True]): mean=5.76 cr=[5.40, 6.17]

larger, non-zero positive effect of adding nomeds, a ~6x
multiplier of baseline sneeze count, as per the generated data:

theta_noalcohol_nomeds = 6 (as set above)
theta_noalcohol_nomeds = exp(b0_intercept + b2_nomeds) =
exp(b0_intercept) * exp(b2_nomeds) = 1 * 6 = 6



	exp(b3_alcohol[T.True]:nomeds[T.True]): mean=2.12 cr=[1.98, 2.30]

small, positive interaction effect of alcohol and meds, a ~2x
multiplier of baseline sneeze count, as per the generated data:

theta_alcohol_nomeds = 36 (as set above) theta_alcohol_nomeds
= exp(b0_intercept + b1_alcohol + b2_nomeds +
b3_alcohol:nomeds) = exp(b0_intercept) * exp(b1_alcohol) *
exp(b2_nomeds * b3_alcohol:nomeds) = 1 * 3 * 6 * 2 = 36














2. Alternative method, using pymc.glm

Create Model

Alternative automatic formulation using ``pmyc.glm``



In [16]:






with pm.Model() as mdl_fish_alt:

    pm.glm.GLM.from_formula(fml, df, family=pm.glm.families.Poisson())







Sample Model



In [17]:






with mdl_fish_alt:
    trc_fish_alt = pm.sample(4000, tune=2000)[2000:]













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 8,752.5:  36%|███▋      | 72995/200000 [00:28<00:48, 2645.19it/s]
Convergence archived at 73000
Interrupted at 73,000 [36%]: Average Loss = 10,558
100%|██████████| 4000/4000 [00:59<00:00, 67.09it/s]






View Traces



In [18]:






rvs_fish_alt = [rv.name for rv in strip_derived_rvs(mdl_fish_alt.unobserved_RVs)]
plot_traces_pymc(trc_fish_alt, varnames=rvs_fish_alt)
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Transform coeffs



In [19]:






np.exp(pm.df_summary(trc_fish_alt, varnames=rvs_fish_alt)[['mean','hpd_2.5','hpd_97.5']])









Out[19]:








  
    
      	
      	mean
      	hpd_2.5
      	hpd_97.5
    

  
  
    
      	Intercept
      	1.018166e+00
      	0.958267
      	1.081268e+00
    

    
      	alcohol[T.True]
      	2.884562e+00
      	2.695548
      	3.099807e+00
    

    
      	nomeds[T.True]
      	5.757993e+00
      	5.398246
      	6.140422e+00
    

    
      	alcohol[T.True]:nomeds[T.True]
      	2.122279e+00
      	1.972142
      	2.298126e+00
    

    
      	mu
      	2.328724e+35
      	1.002232
      	8.016059e+66
    

  







Observe:


	The traceplots look well mixed

	The transformed model coeffs look moreorless the same as those
generated by the manual model

	Note also that the mu coeff is for the overall mean of the
dataset and has an extreme skew, if we look at the median value ...





In [20]:






np.percentile(trc_fish_alt['mu'], [25,50,75])









Out[20]:






array([  4.04931927,   9.77667856,  23.27432728])







... of 9.45 with a range [25%, 75%] of [4.17, 24.18], we see this is
pretty close to the overall mean of:



In [21]:






df['nsneeze'].mean()









Out[21]:






11.42775









Example originally contributed by Jonathan Sedar 2016-05-15
github.com/jonsedar [https://github.com/jonsedar]
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Hierarchical Partial Pooling

Suppose you are tasked with estimating baseball batting skills for
several players. One such performance metric is batting average. Since
players play a different number of games and bat in different positions
in the order, each player has a different number of at-bats. However,
you want to estimate the skill of all players, including those with a
relatively small number of batting opportunities.

So, suppose a player came to bat only 4 times, and never hit the ball.
Are they a bad player?

As a disclaimer, the author of this notebook assumes little to
non-existant knowledge about baseball and its rules. The number of times
at bat in his entire life is around “4”.


Data

We will use the baseball data for 18 players from Efron and
Morris [http://www.swarthmore.edu/NatSci/peverso1/Sports%20Data/JamesSteinData/Efron-Morris%20Baseball/EfronMorrisBB.txt]
(1975).




Approach

We will use PyMC3 to estimate the batting average for each player.
Having estimated the averages across all players in the datasets, we can
use this information to inform an estimate of an additional player, for
which there is little data (i.e. 4 at-bats).

In the absence of a Bayesian hierarchical model, there are two
approaches for this problem:


	independently compute batting average for each player (no pooling)

	compute an overall average, under the assumption that everyone has
the same underlying average (complete pooling)



Of course, neither approach is realistic. Clearly, all players aren’t
equally skilled hitters, so the global average is implausible. At the
same time, professional baseball players are similar in many ways, so
their averages aren’t entirely independent either.

It may be possible to cluster groups of “similar” players, and estimate
group averages, but using a hierarchical modeling approach is a natural
way of sharing information that does not involve identifying ad hoc
clusters.

The idea of hierarchical partial pooling is to model the global
performance, and use that estimate to parameterize a population of
players that accounts for differences among the players’ performances.
This tradeoff between global and individual performance will be
automatically tuned by the model. Also, uncertainty due to different
number of at bats for each player (i.e. informatino) will be
automatically accounted for, by shrinking those estimates closer to the
global mean.

For far more in-depth discussion please refer to Stan
tutorial [http://mc-stan.org/documentation/case-studies/pool-binary-trials.html]
on the subject. The model and parameter values were taken from that
example.



In [1]:






%matplotlib inline
import pymc3 as pm
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd







Now we can load the dataset using pandas:



In [2]:






data = pd.read_table(pm.get_data('efron-morris-75-data.tsv'), sep="\t")
at_bats, hits = data[['At-Bats', 'Hits']].values.T







Now let’s develop a generative model for these data.

We will assume that there exists a hidden factor (phi) related to
the expected performance for all players (not limited to our 18). Since
the population mean is an unknown value between 0 and 1, it must be
bounded from below and above. Also, we assume that nothing is known
about global average. Hence, a natural choice for a prior distribution
is the uniform distribution.

Next, we introduce a hyperparameter kappa to account for the
variance in the population batting averages, for which we will use a
bounded Pareto distribution. This will ensure that the estimated value
falls within reasonable bounds. These hyperparameters will be, in turn,
used to parameterize a beta distribution, which is ideal for modeling
quantities on the unit interval. The beta distribution is typically
parameterized via a scale and shape parameter, it may also be
parametrized in terms of its mean \(\mu \in [0,1]\) and sample size
(a proxy for variance) \(\nu = \alpha + \beta (\nu > 0)\).

The final step is to specify a sampling distribution for the data (hit
or miss) for every player, using a Binomial distribution. This is where
the data are brought to bear on the model.



In [3]:






N = len(hits)

BoundedKappa = pm.Bound( pm.Pareto, lower=1.0 )

with pm.Model() as baseball_model:

    phi = pm.Uniform('phi', lower=0.0, upper=1.0)
    kappa = BoundedKappa('kappa', alpha=1.000001, m=1.5)
    thetas = pm.Beta('thetas', alpha=phi*kappa, beta=(1.0-phi)*kappa, shape=N)
    y = pm.Binomial('y', n=at_bats, p=thetas, observed=hits)







Recall our original question was with regard to the true batting average
for a player with only 4 at bats and no hits. We can add this as an
additional variable in the model



In [4]:






with baseball_model:

    theta_new = pm.Beta('theta_new', alpha=phi*kappa, beta=(1.0-phi)*kappa)
    y_new = pm.Binomial('y_new', n=4, p=theta_new, observed=0)







We can now fit the model using MCMC:



In [5]:






with baseball_model:
    trace = pm.sample(2000, init=None)













Assigned NUTS to phi_interval_
Assigned NUTS to kappa_lowerbound_
Assigned NUTS to thetas_logodds_
Assigned NUTS to theta_new_logodds_
 99%|█████████▉| 1985/2000 [00:07<00:00, 287.32it/s]/home/jovyan/pymc3/pymc3/step_methods/hmc/nuts.py:237: UserWarning: Step size tuning was enabled throughout the whole trace. You might want to specify the number of tuning steps.
  warnings.warn('Step size tuning was enabled throughout the whole '
/opt/conda/lib/python3.5/site-packages/numpy/core/fromnumeric.py:2889: RuntimeWarning: Mean of empty slice.
  out=out, **kwargs)
100%|██████████| 2000/2000 [00:07<00:00, 264.07it/s]






Now we can plot the posteriors distribution of the parameters. First,
the population hyperparameters:



In [6]:






pm.traceplot(trace[-1000:], varnames=['phi', 'kappa']);












[image: ../_images/notebooks_hierarchical_partial_pooling_12_0.png]




Hence, the population mean batting average is in the 0.22-0.31 range,
with an expected value of around 0.26.

Next, the estimates for all 18 players in the dataset:



In [7]:






player_names = data.apply(lambda x: x.FirstName + ' ' + x.LastName, axis=1)
pm.forestplot(trace[-1000:], varnames=['thetas'], ylabels=player_names)









Out[7]:






<matplotlib.gridspec.GridSpec at 0x7f80bf7d9748>












[image: ../_images/notebooks_hierarchical_partial_pooling_14_1.png]




Finally, let’s get the estimate for our 0-for-4 player:



In [8]:






pm.traceplot(trace[-1000:], varnames=['theta_new']);












[image: ../_images/notebooks_hierarchical_partial_pooling_16_0.png]




Notice that, despite the fact our additional player did not get any
hits, the estimate of his average is not zero – zero is not even a
highly-probably value. This is because we are assuming that the player
is drawn from a population of players with a distribution specified by
our estimated hyperparemeters. However, the estimated mean for this
player is toward the low end of the means for the players in our
dataset, indicating that the 4 at-bats contributed some information
toward the estimate.
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GLM: Negative Binomial Regression

This notebook demos negative binomial regression using the glm
submodule. It closely follows the GLM Poisson regression example by
Jonathan Sedar [https://github.com/jonsedar] (which is in turn
insipired by a project by Ian
Osvald [http://ianozsvald.com/2016/05/07/statistically-solving-sneezes-and-sniffles-a-work-in-progress-report-at-pydatalondon-2016/])
except the data here is negative binomially distributed instead of
Poisson distributed.

Negative binomial regression is used to model count data for which the
variance is higher than the mean. The negative binomial
distribution [https://en.wikipedia.org/wiki/Negative_binomial_distribution]
can be thought of as a Poisson distribution whose rate parameter is
gamma distributed, so that rate parameter can be adjusted to account for
the increased variance.
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Setup



In [1]:






import numpy as np
import pandas as pd
import pymc3 as pm
from scipy import stats
from scipy import optimize
import matplotlib.pyplot as plt
import seaborn as sns
import re

%matplotlib inline








Convenience Functions

Taken from the Poisson regression example.



In [2]:






def plot_traces(trcs, varnames=None):
    '''Plot traces with overlaid means and values'''

    nrows = len(trcs.varnames)
    if varnames is not None:
        nrows = len(varnames)

    ax = pm.traceplot(trcs, varnames=varnames, figsize=(12,nrows*1.4),
                      lines={k: v['mean'] for k, v in
                             pm.df_summary(trcs,varnames=varnames).iterrows()})

    for i, mn in enumerate(pm.df_summary(trcs, varnames=varnames)['mean']):
        ax[i,0].annotate('{:.2f}'.format(mn), xy=(mn,0), xycoords='data',
                         xytext=(5,10), textcoords='offset points', rotation=90,
                         va='bottom', fontsize='large', color='#AA0022')

def strip_derived_rvs(rvs):
    '''Remove PyMC3-generated RVs from a list'''

    ret_rvs = []
    for rv in rvs:
        if not (re.search('_log',rv.name) or re.search('_interval',rv.name)):
            ret_rvs.append(rv)
    return ret_rvs










Generate Data

As in the Poisson regression example, we assume that sneezing occurs at
some baseline rate, and that consuming alcohol, not taking
antihistamines, or doing both, increase its frequency.








Poisson Data

First, let’s look at some Poisson distributed data from the Poisson
regression example.



In [3]:






np.random.seed(123)









In [4]:






# Mean Poisson values
theta_noalcohol_meds = 1    # no alcohol, took an antihist
theta_alcohol_meds = 3      # alcohol, took an antihist
theta_noalcohol_nomeds = 6  # no alcohol, no antihist
theta_alcohol_nomeds = 36   # alcohol, no antihist

# Create samples
q = 1000
df_pois = pd.DataFrame({
        'nsneeze': np.concatenate((np.random.poisson(theta_noalcohol_meds, q),
                                   np.random.poisson(theta_alcohol_meds, q),
                                   np.random.poisson(theta_noalcohol_nomeds, q),
                                   np.random.poisson(theta_alcohol_nomeds, q))),
        'alcohol': np.concatenate((np.repeat(False, q),
                                   np.repeat(True, q),
                                   np.repeat(False, q),
                                   np.repeat(True, q))),
        'nomeds': np.concatenate((np.repeat(False, q),
                                      np.repeat(False, q),
                                      np.repeat(True, q),
                                      np.repeat(True, q)))})









In [5]:






df_pois.groupby(['nomeds', 'alcohol'])['nsneeze'].agg(['mean', 'var'])









Out[5]:









  
    
      	
      	
      	mean
      	var
    

    
      	nomeds
      	alcohol
      	
      	
    

  
  
    
      	False
      	False
      	0.989
      	1.019899
    

    
      	True
      	2.973
      	2.985256
    

    
      	True
      	False
      	5.948
      	5.907203
    

    
      	True
      	36.163
      	39.493925
    

  







Since the mean and variance of a Poisson distributed random variable are
equal, the sample means and variances are very close.




Negative Binomial Data

Now, suppose every subject in the dataset had the flu, increasing the
variance of their sneezing (and causing an unfortunate few to sneeze
over 70 times a day). If the mean number of sneezes stays the same but
variance increases, the data might follow a negative binomial
distribution.



In [6]:






# Gamma shape parameter
alpha = 10

def get_nb_vals(mu, alpha, size):
    """Generate negative binomially distributed samples by
    drawing a sample from a gamma distribution with mean `mu` and
    shape parameter `alpha', then drawing from a Poisson
    distribution whose rate parameter is given by the sampled
    gamma variable.

    """

    g = stats.gamma.rvs(alpha, scale=mu / alpha, size=size)
    return stats.poisson.rvs(g)

# Create samples
n = 1000
df = pd.DataFrame({
        'nsneeze': np.concatenate((get_nb_vals(theta_noalcohol_meds, alpha, n),
                                   get_nb_vals(theta_alcohol_meds, alpha, n),
                                   get_nb_vals(theta_noalcohol_nomeds, alpha, n),
                                   get_nb_vals(theta_alcohol_nomeds, alpha, n))),
        'alcohol': np.concatenate((np.repeat(False, n),
                                   np.repeat(True, n),
                                   np.repeat(False, n),
                                   np.repeat(True, n))),
        'nomeds': np.concatenate((np.repeat(False, n),
                                      np.repeat(False, n),
                                      np.repeat(True, n),
                                      np.repeat(True, n)))})









In [7]:






df.groupby(['nomeds', 'alcohol'])['nsneeze'].agg(['mean', 'var'])









Out[7]:









  
    
      	
      	
      	mean
      	var
    

    
      	nomeds
      	alcohol
      	
      	
    

  
  
    
      	False
      	False
      	0.976
      	1.106531
    

    
      	True
      	2.961
      	3.619098
    

    
      	True
      	False
      	6.022
      	9.505021
    

    
      	True
      	36.254
      	167.348833
    

  







As in the Poisson regression example, we see that drinking alcohol
and/or not taking antihistamines increase the sneezing rate to varying
degrees. Unlike in that example, for each combination of alcohol and
nomeds, the variance of nsneeze is higher than the mean. This
suggests that a Poisson distrubution would be a poor fit for the data
since the mean and variance of a Poisson distribution are equal.



In [8]:






g = sns.factorplot(x='nsneeze', row='nomeds', col='alcohol', data=df, kind='count', aspect=1.5)

# Make x-axis ticklabels less crowded
ax = g.axes[1, 0]
labels = range(len(ax.get_xticklabels(which='both')))
ax.set_xticks(labels[::5])
ax.set_xticklabels(labels[::5]);












[image: ../_images/notebooks_GLM-negative-binomial-regression_14_0.png]





Negative Binomial Regression


Create GLM Model



In [9]:






fml = 'nsneeze ~ alcohol + nomeds + alcohol:nomeds'

with pm.Model() as model:
    pm.glm.GLM.from_formula(formula=fml, data=df, family=pm.glm.families.NegativeBinomial())

    # Old initialization
    # start = pm.find_MAP(fmin=optimize.fmin_powell)
    # C = pm.approx_hessian(start)
    # trace = pm.sample(4000, step=pm.NUTS(scaling=C))

    trace = pm.sample(2000, njobs=2)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 10,338:   7%|▋         | 13828/200000 [00:22<06:19, 490.54it/s]
Convergence archived at 13900
Interrupted at 13,900 [6%]: Average Loss = 14,046
100%|██████████| 2500/2500 [11:04<00:00,  2.93it/s]









View Results



In [10]:






rvs = [rv.name for rv in strip_derived_rvs(model.unobserved_RVs)]
plot_traces(trace[1000:], varnames=rvs);












[image: ../_images/notebooks_GLM-negative-binomial-regression_19_0.png]






In [11]:






# Transform coefficients to recover parameter values
np.exp(pm.df_summary(trace[1000:], varnames=rvs)[['mean','hpd_2.5','hpd_97.5']])









Out[11]:









  
    
      	
      	mean
      	hpd_2.5
      	hpd_97.5
    

  
  
    
      	Intercept
      	9.758611e-01
      	0.913428
      	1.032908e+00
    

    
      	alcohol[T.True]
      	3.034905e+00
      	2.820879
      	3.267148e+00
    

    
      	nomeds[T.True]
      	6.170180e+00
      	5.774109
      	6.613178e+00
    

    
      	alcohol[T.True]:nomeds[T.True]
      	1.984273e+00
      	1.833042
      	2.161982e+00
    

    
      	alpha
      	2.548632e+04
      	9936.840573
      	7.110099e+04
    

    
      	mu
      	2.925866e+21
      	1.004314
      	1.691800e+54
    

  







The mean values are close to the values we specified when generating the
data: - The base rate is a constant 1. - Drinking alcohol triples the
base rate. - Not taking antihistamines increases the base rate by 6
times. - Drinking alcohol and not taking antihistamines doubles the rate
that would be expected if their rates were independent. If they were
independent, then doing both would increase the base rate by 3*6=18
times, but instead the base rate is increased by 3*6*2=16 times.

Finally, even though the sample for mu is highly skewed, its median
value is close to the sample mean, and the mean of alpha is also
quite close to its actual value of 10.



In [12]:






np.percentile(trace[1000:]['mu'], [25,50,75])









Out[12]:






array([  4.25400876,  11.2521235 ,  27.12410786])









In [13]:






df.nsneeze.mean()









Out[13]:






11.55325









In [14]:






trace[1000:]['alpha'].mean()









Out[14]:






10.145896982642357
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Gaussian Process Regression

Gaussian Process regression is a non-parametric approach to regression
or data fitting that assumes that observed data points \(y\) are
generated by some unknown latent function \(f(x)\). The latent
function \(f(x)\) is modeled as being multivariate normally
distributed (a Gaussian Process), and is commonly denoted


\begin{equation}
f(x) \sim \mathcal{GP}(m(x;\theta), \, k(x, x';\theta)) \,.
\end{equation}
\(m(x ; \theta)\) is the mean function, and
\(k(x, x' ;\theta)\) is the covariance function. In many
applications, the mean function is set to \(0\) because the data can
still be fit well using just covariances.

\(\theta\) is the set of hyperparameters for either the mean or
covariance function. These are the unknown variables. They are usually
found by maximizing the marginal likelihood. This approach is much
faster computationally than MCMC, but produces a point estimate,
\(\theta_{\mathrm{MAP}}\).

The data in the next two examples is generated by a GP with noise that
is also gaussian distributed. In sampling notation this is,


\begin{equation}
\begin{aligned}
y & = f(x) + \epsilon \\
f(x) & \sim \mathcal{GP}(0, \, k(x, x'; \theta)) \\
\epsilon & \sim \mathcal{N}(0, \sigma^2) \\
\sigma^2 & \sim \mathrm{Prior} \\
\theta & \sim \mathrm{Prior} \,.
\end{aligned}
\end{equation}
With Theano as a backend, PyMC3 is an excellent environment for
developing fully Bayesian Gaussian Process models, particularly when a
GP is component in a larger model. The GP functionality of PyMC3 is
meant to be lightweight, highly composable, and have a clear syntax.
This example is meant to give an introduction to how to specify a GP in
PyMC3.



In [1]:






%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.cm as cmap
cm = cmap.inferno

import numpy as np
import scipy as sp
import theano
import theano.tensor as tt
import theano.tensor.nlinalg
import sys
sys.path.insert(0, "../../..")
import pymc3 as pm








Example 1: Non-Linear Regression

This is an example of a non-linear fit in a situation where there isn’t
much data. Using optimization to find hyperparameters in this situation
will greatly underestimate the amount of uncertainty if using the GP for
prediction. In PyMC3 it is easy to be fully Bayesian and use MCMC
methods.

We generate 20 data points at random x values between 0 and 3. The
true values of the hyperparameters are hardcoded in this temporary
model.



In [2]:






np.random.seed(20090425)
n = 20
X = np.sort(3*np.random.rand(n))[:,None]

with pm.Model() as model:
    # f(x)
    l_true = 0.3
    s2_f_true = 1.0
    cov = s2_f_true * pm.gp.cov.ExpQuad(1, l_true)

    # noise, epsilon
    s2_n_true = 0.1
    K_noise = s2_n_true**2 * tt.eye(n)
    K = cov(X) + K_noise

# evaluate the covariance with the given hyperparameters
K = theano.function([], cov(X) + K_noise)()

# generate fake data from GP with white noise (with variance sigma2)
y = np.random.multivariate_normal(np.zeros(n), K)









In [3]:






fig = plt.figure(figsize=(14,5)); ax = fig.add_subplot(111)
ax.plot(X, y, 'ok', ms=10);
ax.set_xlabel("x");
ax.set_ylabel("f(x)");












[image: ../_images/notebooks_GP-introduction_4_0.png]




Since there isn’t much data, there will likely be a lot of uncertainty
in the hyperparameter values.


	We assign prior distributions that are uniform in log space, suitable
for variance-type parameters. Each hyperparameter must at least be
constrained to be positive valued by its prior.

	None of the covariance function objects have a scaling coefficient
built in. This is because random variables, such as s2_f, can be
multiplied directly with a covariance function object,
gp.cov.ExpQuad.

	The last line is the marginal likelihood. Since the observed data
\(y\) is also assumed to be multivariate normally distributed,
the marginal likelihood is also multivariate normal. It is obtained
by integrating out \(f(x)\) from the product of the data
likelihood \(p(y \mid f, X)\) and the GP prior
\(p(f \mid X)\),




\begin{equation}
p(y \mid X) = \int p(y \mid f, X) p(f \mid X) df
\end{equation}

	The call in the last line f_cov.K(X) evaluates the covariance
function across the inputs X. The result is a matrix. The sum of
this matrix and the diagonal noise term are used as the covariance
matrix for the marginal likelihood.





In [4]:






Z = np.linspace(0,3,100)[:,None]

with pm.Model() as model:
    # priors on the covariance function hyperparameters
    l = pm.Uniform('l', 0, 10)

    # uninformative prior on the function variance
    log_s2_f = pm.Uniform('log_s2_f', lower=-10, upper=5)
    s2_f = pm.Deterministic('s2_f', tt.exp(log_s2_f))

    # uninformative prior on the noise variance
    log_s2_n = pm.Uniform('log_s2_n', lower=-10, upper=5)
    s2_n = pm.Deterministic('s2_n', tt.exp(log_s2_n))

    # covariance functions for the function f and the noise
    f_cov = s2_f * pm.gp.cov.ExpQuad(1, l)

    y_obs = pm.gp.GP('y_obs', cov_func=f_cov, sigma=s2_n, observed={'X':X, 'Y':y})









In [5]:






with model:
    trace = pm.sample(2000)













Auto-assigning NUTS sampler...
Initializing NUTS using advi...
Average ELBO = -22.818: 100%|██████████| 200000/200000 [00:43<00:00, 4605.11it/s]
Finished [100%]: Average ELBO = -22.857
100%|██████████| 2000/2000 [00:18<00:00, 109.41it/s]






The results show that the hyperparameters were recovered pretty well,
but definitely with a high degree of uncertainty. Lets look at the
predicted fits and uncertainty next using samples from the full
posterior.



In [6]:






pm.traceplot(trace[1000:], varnames=['l', 's2_f', 's2_n'],
             lines={"l": l_true,
                    "s2_f": s2_f_true,
                    "s2_n": s2_n_true});












[image: ../_images/notebooks_GP-introduction_9_0.png]




The sample_gp function draws realizations of the GP from the
predictive distribution.



In [7]:






with model:
    gp_samples = pm.gp.sample_gp(trace[1000:], y_obs, Z, samples=50, random_seed=42)













  0%|          | 0/50 [00:00<?, ?it/s]/Users/fonnescj/anaconda3/envs/dev/lib/python3.6/site-packages/scipy/stats/_multivariate.py:533: RuntimeWarning: covariance is not positive-semidefinite.
  out = random_state.multivariate_normal(mean, cov, size)
100%|██████████| 50/50 [00:03<00:00, 16.24it/s]








In [8]:






fig, ax = plt.subplots(figsize=(14,5))

[ax.plot(Z, x, color=cm(0.3), alpha=0.3) for x in gp_samples]
# overlay the observed data
ax.plot(X, y, 'ok', ms=10);
ax.set_xlabel("x");
ax.set_ylabel("f(x)");
ax.set_title("Posterior predictive distribution");












[image: ../_images/notebooks_GP-introduction_12_0.png]







Example 2: A periodic signal in non-white noise

This time let’s pretend we have some more complex data that we would
like to decompose. For the sake of example, we simulate some data points
from a function that 1. has a fainter periodic component 2. has a lower
frequency drift away from periodicity 3. has additive white noise

As before, we generate the data using a throwaway PyMC3 model. We
consider the sum of the drift term and the white noise to be “noise”,
while the periodic component is “signal”. In GP regression, the
treatment of signal and noise covariance functions is identical, so the
distinction between signal and noise is somewhat arbitrary.



In [2]:






np.random.seed(200)
n = 150
X = np.sort(40*np.random.rand(n))[:,None]

# define gp, true parameter values
with pm.Model() as model:
    l_per_true = 2
    cov_per = pm.gp.cov.Cosine(1, l_per_true)

    l_drift_true = 4
    cov_drift = pm.gp.cov.Matern52(1, l_drift_true)

    s2_p_true = 0.3
    s2_d_true = 1.5
    s2_w_true = 0.3

    periodic_cov = s2_p_true * cov_per
    drift_cov    = s2_d_true * cov_drift

    signal_cov   = periodic_cov + drift_cov
    noise_cov    = s2_w_true**2 * tt.eye(n)


K = theano.function([], signal_cov(X, X) + noise_cov)()
y = np.random.multivariate_normal(np.zeros(n), K)







In the plot of the observed data, the periodic component is barely
distinguishable by eye. It is plausible that there isn’t a periodic
component, and the observed data is just the drift component and white
noise.



In [3]:






fig = plt.figure(figsize=(12,5)); ax = fig.add_subplot(111)
ax.plot(X, y, '--', color=cm(0.4))
ax.plot(X, y, 'o', color="k", ms=10);
ax.set_xlabel("x");
ax.set_ylabel("f(x)");












[image: ../_images/notebooks_GP-introduction_16_0.png]




Lets see if we can infer the correct values of the hyperparameters.



In [25]:






with pm.Model() as model:
    # prior for periodic lengthscale, or frequency
    l_per = pm.Uniform('l_per', lower=1e-5, upper=10)

    # prior for the drift lengthscale hyperparameter
    l_drift  = pm.Uniform('l_drift', lower=1e-5, upper=10)

    # uninformative prior on the periodic amplitude
    log_s2_p = pm.Uniform('log_s2_p', lower=-10, upper=5)
    s2_p = pm.Deterministic('s2_p', tt.exp(log_s2_p))

    # uninformative prior on the drift amplitude
    log_s2_d = pm.Uniform('log_s2_d', lower=-10, upper=5)
    s2_d = pm.Deterministic('s2_d', tt.exp(log_s2_d))

    # uninformative prior on the white noise variance
    log_s2_w = pm.Uniform('log_s2_w', lower=-10, upper=5)
    s2_w = pm.Deterministic('s2_w', tt.exp(log_s2_w))

    # the periodic "signal" covariance
    signal_cov = s2_p * pm.gp.cov.Cosine(1, l_per)

    # the "noise" covariance
    drift_cov  = s2_d * pm.gp.cov.Matern52(1, l_drift)

    y_obs = pm.gp.GP('y_obs', cov_func=signal_cov + drift_cov, sigma=s2_w, observed={'X':X, 'Y':y})









In [26]:






with model:
    trace = pm.sample(2000, step=pm.NUTS(integrator="two-stage"), init=None)













100%|██████████| 2000/2000 [39:31<00:00,  1.67s/it]








In [28]:






pm.traceplot(trace[1000:], varnames=['l_per', 'l_drift', 's2_d', 's2_p', 's2_w'],
            lines={"l_per": l_per_true,
                   "l_drift": l_drift_true,
                   "s2_d":    s2_d_true,
                   "s2_p":    s2_p_true,
                   "s2_w":    s2_w_true});
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Some large samples make the histogram of s2_p hard to read. Below is
a zoomed in histogram.



In [32]:






ax.get_ybound()









Out[32]:






(0.0, 525.0)









In [33]:






fig = plt.figure(figsize=(12,6)); ax = fig.add_subplot(111)
ax.hist(trace['s2_p', 1000:], 100, range=(0,4), color=cm(0.3), ec='none');
ax.plot([0.3, 0.3], [0, ax.get_ybound()[1]], "k", lw=2);
ax.set_title("Histogram of s2_p");
ax.set_ylabel("Number of samples");
ax.set_xlabel("s2_p");
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Comparing the histograms of the results to the true values, we can see
that the PyMC3’s MCMC methods did a good job estimating the true GP
hyperparameters. Although the periodic component is faintly apparent in
the observed data, the GP model is able to extract it with high
accuracy.



In [34]:






Z = np.linspace(0, 40, 100).reshape(-1, 1)
with model:
    gp_samples = pm.gp.sample_gp(trace[1000:], y_obs, Z, samples=50, random_seed=42, progressbar=False)









In [35]:






fig, ax = plt.subplots(figsize=(14,5))

[ax.plot(Z, x, color=cm(0.3), alpha=0.3) for x in gp_samples]
# overlay the observed data
ax.plot(X, y, 'o', color="k", ms=10);
ax.set_xlabel("x");
ax.set_ylabel("f(x)");
ax.set_title("Posterior predictive distribution");
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Kernels / Covariance functions

The following are a series of examples covering each available
covariance function, and demonstrating allowed operations. The API will
be familiar to users of GPy [https://github.com/SheffieldML/GPy] or
GPflow [https://github.com/GPflow/GPflow], though ours is
simplified. All covariance function parameters can be assigned prior
distributions or hardcoded. MCMC methods or optimization methods can be
used for inference.



In [4]:






import matplotlib.pyplot as plt
import matplotlib.cm as cmap
%matplotlib inline

import numpy as np
np.random.seed(206)
import theano
import theano.tensor as tt
import pymc3 as pm









In [5]:






X = np.linspace(0,2,200)[:,None]

# function to display covariance matrices
def plot_cov(X, K, stationary=True):
    K = K + 1e-8*np.eye(X.shape[0])
    x = X.flatten()
    fig = plt.figure(figsize=(14,5))
    ax1 = fig.add_subplot(121)
    m = ax1.imshow(K, cmap="inferno",
                   interpolation='none',
                   extent=(np.min(X), np.max(X), np.max(X), np.min(X)));
    plt.colorbar(m);
    ax1.set_title("Covariance Matrix")
    ax1.set_xlabel("X")
    ax1.set_ylabel("X")

    ax2 = fig.add_subplot(122)
    if not stationary:
        ax2.plot(x, np.diag(K), "k", lw=2, alpha=0.8)
        ax2.set_title("The Diagonal of K")
        ax2.set_ylabel("k(x,x)")
    else:
        ax2.plot(x, K[:,0], "k", lw=2, alpha=0.8)
        ax2.set_title("K as a function of x - x'")
        ax2.set_ylabel("k(x,x')")
    ax2.set_xlabel("X")

    fig = plt.figure(figsize=(14,4))
    ax = fig.add_subplot(111)
    samples = np.random.multivariate_normal(np.zeros(200), K, 5).T;
    for i in range(samples.shape[1]):
        ax.plot(x, samples[:,i], color=cmap.inferno(i*0.2), lw=2);
    ax.set_title("Samples from GP Prior")
    ax.set_xlabel("X")








Exponentiated Quadratic

The lengthscale \(l\), overall scaling \(\tau\), and constant
bias term \(b\) can be scalars or PyMC3 random variables.



In [6]:






with pm.Model() as model:
    l = 0.2
    tau = 2.0
    b = 0.5
    cov = b + tau * pm.gp.cov.ExpQuad(1, l)

K = theano.function([], cov(X))()
plot_cov(X, K)
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Two (and higher) Dimensional Inputs




Both dimensions active

It is easy to define kernels with higher dimensional inputs. Notice that
the lengthscales parameter is an array of length 2. Lists of PyMC3
random variables can be used for automatic relevance determination
(ARD).



In [7]:






x1, x2 = np.meshgrid(np.linspace(0,1,10), np.arange(1,4))
X2 = np.concatenate((x1.reshape((30,1)), x2.reshape((30,1))), axis=1)

with pm.Model() as model:
    l = np.array([0.2, 1.0])
    cov = pm.gp.cov.ExpQuad(input_dim=2, lengthscales=l)
K = theano.function([], cov(X2))()
m = plt.imshow(K, cmap="inferno", interpolation='none'); plt.colorbar(m);












[image: ../_images/notebooks_GP-covariances_6_0.png]







One dimension active



In [8]:






with pm.Model() as model:
    l = 0.2
    cov = pm.gp.cov.ExpQuad(input_dim=2, lengthscales=l,
                            active_dims=[True, False])
K = theano.function([], cov(X2))()
m = plt.imshow(K, cmap="inferno", interpolation='none'); plt.colorbar(m);
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Product of two covariances, active over each dimension



In [9]:






with pm.Model() as model:
    l1 = 0.2
    l2 = 1.0
    cov1 = pm.gp.cov.ExpQuad(2, l1, active_dims=[True, False])
    cov2 = pm.gp.cov.ExpQuad(2, l2, active_dims=[False, True])
    cov = cov1 * cov2
K = theano.function([], cov(X2))()
m = plt.imshow(K, cmap="inferno", interpolation='none'); plt.colorbar(m);
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White Noise

In our design, there is no need for a white noise kernel. This case can
be handled with Theano. The following is a covariance function that is
5% white noise.



In [10]:






with pm.Model() as model:
    l = 0.2
    sigma2 = 0.05
    tau = 0.95
    cov_latent = tau * pm.gp.cov.ExpQuad(1, l)
    cov_noise = sigma2 * tt.eye(200)

K = theano.function([], cov_latent(X) + cov_noise)()
plot_cov(X, K)
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Rational Quadratic



In [11]:






with pm.Model() as model:
    alpha = 0.1
    l = 0.2
    tau = 2.0
    cov = tau * pm.gp.cov.RatQuad(1, l, alpha)

K = theano.function([], cov(X))()

plot_cov(X, K)
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[image: ../_images/notebooks_GP-covariances_14_1.png]







Exponential



In [12]:






with pm.Model() as model:
    l = 0.2
    tau = 2.0
    cov = tau * pm.gp.cov.Exponential(1, l)

K = theano.function([], cov(X))()

plot_cov(X, K)
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Matern 5/2



In [13]:






with pm.Model() as model:
    l = 0.2
    tau = 2.0
    cov = tau * pm.gp.cov.Matern52(1, l)

K = theano.function([], cov(X))()

plot_cov(X, K)
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Matern 3/2



In [14]:






with pm.Model() as model:
    l = 0.2
    tau = 2.0
    cov = tau * pm.gp.cov.Matern32(1, l)

K = theano.function([], cov(X))()

plot_cov(X, K)
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Cosine



In [15]:






with pm.Model() as model:
    l = 0.2
    tau = 2.0
    cov = tau * pm.gp.cov.Cosine(1, l)

K = theano.function([], cov(X))()

plot_cov(X, K)
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Linear



In [16]:






with pm.Model() as model:
    c = 1.0
    tau = 2.0
    cov = tau * pm.gp.cov.Linear(1, c)

K = theano.function([], cov(X))()

plot_cov(X, K, False)
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Polynomial



In [17]:






with pm.Model() as model:
    c = 1.0
    d = 3
    offset = 1.0
    tau = 0.1
    cov = tau * pm.gp.cov.Polynomial(1, c=c, d=d, offset=offset)

K = theano.function([], cov(X))()

plot_cov(X, K, False)
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Multiplication with a precomputed covariance matrix

A covariance function cov can be multiplied with numpy matrix,
K_cos.



In [18]:






with pm.Model() as model:
    l = 0.2
    cov_cos = pm.gp.cov.Cosine(1, l)
K_cos = theano.function([], cov_cos(X))()


with pm.Model() as model:
    cov = tau * pm.gp.cov.Matern32(1, 0.5) * K_cos

K = theano.function([], cov(X))()
plot_cov(X, K)
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Applying an arbitary warping function on the inputs

If \(k(x, x')\) is a valid covariance function, then so is
\(k(w(x), w(x'))\).

The first argument of the warping function must be the input X. The
remaining arguments can be anything else, including (thanks to Theano’s
symbolic differentiation) random variables.



In [19]:






def warp_func(x, a, b, c):
    return 1.0 + x + (a * tt.tanh(b * (x - c)))

with pm.Model() as model:
    a = 1.0
    b = 10.0
    c = 1.0

    cov_m52 = pm.gp.cov.Matern52(1, l)
    cov = pm.gp.cov.WarpedInput(1, warp_func=warp_func, args=(a,b,c), cov_func=cov_m52)

wf = theano.function([], warp_func(X.flatten(), a,b,c))()
plt.plot(X, wf); plt.xlabel("X"); plt.ylabel("warp_func(X)"); plt.title("Warping function of X");

K = theano.function([], cov(X))()
plot_cov(X, K, False)
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Periodic

The WarpedInput kernel can be used to create the Periodic
covariance. This covariance models functions that are periodic, but are
not an exact sine wave (like the Cosine kernel is).

The periodic kernel is given by


\[k(x, x') = \exp\left( -\frac{2 \sin^{2}(\pi |x - x'|\frac{1}{T})}{\ell^2}     \right)\]

Where T is the period, and \(\ell\) is the lengthscale. It can be
derived by warping the input of an ExpQuad kernel with the function
\(\mathbf{u}(x) = (\sin(2\pi x \frac{1}{T})\,, \cos(2 \pi x \frac{1}{T}))\).
Here we use the WarpedInput kernel to construct it.

The input X, which is defined at the top of this page, is 2
“seconds” long. We use a period of \(0.5\), which means that
functions drawn from this GP prior will repeat 4 times over 2 seconds.



In [27]:






def mapping(x, T):
    c = 2.0 * np.pi * (1.0 / T)
    u = tt.concatenate((tt.sin(c*x), tt.cos(c*x)), 1)
    return u

with pm.Model() as model:
    T = 0.5
    l = 1.5
    # note that the input of the covariance function taking
    #    the inputs is 2 dimensional
    cov_exp = pm.gp.cov.ExpQuad(2, l)
    cov = pm.gp.cov.WarpedInput(1, cov_func=cov_exp,
                                   warp_func=mapping,
                                   args=(T, ))
K = theano.function([], cov(X))()
plot_cov(X, K, False)
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Locally Periodic (Gabor)

Similarly, we can construct a locally periodic, or Gabor, covariance
function by multiplying our periodic kernel with a different stationary
covariance function.



In [30]:






with pm.Model() as model:
    T = 0.5
    l = 1.5
    l_local = 1.0
    cov_exp = pm.gp.cov.ExpQuad(2, l)
    cov_per = pm.gp.cov.WarpedInput(1, cov_func=cov_exp,
                                       warp_func=mapping,
                                       args=(T, ))
    cov = cov_per * pm.gp.cov.Matern52(1, l_local)
K = theano.function([], cov(X))()
plot_cov(X, K, False)
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Gibbs

The Gibbs covariance function applies a positive definite warping
function to the lengthscale. Similarly to WarpedInput, the
lengthscale warping function can be specified with parameters that are
either fixed or random variables.



In [31]:






def tanh_func(x, x1, x2, w, x0):
    """
    l1: Left saturation value
    l2: Right saturation value
    lw: Transition width
    x0: Transition location.
    """
    return (x1 + x2) / 2.0 - (x1 - x2) / 2.0 * tt.tanh((x - x0) / w)

with pm.Model() as model:
    l1 = 0.05
    l2 = 0.6
    lw = 0.4
    x0 = 1.0
    cov = pm.gp.cov.Gibbs(1, tanh_func, args=(l1, l2, lw, x0))

wf = theano.function([], tanh_func(X, l1, l2, lw, x0))()
plt.plot(X, wf); plt.ylabel("tanh_func(X)"); plt.xlabel("X"); plt.title("Lengthscale as a function of X");

K = theano.function([], cov(X))()
plot_cov(X, K, False)
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Gaussian Process Regression and Classification with Elliptical Slice Sampling

Elliptical slice sampling [https://arxiv.org/abs/1001.0175] is a
variant of slice sampling that allows sampling from distributions with
multivariate Gaussian prior and arbitrary likelihood. It is generally
about as fast as regular slice sampling, mixes well even when the prior
covariance might otherwise induce a strong dependence between samples,
and does not depend on any tuning parameters. It can be useful when
working with Gaussian processes, in which a multivariate Gaussian prior
is used to impose a covariance structure on some latent function.

This notebook provides examples of how to use PyMC3’s elliptical slice
sampler to perform Gaussian process regression and classification. Since
the focus of these examples are to show how to of elliptical slice
sampling to sample from the posterior rather than to show how to fit the
covariance kernel parameters, we assume that the kernel parameters are
known.



In [1]:






import pymc3 as pm
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import theano.tensor as tt

sns.set(style='white', palette='deep', color_codes=True)

%matplotlib inline








Gaussian Process Regression

In Gaussian process regression, the prior \(f\) is a multivariate
normal with mean zero and covariance matrix \(K\), and the
likelihood is a factored normal (or, equivalently, a multivariate normal
with diagonal covariance) with mean \(f\) and variance
\(\sigma^2_n\):


\begin{equation}
f \sim N(\boldsymbol{0}, K) \\
L(y | f, \sigma^2_n) = \Pi_n N(f_n, \sigma^2_n)
\end{equation}

Generate some example data

We generate some data from Gaussian process at 30 random points in
\([0, 3]\) and interpolate the function’s value in this interval.



In [2]:






np.random.seed(1)

# Number of training points
n = 30
X0 = np.sort(3 * np.random.rand(n))[:, None]

# Number of points at which to interpolate
m = 100
X = np.linspace(0, 3, m)[:, None]

# Covariance kernel parameters
noise = 0.1
lengthscale = 0.3
f_scale = 1

cov = f_scale * pm.gp.cov.ExpQuad(1, lengthscale)
K = cov(X0)
K_s = cov(X0, X)
K_noise = K + noise * np.eye(n)

# Add very slight perturbation to the covariance matrix diagonal to improve numerical stability
K_stable = K + 1e-12 * np.eye(n)

# Observed data
f = np.random.multivariate_normal(mean=np.zeros(n), cov=K_noise.eval())










Examine actual posterior distribution

The posterior is analytically tractable so we can compute the posterior
mean explicitly. Rather than computing the inverse of the covariance
matrix K, we use the numerically stable calculation described
Algorithm 2.1 in the book “Gaussian Processes for Machine Learning”
(2006) by Rasmussen and Williams, which is available online for
free [http://www.gaussianprocess.org/gpml/].



In [3]:






fig, ax = plt.subplots(figsize=(14, 6));
ax.scatter(X0, f, s=40, color='b', label='True points');

# Analytically compute posterior mean
L = np.linalg.cholesky(K_noise.eval())
alpha = np.linalg.solve(L.T, np.linalg.solve(L, f))
post_mean = np.dot(K_s.T.eval(), alpha)

ax.plot(X, post_mean, color='g', alpha=0.8, label='Posterior mean');

ax.set_xlim(0, 3);
ax.set_ylim(-2, 2);
ax.legend();
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Sample from posterior distribution



In [4]:






with pm.Model() as model:
    # The actual distribution of f_sample doesn't matter as long as the shape is right since it's only used
    # as a dummy variable for slice sampling with the given prior
    f_sample = pm.Flat('f_sample', shape=(n, ))

    # Likelihood
    y = pm.MvNormal('y', observed=f, mu=f_sample, cov=noise * tt.eye(n), shape=n)

    # Interpolate function values using noisy covariance matrix
    L = tt.slinalg.cholesky(K_noise)
    f_pred = pm.Deterministic('f_pred', tt.dot(K_s.T, tt.slinalg.solve(L.T, tt.slinalg.solve(L, f_sample))))

    # Use elliptical slice sampling
    ess_step = pm.EllipticalSlice(vars=[f_sample], prior_cov=K_stable)
    trace = pm.sample(5000, start=model.test_point, step=[ess_step], progressbar=False, random_seed=1)










Evaluate posterior fit

The posterior samples are consistent with the analytically derived
posterior and behaves how one would expect–narrower near areas with lots
of observations and wider in areas with more uncertainty.



In [5]:






fig, ax = plt.subplots(figsize=(14, 6));
for idx in np.random.randint(4000, 5000, 500):
    ax.plot(X, trace['f_pred'][idx],  alpha=0.02, color='navy')
ax.scatter(X0, f, s=40, color='k', label='True points');
ax.plot(X, post_mean, color='g', alpha=0.8, label='Posterior mean');
ax.legend();
ax.set_xlim(0, 3);
ax.set_ylim(-2, 2);
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Gaussian Process Classification

In Gaussian process classification, the likelihood is not normal and
thus the posterior is not analytically tractable. The prior is again a
multivariate normal with covariance matrix \(K\), and the likelihood
is the standard likelihood for logistic regression:


\begin{equation}
L(y | f) = \Pi_n \sigma(y_n, f_n)
\end{equation}

Generate some example data

We generate random samples from a Gaussian process, assign any points
greater than zero to a “positive” class, and assign all other points to
a “negative” class.



In [6]:






np.random.seed(5)
f = np.random.multivariate_normal(mean=np.zeros(n), cov=K_stable.eval())

# Separate data into positive and negative classes
f[f > 0] = 1
f[f <= 0] = 0









In [7]:






fig, ax = plt.subplots(figsize=(14, 6));
ax.scatter(X0, np.ma.masked_where(f == 0, f), color='b', label='Positive Observations');
ax.scatter(X0, np.ma.masked_where(f == 1, f), color='r', label='Negative Observations');
ax.legend(loc='lower right');
ax.set_xlim(-0.1, 3.1);
ax.set_ylim(-0.2, 1.2);
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Sample from posterior distribution



In [8]:






with pm.Model() as model:
    # Again, f_sample is just a dummy variable
    f_sample = pm.Flat('f_sample', shape=n)
    f_transform = pm.invlogit(f_sample)

    # Binomial likelihood
    y = pm.Binomial('y', observed=f, n=np.ones(n), p=f_transform, shape=n)

    # Interpolate function values using noiseless covariance matrix
    L = tt.slinalg.cholesky(K_stable)
    f_pred = pm.Deterministic('f_pred', tt.dot(K_s.T, tt.slinalg.solve(L.T, tt.slinalg.solve(L, f_transform))))

    # Use elliptical slice sampling
    ess_step = pm.EllipticalSlice(vars=[f_sample], prior_cov=K_stable)
    trace = pm.sample(5000, start=model.test_point, step=[ess_step], progressbar=False, random_seed=1)










Evaluate posterior fit

The posterior looks good, though the fit is, unsurprisingly, erratic
outside the range of the observed data.



In [9]:






fig, ax = plt.subplots(figsize=(14, 6));
for idx in np.random.randint(4000, 5000, 500):
    ax.plot(X, trace['f_pred'][idx],  alpha=0.04, color='navy')
ax.scatter(X0, f, s=40, color='k');
ax.set_xlim(0, 3);
ax.set_ylim(-0.1, 1.1);
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Gaussian Process (GP) smoothing

This example deals with the case when we want to smooth the observed
data points \((x_i, y_i)\) of some 1-dimensional function
\(y=f(x)\), by finding the new values \((x_i, y'_i)\) such that
the new data is more “smooth” (see more on the definition of smoothness
through allocation of variance in the model description below) when
moving along the \(x\) axis.

It is important to note that we are not dealing with the problem of
interpolating the function \(y=f(x)\) at the unknown values of
\(x\). Such problem would be called “regression” not “smoothing”,
and will be considered in other examples.

If we assume the functional dependency between \(x\) and \(y\)
is linear then, by making the independence and normality assumptions
about the noise, we can infer a straight line that approximates the
dependency between the variables, i.e. perform a linear regression. We
can also fit more complex functional dependencies (like quadratic,
cubic, etc), if we know the functional form of the dependency in
advance.

However, the functional form of \(y=f(x)\) is not always known
in advance, and it might be hard to choose which one to fit, given the
data. For example, you wouldn’t necessarily know which function to use,
given the following observed data. Assume you haven’t seen the formula
that generated it:



In [1]:






%pylab inline
figsize(12, 6);













Populating the interactive namespace from numpy and matplotlib








In [2]:






import numpy as np
import scipy.stats as stats

x = np.linspace(0, 50, 100)
y = (np.exp(1.0 + np.power(x, 0.5) - np.exp(x/15.0)) +
     np.random.normal(scale=1.0, size=x.shape))

plot(x, y);
xlabel("x");
ylabel("y");
title("Observed Data");












[image: ../_images/notebooks_GP-smoothing_2_0.png]





Let’s try a linear regression first

As humans, we see that there is a non-linear dependency with some noise,
and we would like to capture that dependency. If we perform a linear
regression, we see that the “smoothed” data is less than satisfactory:



In [3]:






plot(x, y);
xlabel("x");
ylabel("y");

lin = stats.linregress(x, y)
plot(x, lin.intercept + lin.slope * x);
title("Linear Smoothing");
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Linear regression model recap

The linear regression assumes there is a linear dependency between the
input \(x\) and output \(y\), sprinkled with some noise around
it so that for each observed data point we have:


\[y_i = a + b\, x_i + \epsilon_i\]

where the observation errors at each data point satisfy:


\[\epsilon_i \sim N(0, \sigma^2)\]

with the same \(\sigma\), and the errors are independent:


\[cov(\epsilon_i, \epsilon_j) = 0 \: \text{ for } i \neq j\]

The parameters of this model are \(a\), \(b\), and
\(\sigma\). It turns out that, under these assumptions, the maximum
likelihood estimates of \(a\) and \(b\) don’t depend on
\(\sigma\). Then \(\sigma\) can be estimated separately, after
finding the most likely values for \(a\) and \(b\).




Gaussian Process smoothing model

This model allows departure from the linear dependency by assuming that
the dependency between \(x\) and \(y\) is a Brownian motion over
the domain of \(x\). This doesn’t go as far as assuming a particular
functional dependency between the variables. Instead, by controlling
the standard deviation of the unobserved Brownian motion we can
achieve different levels of smoothness of the recovered functional
dependency at the original data points.

The particular model we are going to discuss assumes that the observed
data points are evenly spaced across the domain of \(x\), and
therefore can be indexed by \(i=1,\dots,N\) without the loss of
generality. The model is described as follows:


\begin{equation}
\begin{aligned}
z_i & \sim \mathcal{N}(z_{i-1} + \mu, (1 - \alpha)\cdot\sigma^2) \: \text{ for } i=2,\dots,N \\
z_1 & \sim ImproperFlat(-\infty,\infty) \\
y_i & \sim \mathcal{N}(z_i, \alpha\cdot\sigma^2)
\end{aligned}
\end{equation}
where \(z\) is the hidden Brownian motion, \(y\) is the observed
data, and the total variance \(\sigma^2\) of each ovservation is
split between the hidden Brownian motion and the noise in proportions of
\(1 - \alpha\) and \(\alpha\) respectively, with parameter
\(0 < \alpha < 1\) specifying the degree of smoothing.

When we estimate the maximum likelihood values of the hidden process
\(z_i\) at each of the data points, \(i=1,\dots,N\), these
values provide an approximation of the functional dependency
\(y=f(x)\) as \(\mathrm{E}\,[f(x_i)] = z_i\) at the original
data points \(x_i\) only. Therefore, again, the method is called
smoothing and not regression.




Let’s describe the above GP-smoothing model in PyMC3



In [4]:






import pymc3 as pm
from theano import shared
from pymc3.distributions.timeseries import GaussianRandomWalk
from scipy import optimize







Let’s create a model with a shared parameter for specifying different
levels of smoothing. We use very wide priors for the “mu” and “tau”
parameters of the hidden Brownian motion, which you can adjust according
to your application.



In [5]:






LARGE_NUMBER = 1e5

model = pm.Model()
with model:
    smoothing_param = shared(0.9)
    mu = pm.Normal("mu", sd=LARGE_NUMBER)
    tau = pm.Exponential("tau", 1.0/LARGE_NUMBER)
    z = GaussianRandomWalk("z",
                           mu=mu,
                           tau=tau / (1.0 - smoothing_param),
                           shape=y.shape)
    obs = pm.Normal("obs",
                    mu=z,
                    tau=tau / smoothing_param,
                    observed=y)







Let’s also make a helper function for inferring the most likely values
of \(z\):



In [6]:






def infer_z(smoothing):
    with model:
        smoothing_param.set_value(smoothing)
        res = pm.find_MAP(vars=[z], fmin=optimize.fmin_l_bfgs_b)
        return res['z']







Please note that in this example, we are only looking at the MAP
estimate of the unobserved variables. We are not really interested in
inferring the posterior distributions. Instead, we have a control
parameter \(\alpha\) which lets us allocate the variance between the
hidden Brownian motion and the noise. Other goals and/or different
models may require sampling to obtain the posterior distributions, but
for our goal a MAP estimate will suffice.




Exploring different levels of smoothing

Let’s try to allocate 50% variance to the noise, and see if the result
matches our expectations.



In [7]:






smoothing = 0.5
z_val = infer_z(smoothing)

plot(x, y);
plot(x, z_val);
title("Smoothing={}".format(smoothing));
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It appears that the variance is split evenly between the noise and the
hidden process, as expected.

Let’s try gradually increasing the smoothness parameter to see if we can
obtain smoother data:



In [8]:






smoothing = 0.9
z_val = infer_z(smoothing)

plot(x, y);
plot(x, z_val);
title("Smoothing={}".format(smoothing));












[image: ../_images/notebooks_GP-smoothing_16_0.png]







Smoothing “to the limits”

By increading the smoothing parameter, we can gradually make the
inferred values of the hidden Brownian motion approach the average value
of the data. This is because as we increase the smoothing parameter, we
allow less and less of the variance to be allocated to the Brownian
motion, so eventually it aproaches the process which almost doesn’t
change over the domain of \(x\):



In [9]:






fig, axes = subplots(2, 2)

for ax, smoothing in zip(axes.ravel(), [0.95, 0.99, 0.999, 0.9999]):

    z_val = infer_z(smoothing)

    ax.plot(x, y)
    ax.plot(x, z_val)
    ax.set_title('Smoothing={:05.4f}'.format(smoothing))
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Interactive smoothing

Below you can interactively test different levels of smoothing. Notice,
because we use a shared Theano variable to specify the smoothing
above, the model doesn’t need to be recompiled every time you move the
slider, and so the inference is fast!



In [10]:






from IPython.html.widgets import interact
@interact(smoothing=[0.01,0.99])
def plot_smoothed(smoothing=0.9):
    z_val = infer_z(smoothing)

    plot(x, y);
    plot(x, z_val);
    title("Smoothing={}".format(smoothing));
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This example originally contributed by: Andrey Kuzmenko,
http://github.com/akuz
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Gaussian Mixture Model

Original NB by Abe Flaxman, modified by Thomas Wiecki



In [1]:






!date
import numpy as np, pandas as pd, matplotlib.pyplot as plt, seaborn as sns
%matplotlib inline
sns.set_context('paper')
sns.set_style('darkgrid')













Fri Nov 18 18:11:28 CST 2016








In [2]:






import pymc3 as pm, theano.tensor as tt









In [3]:






# simulate data from a known mixture distribution
np.random.seed(12345) # set random seed for reproducibility

k = 3
ndata = 500
spread = 5
centers = np.array([-spread, 0, spread])

# simulate data from mixture distribution
v = np.random.randint(0, k, ndata)
data = centers[v] + np.random.randn(ndata)

plt.hist(data);
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In [4]:






# setup model
model = pm.Model()
with model:
    # cluster sizes
    p = pm.Dirichlet('p', a=np.array([1., 1., 1.]), shape=k)
    # ensure all clusters have some points
    p_min_potential = pm.Potential('p_min_potential', tt.switch(tt.min(p) < .1, -np.inf, 0))


    # cluster centers
    means = pm.Normal('means', mu=[0, 0, 0], sd=15, shape=k)
    # break symmetry
    order_means_potential = pm.Potential('order_means_potential',
                                         tt.switch(means[1]-means[0] < 0, -np.inf, 0)
                                         + tt.switch(means[2]-means[1] < 0, -np.inf, 0))

    # measurement error
    sd = pm.Uniform('sd', lower=0, upper=20)

    # latent cluster of each observation
    category = pm.Categorical('category',
                              p=p,
                              shape=ndata)

    # likelihood for each observed value
    points = pm.Normal('obs',
                       mu=means[category],
                       sd=sd,
                       observed=data)













INFO (theano.gof.compilelock): Waiting for existing lock by process '4344' (I am process '4379')
INFO (theano.gof.compilelock): To manually release the lock, delete /Users/fonnescj/.theano/compiledir_Darwin-16.1.0-x86_64-i386-64bit-i386-3.5.2-64/lock_dir








In [5]:






# fit model
with model:
    step1 = pm.Metropolis(vars=[p, sd, means])
    step2 = pm.ElemwiseCategorical(vars=[category], values=[0, 1, 2])
    tr = pm.sample(10000, step=[step1, step2])













/Users/fonnescj/anaconda3/envs/dev/lib/python3.5/site-packages/ipykernel/__main__.py:4: DeprecationWarning: ElemwiseCategorical is deprecated, switch to CategoricalGibbsMetropolis.
100%|██████████| 10000/10000 [02:00<00:00, 82.75it/s]







Full trace



In [6]:






pm.plots.traceplot(tr, ['p', 'sd', 'means']);
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After convergence



In [7]:






# take a look at traceplot for some model parameters
# (with some burn-in and thinning)
pm.plots.traceplot(tr[5000::5], ['p', 'sd', 'means']);
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In [8]:






# I prefer autocorrelation plots for serious confirmation of MCMC convergence
pm.autocorrplot(tr[5000::5], varnames=['sd'])









Out[8]:






array([[<matplotlib.axes._subplots.AxesSubplot object at 0x1162b0860>]], dtype=object)
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Sampling of cluster for individual data point



In [9]:






i=0
plt.plot(tr['category'][5000::5, i], drawstyle='steps-mid')
plt.axis(ymin=-.1, ymax=2.1)









Out[9]:






(0.0, 1000.0, -0.1, 2.1)
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In [10]:






def cluster_posterior(i=0):
    print('true cluster:', v[i])
    print('  data value:', np.round(data[i],2))
    plt.hist(tr['category'][5000::5,i], bins=[-.5,.5,1.5,2.5,], rwidth=.9)
    plt.axis(xmin=-.5, xmax=2.5)
    plt.xticks([0,1,2])
cluster_posterior(i)













true cluster: 2
  data value: 3.29
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Marginalized Gaussian Mixture Model

Author: Austin Rochford [http://austinrochford.com]



In [1]:






%matplotlib inline









In [2]:






from matplotlib import pyplot as plt
import numpy as np
import pymc3 as pm
import seaborn as sns









In [3]:






SEED = 383561

np.random.seed(SEED) # from random.org, for reproducibility







Gaussian mixtures are a flexible class of models for data that exhibits
subpopulation heterogeneity. A toy example of such a data set is shown
below.



In [4]:






N = 1000

W = np.array([0.35, 0.4, 0.25])

MU = np.array([0., 2., 5.])
SIGMA = np.array([0.5, 0.5, 1.])









In [5]:






component = np.random.choice(MU.size, size=N, p=W)
x = np.random.normal(MU[component], SIGMA[component], size=N)









In [6]:






fig, ax = plt.subplots(figsize=(8, 6))

ax.hist(x, bins=30, normed=True, lw=0);













/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans
  (prop.get_family(), self.defaultFamily[fontext]))
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A natural parameterization of the Gaussian mixture model is as the
latent variable
model [https://en.wikipedia.org/wiki/Latent_variable_model]


\[\begin{split}\begin{align*}
\mu_1, \ldots, \mu_K
    & \sim N(0, \sigma^2) \\
\tau_1, \ldots, \tau_K
    & \sim \textrm{Gamma}(a, b) \\
\boldsymbol{w}
    & \sim \textrm{Dir}(\boldsymbol{\alpha}) \\
z\ |\ \boldsymbol{w}
    & \sim \textrm{Cat}(\boldsymbol{w}) \\
x\ |\ z
    & \sim N(\mu_z, \tau^{-1}_z).
\end{align*}\end{split}\]

An implementation of this parameterization in PyMC3 is available
here [http://pymc-devs.github.io/pymc3/notebooks/gaussian_mixture_model.html].
A drawback of this parameterization is that is posterior relies on
sampling the discrete latent variable \(z\). This reliance can cause
slow mixing and ineffective exploration of the tails of the
distribution.

An alternative, equivalent parameterization that addresses these
problems is to marginalize over \(z\). The marginalized model is


\[\begin{split}\begin{align*}
\mu_1, \ldots, \mu_K
    & \sim N(0, \sigma^2) \\
\tau_1, \ldots, \tau_K
    & \sim \textrm{Gamma}(a, b) \\
\boldsymbol{w}
    & \sim \textrm{Dir}(\boldsymbol{\alpha}) \\
f(x\ |\ \boldsymbol{w})
    & = \sum_{i = 1}^K w_i\ N(x\ |\ \mu_i, \tau^{-1}_z),
\end{align*}\end{split}\]

where


\[N(x\ |\ \mu, \sigma^2) = \frac{1}{\sqrt{2 \pi} \sigma} \exp\left(-\frac{1}{2 \sigma^2} (x - \mu)^2\right)\]

is the probability density function of the normal distribution.

Marginalizing \(z\) out of the model generally leads to faster
mixing and better exploration of the tails of the posterior
distribution. Marginalization over discrete parameters is a common trick
in the Stan [http://mc-stan.org/] community, since Stan does not
support sampling from discrete distributions. For further details on
marginalization and several worked examples, see the *Stan User’s Guide
and Reference
Manual* [http://www.uvm.edu/~bbeckage/Teaching/DataAnalysis/Manuals/stan-reference-2.8.0.pdf].

PyMC3 supports marginalized Gaussian mixture models through its
NormalMixture class. (It also supports marginalized general mixture
models through its Mixture class.) Below we specify and fit a
marginalized Gaussian mixture model to this data in PyMC3.



In [7]:






with pm.Model() as model:
    w = pm.Dirichlet('w', np.ones_like(W))

    mu = pm.Normal('mu', 0., 10., shape=W.size)
    tau = pm.Gamma('tau', 1., 1., shape=W.size)

    x_obs = pm.NormalMixture('x_obs', w, mu, tau=tau, observed=x)









In [8]:






with model:
    trace = pm.sample(5000, n_init=10000, tune=1000, random_seed=SEED)[1000:]













Auto-assigning NUTS sampler...
Initializing NUTS using advi...
Average ELBO = -6,663.8: 100%|██████████| 10000/10000 [00:06<00:00, 1582.50it/s]
Finished [100%]: Average ELBO = -6,582.7
100%|██████████| 5000/5000 [-1:54:12<00:00, -0.07s/it]






We see in the following plot that the posterior distribution on the
weights and the component means has captured the true value quite well.



In [9]:






pm.traceplot(trace, varnames=['w', 'mu']);













/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans
  (prop.get_family(), self.defaultFamily[fontext]))
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In [10]:






pm.plot_posterior(trace, varnames=['w', 'mu']);













/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans
  (prop.get_family(), self.defaultFamily[fontext]))
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We can also sample from the model’s posterior predictive distribution,
as follows.



In [11]:






with model:
    ppc_trace = pm.sample_ppc(trace, 5000, random_seed=SEED)













100%|██████████| 5000/5000 [03:28<00:00, 23.93it/s]






We see that the posterior predictive samples have a distribution quite
close to that of the observed data.



In [12]:






fig, ax = plt.subplots(figsize=(8, 6))

ax.hist(x, bins=30, normed=True,
        histtype='step', lw=2,
        label='Observed data');
ax.hist(ppc_trace['x_obs'], bins=30, normed=True,
        histtype='step', lw=2,
        label='Posterior predictive distribution');

ax.legend(loc=1);













/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans
  (prop.get_family(), self.defaultFamily[fontext]))











[image: ../_images/notebooks_marginalized_gaussian_mixture_model_17_1.png]








          

      

      

    

  

  
    
    
    Gaussian Mixture Model with ADVI
    
    

    
 
  
  

    
      
          
            
  


Gaussian Mixture Model with ADVI

Here, we describe how to use ADVI for inference of Gaussian mixture
model. First, we will show that inference with ADVI does not need to
modify the stochastic model, just call a function. Then, we will show
how to use mini-batch, which is useful for large dataset. In this case,
where the model should be slightly changed.

First, create artificial data from a mixuture of two Gaussian
components.



In [1]:






%matplotlib inline
%env THEANO_FLAGS=device=cpu,floatX=float32
import theano

import pymc3 as pm
from pymc3 import Normal, Metropolis, sample, MvNormal, Dirichlet, \
    DensityDist, find_MAP, NUTS, Slice
import theano.tensor as tt
from theano.tensor.nlinalg import det
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

n_samples = 100
rng = np.random.RandomState(123)
ms = np.array([[-1, -1.5], [1, 1]])
ps = np.array([0.2, 0.8])

zs = np.array([rng.multinomial(1, ps) for _ in range(n_samples)]).T
xs = [z[:, np.newaxis] * rng.multivariate_normal(m, np.eye(2), size=n_samples)
      for z, m in zip(zs, ms)]
data = np.sum(np.dstack(xs), axis=2)

plt.figure(figsize=(5, 5))
plt.scatter(data[:, 0], data[:, 1], c='g', alpha=0.5)
plt.scatter(ms[0, 0], ms[0, 1], c='r', s=100)
plt.scatter(ms[1, 0], ms[1, 1], c='b', s=100)













env: THEANO_FLAGS=device=cpu,floatX=float32








Out[1]:






<matplotlib.collections.PathCollection at 0x1101d68d0>
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Gaussian mixture models are usually constructed with categorical random
variables. However, any discrete rvs does not fit ADVI. Here, class
assignment variables are marginalized out, giving weighted sum of the
probability for the gaussian components. The log likelihood of the total
probability is calculated using logsumexp, which is a standard technique
for making this kind of calculation stable.

In the below code, DensityDist class is used as the likelihood term. The
second argument, logp_gmix(mus, pi, np.eye(2)), is a python function
which recieves observations (denoted by ‘value’) and returns the tensor
representation of the log-likelihood.



In [2]:






from pymc3.math import logsumexp

# Log likelihood of normal distribution
def logp_normal(mu, tau, value):
    # log probability of individual samples
    k = tau.shape[0]
    delta = lambda mu: value - mu
    return (-1 / 2.) * (k * tt.log(2 * np.pi) + tt.log(1./det(tau)) +
                         (delta(mu).dot(tau) * delta(mu)).sum(axis=1))

# Log likelihood of Gaussian mixture distribution
def logp_gmix(mus, pi, tau):
    def logp_(value):
        logps = [tt.log(pi[i]) + logp_normal(mu, tau, value)
                 for i, mu in enumerate(mus)]

        return tt.sum(logsumexp(tt.stacklists(logps)[:, :n_samples], axis=0))

    return logp_

with pm.Model() as model:
    mus = [MvNormal('mu_%d' % i,
                    mu=pm.floatX(np.zeros(2)),
                    tau=pm.floatX(0.1 * np.eye(2)),
                    shape=(2,))
           for i in range(2)]
    pi = Dirichlet('pi', a=pm.floatX(0.1 * np.ones(2)), shape=(2,))
    xs = DensityDist('x', logp_gmix(mus, pi, np.eye(2)), observed=data)







For comparison with ADVI, run MCMC.



In [3]:






with model:
    start = find_MAP()
    step = Metropolis()
    trace = sample(1000, step, start=start)













Warning: Desired error not necessarily achieved due to precision loss.
         Current function value: 347.140019
         Iterations: 2
         Function evaluations: 63
         Gradient evaluations: 52












100%|██████████| 1500/1500 [00:02<00:00, 631.59it/s]






Check posterior of component means and weights. We can see that the MCMC
samples of the component mean for the lower-left component varied more
than the upper-right due to the difference of the sample size of these
clusters.



In [4]:






plt.figure(figsize=(5, 5))
plt.scatter(data[:, 0], data[:, 1], alpha=0.5, c='g')
mu_0, mu_1 = trace['mu_0'], trace['mu_1']
plt.scatter(mu_0[-500:, 0], mu_0[-500:, 1], c="r", s=10)
plt.scatter(mu_1[-500:, 0], mu_1[-500:, 1], c="b", s=10)
plt.xlim(-6, 6)
plt.ylim(-6, 6)









Out[4]:






(-6, 6)
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In [5]:






sns.barplot([1, 2], np.mean(trace['pi'][-5000:], axis=0),
            palette=['red', 'blue'])









Out[5]:






<matplotlib.axes._subplots.AxesSubplot at 0x1153e2978>












[image: ../_images/notebooks_gaussian-mixture-model-advi_9_1.png]




We can use the same model with ADVI as follows.



In [8]:






with pm.Model() as model:
    mus = [MvNormal('mu_%d' % i, mu=pm.floatX(np.zeros(2)), tau=pm.floatX(0.1 * np.eye(2)), shape=(2,))
           for i in range(2)]
    pi = Dirichlet('pi', a=pm.floatX(0.1 * np.ones(2)), shape=(2,))
    xs = DensityDist('x', logp_gmix(mus, pi, np.eye(2)), observed=data)

with model:
    %time approx = pm.fit(n=4500, obj_optimizer=pm.adagrad(learning_rate=1e-1))
gbij = approx.gbij
means = gbij.rmap(approx.mean.eval())
cov = approx.cov.eval()
sds = gbij.rmap(np.diag(cov)**.5)













Average Loss = 323.94: 100%|██████████| 4500/4500 [00:01<00:00, 3286.74it/s]
Finished [100%]: Average Loss = 323.94












CPU times: user 3.75 s, sys: 44.1 ms, total: 3.79 s
Wall time: 3.8 s






The function returns three variables. ‘means’ and ‘sds’ are the mean and
standart deviations of the variational posterior. Note that these values
are in the transformed space, not in the original space. For random
variables in the real line, e.g., means of the Gaussian components, no
transformation is applied. Then we can see the variational posterior in
the original space.



In [9]:






from copy import deepcopy

mu_0, sd_0 = means['mu_0'], sds['mu_0']
mu_1, sd_1 = means['mu_1'], sds['mu_1']

def logp_normal_np(mu, tau, value):
    # log probability of individual samples
    k = tau.shape[0]
    delta = lambda mu: value - mu
    return (-1 / 2.) * (k * np.log(2 * np.pi) + np.log(1./np.linalg.det(tau)) +
                         (delta(mu).dot(tau) * delta(mu)).sum(axis=1))

def threshold(zz):
    zz_ = deepcopy(zz)
    zz_[zz < np.max(zz) * 1e-2] = None
    return zz_

def plot_logp_normal(ax, mu, sd, cmap):
    f = lambda value: np.exp(logp_normal_np(mu, np.diag(1 / sd**2), value))
    g = lambda mu, sd: np.arange(mu - 3, mu + 3, .1)
    xx, yy = np.meshgrid(g(mu[0], sd[0]), g(mu[1], sd[1]))
    zz = f(np.vstack((xx.reshape(-1), yy.reshape(-1))).T).reshape(xx.shape)
    ax.contourf(xx, yy, threshold(zz), cmap=cmap, alpha=0.9)

fig, ax = plt.subplots(figsize=(5, 5))
plt.scatter(data[:, 0], data[:, 1], alpha=0.5, c='g')
plot_logp_normal(ax, mu_0, sd_0, cmap='Reds')
plot_logp_normal(ax, mu_1, sd_1, cmap='Blues')
plt.xlim(-6, 6)
plt.ylim(-6, 6)









Out[9]:






(-6, 6)
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TODO: We need to backward-transform ‘pi’, which is transformed by
‘stick_breaking’.

‘elbos’ contains the trace of ELBO, showing stochastic convergence of
the algorithm.



In [10]:






plt.plot(approx.hist)









Out[10]:






[<matplotlib.lines.Line2D at 0x11773b128>]
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To demonstrate that ADVI works for large dataset with mini-batch, let’s
create 100,000 samples from the same mixture distribution.



In [11]:






n_samples = 100000

zs = np.array([rng.multinomial(1, ps) for _ in range(n_samples)]).T
xs = [z[:, np.newaxis] * rng.multivariate_normal(m, np.eye(2), size=n_samples)
      for z, m in zip(zs, ms)]
data = np.sum(np.dstack(xs), axis=2)

plt.figure(figsize=(5, 5))
plt.scatter(data[:, 0], data[:, 1], c='g', alpha=0.5)
plt.scatter(ms[0, 0], ms[0, 1], c='r', s=100)
plt.scatter(ms[1, 0], ms[1, 1], c='b', s=100)
plt.xlim(-6, 6)
plt.ylim(-6, 6)









Out[11]:






(-6, 6)
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MCMC took 55 seconds, 20 times longer than the small dataset.



In [12]:






with pm.Model() as model:
    mus = [MvNormal('mu_%d' % i, mu=pm.floatX(np.zeros(2)), tau=pm.floatX(0.1 * np.eye(2)), shape=(2,))
           for i in range(2)]
    pi = Dirichlet('pi', a=pm.floatX(0.1 * np.ones(2)), shape=(2,))
    xs = DensityDist('x', logp_gmix(mus, pi, np.eye(2)), observed=data)

    start = find_MAP()
    step = Metropolis()
    trace = sample(1000, step, start=start)













Warning: Desired error not necessarily achieved due to precision loss.
         Current function value: 365347.054715
         Iterations: 4
         Function evaluations: 71
         Gradient evaluations: 59












100%|██████████| 1500/1500 [01:48<00:00, 11.93it/s]






Posterior samples are concentrated on the true means, so looks like
single point for each component.



In [13]:






plt.figure(figsize=(5, 5))
plt.scatter(data[:, 0], data[:, 1], alpha=0.5, c='g')
mu_0, mu_1 = trace['mu_0'], trace['mu_1']
plt.scatter(mu_0[-500:, 0], mu_0[-500:, 1], c="r", s=50)
plt.scatter(mu_1[-500:, 0], mu_1[-500:, 1], c="b", s=50)
plt.xlim(-6, 6)
plt.ylim(-6, 6)









Out[13]:






(-6, 6)
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For ADVI with mini-batch, put theano tensor on the observed variable of
the ObservedRV. The tensor will be replaced with mini-batches. Because
of the difference of the size of mini-batch and whole samples, the
log-likelihood term should be appropriately scaled. To tell the
log-likelihood term, we need to give ObservedRV objects
(‘minibatch_RVs’ below) where mini-batch is put. Also we should keep
the tensor (‘minibatch_tensors’).



In [15]:






minibatch_size = 200
# In memory Minibatches for better speed
data_t = pm.Minibatch(data, minibatch_size)

with pm.Model() as model:
    mus = [MvNormal('mu_%d' % i, mu=pm.floatX(np.zeros(2)), tau=pm.floatX(0.1 * np.eye(2)), shape=(2,))
           for i in range(2)]
    pi = Dirichlet('pi', a=pm.floatX(0.1 * np.ones(2)), shape=(2,))
    xs = DensityDist('x', logp_gmix(mus, pi, np.eye(2)), observed=data_t, total_size=len(data))







Run ADVI. It’s much faster than MCMC, though the problem here is simple
and it’s not a fair comparison.



In [18]:






# Used only to write the function call in single line for using %time
# is there more smart way?
def f():
    approx = pm.fit(n=1500, obj_optimizer=pm.adagrad(learning_rate=1e-1), model=model)
    gbij = approx.gbij
    means = gbij.rmap(approx.mean.eval())
    sds = gbij.rmap(approx.std.eval())
    return means, sds, approx.hist

%time means, sds, elbos = f()













Average Loss = 3.2644e+05: 100%|██████████| 1500/1500 [00:00<00:00, 2353.04it/s]
Finished [100%]: Average Loss = 3.2641e+05












CPU times: user 3.54 s, sys: 52.8 ms, total: 3.59 s
Wall time: 3.6 s






The result is almost the same.



In [19]:






from copy import deepcopy

mu_0, sd_0 = means['mu_0'], sds['mu_0']
mu_1, sd_1 = means['mu_1'], sds['mu_1']

fig, ax = plt.subplots(figsize=(5, 5))
plt.scatter(data[:, 0], data[:, 1], alpha=0.5, c='g')
plt.scatter(mu_0[0], mu_0[1], c="r", s=50)
plt.scatter(mu_1[0], mu_1[1], c="b", s=50)
plt.xlim(-6, 6)
plt.ylim(-6, 6)









Out[19]:






(-6, 6)
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The variance of the trace of ELBO is larger than without mini-batch
because of the subsampling from the whole samples.



In [20]:






plt.plot(elbos);
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Dirichlet process mixtures for density estimation

Author: Austin Rochford [https://github.com/AustinRochford/]


Dirichlet processes

The Dirichlet
process [https://en.wikipedia.org/wiki/Dirichlet_process] is a
flexible probability distribution over the space of distributions. Most
generally, a probability distribution, \(P\), on a set
\(\Omega\) is a
[measure](https://en.wikipedia.org/wiki/Measure_(mathematics%29) that
assigns measure one to the entire space (\(P(\Omega) = 1\)). A
Dirichlet process \(P \sim \textrm{DP}(\alpha, P_0)\) is a measure
that has the property that, for every finite
disjoint [https://en.wikipedia.org/wiki/Disjoint_sets] partition
\(S_1, \ldots, S_n\) of \(\Omega\),


\[(P(S_1), \ldots, P(S_n)) \sim \textrm{Dir}(\alpha P_0(S_1), \ldots, \alpha P_0(S_n)).\]

Here \(P_0\) is the base probability measure on the space
\(\Omega\). The precision parameter \(\alpha > 0\) controls how
close samples from the Dirichlet process are to the base measure,
\(P_0\). As \(\alpha \to \infty\), samples from the Dirichlet
process approach the base measure \(P_0\).

Dirichlet processes have several properties that make then quite
suitable to
MCMC [https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo]
simulation.


	The posterior given
i.i.d. [https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables]
observations \(\omega_1, \ldots, \omega_n\) from a Dirichlet
process \(P \sim \textrm{DP}(\alpha, P_0)\) is also a Dirichlet
process with


\[P\ |\ \omega_1, \ldots, \omega_n \sim \textrm{DP}\left(\alpha + n, \frac{\alpha}{\alpha + n} P_0 + \frac{1}{\alpha + n} \sum_{i = 1}^n \delta_{\omega_i}\right),\]





where \(\delta\) is the Dirac delta
measure [https://en.wikipedia.org/wiki/Dirac_delta_function]


\[\begin{split}\begin{align*}
     \delta_{\omega}(S)
         & = \begin{cases}
                 1 & \textrm{if } \omega \in S \\
                 0 & \textrm{if } \omega \not \in S
             \end{cases}
 \end{align*}.\end{split}\]


	The posterior predictive distribution of a new observation is a
compromise between the base measure and the observations,


\[\omega\ |\ \omega_1, \ldots, \omega_n \sim \frac{\alpha}{\alpha + n} P_0 + \frac{1}{\alpha + n} \sum_{i = 1}^n \delta_{\omega_i}.\]





We see that the prior precision \(\alpha\) can naturally be
interpreted as a prior sample size. The form of this posterior
predictive distribution also lends itself to Gibbs sampling.


	Samples, \(P \sim \textrm{DP}(\alpha, P_0)\), from a Dirichlet
process are discrete with probability one. That is, there are
elements \(\omega_1, \omega_2, \ldots\) in \(\Omega\) and
weights \(w_1, w_2, \ldots\) with
\(\sum_{i = 1}^{\infty} w_i = 1\) such that


\[P = \sum_{i = 1}^\infty w_i \delta_{\omega_i}.\]



	The stick-breaking
process [https://en.wikipedia.org/wiki/Dirichlet_process#The_stick-breaking_process]
gives an explicit construction of the weights \(w_i\) and samples
\(\omega_i\) above that is straightforward to sample from. If
\(\beta_1, \beta_2, \ldots \sim \textrm{Beta}(1, \alpha)\), then
\(w_i = \beta_i \prod_{j = 1}^{j - 1} (1 - \beta_j)\). The
relationship between this representation and stick breaking may be
illustrated as follows:


	Start with a stick of length one.

	Break the stick into two portions, the first of proportion
\(w_1 = \beta_1\) and the second of proportion
\(1 - w_1\).

	Further break the second portion into two portions, the first of
proportion \(\beta_2\) and the second of proportion
\(1 - \beta_2\). The length of the first portion of this stick
is \(\beta_2 (1 - \beta_1)\); the length of the second portion
is \((1 - \beta_1) (1 - \beta_2)\).

	Continue breaking the second portion from the previous break in
this manner forever. If
\(\omega_1, \omega_2, \ldots \sim P_0\), then




\[P = \sum_{i = 1}^\infty w_i \delta_{\omega_i} \sim \textrm{DP}(\alpha, P_0).\]





We can use the stick-breaking process above to easily sample from a
Dirichlet process in Python. For this example, \(\alpha = 2\) and
the base distribution is \(N(0, 1)\).



In [1]:






%matplotlib inline









In [2]:






from __future__ import division









In [3]:






from matplotlib import pyplot as plt
import numpy as np
import pymc3 as pm
import scipy as sp
import seaborn as sns
from statsmodels.datasets import get_rdataset
from theano import tensor as tt









In [4]:






blue, *_ = sns.color_palette()









In [5]:






SEED = 5132290 # from random.org

np.random.seed(SEED)









In [6]:






N = 20
K = 30

alpha = 2.
P0 = sp.stats.norm







We draw and plot samples from the stick-breaking process.



In [7]:






beta = sp.stats.beta.rvs(1, alpha, size=(N, K))
w = np.empty_like(beta)
w[:, 0] = beta[:, 0]
w[:, 1:] = beta[:, 1:] * (1 - beta[:, :-1]).cumprod(axis=1)

omega = P0.rvs(size=(N, K))

x_plot = np.linspace(-3, 3, 200)

sample_cdfs = (w[..., np.newaxis] * np.less.outer(omega, x_plot)).sum(axis=1)









In [8]:






fig, ax = plt.subplots(figsize=(8, 6))

ax.plot(x_plot, sample_cdfs[0], c='gray', alpha=0.75,
        label='DP sample CDFs');
ax.plot(x_plot, sample_cdfs[1:].T, c='gray', alpha=0.75);
ax.plot(x_plot, P0.cdf(x_plot), c='k', label='Base CDF');

ax.set_title(r'$\alpha = {}$'.format(alpha));
ax.legend(loc=2);
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As stated above, as \(\alpha \to \infty\), samples from the
Dirichlet process converge to the base distribution.



In [9]:






fig, (l_ax, r_ax) = plt.subplots(ncols=2, sharex=True, sharey=True, figsize=(16, 6))

K = 50
alpha = 10.

beta = sp.stats.beta.rvs(1, alpha, size=(N, K))
w = np.empty_like(beta)
w[:, 0] = beta[:, 0]
w[:, 1:] = beta[:, 1:] * (1 - beta[:, :-1]).cumprod(axis=1)

omega = P0.rvs(size=(N, K))

sample_cdfs = (w[..., np.newaxis] * np.less.outer(omega, x_plot)).sum(axis=1)

l_ax.plot(x_plot, sample_cdfs[0], c='gray', alpha=0.75,
          label='DP sample CDFs');
l_ax.plot(x_plot, sample_cdfs[1:].T, c='gray', alpha=0.75);
l_ax.plot(x_plot, P0.cdf(x_plot), c='k', label='Base CDF');

l_ax.set_title(r'$\alpha = {}$'.format(alpha));
l_ax.legend(loc=2);

K = 200
alpha = 50.

beta = sp.stats.beta.rvs(1, alpha, size=(N, K))
w = np.empty_like(beta)
w[:, 0] = beta[:, 0]
w[:, 1:] = beta[:, 1:] * (1 - beta[:, :-1]).cumprod(axis=1)

omega = P0.rvs(size=(N, K))

sample_cdfs = (w[..., np.newaxis] * np.less.outer(omega, x_plot)).sum(axis=1)

r_ax.plot(x_plot, sample_cdfs[0], c='gray', alpha=0.75,
          label='DP sample CDFs');
r_ax.plot(x_plot, sample_cdfs[1:].T, c='gray', alpha=0.75);
r_ax.plot(x_plot, P0.cdf(x_plot), c='k', label='Base CDF');

r_ax.set_title(r'$\alpha = {}$'.format(alpha));
r_ax.legend(loc=2);
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Dirichlet process mixtures

For the task of density estimation, the (almost sure) discreteness of
samples from the Dirichlet process is a significant drawback. This
problem can be solved with another level of indirection by using
Dirichlet process mixtures for density estimation. A Dirichlet process
mixture uses component densities from a parametric family
\(\mathcal{F} = \{f_{\theta}\ |\ \theta \in \Theta\}\) and
represents the mixture weights as a Dirichlet process. If \(P_0\) is
a probability measure on the parameter space \(\Theta\), a Dirichlet
process mixture is the hierarchical model


\[\begin{split}\begin{align*}
    x_i\ |\ \theta_i
        & \sim f_{\theta_i} \\
    \theta_1, \ldots, \theta_n
        & \sim P \\
    P
        & \sim \textrm{DP}(\alpha, P_0).
\end{align*}\end{split}\]

To illustrate this model, we simulate draws from a Dirichlet process
mixture with \(\alpha = 2\), \(\theta \sim N(0, 1)\),
\(x\ |\ \theta \sim N(\theta, (0.3)^2)\).



In [10]:






N = 5
K = 30

alpha = 2
P0 = sp.stats.norm
f = lambda x, theta: sp.stats.norm.pdf(x, theta, 0.3)









In [11]:






beta = sp.stats.beta.rvs(1, alpha, size=(N, K))
w = np.empty_like(beta)
w[:, 0] = beta[:, 0]
w[:, 1:] = beta[:, 1:] * (1 - beta[:, :-1]).cumprod(axis=1)

theta = P0.rvs(size=(N, K))

dpm_pdf_components = f(x_plot[np.newaxis, np.newaxis, :], theta[..., np.newaxis])
dpm_pdfs = (w[..., np.newaxis] * dpm_pdf_components).sum(axis=1)









In [12]:






fig, ax = plt.subplots(figsize=(8, 6))

ax.plot(x_plot, dpm_pdfs.T, c='gray');

ax.set_yticklabels([]);
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We now focus on a single mixture and decompose it into its individual
(weighted) mixture components.



In [13]:






fig, ax = plt.subplots(figsize=(8, 6))

ix = 1

ax.plot(x_plot, dpm_pdfs[ix], c='k', label='Density');
ax.plot(x_plot, (w[..., np.newaxis] * dpm_pdf_components)[ix, 0],
        '--', c='k', label='Mixture components (weighted)');
ax.plot(x_plot, (w[..., np.newaxis] * dpm_pdf_components)[ix].T,
        '--', c='k');

ax.set_yticklabels([]);
ax.legend(loc=1);
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Sampling from these stochastic processes is fun, but these ideas become
truly useful when we fit them to data. The discreteness of samples and
the stick-breaking representation of the Dirichlet process lend
themselves nicely to Markov chain Monte Carlo simulation of posterior
distributions. We will perform this sampling using
`pymc3 <https://pymc-devs.github.io/pymc3/>`__.

Our first example uses a Dirichlet process mixture to estimate the
density of waiting times between eruptions of the Old
Faithful [https://en.wikipedia.org/wiki/Old_Faithful] geyser in
Yellowstone National
Park [https://en.wikipedia.org/wiki/Yellowstone_National_Park].



In [14]:






old_faithful_df = get_rdataset('faithful', cache=True).data[['waiting']]







For convenience in specifying the prior, we standardize the waiting time
between eruptions.



In [15]:






old_faithful_df['std_waiting'] = (old_faithful_df.waiting - old_faithful_df.waiting.mean()) / old_faithful_df.waiting.std()









In [16]:






old_faithful_df.head()









Out[16]:








  
    
      	
      	waiting
      	std_waiting
    

  
  
    
      	0
      	79
      	0.596025
    

    
      	1
      	54
      	-1.242890
    

    
      	2
      	74
      	0.228242
    

    
      	3
      	62
      	-0.654437
    

    
      	4
      	85
      	1.037364
    

  









In [17]:






fig, ax = plt.subplots(figsize=(8, 6))

n_bins = 20
ax.hist(old_faithful_df.std_waiting, bins=n_bins, color=blue, lw=0, alpha=0.5);

ax.set_xlabel('Standardized waiting time between eruptions');
ax.set_ylabel('Number of eruptions');
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Observant readers will have noted that we have not been continuing the
stick-breaking process indefinitely as indicated by its definition, but
rather have been truncating this process after a finite number of
breaks. Obviously, when computing with Dirichlet processes, it is
necessary to only store a finite number of its point masses and weights
in memory. This restriction is not terribly onerous, since with a finite
number of observations, it seems quite likely that the number of mixture
components that contribute non-neglible mass to the mixture will grow
slower than the number of samples. This intuition can be formalized to
show that the (expected) number of components that contribute
non-negligible mass to the mixture approaches \(\alpha \log N\),
where \(N\) is the sample size.

There are various clever Gibbs
sampling [https://en.wikipedia.org/wiki/Gibbs_sampling] techniques
for Dirichlet processes that allow the number of components stored to
grow as needed. Stochastic
memoization [http://danroy.org/papers/RoyManGooTen-ICMLNPB-2008.pdf]
is another powerful technique for simulating Dirichlet processes while
only storing finitely many components in memory. In this introductory
example, we take the much less sophistocated approach of simply
truncating the Dirichlet process components that are stored after a
fixed number, \(K\), of components. Ohlssen, et
al. [http://fisher.osu.edu/~schroeder.9/AMIS900/Ohlssen2006.pdf]
provide justification for truncation, showing that
\(K > 5 \alpha + 2\) is most likely sufficient to capture almost all
of the mixture weight (\(\sum_{i = 1}^{K} w_i > 0.99\)). In
practice, we can verify the suitability of our truncated approximation
to the Dirichlet process by checking the number of components that
contribute non-negligible mass to the mixture. If, in our simulations,
all components contribute non-negligible mass to the mixture, we have
truncated the Dirichlet process too early.

Our (truncated) Dirichlet process mixture model for the standardized
waiting times is


\[\begin{split}\begin{align*}
    \alpha
        & \sim \textrm{Gamma}(1, 1) \\
    \beta_1, \ldots, \beta_K
        & \sim \textrm{Beta}(1, \alpha) \\
    w_i
        & = \beta_i \prod_{j = i - 1}^i (1 - \beta_j) \\
    \\
    \lambda_1, \ldots, \lambda_K
        & \sim U(0, 5) \\
    \tau_1, \ldots, \tau_K
        & \sim \textrm{Gamma}(1, 1) \\
    \mu_i\ |\ \lambda_i, \tau_i
        & \sim N\left(0, (\lambda_i \tau_i)^{-1}\right) \\
    \\
    x\ |\ w_i, \lambda_i, \tau_i, \mu_i
        & \sim \sum_{i = 1}^K w_i\ N(\mu_i, (\lambda_i \tau_i)^{-1})
\end{align*}\end{split}\]

Note that instead of fixing a value of \(\alpha\), as in our
previous simulations, we specify a prior on \(\alpha\), so that we
may learn its posterior distribution from the observations.

We now construct this model using pymc3.



In [18]:






N = old_faithful_df.shape[0]

K = 30









In [19]:






def stick_breaking(beta):
    portion_remaining = tt.concatenate([[1], tt.extra_ops.cumprod(1 - beta)[:-1]])

    return beta * portion_remaining









In [20]:






with pm.Model() as model:
    alpha = pm.Gamma('alpha', 1., 1.)
    beta = pm.Beta('beta', 1., alpha, shape=K)
    w = pm.Deterministic('w', stick_breaking(beta))

    tau = pm.Gamma('tau', 1., 1., shape=K)
    lambda_ = pm.Uniform('lambda', 0, 5, shape=K)
    mu = pm.Normal('mu', 0, tau=lambda_ * tau, shape=K)
    obs = pm.NormalMixture('obs', w, mu, tau=lambda_ * tau,
                           observed=old_faithful_df.std_waiting.values)







We sample from the model 2,000 times using NUTS initialized with ADVI.



In [21]:






with model:
    trace = pm.sample(2000, n_init=50000, random_seed=SEED)













Auto-assigning NUTS sampler...
Initializing NUTS using advi...
Average ELBO = -9,730.2: 100%|██████████| 50000/50000 [00:42<00:00, 1172.42it/s]
Finished [100%]: Average ELBO = -9,729.8
100%|██████████| 2000/2000 [01:25<00:00, 23.40it/s]






The posterior distribution of \(\alpha\) is highly concentrated
between 0.25 and 1.



In [22]:






pm.traceplot(trace, varnames=['alpha']);
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To verify that truncation is not biasing our results, we plot the
posterior expected mixture weight of each component.



In [23]:






fig, ax = plt.subplots(figsize=(8, 6))

plot_w = np.arange(K) + 1

ax.bar(plot_w - 0.5, trace['w'].mean(axis=0), width=1., lw=0);

ax.set_xlim(0.5, K);
ax.set_xlabel('Component');

ax.set_ylabel('Posterior expected mixture weight');
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We see that only three mixture components have appreciable posterior
expected weights, so we conclude that truncating the Dirichlet process
to forty components has not appreciably affected our estimates.

We now compute and plot our posterior density estimate.



In [24]:






post_pdf_contribs = sp.stats.norm.pdf(np.atleast_3d(x_plot),
                                      trace['mu'][:, np.newaxis, :],
                                      1. / np.sqrt(trace['lambda'] * trace['tau'])[:, np.newaxis, :])
post_pdfs = (trace['w'][:, np.newaxis, :] * post_pdf_contribs).sum(axis=-1)

post_pdf_low, post_pdf_high = np.percentile(post_pdfs, [2.5, 97.5], axis=0)









In [25]:






fig, ax = plt.subplots(figsize=(8, 6))

n_bins = 20
ax.hist(old_faithful_df.std_waiting.values, bins=n_bins, normed=True,
        color=blue, lw=0, alpha=0.5);

ax.fill_between(x_plot, post_pdf_low, post_pdf_high,
                color='gray', alpha=0.45);
ax.plot(x_plot, post_pdfs[0],
        c='gray', label='Posterior sample densities');
ax.plot(x_plot, post_pdfs[::100].T, c='gray');
ax.plot(x_plot, post_pdfs.mean(axis=0),
        c='k', label='Posterior expected density');

ax.set_xlabel('Standardized waiting time between eruptions');

ax.set_yticklabels([]);
ax.set_ylabel('Density');

ax.legend(loc=2);
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As above, we can decompose this density estimate into its (weighted)
mixture components.



In [26]:






fig, ax = plt.subplots(figsize=(8, 6))

n_bins = 20
ax.hist(old_faithful_df.std_waiting.values, bins=n_bins, normed=True,
        color=blue, lw=0, alpha=0.5);

ax.plot(x_plot, post_pdfs.mean(axis=0),
        c='k', label='Posterior expected density');
ax.plot(x_plot, (trace['w'][:, np.newaxis, :] * post_pdf_contribs).mean(axis=0)[:, 0],
        '--', c='k', label='Posterior expected mixture\ncomponents\n(weighted)');
ax.plot(x_plot, (trace['w'][:, np.newaxis, :] * post_pdf_contribs).mean(axis=0),
        '--', c='k');

ax.set_xlabel('Standardized waiting time between eruptions');

ax.set_yticklabels([]);
ax.set_ylabel('Density');

ax.legend(loc=2);
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The Dirichlet process mixture model is incredibly flexible in terms of
the family of parametric component distributions
\(\{f_{\theta}\ |\ f_{\theta} \in \Theta\}\). We illustrate this
flexibility below by using Poisson component distributions to estimate
the density of sunspots per year.



In [27]:






sunspot_df = get_rdataset('sunspot.year', cache=True).data









In [28]:






sunspot_df.head()









Out[28]:








  
    
      	
      	time
      	sunspot.year
    

  
  
    
      	0
      	1700
      	5.0
    

    
      	1
      	1701
      	11.0
    

    
      	2
      	1702
      	16.0
    

    
      	3
      	1703
      	23.0
    

    
      	4
      	1704
      	36.0
    

  







For this example, the model is


\[\begin{split}\begin{align*}
    \alpha
        & \sim \textrm{Gamma}(1, 1) \\
    \beta_1, \ldots, \beta_K
        & \sim \textrm{Beta}(1, \alpha) \\
    w_i
        & = \beta_i \prod_{j = i - 1}^i (1 - \beta_j) \\
    \\
    \lambda_i, \ldots, \lambda_K
        & \sim U(0, 300)
    \\
    x\ |\ w_i, \lambda_i
        & \sim \sum_{i = 1}^K w_i\ \textrm{Poisson}(\lambda_i).
\end{align*}\end{split}\]



In [29]:






K = 50
N = sunspot_df.shape[0]









In [30]:






with pm.Model() as model:
    alpha = pm.Gamma('alpha', 1., 1.)
    beta = pm.Beta('beta', 1, alpha, shape=K)
    w = pm.Deterministic('w', stick_breaking(beta))

    mu = pm.Uniform('mu', 0., 300., shape=K)
    obs = pm.Mixture('obs', w, pm.Poisson.dist(mu), observed=sunspot_df['sunspot.year'])









In [31]:






with model:
    step = pm.Metropolis()
    trace_ = pm.sample(100000, step=step, random_seed=SEED)

trace = trace_[50000::50]













100%|██████████| 100000/100000 [03:41<00:00, 451.22it/s]






For the sunspot model, the posterior distribution of \(\alpha\) is
concentrated between 0.6 and 1.2, indicating that we should expect more
components to contribute non-negligible amounts to the mixture than for
the Old Faithful waiting time model.



In [32]:






pm.traceplot(trace, varnames=['alpha']);
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Indeed, we see that between ten and fifteen mixture components have
appreciable posterior expected weight.



In [33]:






fig, ax = plt.subplots(figsize=(8, 6))

plot_w = np.arange(K) + 1

ax.bar(plot_w - 0.5, trace['w'].mean(axis=0), width=1., lw=0);

ax.set_xlim(0.5, K);
ax.set_xlabel('Component');

ax.set_ylabel('Posterior expected mixture weight');
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We now calculate and plot the fitted density estimate.



In [34]:






x_plot = np.arange(250)









In [35]:






post_pmf_contribs = sp.stats.poisson.pmf(np.atleast_3d(x_plot),
                                         trace['mu'][:, np.newaxis, :])
post_pmfs = (trace['w'][:, np.newaxis, :] * post_pmf_contribs).sum(axis=-1)

post_pmf_low, post_pmf_high = np.percentile(post_pmfs, [2.5, 97.5], axis=0)









In [36]:






fig, ax = plt.subplots(figsize=(8, 6))

ax.hist(sunspot_df['sunspot.year'].values, bins=40, normed=True, lw=0, alpha=0.75);

ax.fill_between(x_plot, post_pmf_low, post_pmf_high,
                 color='gray', alpha=0.45)
ax.plot(x_plot, post_pmfs[0],
        c='gray', label='Posterior sample densities');
ax.plot(x_plot, post_pmfs[::200].T, c='gray');
ax.plot(x_plot, post_pmfs.mean(axis=0),
        c='k', label='Posterior expected density');

ax.set_xlabel('Yearly sunspot count');
ax.set_yticklabels([]);
ax.legend(loc=1);













/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:1297: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans
  (prop.get_family(), self.defaultFamily[fontext]))











[image: ../_images/notebooks_dp_mix_53_1.png]




Again, we can decompose the posterior expected density into weighted
mixture densities.



In [37]:






fig, ax = plt.subplots(figsize=(8, 6))

ax.hist(sunspot_df['sunspot.year'].values, bins=40, normed=True, lw=0, alpha=0.75);
ax.plot(x_plot, post_pmfs.mean(axis=0),
        c='k', label='Posterior expected density');
ax.plot(x_plot, (trace['w'][:, np.newaxis, :] * post_pmf_contribs).mean(axis=0)[:, 0],
        '--', c='k', label='Posterior expected\nmixture components\n(weighted)');
ax.plot(x_plot, (trace['w'][:, np.newaxis, :] * post_pmf_contribs).mean(axis=0),
        '--', c='k');

ax.set_xlabel('Yearly sunspot count');
ax.set_yticklabels([]);
ax.legend(loc=1);
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An earlier version of this example first appeared
here [http://austinrochford.com/posts/2016-02-25-density-estimation-dpm.html].
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Dependent density regression

Author: Austin Rochford [https://github.com/AustinRochford/]

In another
example [http://pymc-devs.github.io/pymc3/notebooks/dp_mix.html], we
showed how to use Dirichlet processes to perform Bayesian nonparametric
density estimation. This example expands on the previous one,
illustrating dependent density regression.

Just as Dirichlet process mixtures can be thought of as infinite mixture
models that select the number of active components as part of inference,
dependent density regression can be thought of as infinite mixtures of
experts [https://en.wikipedia.org/wiki/Committee_machine] that select
the active experts as part of inference. Their flexibility and
modularity make them powerful tools for performing nonparametric
Bayesian Data analysis.



In [1]:






%matplotlib inline
from IPython.display import HTML









In [2]:






from matplotlib import animation as ani, pyplot as plt
import numpy as np
import pandas as pd
import pymc3 as pm
import seaborn as sns
from theano import shared, tensor as tt









In [3]:






plt.rc('animation', writer='avconv')
blue, *_ = sns.color_palette()









In [4]:






SEED = 972915 # from random.org; for reproducibility
np.random.seed(SEED)







We will use the LIDAR data set from Larry Wasserman’s excellent book,
*All of Nonparametric
Statistics* [http://www.stat.cmu.edu/~larry/all-of-nonpar/]. We
standardize the data set to improve the rate of convergence of our
samples.



In [5]:






DATA_URI = 'http://www.stat.cmu.edu/~larry/all-of-nonpar/=data/lidar.dat'

def standardize(x):
    return (x - x.mean()) / x.std()

df = (pd.read_csv(DATA_URI, sep=' *', engine='python')
        .assign(std_range=lambda df: standardize(df.range),
                std_logratio=lambda df: standardize(df.logratio)))













/opt/conda/lib/python3.5/site-packages/pandas/io/parsers.py:1961: FutureWarning: split() requires a non-empty pattern match.
  yield pat.split(line.strip())
/opt/conda/lib/python3.5/site-packages/pandas/io/parsers.py:1963: FutureWarning: split() requires a non-empty pattern match.
  yield pat.split(line.strip())








In [6]:






df.head()









Out[6]:








  
    
      	
      	range
      	logratio
      	std_logratio
      	std_range
    

  
  
    
      	0
      	390
      	-0.050356
      	0.852467
      	-1.717725
    

    
      	1
      	391
      	-0.060097
      	0.817981
      	-1.707299
    

    
      	2
      	393
      	-0.041901
      	0.882398
      	-1.686447
    

    
      	3
      	394
      	-0.050985
      	0.850240
      	-1.676020
    

    
      	4
      	396
      	-0.059913
      	0.818631
      	-1.655168
    

  







We plot the LIDAR data below.



In [7]:






fig, ax = plt.subplots(figsize=(8, 6))

ax.scatter(df.std_range, df.std_logratio,
           c=blue);

ax.set_xticklabels([]);
ax.set_xlabel("Standardized range");

ax.set_yticklabels([]);
ax.set_ylabel("Standardized log ratio");
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This data set has a two interesting properties that make it useful for
illustrating dependent density regression.


	The relationship between range and log ratio is nonlinear, but has
locally linear components.

	The observation noise is
heteroskedastic [https://en.wikipedia.org/wiki/Heteroscedasticity];
that is, the magnitude of the variance varies with the range.



The intuitive idea behind dependent density regression is to reduce the
problem to many (related) density estimates, conditioned on fixed values
of the predictors. The following animation illustrates this intuition.



In [8]:






fig, (scatter_ax, hist_ax) = plt.subplots(ncols=2, figsize=(16, 6))

scatter_ax.scatter(df.std_range, df.std_logratio,
                   c=blue, zorder=2);

scatter_ax.set_xticklabels([]);
scatter_ax.set_xlabel("Standardized range");

scatter_ax.set_yticklabels([]);
scatter_ax.set_ylabel("Standardized log ratio");

bins = np.linspace(df.std_range.min(), df.std_range.max(), 25)

hist_ax.hist(df.std_logratio, bins=bins,
             color='k', lw=0, alpha=0.25,
             label="All data");

hist_ax.set_xticklabels([]);
hist_ax.set_xlabel("Standardized log ratio");

hist_ax.set_yticklabels([]);
hist_ax.set_ylabel("Frequency");

hist_ax.legend(loc=2);

endpoints = np.linspace(1.05 * df.std_range.min(), 1.05 * df.std_range.max(), 15)

frame_artists = []

for low, high in zip(endpoints[:-1], endpoints[2:]):
    interval = scatter_ax.axvspan(low, high,
                                  color='k', alpha=0.5, lw=0, zorder=1);
    *_, bars = hist_ax.hist(df[df.std_range.between(low, high)].std_logratio,
                            bins=bins,
                            color='k', lw=0, alpha=0.5);

    frame_artists.append((interval,) + tuple(bars))

animation = ani.ArtistAnimation(fig, frame_artists,
                                interval=500, repeat_delay=3000, blit=True)
plt.close(); # prevent the intermediate figure from showing
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In [9]:






HTML(animation.to_html5_video())
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Out[9]:







  
    
    
    GLM: Mini-batch ADVI on hierarchical regression model
    
    

    
 
  
  

    
      
          
            
  


GLM: Mini-batch ADVI on hierarchical regression model

Unlike Gaussian mixture models, (hierarchical) regression models have
independent variables. These variables affect the likelihood function,
but are not random variables. When using mini-batch, we should take care
of that.



In [1]:






%matplotlib inline
%env THEANO_FLAGS=device=cpu, floatX=float32, warn_float64=ignore
import theano
import matplotlib.pyplot as plt
import numpy as np
import pymc3 as pm
import pandas as pd

data = pd.read_csv(pm.get_data('radon.csv'))

county_names = data.county.unique()
county_idx = data['county_code'].values
n_counties = len(data.county.unique())
total_size = len(data)













env: THEANO_FLAGS=device=cpu, floatX=float32, warn_float64=ignore






Here, ‘log_radon_t’ is a dependent variable, while ‘floor_t’ and
‘county_idx_t’ determine independent variable.



In [2]:






import theano.tensor as tt

log_radon_t = pm.Minibatch(data.log_radon.values, 100)
floor_t = pm.Minibatch(data.floor.values, 100)
county_idx_t = pm.Minibatch(data.county_code.values, 100)









In [3]:






with pm.Model() as hierarchical_model:
    # Hyperpriors for group nodes
    mu_a = pm.Normal('mu_alpha', mu=0., sd=100**2)
    sigma_a = pm.Uniform('sigma_alpha', lower=0, upper=100)
    mu_b = pm.Normal('mu_beta', mu=0., sd=100**2)
    sigma_b = pm.Uniform('sigma_beta', lower=0, upper=100)

    # Intercept for each county, distributed around group mean mu_a
    # Above we just set mu and sd to a fixed value while here we
    # plug in a common group distribution for all a and b (which are
    # vectors of length n_counties).
    a = pm.Normal('alpha', mu=mu_a, sd=sigma_a, shape=n_counties)
    # Intercept for each county, distributed around group mean mu_a
    b = pm.Normal('beta', mu=mu_b, sd=sigma_b, shape=n_counties)

    # Model error
    eps = pm.Uniform('eps', lower=0, upper=100)

    # Model prediction of radon level
    # a[county_idx] translates to a[0, 0, 0, 1, 1, ...],
    # we thus link multiple household measures of a county
    # to its coefficients.
    radon_est = a[county_idx_t] + b[county_idx_t] * floor_t

    # Data likelihood
    radon_like = pm.Normal('radon_like', mu=radon_est, sd=eps, observed=log_radon_t, total_size=len(data))







Random variable ‘radon_like’, associated with ‘log_radon_t’, should
be given to the function for ADVI to denote that as observations in the
likelihood term.

On the other hand, ‘minibatches’ should include the three variables
above.

Then, run ADVI with mini-batch.



In [4]:






with hierarchical_model:
    approx = pm.fit(100000, callbacks=[pm.callbacks.CheckParametersConvergence(tolerance=1e-4)])













Average Loss = 1,123.9: 100%|██████████| 100000/100000 [00:29<00:00, 3391.31it/s]
Finished [100%]: Average Loss = 1,124






Check the trace of ELBO and compare the result with MCMC.



In [5]:






import matplotlib.pyplot as plt
import seaborn as sns
plt.plot(approx.hist)









Out[5]:






[<matplotlib.lines.Line2D at 0x7f39780ca588>]
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In [6]:






# Inference button (TM)!
with pm.Model():
    # Hyperpriors for group nodes
    mu_a = pm.Normal('mu_alpha', mu=0., sd=100**2)
    sigma_a = pm.Uniform('sigma_alpha', lower=0, upper=100)
    mu_b = pm.Normal('mu_beta', mu=0., sd=100**2)
    sigma_b = pm.Uniform('sigma_beta', lower=0, upper=100)

    # Intercept for each county, distributed around group mean mu_a
    # Above we just set mu and sd to a fixed value while here we
    # plug in a common group distribution for all a and b (which are
    # vectors of length n_counties).
    a = pm.Normal('alpha', mu=mu_a, sd=sigma_a, shape=n_counties)
    # Intercept for each county, distributed around group mean mu_a
    b = pm.Normal('beta', mu=mu_b, sd=sigma_b, shape=n_counties)

    # Model error
    eps = pm.Uniform('eps', lower=0, upper=100)

    # Model prediction of radon level
    # a[county_idx] translates to a[0, 0, 0, 1, 1, ...],
    # we thus link multiple household measures of a county
    # to its coefficients.
    radon_est = a[county_idx] + b[county_idx] * data.floor.values

    # Data likelihood
    radon_like = pm.Normal(
        'radon_like', mu=radon_est, sd=eps, observed=data.log_radon.values)

    #start = pm.find_MAP()
    step = pm.NUTS(scaling=approx.cov.eval(), is_cov=True)
    hierarchical_trace = pm.sample(2000, step, start=approx.sample()[0], progressbar=True)













100%|█████████▉| 2498/2500 [03:02<00:00, 16.93it/s]/home/ferres/dev/pymc3/pymc3/step_methods/hmc/nuts.py:456: UserWarning: Chain 0 contains 41 diverging samples after tuning. If increasing `target_accept` doesn't help try to reparameterize.
  % (self._chain_id, n_diverging))
100%|██████████| 2500/2500 [03:02<00:00, 13.69it/s]








In [11]:






means = approx.gbij.rmap(approx.mean.eval())
sds = approx.gbij.rmap(approx.std.eval())









In [12]:






from scipy import stats
import seaborn as sns
varnames = means.keys()
fig, axs = plt.subplots(nrows=len(varnames), figsize=(12, 18))
for var, ax in zip(varnames, axs):
    mu_arr = means[var]
    sigma_arr = sds[var]
    ax.set_title(var)
    for i, (mu, sigma) in enumerate(zip(mu_arr.flatten(), sigma_arr.flatten())):
        sd3 = (-4*sigma + mu, 4*sigma + mu)
        x = np.linspace(sd3[0], sd3[1], 300)
        y = stats.norm(mu, sigma).pdf(x)
        ax.plot(x, y)
        if hierarchical_trace[var].ndim > 1:
            t = hierarchical_trace[var][i]
        else:
            t = hierarchical_trace[var]
        sns.distplot(t, kde=False, norm_hist=True, ax=ax)
fig.tight_layout()
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Automatic autoencoding variational Bayes for latent dirichlet allocation with PyMC3

For probabilistic models with latent variables, autoencoding variational
Bayes (AEVB; Kingma and Welling, 2014) is an algorithm which allows us
to perform inference efficiently for large datasets with an encoder. In
AEVB, the encoder is used to infer variational parameters of approximate
posterior on latent variables from given samples. By using tunable and
flexible encoders such as multilayer perceptrons (MLPs), AEVB
approximates complex variational posterior based on mean-field
approximation, which does not utilize analytic representations of the
true posterior. Combining AEVB with ADVI (Kucukelbir et al., 2015), we
can perform posterior inference on almost arbitrary probabilistic models
involving continuous latent variables.

I have implemented AEVB for ADVI with mini-batch on PyMC3. To
demonstrate flexibility of this approach, we will apply this to latent
dirichlet allocation (LDA; Blei et al., 2003) for modeling documents. In
the LDA model, each document is assumed to be generated from a
multinomial distribution, whose parameters are treated as latent
variables. By using AEVB with an MLP as an encoder, we will fit the LDA
model to the 20-newsgroups dataset.

In this example, extracted topics by AEVB seem to be qualitatively
comparable to those with a standard LDA implementation, i.e., online VB
implemented on scikit-learn. Unfortunately, the predictive accuracy of
unseen words is less than the standard implementation of LDA, it might
be due to the mean-field approximation. However, the combination of AEVB
and ADVI allows us to quickly apply more complex probabilistic models
than LDA to big data with the help of mini-batches. I hope this notebook
will attract readers, especially practitioners working on a variety of
machine learning tasks, to probabilistic programming and PyMC3.



In [1]:






%matplotlib inline
import sys, os
# unfortunately I was not able to run it on GPU due to overflow problems
%env THEANO_FLAGS=device=cpu,floatX=float64
import theano

from collections import OrderedDict
from copy import deepcopy
import numpy as np
from time import time
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.datasets import fetch_20newsgroups
import matplotlib.pyplot as plt
import seaborn as sns
from theano import shared
import theano.tensor as tt
from theano.sandbox.rng_mrg import MRG_RandomStreams

import pymc3 as pm
from pymc3 import math as pmmath
from pymc3 import Dirichlet
from pymc3.distributions.transforms import t_stick_breaking













env: THEANO_FLAGS=device=cpu,floatX=float64







Dataset

Here, we will use the 20-newsgroups dataset. This dataset can be
obtained by using functions of scikit-learn. The below code is partially
adopted from an example of scikit-learn
(http://scikit-learn.org/stable/auto_examples/applications/topics_extraction_with_nmf_lda.html).
We set the number of words in the vocabulary to 1000.



In [2]:






# The number of words in the vocaburary
n_words = 1000

print("Loading dataset...")
t0 = time()
dataset = fetch_20newsgroups(shuffle=True, random_state=1,
                             remove=('headers', 'footers', 'quotes'))
data_samples = dataset.data
print("done in %0.3fs." % (time() - t0))

# Use tf (raw term count) features for LDA.
print("Extracting tf features for LDA...")
tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_words,
                                stop_words='english')

t0 = time()
tf = tf_vectorizer.fit_transform(data_samples)
feature_names = tf_vectorizer.get_feature_names()
print("done in %0.3fs." % (time() - t0))













Loading dataset...
done in 1.801s.
Extracting tf features for LDA...
done in 2.521s.






Each document is represented by 1000-dimensional term-frequency vector.
Let’s check the data.



In [3]:






plt.plot(tf[:10, :].toarray().T);
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We split the whole documents into training and test sets. The number of
tokens in the training set is 480K. Sparsity of the term-frequency
document matrix is 0.025%, which implies almost all components in the
term-frequency matrix is zero.



In [4]:






n_samples_tr = 10000
n_samples_te = tf.shape[0] - n_samples_tr
docs_tr = tf[:n_samples_tr, :]
docs_te = tf[n_samples_tr:, :]
print('Number of docs for training = {}'.format(docs_tr.shape[0]))
print('Number of docs for test = {}'.format(docs_te.shape[0]))

n_tokens = np.sum(docs_tr[docs_tr.nonzero()])
print('Number of tokens in training set = {}'.format(n_tokens))
print('Sparsity = {}'.format(
    len(docs_tr.nonzero()[0]) / float(docs_tr.shape[0] * docs_tr.shape[1])))













Number of docs for training = 10000
Number of docs for test = 1314
Number of tokens in training set = 480263
Sparsity = 0.0253936









Log-likelihood of documents for LDA

For a document \(d\) consisting of tokens \(w\), the
log-likelihood of the LDA model with \(K\) topics is given as


\begin{eqnarray}
    \log p\left(d|\theta_{d},\beta\right) & = & \sum_{w\in d}\log\left[\sum_{k=1}^{K}\exp\left(\log\theta_{d,k} + \log \beta_{k,w}\right)\right]+const,
\end{eqnarray}
where \(\theta_{d}\) is the topic distribution for document
\(d\) and \(\beta\) is the word distribution for the \(K\)
topics. We define a function that returns a tensor of the log-likelihood
of documents given \(\theta_{d}\) and \(\beta\).



In [5]:






def logp_lda_doc(beta, theta):
    """Returns the log-likelihood function for given documents.

    K : number of topics in the model
    V : number of words (size of vocabulary)
    D : number of documents (in a mini-batch)

    Parameters
    ----------
    beta : tensor (K x V)
        Word distributions.
    theta : tensor (D x K)
        Topic distributions for documents.
    """
    def ll_docs_f(docs):
        dixs, vixs = docs.nonzero()
        vfreqs = docs[dixs, vixs]
        ll_docs = vfreqs * pmmath.logsumexp(
            tt.log(theta[dixs]) + tt.log(beta.T[vixs]), axis=1).ravel()

        # Per-word log-likelihood times num of tokens in the whole dataset
        return tt.sum(ll_docs) / (tt.sum(vfreqs)+1e-9) * n_tokens

    return ll_docs_f







In the inner function, the log-likelihood is scaled for mini-batches by
the number of tokens in the dataset.




LDA model

With the log-likelihood function, we can construct the probabilistic
model for LDA. doc_t works as a placeholder to which documents in a
mini-batch are set.

For ADVI, each of random variables \(\theta\) and \(\beta\),
drawn from Dirichlet distributions, is transformed into unconstrained
real coordinate space. To do this, by default, PyMC3 uses a centered
stick-breaking transformation. Since these random variables are on a
simplex, the dimension of the unconstrained coordinate space is the
original dimension minus 1. For example, the dimension of
\(\theta_{d}\) is the number of topics (n_topics) in the LDA
model, thus the transformed space has dimension (n_topics - 1). It
shuold be noted that, in this example, we use t_stick_breaking,
which is a numerically stable version of stick_breaking used by
default. This is required to work ADVI for the LDA model.

The variational posterior on these transformed parameters is represented
by a spherical Gaussian distributions (meanfield approximation). Thus,
the number of variational parameters of \(\theta_{d}\), the latent
variable for each document, is 2 * (n_topics - 1) for means and
standard deviations.

In the last line of the below cell, DensityDist class is used to
define the log-likelihood function of the model. The second argument is
a Python function which takes observations (a document matrix in this
example) and returns the log-likelihood value. This function is given as
a return value of logp_lda_doc(beta, theta), which has been defined
above.



In [6]:






n_topics = 10
# we have sparse dataset. It's better to have dence batch so that all words accure there
minibatch_size = 128

# defining minibatch
doc_t_minibatch = pm.Minibatch(docs_tr.toarray(), minibatch_size)
with pm.Model() as model:
    theta = Dirichlet('theta', a=pm.floatX((1.0 / n_topics) * np.ones((minibatch_size, n_topics))),
                      shape=(minibatch_size, n_topics), transform=t_stick_breaking(1e-9),
                      # do not forget scaling
                      total_size=n_samples_tr)
    beta = Dirichlet('beta', a=pm.floatX((1.0 / n_topics) * np.ones((n_topics, n_words))),
                     shape=(n_topics, n_words), transform=t_stick_breaking(1e-9))
    # Note, that we devined likelihood with scaling, se here we need no additional `total_size` kwarg
    doc = pm.DensityDist('doc', logp_lda_doc(beta, theta), observed=doc_t_minibatch)










Encoder

Given a document, the encoder calculates variational parameters of the
(transformed) latent variables, more specifically, parameters of
Gaussian distributions in the unconstrained real coordinate space. The
encode() method is required to output variational means and stds as
a tuple, as shown in the following code. As explained above, the number
of variational parameters is 2 * (n_topics) - 1. Specifically, the
shape of zs_mean (or zs_std) in the method is
(minibatch_size, n_topics - 1). It should be noted that zs_std
is defined as \(\rho = log(exp(std) - 1)\) in ADVI and bounded
to be positive. The inverse parametrization is
\(std = log(1+exp(\rho))\) and considered to be numericaly stable.

To enhance generalization ability to unseen words, a bernoulli
corruption process is applied to the inputted documents. Unfortunately,
I have never see any significant improvement with this.



In [7]:






class LDAEncoder:
    """Encode (term-frequency) document vectors to variational means and (log-transformed) stds.
    """
    def __init__(self, n_words, n_hidden, n_topics, p_corruption=0, random_seed=1):
        rng = np.random.RandomState(random_seed)
        self.n_words = n_words
        self.n_hidden = n_hidden
        self.n_topics = n_topics
        self.w0 = shared(0.01 * rng.randn(n_words, n_hidden).ravel(), name='w0')
        self.b0 = shared(0.01 * rng.randn(n_hidden), name='b0')
        self.w1 = shared(0.01 * rng.randn(n_hidden, 2 * (n_topics - 1)).ravel(), name='w1')
        self.b1 = shared(0.01 * rng.randn(2 * (n_topics - 1)), name='b1')
        self.rng = MRG_RandomStreams(seed=random_seed)
        self.p_corruption = p_corruption

    def encode(self, xs):
        if 0 < self.p_corruption:
            dixs, vixs = xs.nonzero()
            mask = tt.set_subtensor(
                tt.zeros_like(xs)[dixs, vixs],
                self.rng.binomial(size=dixs.shape, n=1, p=1-self.p_corruption)
            )
            xs_ = xs * mask
        else:
            xs_ = xs

        w0 = self.w0.reshape((self.n_words, self.n_hidden))
        w1 = self.w1.reshape((self.n_hidden, 2 * (self.n_topics - 1)))
        hs = tt.tanh(xs_.dot(w0) + self.b0)
        zs = hs.dot(w1) + self.b1
        zs_mean = zs[:, :(self.n_topics - 1)]
        zs_std = zs[:, (self.n_topics - 1):]
        return zs_mean, zs_std

    def get_params(self):
        return [self.w0, self.b0, self.w1, self.b1]







To feed the output of the encoder to the variational parameters of
\(\theta\), we set an OrderedDict of tuples as below.



In [8]:






encoder = LDAEncoder(n_words=n_words, n_hidden=100, n_topics=n_topics, p_corruption=0.0)
local_RVs = OrderedDict([(theta, encoder.encode(doc_t_minibatch))])







theta is the random variable defined in the model creation and is a
key of an entry of the OrderedDict. The value
(encoder.encode(doc_t), n_samples_tr / minibatch_size) is a tuple of
a theano expression and a scalar. The theano expression
encoder.encode(doc_t) is the output of the encoder given inputs
(documents). The scalar n_samples_tr / minibatch_size specifies the
scaling factor for mini-batches.

ADVI optimizes the parameters of the encoder. They are passed to the
function for ADVI.



In [9]:






encoder_params = encoder.get_params()










AEVB with ADVI

Here we will use class based interface for variational methods as we
will decide if we need some more training or not.



In [12]:






with model:
    approx1 = pm.fit(6000, method='advi',
                 local_rv=local_RVs,
                 more_obj_params=encoder_params,
                 # https://arxiv.org/pdf/1705.08292.pdf
                 # sgd(with/without momentum) seems to be good choice for high dimensional problems
                 obj_optimizer=pm.sgd,
                 # but your gradients will explode here
                 total_grad_norm_constraint=1000.)













Average Loss = 2.978e+06: 100%|██████████| 6000/6000 [01:56<00:00, 51.34it/s]
Finished [100%]: Average Loss = 2.9764e+06








In [13]:






plt.plot(approx1.hist[10:]);
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Extraction of characteristic words of topics based on posterior samples

By using estimated variational parameters, we can draw samples from the
variational posterior. To do this, we use function sample_vp(). Here
we use this function to obtain posterior mean of the word-topic
distribution \(\beta\) and show top-10 words frequently appeared in
the 10 topics.

To apply the above function for the LDA model, we redefine the
probabilistic model because the number of documents to be tested
changes. Since variational parameters have already been obtained, we can
reuse them for sampling from the approximate posterior distribution.



In [14]:






theano.config.compute_test_value = 'raise'
n_docs_te = docs_te.shape[0]
doc_t = shared(docs_te.toarray(), name='doc_t')

with pm.Model() as model:
    theta = Dirichlet('theta', a=pm.floatX((1.0 / n_topics) * np.ones((n_docs_te, n_topics))),
                      shape=(n_docs_te, n_topics), transform=t_stick_breaking(1e-9))
    beta = Dirichlet('beta', a=pm.floatX((1.0 / n_topics) * np.ones((n_topics, n_words))),
                     shape=(n_topics, n_words), transform=t_stick_breaking(1e-9))
    doc = pm.DensityDist('doc', logp_lda_doc(beta, theta), observed=doc_t)
    encoder.p_corruption = 0
    local_RVs = OrderedDict([(theta, encoder.encode(doc_t))])
    approx = pm.MeanField(local_rv=local_RVs)
    approx.shared_params = approx1.shared_params









In [15]:






def print_top_words(beta, feature_names, n_top_words=10):
    for i in range(len(beta)):
        print(("Topic #%d: " % i) + " ".join([feature_names[j]
            for j in beta[i].argsort()[:-n_top_words - 1:-1]]))


with model:
    samples = pm.sample_approx(approx, draws=100)
    beta_pymc3 = samples['beta'].mean(axis=0)

print_top_words(beta_pymc3, feature_names)













Topic #0: don people just think like know time god good say
Topic #1: drive key chip scsi bit encryption use disk clipper data
Topic #2: edu use file windows space program mail thanks like available
Topic #3: ax max 75u b8f a86 145 2di 1t g9v 1d9
Topic #4: armenian armenians people db jews turkish 000 government new said
Topic #5: new like just does 10 good know edu thanks car
Topic #6: 00 10 55 15 20 25 11 12 50 14
Topic #7: cx chz 17 lk 27 ah d9 24 w7 7u
Topic #8: new 10 games like good sale just edu condition power
Topic #9: new 10 just like good games does power edu know






We compare these topics to those obtained by a standard LDA
implementation on scikit-learn, which is based on an online stochastic
variational inference (Hoffman et al., 2013). We can see that estimated
words in the topics are qualitatively similar.



In [16]:






from sklearn.decomposition import LatentDirichletAllocation

lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=5,
                                learning_method='online', learning_offset=50.,
                                random_state=0)
%time lda.fit(docs_tr)
beta_sklearn = lda.components_ / lda.components_.sum(axis=1)[:, np.newaxis]

print_top_words(beta_sklearn, feature_names)













CPU times: user 19.9 s, sys: 8 ms, total: 19.9 s
Wall time: 19.9 s
Topic #0: people gun armenian war armenians turkish states said state 000
Topic #1: government people law mr president use don think right public
Topic #2: space science nasa program data research center output earth launch
Topic #3: key car chip used keys bit bike clipper use number
Topic #4: edu file com mail available ftp image files information list
Topic #5: god people does jesus think believe don say just know
Topic #6: windows drive use thanks does card know problem like db
Topic #7: ax max g9v pl b8f a86 cx 34u 145 1t
Topic #8: just don like know think good time ve people year
Topic #9: 00 10 25 15 20 12 11 16 14 17









Predictive distribution

In some papers (e.g., Hoffman et al. 2013), the predictive distribution
of held-out words was proposed as a quantitative measure for goodness of
the model fitness. The log-likelihood function for tokens of the
held-out word can be calculated with posterior means of \(\theta\)
and \(\beta\). The validity of this is explained in (Hoffman et al.
2013).



In [17]:






def calc_pp(ws, thetas, beta, wix):
    """
    Parameters
    ----------
    ws: ndarray (N,)
        Number of times the held-out word appeared in N documents.
    thetas: ndarray, shape=(N, K)
        Topic distributions for N documents.
    beta: ndarray, shape=(K, V)
        Word distributions for K topics.
    wix: int
        Index of the held-out word

    Return
    ------
    Log probability of held-out words.
    """
    return ws * np.log(thetas.dot(beta[:, wix]))

def eval_lda(transform, beta, docs_te, wixs):
    """Evaluate LDA model by log predictive probability.

    Parameters
    ----------
    transform: Python function
        Transform document vectors to posterior mean of topic proportions.
    wixs: iterable of int
        Word indices to be held-out.
    """
    lpss = []
    docs_ = deepcopy(docs_te)
    thetass = []
    wss = []
    total_words = 0
    for wix in wixs:
        ws = docs_te[:, wix].ravel()
        if 0 < ws.sum():
            # Hold-out
            docs_[:, wix] = 0

            # Topic distributions
            thetas = transform(docs_)

            # Predictive log probability
            lpss.append(calc_pp(ws, thetas, beta, wix))

            docs_[:, wix] = ws
            thetass.append(thetas)
            wss.append(ws)
            total_words += ws.sum()
        else:
            thetass.append(None)
            wss.append(None)

    # Log-probability
    lp = np.sum(np.hstack(lpss)) / total_words

    return {
        'lp': lp,
        'thetass': thetass,
        'beta': beta,
        'wss': wss
    }







transform() function is defined with sample_vp() function. This
function is an argument to the function for calculating log predictive
probabilities.



In [18]:






def transform_pymc3(docs):
    with model:
        doc_t.set_value(docs)
        samples = pm.sample_approx(approx, draws=100)

    return samples['theta'].mean(axis=0)







The mean of the log predictive probability is about -6.00.



In [19]:






%time result_pymc3 = eval_lda(transform_pymc3, beta_pymc3, docs_te.toarray(), np.arange(100))
print('Predictive log prob (pm3) = {}'.format(result_pymc3['lp']))













CPU times: user 1min 9s, sys: 4min 44s, total: 5min 53s
Wall time: 48.2 s
Predictive log prob (pm3) = -6.098737982053407






We compare the result with the scikit-learn LDA implemented The log
predictive probability is comparable (-6.04) with AEVB-ADVI, and it
shows good set of words in the estimated topics.



In [20]:






def transform_sklearn(docs):
    thetas = lda.transform(docs)
    return thetas / thetas.sum(axis=1)[:, np.newaxis]

%time result_sklearn = eval_lda(transform_sklearn, beta_sklearn, docs_te.toarray(), np.arange(100))
print('Predictive log prob (sklearn) = {}'.format(result_sklearn['lp']))













CPU times: user 1min 19s, sys: 4min 40s, total: 5min 59s
Wall time: 49.4 s
Predictive log prob (sklearn) = -6.0147710652278965









Summary

We have seen that PyMC3 allows us to estimate random variables of LDA, a
probabilistic model with latent variables, based on automatic
variational inference. Variational parameters of the local latent
variables in the probabilistic model are encoded from observations. The
parameters of the encoding model, MLP in this example, are optimized
with variational parameters of the global latent variables. Once the
probabilistic and the encoding models are defined, parameter
optimization is done just by invoking an inference (ADVI()) without
need to derive complex update equations.

This notebook shows that even mean field approximation can perform as
well as sklearn implementation, which is based on the conjugate priors
and thus not relying on the mean field approximation.
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Original blog post:
http://twiecki.github.io/blog/2016/06/01/bayesian-deep-learning/


Current trends in Machine Learning

There are currently three big trends in machine learning:
Probabilistic Programming, Deep Learning and “Big Data”.
Inside of PP, a lot of innovation is in making things scale using
Variational Inference. In this blog post, I will show how to use
Variational Inference in
PyMC3 [http://pymc-devs.github.io/pymc3/] to fit a simple Bayesian
Neural Network. I will also discuss how bridging Probabilistic
Programming and Deep Learning can open up very interesting avenues to
explore in future research.


Probabilistic Programming at scale

Probabilistic Programming allows very flexible creation of custom
probabilistic models and is mainly concerned with insight and
learning from your data. The approach is inherently Bayesian so we
can specify priors to inform and constrain our models and get
uncertainty estimation in form of a posterior distribution. Using
MCMC sampling
algorithms [http://twiecki.github.io/blog/2015/11/10/mcmc-sampling/]
we can draw samples from this posterior to very flexibly estimate these
models. PyMC3 [http://pymc-devs.github.io/pymc3/] and
Stan [http://mc-stan.org/] are the current state-of-the-art tools to
consruct and estimate these models. One major drawback of sampling,
however, is that it’s often very slow, especially for high-dimensional
models. That’s why more recently, variational inference algorithms
have been developed that are almost as flexible as MCMC but much faster.
Instead of drawing samples from the posterior, these algorithms instead
fit a distribution (e.g. normal) to the posterior turning a sampling
problem into and optimization problem.
ADVI [http://arxiv.org/abs/1506.03431] – Automatic Differentation
Variational Inference – is implemented in
PyMC3 [http://pymc-devs.github.io/pymc3/] and
Stan [http://mc-stan.org/], as well as a new package called
Edward [https://github.com/blei-lab/edward/] which is mainly
concerned with Variational Inference.

Unfortunately, when it comes to traditional ML problems like
classification or (non-linear) regression, Probabilistic Programming
often plays second fiddle (in terms of accuracy and scalability) to more
algorithmic approaches like ensemble
learning [https://en.wikipedia.org/wiki/Ensemble_learning] (e.g.
random forests [https://en.wikipedia.org/wiki/Random_forest] or
gradient boosted regression
trees [https://en.wikipedia.org/wiki/Boosting_(machine_learning)].




Deep Learning

Now in its third renaissance, deep learning has been making headlines
repeatadly by dominating almost any object recognition benchmark,
kicking ass at Atari
games [https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf], and beating
the world-champion Lee Sedol at
Go [http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html].
From a statistical point, Neural Networks are extremely good non-linear
function approximators and representation learners. While mostly known
for classification, they have been extended to unsupervised learning
with AutoEncoders [https://arxiv.org/abs/1312.6114] and in all sorts
of other interesting ways (e.g. Recurrent
Networks [https://en.wikipedia.org/wiki/Recurrent_neural_network], or
MDNs [http://cbonnett.github.io/MDN_EDWARD_KERAS_TF.html] to
estimate multimodal distributions). Why do they work so well? No one
really knows as the statistical properties are still not fully
understood.

A large part of the innoviation in deep learning is the ability to train
these extremely complex models. This rests on several pillars: * Speed:
facilitating the GPU allowed for much faster processing. * Software:
frameworks like Theano [http://deeplearning.net/software/theano/]
and TensorFlow [https://www.tensorflow.org/] allow flexible creation
of abstract models that can then be optimized and compiled to CPU or
GPU. * Learning algorithms: training on sub-sets of the data –
stochastic gradient descent – allows us to train these models on
massive amounts of data. Techniques like drop-out avoid overfitting. *
Architectural: A lot of innovation comes from changing the input layers,
like for convolutional neural nets, or the output layers, like for
MDNs [http://cbonnett.github.io/MDN_EDWARD_KERAS_TF.html].




Bridging Deep Learning and Probabilistic Programming

On one hand we Probabilistic Programming which allows us to build rather
small and focused models in a very principled and well-understood way to
gain insight into our data; on the other hand we have deep learning
which uses many heuristics to train huge and highly complex models that
are amazing at prediction. Recent innovations in variational inference
allow probabilistic programming to scale model complexity as well as
data size. We are thus at the cusp of being able to combine these two
approaches to hopefully unlock new innovations in Machine Learning. For
more motivation, see also Dustin
Tran’s [https://twitter.com/dustinvtran] recent blog
post [http://dustintran.com/blog/a-quick-update-edward-and-some-motivations/].

While this would allow Probabilistic Programming to be applied to a much
wider set of interesting problems, I believe this bridging also holds
great promise for innovations in Deep Learning. Some ideas are: *
Uncertainty in predictions: As we will see below, the Bayesian
Neural Network informs us about the uncertainty in its predictions. I
think uncertainty is an underappreciated concept in Machine Learning as
it’s clearly important for real-world applications. But it could also be
useful in training. For example, we could train the model specifically
on samples it is most uncertain about. * Uncertainty in
representations: We also get uncertainty estimates of our weights
which could inform us about the stability of the learned representations
of the network. * Regularization with priors: Weights are often
L2-regularized to avoid overfitting, this very naturally becomes a
Gaussian prior for the weight coefficients. We could, however, imagine
all kinds of other priors, like spike-and-slab to enforce sparsity (this
would be more like using the L1-norm). * Transfer learning with
informed priors: If we wanted to train a network on a new object
recognition data set, we could bootstrap the learning by placing
informed priors centered around weights retrieved from other pre-trained
networks, like GoogLeNet [https://arxiv.org/abs/1409.4842]. *
Hierarchical Neural Networks: A very powerful approach in
Probabilistic Programming is hierarchical modeling that allows pooling
of things that were learned on sub-groups to the overall population (see
my tutorial on Hierarchical Linear Regression in
PyMC3 [http://twiecki.github.io/blog/2014/03/17/bayesian-glms-3/]).
Applied to Neural Networks, in hierarchical data sets, we could train
individual neural nets to specialize on sub-groups while still being
informed about representations of the overall population. For example,
imagine a network trained to classify car models from pictures of cars.
We could train a hierarchical neural network where a sub-neural network
is trained to tell apart models from only a single manufacturer. The
intuition being that all cars from a certain manufactures share certain
similarities so it would make sense to train individual networks that
specialize on brands. However, due to the individual networks being
connected at a higher layer, they would still share information with the
other specialized sub-networks about features that are useful to all
brands. Interestingly, different layers of the network could be informed
by various levels of the hierarchy – e.g. early layers that extract
visual lines could be identical in all sub-networks while the
higher-order representations would be different. The hierarchical model
would learn all that from the data. * Other hybrid architectures:
We can more freely build all kinds of neural networks. For example,
Bayesian non-parametrics could be used to flexibly adjust the size and
shape of the hidden layers to optimally scale the network architecture
to the problem at hand during training. Currently, this requires costly
hyper-parameter optimization and a lot of tribal knowledge.






Bayesian Neural Networks in PyMC3


Generating data

First, lets generate some toy data – a simple binary classification
problem that’s not linearly separable.



In [1]:






%matplotlib inline
import theano
floatX = theano.config.floatX
import pymc3 as pm
import theano.tensor as T
import sklearn
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')
from sklearn import datasets
from sklearn.preprocessing import scale
from sklearn.cross_validation import train_test_split
from sklearn.datasets import make_moons













/home/wiecki/miniconda3/lib/python3.5/site-packages/sklearn/cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
  "This module will be removed in 0.20.", DeprecationWarning)








In [2]:






X, Y = make_moons(noise=0.2, random_state=0, n_samples=1000)
X = scale(X)
X = X.astype(floatX)
Y = Y.astype(floatX)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5)









In [3]:






fig, ax = plt.subplots()
ax.scatter(X[Y==0, 0], X[Y==0, 1], label='Class 0')
ax.scatter(X[Y==1, 0], X[Y==1, 1], color='r', label='Class 1')
sns.despine(); ax.legend()
ax.set(xlabel='X', ylabel='Y', title='Toy binary classification data set');
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Model specification

A neural network is quite simple. The basic unit is a
perceptron [https://en.wikipedia.org/wiki/Perceptron] which is
nothing more than logistic
regression [http://pymc-devs.github.io/pymc3/notebooks/posterior_predictive.html#Prediction].
We use many of these in parallel and then stack them up to get hidden
layers. Here we will use 2 hidden layers with 5 neurons each which is
sufficient for such a simple problem.



In [4]:






# Trick: Turn inputs and outputs into shared variables.
# It's still the same thing, but we can later change the values of the shared variable
# (to switch in the test-data later) and pymc3 will just use the new data.
# Kind-of like a pointer we can redirect.
# For more info, see: http://deeplearning.net/software/theano/library/compile/shared.html
ann_input = theano.shared(X_train)
ann_output = theano.shared(Y_train)

n_hidden = 5

# Initialize random weights between each layer
init_1 = np.random.randn(X.shape[1], n_hidden).astype(floatX)
init_2 = np.random.randn(n_hidden, n_hidden).astype(floatX)
init_out = np.random.randn(n_hidden).astype(floatX)

with pm.Model() as neural_network:
    # Weights from input to hidden layer
    weights_in_1 = pm.Normal('w_in_1', 0, sd=1,
                             shape=(X.shape[1], n_hidden),
                             testval=init_1)

    # Weights from 1st to 2nd layer
    weights_1_2 = pm.Normal('w_1_2', 0, sd=1,
                            shape=(n_hidden, n_hidden),
                            testval=init_2)

    # Weights from hidden layer to output
    weights_2_out = pm.Normal('w_2_out', 0, sd=1,
                              shape=(n_hidden,),
                              testval=init_out)

    # Build neural-network using tanh activation function
    act_1 = pm.math.tanh(pm.math.dot(ann_input,
                                     weights_in_1))
    act_2 = pm.math.tanh(pm.math.dot(act_1,
                                     weights_1_2))
    act_out = pm.math.sigmoid(pm.math.dot(act_2,
                                          weights_2_out))

    # Binary classification -> Bernoulli likelihood
    out = pm.Bernoulli('out',
                       act_out,
                       observed=ann_output)







That’s not so bad. The Normal priors help regularize the weights.
Usually we would add a constant b to the inputs but I omitted it
here to keep the code cleaner.




Variational Inference: Scaling model complexity

We could now just run a MCMC sampler like
`NUTS <http://pymc-devs.github.io/pymc3/api.html#nuts>`__ which
works pretty well in this case but as I already mentioned, this will
become very slow as we scale our model up to deeper architectures with
more layers.

Instead, we will use the brand-new
ADVI [http://pymc-devs.github.io/pymc3/api.html#advi] variational
inference algorithm which was recently added to PyMC3. This is much
faster and will scale better. Note, that this is a mean-field
approximation so we ignore correlations in the posterior.



In [5]:






%%time

with neural_network:
    # Run ADVI which returns posterior means, standard deviations, and the evidence lower bound (ELBO)
    v_params = pm.variational.advi(n=50000)













Average ELBO = -136.67: 100%|██████████| 50000/50000 [00:16<00:00, 3095.13it/s]
Finished [100%]: Average ELBO = -134.76












CPU times: user 18.3 s, sys: 360 ms, total: 18.7 s
Wall time: 19 s






< 20 seconds on my older laptop. That’s pretty good considering that
NUTS is having a really hard time. Further below we make this even
faster. To make it really fly, we probably want to run the Neural
Network on the GPU.

As samples are more convenient to work with, we can very quickly draw
samples from the variational posterior using sample_vp() (this is
just sampling from Normal distributions, so not at all the same like
MCMC):



In [6]:






with neural_network:
    trace = pm.variational.sample_vp(v_params, draws=5000)













100%|██████████| 5000/5000 [00:00<00:00, 12285.98it/s]






Plotting the objective function (ELBO) we can see that the optimization
slowly improves the fit over time.



In [7]:






plt.plot(v_params.elbo_vals)
plt.ylabel('ELBO')
plt.xlabel('iteration')









Out[7]:






<matplotlib.text.Text at 0x7fad0021cb00>
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Now that we trained our model, lets predict on the hold-out set using a
posterior predictive check (PPC). We use
`sample_ppc() <http://pymc-devs.github.io/pymc3/api.html#pymc3.sampling.sample_ppc>`__
to generate new data (in this case class predictions) from the posterior
(sampled from the variational estimation).



In [8]:






# Replace shared variables with testing set
ann_input.set_value(X_test)
ann_output.set_value(Y_test)

# Creater posterior predictive samples
ppc = pm.sample_ppc(trace, model=neural_network, samples=500)

# Use probability of > 0.5 to assume prediction of class 1
pred = ppc['out'].mean(axis=0) > 0.5













100%|██████████| 500/500 [00:03<00:00, 140.07it/s]








In [9]:






fig, ax = plt.subplots()
ax.scatter(X_test[pred==0, 0], X_test[pred==0, 1])
ax.scatter(X_test[pred==1, 0], X_test[pred==1, 1], color='r')
sns.despine()
ax.set(title='Predicted labels in testing set', xlabel='X', ylabel='Y');
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In [10]:






print('Accuracy = {}%'.format((Y_test == pred).mean() * 100))













Accuracy = 97.0%






Hey, our neural network did all right!






Lets look at what the classifier has learned

For this, we evaluate the class probability predictions on a grid over
the whole input space.



In [11]:






grid = np.mgrid[-3:3:100j,-3:3:100j].astype(floatX)
grid_2d = grid.reshape(2, -1).T
dummy_out = np.ones(grid.shape[1], dtype=np.int8)









In [12]:






ann_input.set_value(grid_2d)
ann_output.set_value(dummy_out)

# Creater posterior predictive samples
ppc = pm.sample_ppc(trace, model=neural_network, samples=500)













100%|██████████| 500/500 [00:04<00:00, 116.49it/s]







Probability surface



In [13]:






cmap = sns.diverging_palette(250, 12, s=85, l=25, as_cmap=True)
fig, ax = plt.subplots(figsize=(10, 6))
contour = ax.contourf(*grid, ppc['out'].mean(axis=0).reshape(100, 100), cmap=cmap)
ax.scatter(X_test[pred==0, 0], X_test[pred==0, 1])
ax.scatter(X_test[pred==1, 0], X_test[pred==1, 1], color='r')
cbar = plt.colorbar(contour, ax=ax)
_ = ax.set(xlim=(-3, 3), ylim=(-3, 3), xlabel='X', ylabel='Y');
cbar.ax.set_ylabel('Posterior predictive mean probability of class label = 0');
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Uncertainty in predicted value

So far, everything I showed we could have done with a non-Bayesian
Neural Network. The mean of the posterior predictive for each
class-label should be identical to maximum likelihood predicted values.
However, we can also look at the standard deviation of the posterior
predictive to get a sense for the uncertainty in our predictions. Here
is what that looks like:



In [14]:






cmap = sns.cubehelix_palette(light=1, as_cmap=True)
fig, ax = plt.subplots(figsize=(10, 6))
contour = ax.contourf(*grid, ppc['out'].std(axis=0).reshape(100, 100), cmap=cmap)
ax.scatter(X_test[pred==0, 0], X_test[pred==0, 1])
ax.scatter(X_test[pred==1, 0], X_test[pred==1, 1], color='r')
cbar = plt.colorbar(contour, ax=ax)
_ = ax.set(xlim=(-3, 3), ylim=(-3, 3), xlabel='X', ylabel='Y');
cbar.ax.set_ylabel('Uncertainty (posterior predictive standard deviation)');
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We can see that very close to the decision boundary, our uncertainty as
to which label to predict is highest. You can imagine that associating
predictions with uncertainty is a critical property for many
applications like health care. To further maximize accuracy, we might
want to train the model primarily on samples from that high-uncertainty
region.






Mini-batch ADVI: Scaling data size

So far, we have trained our model on all data at once. Obviously this
won’t scale to something like ImageNet. Moreover, training on
mini-batches of data (stochastic gradient descent) avoids local minima
and can lead to faster convergence.

Fortunately, ADVI can be run on mini-batches as well. It just requires
some setting up:



In [15]:






from six.moves import zip

# Set back to original data to retrain
ann_input.set_value(X_train)
ann_output.set_value(Y_train)

# Tensors and RV that will be using mini-batches
minibatch_tensors = [ann_input, ann_output]
minibatch_RVs = [out]

# Generator that returns mini-batches in each iteration
def create_minibatch(data):
    rng = np.random.RandomState(0)

    while True:
        # Return random data samples of set size 100 each iteration
        ixs = rng.randint(len(data), size=50)
        yield data[ixs]

minibatches = zip(
    create_minibatch(X_train),
    create_minibatch(Y_train),
)

total_size = len(Y_train)







While the above might look a bit daunting, I really like the design.
Especially the fact that you define a generator allows for great
flexibility. In principle, we could just pool from a database there and
not have to keep all the data in RAM.

Lets pass those to advi_minibatch():



In [16]:






%%time

with neural_network:
    # Run advi_minibatch
    v_params = pm.variational.advi_minibatch(
        n=50000, minibatch_tensors=minibatch_tensors,
        minibatch_RVs=minibatch_RVs, minibatches=minibatches,
        total_size=total_size, learning_rate=1e-2, epsilon=1.0
    )













Average ELBO = -122.96: 100%|██████████| 50000/50000 [00:15<00:00, 3268.69it/s]
Finished minibatch ADVI: ELBO = -88.62












CPU times: user 24.7 s, sys: 3.74 s, total: 28.5 s
Wall time: 1min 1s








In [17]:






with neural_network:
    trace = pm.variational.sample_vp(v_params, draws=5000)













100%|██████████| 5000/5000 [00:00<00:00, 15873.94it/s]








In [18]:






plt.plot(v_params.elbo_vals)
plt.ylabel('ELBO')
plt.xlabel('iteration')
sns.despine()
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As you can see, mini-batch ADVI’s running time is much lower. It also
seems to converge faster.

For fun, we can also look at the trace. The point is that we also get
uncertainty of our Neural Network weights.



In [19]:






pm.traceplot(trace);
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Summary

Hopefully this blog post demonstrated a very powerful new inference
algorithm available in PyMC3 [http://pymc-devs.github.io/pymc3/]:
ADVI [http://pymc-devs.github.io/pymc3/api.html#advi]. I also think
bridging the gap between Probabilistic Programming and Deep Learning can
open up many new avenues for innovation in this space, as discussed
above. Specifically, a hierarchical neural network sounds pretty
bad-ass. These are really exciting times.




Next steps

`Theano <http://deeplearning.net/software/theano/>`__, which is used
by PyMC3 as its computational backend, was mainly developed for
estimating neural networks and there are great libraries like
`Lasagne <https://github.com/Lasagne/Lasagne>`__ that build on top
of Theano to make construction of the most common neural network
architectures easy. Ideally, we wouldn’t have to build the models by
hand as I did above, but use the convenient syntax of Lasagne to
construct the architecture, define our priors, and run ADVI.

You can also run this example on the GPU by setting device = gpu and
floatX = float32 in your .theanorc.

You might also argue that the above network isn’t really deep, but note
that we could easily extend it to have more layers, including
convolutional ones to train on more challenging data sets.

I also presented some of this work at PyData London, view the video
below:

Finally, you can download this NB
here [https://github.com/twiecki/WhileMyMCMCGentlySamples/blob/master/content/downloads/notebooks/bayesian_neural_network.ipynb].
Leave a comment below, and follow me on
twitter [https://twitter.com/twiecki].
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Convolutional variational autoencoder with PyMC3 and Keras

In this document, I will show how autoencoding variational Bayes (AEVB)
works in PyMC3’s automatic differentiation variational inference (ADVI).
The example here is borrowed from Keras
example [https://github.com/fchollet/keras/blob/master/examples/variational_autoencoder_deconv.py],
where convolutional variational autoencoder is applied to the MNIST
dataset. The network architecture of the encoder and decoder are
completely same. However, PyMC3 allows us to define the probabilistic
model, which combines the encoder and decoder, in the way by which other
general probabilistic models (e.g., generalized linear models), rather
than directly implementing of Monte Carlo sampling and the loss function
as done in the Keras example. Thus I think the framework of AEVB in
PyMC3 can be extended to more complex models such as latent dirichlet
allocation [https://taku-y.github.io/notebook/20160928/lda-advi-ae.html].


	Notebook Written by Taku Yoshioka (c) 2016



For using Keras with PyMC3, we need to choose
Theano [http://deeplearning.net/software/theano/] as the backend of
Keras.

Install required packages, including pymc3, if it is not already
available:



In [1]:






#!pip install --upgrade keras
#!pip install theano==0.8.0









In [2]:






#!pip install --upgrade pymc3









In [3]:






#!conda install -y mkl-service









In [1]:






%autosave 0
%matplotlib inline
import sys, os
%env KERAS_BACKEND=theano
%env THEANO_FLAGS=device=cuda3,floatX=float32,optimizer=fast_run

from collections import OrderedDict
from keras.layers import InputLayer, BatchNormalization, Dense, Conv2D, Deconv2D, Activation, Flatten, Reshape
import numpy as np
import pymc3 as pm
from theano import shared, config, function, clone, pp
import theano.tensor as tt
import keras
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import seaborn as sns

from keras import backend as K
K.set_image_dim_ordering('th')

























Autosave disabled
env: KERAS_BACKEND=theano
env: THEANO_FLAGS=device=cuda3,floatX=float32,optimizer=fast_run












Using Theano backend.
Using cuDNN version 5105 on context None
Mapped name None to device cuda3: Tesla K40m (0000:84:00.0)








In [2]:






import pymc3, theano
print(pymc3.__version__)
print(theano.__version__)
print(keras.__version__)













3.1rc3
0.9.0.dev-f4bb35d6264213d023706b7baa065a60c6416149
2.0.4







Load images

MNIST dataset can be obtained by scikit-learn
API [http://scikit-learn.org/stable/datasets/] or from Keras
datasets [https://keras.io/datasets/]. The dataset contains images of
digits.



In [3]:






# from sklearn.datasets import fetch_mldata
# mnist = fetch_mldata('MNIST original')
# print(mnist.keys())

from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
data = pm.floatX(x_train.reshape(-1, 1, 28, 28))
data /= np.max(data)













Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz









Use Keras

We define a utility function to get parameters from Keras models. Since
we have set the backend to Theano, parameter objects are obtained as
shared variables of Theano.

In the code, ‘updates’ are expected to include update objects
(dictionary of pairs of shared variables and update equation) of scaling
parameters of batch normalization. While not using batch normalization
in this example, if we want to use it, we need to pass these update
objects as an argument of theano.function() inside the PyMC3 ADVI
function. The current version of PyMC3 does not support it, it is easy
to modify (I want to send PR in future).

The learning phase below is used for Keras to known the learning phase,
training or test. This information is important also for batch
normalization.



In [5]:






from keras.models import Sequential
from keras.layers import Dense, BatchNormalization

def get_params(model):
    """Get parameters and updates from Keras model
    """
    shared_in_updates = list()
    params = list()
    updates = dict()

    for l in model.layers:
        attrs = dir(l)
        # Updates
        if 'updates' in attrs:
            updates.update(l.updates)
            shared_in_updates += [e[0] for e in l.updates]

        # Shared variables
        for attr_str in attrs:
            attr = getattr(l, attr_str)
            if isinstance(attr, tt.compile.SharedVariable):
                if attr is not model.get_input_at(0):
                    params.append(attr)

    return list(set(params) - set(shared_in_updates)), updates

# This code is required when using BatchNormalization layer
keras.backend.theano_backend._LEARNING_PHASE = \
    shared(np.uint8(1), name='keras_learning_phase')










Encoder and decoder

First, we define the convolutional neural network for encoder using
Keras API. This function returns a CNN model given the shared variable
representing observations (images of digits), the dimension of latent
space, and the parameters of the model architecture.



In [6]:






def cnn_enc(xs, latent_dim, nb_filters=64, nb_conv=3, intermediate_dim=128):
    """Returns a CNN model of Keras.

    Parameters
    ----------
    xs : theano.TensorVariable
        Input tensor.
    latent_dim : int
        Dimension of latent vector.
    """
    input_layer = InputLayer(input_tensor=xs,
                             batch_input_shape=xs.tag.test_value.shape)
    model = Sequential()
    model.add(input_layer)

    cp1 = {'padding': 'same', 'activation': 'relu'}
    cp2 = {'padding': 'same', 'activation': 'relu', 'strides': (2, 2)}
    cp3 = {'padding': 'same', 'activation': 'relu', 'strides': (1, 1)}
    cp4 = cp3

    model.add(Conv2D(1, (2, 2), **cp1))
    model.add(Conv2D(nb_filters, (2, 2), **cp2))
    model.add(Conv2D(nb_filters, (nb_conv, nb_conv), **cp3))
    model.add(Conv2D(nb_filters, (nb_conv, nb_conv), **cp4))
    model.add(Flatten())
    model.add(Dense(intermediate_dim, activation='relu'))
    model.add(Dense(2 * latent_dim))

    return model







Then we define a utility class for encoders. This class does not depend
on the architecture of the encoder except for input shape (tensor4
for images), so we can use this class for various encoding networks.



In [7]:






class Encoder:
    """Encode observed images to variational parameters (mean/std of Gaussian).

    Parameters
    ----------
    xs : theano.tensor.sharedvar.TensorSharedVariable
        Placeholder of input images.
    dim_hidden : int
        The number of hidden variables.
    net : Function
        Returns
    """
    def __init__(self, xs, dim_hidden, net):
        model = net(xs, dim_hidden)

        self.model = model
        self.xs = xs
        self.out = model.get_output_at(-1)
        self.means = self.out[:, :dim_hidden]
        self.rhos = self.out[:, dim_hidden:]
        self.params, self.updates = get_params(model)
        self.enc_func = None
        self.dim_hidden = dim_hidden

    def _get_enc_func(self):
        if self.enc_func is None:
            xs = tt.tensor4()
            means = clone(self.means, {self.xs: xs})
            rhos = clone(self.rhos, {self.xs: xs})
            self.enc_func = function([xs], [means, rhos])

        return self.enc_func

    def encode(self, xs):
        # Used in test phase
        keras.backend.theano_backend._LEARNING_PHASE.set_value(np.uint8(0))

        enc_func = self._get_enc_func()
        means, _ = enc_func(xs)

        return means

    def draw_samples(self, xs, n_samples=1):
        """Draw samples of hidden variables based on variational parameters encoded.

        Parameters
        ----------
        xs : numpy.ndarray, shape=(n_images, 1, height, width)
            Images.
        """
        # Used in test phase
        keras.backend.theano_backend._LEARNING_PHASE.set_value(np.uint8(0))

        enc_func = self._get_enc_func()
        means, rhos = enc_func(xs)
        means = np.repeat(means, n_samples, axis=0)
        rhos = np.repeat(rhos, n_samples, axis=0)
        ns = np.random.randn(len(xs) * n_samples, self.dim_hidden)
        zs = means + pm.distributions.dist_math.rho2sd(rhos) * ns

        return zs







In a similar way, we define the decoding network and a utility class for
decoders.



In [8]:






def cnn_dec(zs, nb_filters=64, nb_conv=3, output_shape=(1, 28, 28)):
    """Returns a CNN model of Keras.

    Parameters
    ----------
    zs : theano.tensor.var.TensorVariable
        Input tensor.
    """
    minibatch_size, dim_hidden = zs.tag.test_value.shape
    input_layer = InputLayer(input_tensor=zs,
                             batch_input_shape=zs.tag.test_value.shape)
    model = Sequential()
    model.add(input_layer)

    model.add(Dense(dim_hidden, activation='relu'))
    model.add(Dense(nb_filters * 14 * 14, activation='relu'))

    cp1 = {'padding': 'same', 'activation': 'relu', 'strides': (1, 1)}
    cp2 = cp1
    cp3 = {'padding': 'valid', 'activation': 'relu', 'strides': (2, 2)}
    cp4 = {'padding': 'same',  'activation': 'sigmoid'}

    output_shape_ = (minibatch_size, nb_filters, 14, 14)
    model.add(Reshape(output_shape_[1:]))
    model.add(Deconv2D(nb_filters, (nb_conv, nb_conv), data_format='channels_first', **cp1))
    model.add(Deconv2D(nb_filters, (nb_conv, nb_conv), data_format='channels_first', **cp2))
    output_shape_ = (minibatch_size, nb_filters, 29, 29)
    model.add(Deconv2D(nb_filters, (2, 2), data_format='channels_first', **cp3))
    model.add(Conv2D(1, (2, 2), **cp4))

    return model









In [9]:






class Decoder:
    """Decode hidden variables to images.

    Parameters
    ----------
    zs : Theano tensor
        Hidden variables.
    """
    def __init__(self, zs, net):
        model = net(zs)
        self.model = model
        self.zs = zs
        self.out = model.get_output_at(-1)
        self.params, self.updates = get_params(model)
        self.dec_func = None

    def _get_dec_func(self):
        if self.dec_func is None:
            zs = tt.matrix()
            xs = clone(self.out, {self.zs: zs})
            self.dec_func = function([zs], xs)

        return self.dec_func

    def decode(self, zs):
        """Decode hidden variables to images.

        An image consists of the mean parameters of the observation noise.

        Parameters
        ----------
        zs : numpy.ndarray, shape=(n_samples, dim_hidden)
            Hidden variables.
        """
        # Used in test phase
        keras.backend.theano_backend._LEARNING_PHASE.set_value(np.uint8(0))

        return self._get_dec_func()(zs)










Generative model

We can construct the generative model with PyMC3 API and the functions
and classes defined above. We set the size of mini-batches to 100 and
the dimension of the latent space to 2 for visualization.



In [10]:






# Constants
minibatch_size = 100
dim_hidden = 2







A placeholder of images is required to which mini-batches of images will
be placed in the ADVI inference. It is also the input to the encoder. In
the below, enc.model is a Keras model of the encoder network, thus
we can check the model architecture using the method summary().



In [43]:






# Placeholder of images
xs_t = tt.tensor4(name='xs_t')
xs_t.tag.test_value = np.zeros((minibatch_size, 1, 28, 28)).astype('float32')
# Encoder
enc = Encoder(xs_t, dim_hidden, net=cnn_enc)
enc.model.summary()













_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_10 (InputLayer)        (100, 1, 28, 28)          0
_________________________________________________________________
conv2d_19 (Conv2D)           (100, 1, 28, 28)          5
_________________________________________________________________
conv2d_20 (Conv2D)           (100, 64, 14, 14)         320
_________________________________________________________________
conv2d_21 (Conv2D)           (100, 64, 14, 14)         36928
_________________________________________________________________
conv2d_22 (Conv2D)           (100, 64, 14, 14)         36928
_________________________________________________________________
flatten_4 (Flatten)          (100, 12544)              0
_________________________________________________________________
dense_19 (Dense)             (100, 128)                1605760
_________________________________________________________________
dense_20 (Dense)             (100, 4)                  516
=================================================================
Total params: 1,680,457
Trainable params: 1,680,457
Non-trainable params: 0
_________________________________________________________________






The probabilistic model involves only two random variables; latent
variable \(\mathbf{z}\) and observation \(\mathbf{x}\). We put a
Normal prior on \(\mathbf{z}\), decode the variational parameters of
\(q(\mathbf{z}|\mathbf{x})\) and define the likelihood of the
observation \(\mathbf{x}\).



In [44]:






with pm.Model() as model:
    # Hidden variables
    zs = pm.Normal('zs', mu=0, sd=1, shape=(minibatch_size, dim_hidden), dtype='float32', total_size=len(data))

    # Decoder and its parameters
    dec = Decoder(zs, net=cnn_dec)

    # Observation model
    xs_ = pm.Normal('xs_', mu=dec.out, sd=0.1, observed=xs_t, dtype='float32', total_size=len(data))







In the above definition of the generative model, we do not know how the
decoded variational parameters are passed to
\(q(\mathbf{z}|\mathbf{x})\). To do this, we will set the argument
local_RVs in the ADVI function of PyMC3.



In [45]:






local_RVs = OrderedDict({zs: (enc.means, enc.rhos)})







This argument is a OrderedDict whose keys are random variables to
which the decoded variational parameters are set, zs in this model.
Each value of the dictionary contains two theano expressions
representing variational mean (enc.means) and rhos (enc.rhos). A
scaling constant (len(data) / float(minibatch_size)) is set
automaticaly (as we specified it in the model saying what’s the
total_size) to compensate for the size of mini-batches of the
corresponding log probability terms in the evidence lower bound (ELBO),
the objective of the variational inference.

The scaling constant for the observed random variables is set in the
same way.

We can also check the architecture of the decoding network as for the
encoding network.



In [46]:






dec.model.summary()













_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_11 (InputLayer)        (100, 2)                  0
_________________________________________________________________
dense_21 (Dense)             (100, 2)                  6
_________________________________________________________________
dense_22 (Dense)             (100, 12544)              37632
_________________________________________________________________
reshape_7 (Reshape)          (100, 64, 14, 14)         0
_________________________________________________________________
conv2d_transpose_19 (Conv2DT (100, 64, 14, 14)         36928
_________________________________________________________________
conv2d_transpose_20 (Conv2DT (100, 64, 14, 14)         36928
_________________________________________________________________
conv2d_transpose_21 (Conv2DT (100, 64, 28, 28)         16448
_________________________________________________________________
conv2d_23 (Conv2D)           (100, 1, 28, 28)          257
=================================================================
Total params: 128,199
Trainable params: 128,199
Non-trainable params: 0
_________________________________________________________________









Inference

Let us execute ADVI in PyMC3.



In [47]:






# In memory Minibatches for better speed
xs_t_minibatch = pm.Minibatch(data, minibatch_size)

with model:
    approx = pm.fit(
        15000,
        local_rv=local_RVs,
        more_obj_params=enc.params + dec.params,
        obj_optimizer=pm.rmsprop(learning_rate=0.001),
        more_replacements={xs_t:xs_t_minibatch},
    )













Average Loss = 2.2294e+07: 100%|██████████| 15000/15000 [23:47<00:00, 10.52it/s]
Finished [100%]: Average Loss = 2.2264e+07






I’ve checked the plot, seemed like convergence is not achived




Results

ADVI instance has the trace of negative ELBO during inference
(optimization). We can see the convergence of the inference.



In [49]:






plt.plot(approx.hist);












[image: ../_images/notebooks_convolutional_vae_keras_advi_38_0.png]




Finally, we see the distribution of the images in the latent space. To
do this, we make 2-dimensional points in a grid and feed them into the
decoding network. The mean of \(p(\mathbf{x}|\mathbf{z})\) is the
image corresponding to the samples on the grid.



In [50]:






nn = 10
zs = np.array([(z1, z2)
               for z1 in np.linspace(-2, 2, nn)
               for z2 in np.linspace(-2, 2, nn)]).astype('float32')
xs = dec.decode(zs)[:, 0, :, :]
xs = np.bmat([[xs[i + j * nn] for i in range(nn)] for j in range(nn)])
matplotlib.rc('axes', **{'grid': False})
plt.figure(figsize=(10, 10))
plt.imshow(xs, interpolation='none', cmap='gray')
plt.show()
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Changes in API: Variational Inference: Bayesian Neural Networks


	2017 by Thomas Wiecki & Maxim Kochurov (opvi)



See original blog post for old interface and more explanations of
bayesian approach in Deep Learning:

http://twiecki.github.io/blog/2016/06/01/bayesian-deep-learning/


Bayesian Neural Networks in PyMC3


Generating data

First, lets generate some toy data – a simple binary classification
problem that’s not linearly separable.



In [1]:






%matplotlib inline
import theano
floatX = theano.config.floatX
import pymc3 as pm
import theano.tensor as T
import sklearn
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from warnings import filterwarnings
filterwarnings('ignore')
sns.set_style('white')
from sklearn import datasets
from sklearn.preprocessing import scale
from sklearn.cross_validation import train_test_split
from sklearn.datasets import make_moons









In [2]:






X, Y = make_moons(noise=0.2, random_state=0, n_samples=1000)
X = scale(X)
X = X.astype(floatX)
Y = Y.astype(floatX)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5)









In [3]:






fig, ax = plt.subplots()
ax.scatter(X[Y==0, 0], X[Y==0, 1], label='Class 0')
ax.scatter(X[Y==1, 0], X[Y==1, 1], color='r', label='Class 1')
sns.despine(); ax.legend()
ax.set(xlabel='X', ylabel='Y', title='Toy binary classification data set');












[image: ../_images/notebooks_bayesian_neural_network_opvi-advi_5_0.png]







Model specification

A neural network is quite simple. The basic unit is a
perceptron [https://en.wikipedia.org/wiki/Perceptron] which is
nothing more than logistic
regression [http://pymc-devs.github.io/pymc3/notebooks/posterior_predictive.html#Prediction].
We use many of these in parallel and then stack them up to get hidden
layers. Here we will use 2 hidden layers with 5 neurons each which is
sufficient for such a simple problem.



In [4]:






def construct_nn(ann_input, ann_output):
    n_hidden = 5

    # Initialize random weights between each layer
    init_1 = np.random.randn(X.shape[1], n_hidden).astype(floatX)
    init_2 = np.random.randn(n_hidden, n_hidden).astype(floatX)
    init_out = np.random.randn(n_hidden).astype(floatX)

    with pm.Model() as neural_network:
        # Weights from input to hidden layer
        weights_in_1 = pm.Normal('w_in_1', 0, sd=1,
                                 shape=(X.shape[1], n_hidden),
                                 testval=init_1)

        # Weights from 1st to 2nd layer
        weights_1_2 = pm.Normal('w_1_2', 0, sd=1,
                                shape=(n_hidden, n_hidden),
                                testval=init_2)

        # Weights from hidden layer to output
        weights_2_out = pm.Normal('w_2_out', 0, sd=1,
                                  shape=(n_hidden,),
                                  testval=init_out)

        # Build neural-network using tanh activation function
        act_1 = pm.math.tanh(pm.math.dot(ann_input,
                                         weights_in_1))
        act_2 = pm.math.tanh(pm.math.dot(act_1,
                                         weights_1_2))
        act_out = pm.math.sigmoid(pm.math.dot(act_2,
                                              weights_2_out))

        # Binary classification -> Bernoulli likelihood
        out = pm.Bernoulli('out',
                           act_out,
                           observed=ann_output,
                           total_size=Y_train.shape[0] # IMPORTANT for minibatches
                          )
    return neural_network

# Trick: Turn inputs and outputs into shared variables.
# It's still the same thing, but we can later change the values of the shared variable
# (to switch in the test-data later) and pymc3 will just use the new data.
# Kind-of like a pointer we can redirect.
# For more info, see: http://deeplearning.net/software/theano/library/compile/shared.html
ann_input = theano.shared(X_train)
ann_output = theano.shared(Y_train)
neural_network = construct_nn(ann_input, ann_output)







That’s not so bad. The Normal priors help regularize the weights.
Usually we would add a constant b to the inputs but I omitted it
here to keep the code cleaner. Let’s train the model using new ADVI
implemented via OPVI [https://arxiv.org/abs/1610.09033] framework



In [5]:






from pymc3.theanof import set_tt_rng, MRG_RandomStreams
set_tt_rng(MRG_RandomStreams(42))









In [7]:






%%time

with neural_network:
    # Run ADVI to estimate posterior means, standard deviations, and the evidence lower bound (ELBO)
    # here is a good chance to demonstrate `cost_part_grad_scale` parameter usage
    # the reason is described here: approximateinference.org/accepted/RoederEtAl2016.pdf
    # to be short it is used to reduce variance of gradient on final iterations
    s = theano.shared(pm.floatX(1))
    inference = pm.ADVI(cost_part_grad_scale=s)
    # ADVI has nearly converged
    pm.fit(n=20000, method=inference)
    # It is time to set `s` to zero
    s.set_value(0)
    approx = pm.fit(n=30000)













Average Loss = 123.45: 100%|██████████| 20000/20000 [00:05<00:00, 3756.62it/s]
Finished [100%]: Average Loss = 123.48
Average Loss = 121.91: 100%|██████████| 30000/30000 [00:07<00:00, 3860.27it/s]
Finished [100%]: Average Loss = 121.87












CPU times: user 19.3 s, sys: 1.51 s, total: 20.9 s
Wall time: 40.2 s






Let’s compare performance with no grad scaling



In [8]:






set_tt_rng(MRG_RandomStreams(42))









In [9]:






%%time

with neural_network:
    inference_no_s = pm.ADVI()
    approx_no_s = pm.fit(n=30000, method=inference_no_s)













Average Loss = 121.93: 100%|██████████| 30000/30000 [00:07<00:00, 3790.07it/s]
Finished [100%]: Average Loss = 121.9












CPU times: user 10.3 s, sys: 403 ms, total: 10.7 s
Wall time: 11.1 s






And using old interface. Performance is nearly the same



In [10]:






%%time

with neural_network:
    advifit = pm.advi(n=30000)













Average ELBO = -181.77: 100%|██████████| 30000/30000 [00:06<00:00, 4398.06it/s]
Finished [100%]: Average ELBO = -165.16












CPU times: user 8.3 s, sys: 389 ms, total: 8.69 s
Wall time: 12.6 s






~ 30 sec on my laptop. That’s pretty good considering that NUTS is
having a really hard time. Further below we make this even faster. To
make it really fly, we probably want to run the Neural Network on the
GPU.

As samples are more convenient to work with, we can very quickly draw
samples from the variational posterior using approx.sample_vp()
(this is just sampling from Normal distributions, so not at all the same
like MCMC):



In [11]:






trace = approx.sample_vp(draws=5000)







Plotting the objective function (ELBO) we can see that the optimization
slowly improves the fit over time.



In [12]:






plt.plot(-inference.hist, label='new ADVI', alpha=.3)
plt.plot(-inference_no_s.hist, label='new ADVI no scaling', alpha=.3)
plt.plot(advifit.elbo_vals, label='old ADVI', alpha=.3)
plt.legend()
plt.ylabel('ELBO')
plt.xlabel('iteration');
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Grad scaling seemd to give no effect, but let’s see difference in
variance of ELBO, that’s really what is expected



In [13]:






inference.hist[25000:].var(), inference_no_s.hist[25000:].var()









Out[13]:






(nan, 112.48609441184267)







Now that we trained our model, lets predict on the hold-out set using a
posterior predictive check (PPC).


	We can use
`sample_ppc() <http://pymc-devs.github.io/pymc3/api.html#pymc3.sampling.sample_ppc>`__
to generate new data (in this case class predictions) from the
posterior (sampled from the variational estimation).

	It is better to get the node directly and build theano graph using
our approximation (approx.sample_node) , we get a lot of speed up





In [14]:






# We can get predicted probability from model
neural_network.out.distribution.p









Out[14]:






sigmoid.0









In [15]:






# create symbolic input
x = T.matrix('X')
# symbolic number of samples is supported, we build vectorized posterior on the fly
n = T.iscalar('n')
# Do not forget test_values or set theano.config.compute_test_value = 'off'
x.tag.test_value = np.empty_like(X_train[:10])
n.tag.test_value = 100
_sample_proba = approx.sample_node(neural_network.out.distribution.p, size=n,
                                   more_replacements={ann_input:x})
# It is time to compile the function
# No updates are needed for Approximation random generator
# Efficient vectorized form of sampling is used
sample_proba = theano.function([x, n], _sample_proba)

# Create bechmark functions
def production_step1():
    ann_input.set_value(X_test)
    ann_output.set_value(Y_test)
    ppc = pm.sample_ppc(trace, model=neural_network, samples=500, progressbar=False)

    # Use probability of > 0.5 to assume prediction of class 1
    pred = ppc['out'].mean(axis=0) > 0.5

def production_step2():
    sample_proba(X_test, 500).mean(0) > 0.5







See the difference



In [16]:






%timeit production_step1()













1 loop, best of 3: 4.89 s per loop








In [17]:






%timeit production_step2()













10 loops, best of 3: 48.7 ms per loop








In [18]:






pred = sample_proba(X_test, 500).mean(0) > 0.5









In [19]:






fig, ax = plt.subplots()
ax.scatter(X_test[pred==0, 0], X_test[pred==0, 1])
ax.scatter(X_test[pred==1, 0], X_test[pred==1, 1], color='r')
sns.despine()
ax.set(title='Predicted labels in testing set', xlabel='X', ylabel='Y');
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In [20]:






print('Accuracy = {}%'.format((Y_test == pred).mean() * 100))













Accuracy = 96.8%






Hey, our neural network did all right!






Lets look at what the classifier has learned

For this, we evaluate the class probability predictions on a grid over
the whole input space.



In [21]:






grid = np.mgrid[-3:3:100j,-3:3:100j].astype(floatX)
grid_2d = grid.reshape(2, -1).T
dummy_out = np.ones(grid.shape[1], dtype=np.int8)









In [22]:






# Creater posterior predictive samples
ppc = sample_proba(grid_2d ,500)








Probability surface



In [23]:






cmap = sns.diverging_palette(250, 12, s=85, l=25, as_cmap=True)
fig, ax = plt.subplots(figsize=(16, 9))
contour = ax.contourf(grid[0], grid[1], ppc.mean(axis=0).reshape(100, 100), cmap=cmap)
ax.scatter(X_test[pred==0, 0], X_test[pred==0, 1])
ax.scatter(X_test[pred==1, 0], X_test[pred==1, 1], color='r')
cbar = plt.colorbar(contour, ax=ax)
_ = ax.set(xlim=(-3, 3), ylim=(-3, 3), xlabel='X', ylabel='Y');
cbar.ax.set_ylabel('Posterior predictive mean probability of class label = 0');
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Uncertainty in predicted value

So far, everything I showed we could have done with a non-Bayesian
Neural Network. The mean of the posterior predictive for each
class-label should be identical to maximum likelihood predicted values.
However, we can also look at the standard deviation of the posterior
predictive to get a sense for the uncertainty in our predictions. Here
is what that looks like:



In [24]:






cmap = sns.cubehelix_palette(light=1, as_cmap=True)
fig, ax = plt.subplots(figsize=(16, 9))
contour = ax.contourf(grid[0], grid[1], ppc.std(axis=0).reshape(100, 100), cmap=cmap)
ax.scatter(X_test[pred==0, 0], X_test[pred==0, 1])
ax.scatter(X_test[pred==1, 0], X_test[pred==1, 1], color='r')
cbar = plt.colorbar(contour, ax=ax)
_ = ax.set(xlim=(-3, 3), ylim=(-3, 3), xlabel='X', ylabel='Y');
cbar.ax.set_ylabel('Uncertainty (posterior predictive standard deviation)');
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We can see that very close to the decision boundary, our uncertainty as
to which label to predict is highest. You can imagine that associating
predictions with uncertainty is a critical property for many
applications like health care. To further maximize accuracy, we might
want to train the model primarily on samples from that high-uncertainty
region.






Mini-batch ADVI: Scaling data size

So far, we have trained our model on all data at once. Obviously this
won’t scale to something like ImageNet. Moreover, training on
mini-batches of data (stochastic gradient descent) avoids local minima
and can lead to faster convergence.

Fortunately, ADVI can be run on mini-batches as well. It just requires
some setting up:



In [25]:






# Generator that returns mini-batches in each iteration
def create_minibatch(data):
    rng = np.random.RandomState(0)

    while True:
        # Return random data samples of set size 100 each iteration
        ixs = rng.randint(len(data), size=50)
        yield data[ixs]













Minibatch ADVI

All you need to train with minibatches is to wrap python generators with
pm.generator function The rest code should work without changes,
let’s see it



In [26]:






minibatch_x = pm.generator(create_minibatch(X_train))
minibatch_y = pm.generator(create_minibatch(Y_train))
neural_network_minibatch = construct_nn(minibatch_x, minibatch_y)
with neural_network_minibatch:
    approx = pm.fit(40000, method=pm.ADVI())













Average Loss = 11.782: 100%|██████████| 40000/40000 [00:08<00:00, 4682.06it/s]
Finished [100%]: Average Loss = 11.798








In [27]:






plt.plot(inference.hist)
plt.ylabel('ELBO')
plt.xlabel('iteration');
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It works!
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API Reference
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Inference


Sampling


	
pymc3.sampling.sample(draws=500, step=None, init='auto', n_init=200000, start=None, trace=None, chain=0, njobs=1, tune=500, nuts_kwargs=None, step_kwargs=None, progressbar=True, model=None, random_seed=-1, live_plot=False, discard_tuned_samples=True, live_plot_kwargs=None, **kwargs)

	Draw samples from the posterior using the given step methods.

Multiple step methods are supported via compound step methods.





	Parameters:	
	draws (int) – The number of samples to draw. Defaults to 500. The number of tuned
samples are discarded by default. See discard_tuned_samples.

	step (function or iterable of functions) – A step function or collection of functions. If there are variables
without a step methods, step methods for those variables will
be assigned automatically.

	init (str {'ADVI', 'ADVI_MAP', 'MAP', 'NUTS', 'auto', None}) – Initialization method to use. Only works for auto-assigned step methods.


	ADVI: Run ADVI to estimate starting points and diagonal covariance
matrix. If njobs > 1 it will sample starting points from the estimated
posterior, otherwise it will use the estimated posterior mean.

	ADVI_MAP: Initialize ADVI with MAP and use MAP as starting point.

	MAP: Use the MAP as starting point.

	NUTS: Run NUTS to estimate starting points and covariance matrix. If
njobs > 1 it will sample starting points from the estimated posterior,
otherwise it will use the estimated posterior mean.

	auto : Auto-initialize, if possible. Currently only works when NUTS
is auto-assigned as step method (default).

	None: Do not initialize.





	n_init (int) – Number of iterations of initializer
If ‘ADVI’, number of iterations, if ‘nuts’, number of draws.

	start (dict) – Starting point in parameter space (or partial point)
Defaults to trace.point(-1)) if there is a trace provided and
model.test_point if not (defaults to empty dict).

	trace (backend, list, or MultiTrace) – This should be a backend instance, a list of variables to track,
or a MultiTrace object with past values. If a MultiTrace object
is given, it must contain samples for the chain number chain.
If None or a list of variables, the NDArray backend is used.
Passing either “text” or “sqlite” is taken as a shortcut to set
up the corresponding backend (with “mcmc” used as the base
name).

	chain (int) – Chain number used to store sample in backend. If njobs is
greater than one, chain numbers will start here.

	njobs (int) – Number of parallel jobs to start. If None, set to number of cpus
in the system - 2.

	tune (int) – Number of iterations to tune, if applicable (defaults to 500).
These samples will be drawn in addition to samples and discarded
unless discard_tuned_samples is set to True.

	nuts_kwargs (dict) – Options for the NUTS sampler. See the docstring of NUTS
for a complete list of options. Common options are


	target_accept: float in [0, 1]. The step size is tuned such
that we approximate this acceptance rate. Higher values like 0.9
or 0.95 often work better for problematic posteriors.

	max_treedepth: The maximum depth of the trajectory tree.

	step_scale: float, default 0.25
The initial guess for the step size scaled down by 1/n**(1/4).



If you want to pass options to other step methods, please use
step_kwargs.



	step_kwargs (dict) – Options for step methods. Keys are the lower case names of
the step method, values are dicts of keyword arguments.
You can find a full list of arguments in the docstring of
the step methods. If you want to pass arguments only to nuts,
you can use nuts_kwargs.

	progressbar (bool) – Whether or not to display a progress bar in the command line. The
bar shows the percentage of completion, the sampling speed in
samples per second (SPS), and the estimated remaining time until
completion (“expected time of arrival”; ETA).

	model (Model (optional if in with context)) – 

	random_seed (int or list of ints) – A list is accepted if more if njobs is greater than one.

	live_plot (bool) – Flag for live plotting the trace while sampling

	live_plot_kwargs (dict) – Options for traceplot. Example: live_plot_kwargs={‘varnames’: [‘x’]}

	discard_tuned_samples (bool) – Whether to discard posterior samples of the tune interval.






	Returns:	trace (pymc3.backends.base.MultiTrace) – A MultiTrace object that contains the samples.







Examples

>>> import pymc3 as pm
... n = 100
... h = 61
... alpha = 2
... beta = 2





>>> with pm.Model() as model: # context management
...     p = pm.Beta('p', alpha=alpha, beta=beta)
...     y = pm.Binomial('y', n=n, p=p, observed=h)
...     trace = pm.sample(2000, tune=1000, njobs=4)
>>> pm.df_summary(trace)
       mean        sd  mc_error   hpd_2.5  hpd_97.5
p  0.604625  0.047086   0.00078  0.510498  0.694774










	
pymc3.sampling.iter_sample(draws, step, start=None, trace=None, chain=0, tune=None, model=None, random_seed=-1)

	Generator that returns a trace on each iteration using the given
step method.  Multiple step methods supported via compound step
method returns the amount of time taken.





	Parameters:	
	draws (int) – The number of samples to draw

	step (function) – Step function

	start (dict) – Starting point in parameter space (or partial point)
Defaults to trace.point(-1)) if there is a trace provided and
model.test_point if not (defaults to empty dict)

	trace (backend, list, or MultiTrace) – This should be a backend instance, a list of variables to track,
or a MultiTrace object with past values. If a MultiTrace object
is given, it must contain samples for the chain number chain.
If None or a list of variables, the NDArray backend is used.

	chain (int) – Chain number used to store sample in backend. If njobs is
greater than one, chain numbers will start here.

	tune (int) – Number of iterations to tune, if applicable (defaults to None)

	model (Model (optional if in with context)) – 

	random_seed (int or list of ints) – A list is accepted if more if njobs is greater than one.









Example

for trace in iter_sample(500, step):
    ...










	
pymc3.sampling.sample_ppc(trace, samples=None, model=None, vars=None, size=None, random_seed=None, progressbar=True)

	Generate posterior predictive samples from a model given a trace.





	Parameters:	
	trace (backend, list, or MultiTrace) – Trace generated from MCMC sampling

	samples (int) – Number of posterior predictive samples to generate. Defaults to the
length of trace

	model (Model (optional if in with context)) – Model used to generate trace

	vars (iterable) – Variables for which to compute the posterior predictive samples.
Defaults to model.observed_RVs.

	size (int) – The number of random draws from the distribution specified by the
parameters in each sample of the trace.






	Returns:	samples (dict) – Dictionary with the variables as keys. The values corresponding
to the posterior predictive samples.












	
pymc3.sampling.init_nuts(init='ADVI', njobs=1, n_init=500000, model=None, random_seed=-1, progressbar=True, **kwargs)

	Initialize and sample from posterior of a continuous model.

This is a convenience function. NUTS convergence and sampling speed is extremely
dependent on the choice of mass/scaling matrix. In our experience, using ADVI
to estimate a diagonal covariance matrix and using this as the scaling matrix
produces robust results over a wide class of continuous models.





	Parameters:	
	init (str {'ADVI', 'ADVI_MAP', 'MAP', 'NUTS'}) – Initialization method to use.
* ADVI : Run ADVI to estimate posterior mean and diagonal covariance matrix.
* ADVI_MAP: Initialize ADVI with MAP and use MAP as starting point.
* MAP : Use the MAP as starting point.
* NUTS : Run NUTS and estimate posterior mean and covariance matrix.

	njobs (int) – Number of parallel jobs to start.

	n_init (int) – Number of iterations of initializer
If ‘ADVI’, number of iterations, if ‘metropolis’, number of draws.

	model (Model (optional if in with context)) – 

	progressbar (bool) – Whether or not to display a progressbar for advi sampling.

	**kwargs (keyword arguments) – Extra keyword arguments are forwarded to pymc3.NUTS.






	Returns:	
	start (pymc3.model.Point) – Starting point for sampler

	nuts_sampler (pymc3.step_methods.NUTS) – Instantiated and initialized NUTS sampler object


















Step-methods


NUTS


	
class pymc3.step_methods.hmc.nuts.NUTS(vars=None, Emax=1000, target_accept=0.8, gamma=0.05, k=0.75, t0=10, adapt_step_size=True, max_treedepth=10, on_error='summary', **kwargs)

	A sampler for continuous variables based on Hamiltonian mechanics.

NUTS automatically tunes the step size and the number of steps per
sample. A detailed description can be found at [1], “Algorithm 6:
Efficient No-U-Turn Sampler with Dual Averaging”.

Nuts provides a number of statistics that can be accessed with
trace.get_sampler_stats:


	mean_tree_accept: The mean acceptance probability for the tree
that generated this sample. The mean of these values across all
samples but the burn-in should be approximately target_accept
(the default for this is 0.8).

	diverging: Whether the trajectory for this sample diverged. If
there are any divergences after burnin, this indicates that
the results might not be reliable. Reparametrization can
often help, but you can also try to increase target_accept to
something like 0.9 or 0.95.

	energy: The energy at the point in phase-space where the sample
was accepted. This can be used to identify posteriors with
problematically long tails. See below for an example.

	energy_change: The difference in energy between the start and
the end of the trajectory. For a perfect integrator this would
always be zero.

	max_energy_change: The maximum difference in energy along the
whole trajectory.

	depth: The depth of the tree that was used to generate this sample

	tree_size: The number of leafs of the sampling tree, when the
sample was accepted. This is usually a bit less than
2 ** depth. If the tree size is large, the sampler is
using a lot of leapfrog steps to find the next sample. This can for
example happen if there are strong correlations in the posterior,
if the posterior has long tails, if there are regions of high
curvature (“funnels”), or if the variance estimates in the mass
matrix are inaccurate. Reparametrisation of the model or estimating
the posterior variances from past samples might help.

	tune: This is True, if step size adaptation was turned on when
this sample was generated.

	step_size: The step size used for this sample.

	step_size_bar: The current best known step-size. After the tuning
samples, the step size is set to this value. This should converge
during tuning.



References




	[1]	Hoffman, Matthew D., & Gelman, Andrew. (2011). The No-U-Turn Sampler:
Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.








	Parameters:	
	vars (list of Theano variables, default all continuous vars) – 

	Emax (float, default 1000) – Maximum energy change allowed during leapfrog steps. Larger
deviations will abort the integration.

	target_accept (float (0,1), default .8) – Try to find a step size such that the average acceptance
probability across the trajectories are close to target_accept.
Higher values for target_accept lead to smaller step sizes.

	step_scale (float, default 0.25) – Size of steps to take, automatically scaled down by 1/n**(1/4).
If step size adaptation is switched off, the resulting step size
is used. If adaptation is enabled, it is used as initial guess.

	gamma (float, default .05) – 

	k (float (5,1) default .75) – scaling of speed of adaptation

	t0 (int, default 10) – slows initial adaptation

	adapt_step_size (bool, default=True) – Whether step size adaptation should be enabled. If this is
disabled, k, t0, gamma and target_accept are ignored.

	max_treedepth (int, default=10) – The maximum tree depth. Trajectories are stoped when this
depth is reached.

	integrator (str, default "leapfrog") – The integrator to use for the trajectories. One of “leapfrog”,
“two-stage” or “three-stage”. The second two can increase
sampling speed for some high dimensional problems.

	scaling (array_like, ndim = {1,2}) – The inverse mass, or precision matrix. One dimensional arrays are
interpreted as diagonal matrices. If is_cov is set to True,
this will be interpreded as the mass or covariance matrix.

	is_cov (bool, default=False) – Treat the scaling as mass or covariance matrix.

	on_error ({'summary', 'warn', 'raise'}, default='summary') – How to report problems during sampling.


	summary: Print one warning after sampling.

	warn: Print individual warnings as soon as they appear.

	raise: Raise an error on the first problem.





	potential (Potential, optional) – An object that represents the Hamiltonian with methods velocity,
energy, and random methods. It can be specified instead
of the scaling matrix.

	model (pymc3.Model) – The model

	kwargs (passed to BaseHMC) – 









Notes

The step size adaptation stops when self.tune is set to False.
This is usually achieved by setting the tune parameter if
pm.sample to the desired number of tuning steps.








Metropolis


	
class pymc3.step_methods.metropolis.Metropolis(vars=None, S=None, proposal_dist=None, scaling=1.0, tune=True, tune_interval=100, model=None, mode=None, **kwargs)

	Metropolis-Hastings sampling step





	Parameters:	
	vars (list) – List of variables for sampler

	S (standard deviation or covariance matrix) – Some measure of variance to parameterize proposal distribution

	proposal_dist (function) – Function that returns zero-mean deviates when parameterized with
S (and n). Defaults to normal.

	scaling (scalar or array) – Initial scale factor for proposal. Defaults to 1.

	tune (bool) – Flag for tuning. Defaults to True.

	tune_interval (int) – The frequency of tuning. Defaults to 100 iterations.

	model (PyMC Model) – Optional model for sampling step. Defaults to None (taken from context).

	mode (string or Mode instance.) – compilation mode passed to Theano functions














	
class pymc3.step_methods.metropolis.BinaryMetropolis(vars, scaling=1.0, tune=True, tune_interval=100, model=None)

	Metropolis-Hastings optimized for binary variables





	Parameters:	
	vars (list) – List of variables for sampler

	scaling (scalar or array) – Initial scale factor for proposal. Defaults to 1.

	tune (bool) – Flag for tuning. Defaults to True.

	tune_interval (int) – The frequency of tuning. Defaults to 100 iterations.

	model (PyMC Model) – Optional model for sampling step. Defaults to None (taken from context).










	
static competence(var)

	BinaryMetropolis is only suitable for binary (bool)
and Categorical variables with k=1.










	
class pymc3.step_methods.metropolis.BinaryGibbsMetropolis(vars, order='random', model=None)

	A Metropolis-within-Gibbs step method optimized for binary variables


	
static competence(var)

	BinaryMetropolis is only suitable for Bernoulli
and Categorical variables with k=2.










	
class pymc3.step_methods.metropolis.CategoricalGibbsMetropolis(vars, proposal='uniform', order='random', model=None)

	A Metropolis-within-Gibbs step method optimized for categorical variables.
This step method works for Bernoulli variables as well, but it is not
optimized for them, like BinaryGibbsMetropolis is. Step method supports
two types of proposals: A uniform proposal and a proportional proposal,
which was introduced by Liu in his 1996 technical report
“Metropolized Gibbs Sampler: An Improvement”.


	
static competence(var)

	CategoricalGibbsMetropolis is only suitable for Bernoulli and
Categorical variables.












Slice


	
class pymc3.step_methods.slicer.Slice(vars=None, w=1.0, tune=True, model=None, **kwargs)

	Univariate slice sampler step method





	Parameters:	
	vars (list) – List of variables for sampler.

	w (float) – Initial width of slice (Defaults to 1).

	tune (bool) – Flag for tuning (Defaults to True).

	model (PyMC Model) – Optional model for sampling step. Defaults to None (taken from context).
















Hamiltonian Monte Carlo


	
class pymc3.step_methods.hmc.hmc.HamiltonianMC(vars=None, path_length=2.0, step_rand=<function unif>, **kwargs)

	



	Parameters:	
	vars (list of theano variables) – 

	path_length (float, default=2) – total length to travel

	step_rand (function float -> float, default=unif) – A function which takes the step size and returns an new one used to
randomize the step size at each iteration.

	step_scale (float, default=0.25) – Initial size of steps to take, automatically scaled down
by 1/n**(1/4).

	scaling (array_like, ndim = {1,2}) – The inverse mass, or precision matrix. One dimensional arrays are
interpreted as diagonal matrices. If is_cov is set to True,
this will be interpreded as the mass or covariance matrix.

	is_cov (bool, default=False) – Treat the scaling as mass or covariance matrix.

	potential (Potential, optional) – An object that represents the Hamiltonian with methods velocity,
energy, and random methods. It can be specified instead
of the scaling matrix.

	model (pymc3.Model) – The model

	**kwargs (passed to BaseHMC) – 


















Variational


OPVI

Variational inference is a great approach for doing really complex,
often intractable Bayesian inference in approximate form. Common methods
(e.g. ADVI) lack from complexity so that approximate posterior does not
reveal the true nature of underlying problem. In some applications it can
yield unreliable decisions.

Recently on NIPS 2017 OPVI [https://arxiv.org/abs/1610.09033/] framework
was presented. It generalizes variational inverence so that the problem is
build with blocks. The first and essential block is Model itself. Second is
Approximation, in some cases \(log Q(D)\) is not really needed. Necessity
depends on the third and forth part of that black box, Operator and
Test Function respectively.

Operator is like an approach we use, it constructs loss from given Model,
Approximation and Test Function. The last one is not needed if we minimize
KL Divergence from Q to posterior. As a drawback we need to compute \(loq Q(D)\).
Sometimes approximation family is intractable and \(loq Q(D)\) is not available,
here comes LS(Langevin Stein) Operator with a set of test functions.

Test Function has more unintuitive meaning. It is usually used with LS operator
and represents all we want from our approximate distribution. For any given vector
based function of \(z\) LS operator yields zero mean function under posterior.
\(loq Q(D)\) is no more needed. That opens a door to rich approximation
families as neural networks.

References
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class pymc3.variational.opvi.ObjectiveFunction(op, tf)

	Helper class for construction loss and updates for variational inference





	Parameters:	
	op (Operator) – OPVI Functional operator

	tf (TestFunction) – OPVI TestFunction










	
random(size=None)

	Posterior distribution from initial latent space





	Parameters:	size (int) – number of samples from distribution


	Returns:	posterior space (theano)










	
score_function(sc_n_mc=None, more_replacements=None, fn_kwargs=None)

	Compiles scoring function that operates which takes no inputs and returns Loss





	Parameters:	
	sc_n_mc (int) – number of scoring MC samples

	more_replacements – Apply custom replacements before compiling a function

	fn_kwargs (dict) – arbitrary kwargs passed to theano.function






	Returns:	theano.function












	
step_function(obj_n_mc=None, tf_n_mc=None, obj_optimizer=<function adagrad_window>, test_optimizer=<function adagrad_window>, more_obj_params=None, more_tf_params=None, more_updates=None, more_replacements=None, total_grad_norm_constraint=None, score=False, fn_kwargs=None)

	Step function that should be called on each optimization step.

Generally it solves the following problem:


\[\mathbf{\lambda^{*}} = \inf_{\lambda} \sup_{\theta} t(\mathbb{E}_{\lambda}[(O^{p,q}f_{\theta})(z)])\]





	Parameters:	
	obj_n_mc (int) – Number of monte carlo samples used for approximation of objective gradients

	tf_n_mc (int) – Number of monte carlo samples used for approximation of test function gradients

	obj_optimizer (function (loss, params) -> updates) – Optimizer that is used for objective params

	test_optimizer (function (loss, params) -> updates) – Optimizer that is used for test function params

	more_obj_params (list) – Add custom params for objective optimizer

	more_tf_params (list) – Add custom params for test function optimizer

	more_updates (dict) – Add custom updates to resulting updates

	total_grad_norm_constraint (float) – Bounds gradient norm, prevents exploding gradient problem

	score (bool) – calculate loss on each step? Defaults to False for speed

	fn_kwargs (dict) – Add kwargs to theano.function (e.g. {‘profile’: True})

	more_replacements (dict) – Apply custom replacements before calculating gradients






	Returns:	theano.function












	
updates(obj_n_mc=None, tf_n_mc=None, obj_optimizer=<function adagrad_window>, test_optimizer=<function adagrad_window>, more_obj_params=None, more_tf_params=None, more_updates=None, more_replacements=None, total_grad_norm_constraint=None)

	Calculates gradients for objective function, test function and then
constructs updates for optimization step





	Parameters:	
	obj_n_mc (int) – Number of monte carlo samples used for approximation of objective gradients

	tf_n_mc (int) – Number of monte carlo samples used for approximation of test function gradients

	obj_optimizer (function (loss, params) -> updates) – Optimizer that is used for objective params

	test_optimizer (function (loss, params) -> updates) – Optimizer that is used for test function params

	more_obj_params (list) – Add custom params for objective optimizer

	more_tf_params (list) – Add custom params for test function optimizer

	more_updates (dict) – Add custom updates to resulting updates

	more_replacements (dict) – Apply custom replacements before calculating gradients

	total_grad_norm_constraint (float) – Bounds gradient norm, prevents exploding gradient problem






	Returns:	ObjectiveUpdates
















	
class pymc3.variational.opvi.Operator(approx)

	Base class for Operator





	Parameters:	approx (Approximation) – an approximation instance





Notes

For implementing Custom operator it is needed to define Operator.apply() method


	
OBJECTIVE

	alias of ObjectiveFunction






	
apply(f)

	Operator itself


\[(O^{p,q}f_{\theta})(z)\]





	Parameters:	f (TestFunction or None) – function that takes z = self.input and returns
same dimensional output


	Returns:	TensorVariable – symbolically applied operator














	
class pymc3.variational.opvi.Approximation(local_rv=None, model=None, cost_part_grad_scale=1, scale_cost_to_minibatch=False, random_seed=None, **kwargs)

	Base class for approximations.





	Parameters:	
	local_rv (dict[var->tuple]) – mapping {model_variable -> local_variable (\(\mu\), \(\rho\))}
Local Vars are used for Autoencoding Variational Bayes
See (AEVB; Kingma and Welling, 2014) for details

	model (Model) – PyMC3 model for inference

	cost_part_grad_scale (float or scalar tensor) – Scaling score part of gradient can be useful near optimum for
archiving better convergence properties. Common schedule is
1 at the start and 0 in the end. So slow decay will be ok.
See (Sticking the Landing; Geoffrey Roeder,
Yuhuai Wu, David Duvenaud, 2016) for details

	scale_cost_to_minibatch (bool, default False) – Scale cost to minibatch instead of full dataset

	random_seed (None or int) – leave None to use package global RandomStream or other
valid value to create instance specific one









Notes

Defining an approximation needs
custom implementation of the following methods:



	
	.create_shared_params(**kwargs)

	Returns {dict|list|theano.shared}





	
	.random_global(size=None, no_rand=False)

	Generate samples from posterior. If no_rand==False:
sample from MAP of initial distribution.
Returns TensorVariable





	
	.log_q_W_global(z)

	It is needed only if used with operator
that requires \(logq\) of an approximation
Returns Scalar










You can also override the following methods:



	._setup(**kwargs)
Do some specific stuff having kwargs before calling Approximation.create_shared_params()

	.check_model(model, **kwargs)
Do some specific check for model having kwargs






kwargs mentioned above are supplied as additional arguments
for Approximation

There are some defaults class attributes for approximation classes that can be
optionally overridden.



	initial_dist_name
string that represents name of the initial distribution.
In most cases if will be uniform or normal

	initial_dist_map
float where initial distribution has maximum density
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apply_replacements(node, deterministic=False, include=None, exclude=None, more_replacements=None)

	Replace variables in graph with variational approximation. By default, replaces all variables





	Parameters:	
	node (Theano Variables (or Theano expressions)) – node or nodes for replacements

	deterministic (bool) – whether to use zeros as initial distribution
if True - zero initial point will produce constant latent variables

	include (list) – latent variables to be replaced

	exclude (list) – latent variables to be excluded for replacements

	more_replacements (dict) – add custom replacements to graph, e.g. change input source






	Returns:	node(s) with replacements












	
check_model(model, **kwargs)

	Checks that model is valid for variational inference






	
construct_replacements(include=None, exclude=None, more_replacements=None)

	Construct replacements with given conditions





	Parameters:	
	include (list) – latent variables to be replaced

	exclude (list) – latent variables to be excluded for replacements

	more_replacements (dict) – add custom replacements to graph, e.g. change input source






	Returns:	dict – Replacements












	
create_shared_params(**kwargs)

	



	Returns:	{dict|list|theano.shared}










	
initial(size, no_rand=False, l=None)

	Initial distribution for constructing posterior





	Parameters:	
	size (int) – number of samples

	no_rand (bool) – return zeros if True

	l (int) – length of sample, defaults to latent space dim






	Returns:	tt.TensorVariable – sampled latent space












	
log_q_W_global(z)

	log_q_W samples over q for global vars






	
log_q_W_local(z)

	log_q_W samples over q for local vars
Gradient wrt mu, rho in density parametrization
can be scaled to lower variance of ELBO






	
logq(z)

	Total logq for approximation






	
random(size=None, no_rand=False)

	Implements posterior distribution from initial latent space





	Parameters:	
	size (scalar) – number of samples from distribution

	no_rand (bool) – whether use deterministic distribution






	Returns:	posterior space (theano)












	
random_fn

	Implements posterior distribution from initial latent space





	Parameters:	
	size (int) – number of samples from distribution

	no_rand (bool) – whether use deterministic distribution






	Returns:	posterior space (numpy)












	
random_global(size=None, no_rand=False)

	Implements posterior distribution from initial latent space





	Parameters:	
	size (scalar) – number of samples from distribution

	no_rand (bool) – whether use deterministic distribution






	Returns:	global posterior space












	
random_local(size=None, no_rand=False)

	Implements posterior distribution from initial latent space





	Parameters:	
	size (scalar) – number of samples from distribution

	no_rand (bool) – whether use deterministic distribution






	Returns:	local posterior space












	
sample(draws=1, include_transformed=False)

	Draw samples from variational posterior.





	Parameters:	
	draws (int) – Number of random samples.

	include_transformed (bool) – If True, transformed variables are also sampled. Default is False.






	Returns:	trace (pymc3.backends.base.MultiTrace) – Samples drawn from variational posterior.












	
sample_node(node, size=100, more_replacements=None)

	Samples given node or nodes over shared posterior





	Parameters:	
	node (Theano Variables (or Theano expressions)) – 

	size (scalar) – number of samples

	more_replacements (dict) – add custom replacements to graph, e.g. change input source






	Returns:	sampled node(s) with replacements












	
scale_grad(inp)

	Rescale gradient of input
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seed(random_seed=None)

	Reinitialize RandomStream used by this approximation





	Parameters:	random_seed (int) – New random seed










	
to_flat_input(node)

	Replaces vars with flattened view stored in self.input






	
view(space, name, reshape=True)

	Construct view on a variable from flattened space





	Parameters:	
	space (matrix or vector) – space to take view of variable from

	name (str) – name of variable

	reshape (bool) – whether to reshape variable from vectorized view






	Returns:	(reshaped) slice of matrix – variable view


















Inference


	
class pymc3.variational.inference.ADVI(local_rv=None, model=None, cost_part_grad_scale=1, scale_cost_to_minibatch=False, random_seed=None, start=None)

	Automatic Differentiation Variational Inference (ADVI)

This class implements the meanfield ADVI, where the variational
posterior distribution is assumed to be spherical Gaussian without
correlation of parameters and fit to the true posterior distribution.
The means and standard deviations of the variational posterior are referred
to as variational parameters.

For explanation, we classify random variables in probabilistic models into
three types. Observed random variables
\({\cal Y}=\{\mathbf{y}_{i}\}_{i=1}^{N}\) are \(N\) observations.
Each \(\mathbf{y}_{i}\) can be a set of observed random variables,
i.e., \(\mathbf{y}_{i}=\{\mathbf{y}_{i}^{k}\}_{k=1}^{V_{o}}\), where
\(V_{k}\) is the number of the types of observed random variables
in the model.

The next ones are global random variables
\(\Theta=\{\theta^{k}\}_{k=1}^{V_{g}}\), which are used to calculate
the probabilities for all observed samples.

The last ones are local random variables
\({\cal Z}=\{\mathbf{z}_{i}\}_{i=1}^{N}\), where
\(\mathbf{z}_{i}=\{\mathbf{z}_{i}^{k}\}_{k=1}^{V_{l}}\).
These RVs are used only in AEVB.

The goal of ADVI is to approximate the posterior distribution
\(p(\Theta,{\cal Z}|{\cal Y})\) by variational posterior
\(q(\Theta)\prod_{i=1}^{N}q(\mathbf{z}_{i})\). All of these terms
are normal distributions (mean-field approximation).

\(q(\Theta)\) is parametrized with its means and standard deviations.
These parameters are denoted as \(\gamma\). While \(\gamma\) is
a constant, the parameters of \(q(\mathbf{z}_{i})\) are dependent on
each observation. Therefore these parameters are denoted as
\(\xi(\mathbf{y}_{i}; \nu)\), where \(\nu\) is the parameters
of \(\xi(\cdot)\). For example, \(\xi(\cdot)\) can be a
multilayer perceptron or convolutional neural network.

In addition to \(\xi(\cdot)\), we can also include deterministic
mappings for the likelihood of observations. We denote the parameters of
the deterministic mappings as \(\eta\). An example of such mappings is
the deconvolutional neural network used in the convolutional VAE example
in the PyMC3 notebook directory.

This function maximizes the evidence lower bound (ELBO)
\({\cal L}(\gamma, \nu, \eta)\) defined as follows:


\[\begin{split}{\cal L}(\gamma,\nu,\eta) & =
\mathbf{c}_{o}\mathbb{E}_{q(\Theta)}\left[
\sum_{i=1}^{N}\mathbb{E}_{q(\mathbf{z}_{i})}\left[
\log p(\mathbf{y}_{i}|\mathbf{z}_{i},\Theta,\eta)
\right]\right] \\ &
- \mathbf{c}_{g}KL\left[q(\Theta)||p(\Theta)\right]
- \mathbf{c}_{l}\sum_{i=1}^{N}
    KL\left[q(\mathbf{z}_{i})||p(\mathbf{z}_{i})\right],\end{split}\]

where \(KL[q(v)||p(v)]\) is the Kullback-Leibler divergence


\[KL[q(v)||p(v)] = \int q(v)\log\frac{q(v)}{p(v)}dv,\]

\(\mathbf{c}_{o/g/l}\) are vectors for weighting each term of ELBO.
More precisely, we can write each of the terms in ELBO as follows:


\[\begin{split}\mathbf{c}_{o}\log p(\mathbf{y}_{i}|\mathbf{z}_{i},\Theta,\eta) & = &
\sum_{k=1}^{V_{o}}c_{o}^{k}
    \log p(\mathbf{y}_{i}^{k}|
           {\rm pa}(\mathbf{y}_{i}^{k},\Theta,\eta)) \\
\mathbf{c}_{g}KL\left[q(\Theta)||p(\Theta)\right] & = &
\sum_{k=1}^{V_{g}}c_{g}^{k}KL\left[
    q(\theta^{k})||p(\theta^{k}|{\rm pa(\theta^{k})})\right] \\
\mathbf{c}_{l}KL\left[q(\mathbf{z}_{i}||p(\mathbf{z}_{i})\right] & = &
\sum_{k=1}^{V_{l}}c_{l}^{k}KL\left[
    q(\mathbf{z}_{i}^{k})||
    p(\mathbf{z}_{i}^{k}|{\rm pa}(\mathbf{z}_{i}^{k}))\right],\end{split}\]

where \({\rm pa}(v)\) denotes the set of parent variables of \(v\)
in the directed acyclic graph of the model.

When using mini-batches, \(c_{o}^{k}\) and \(c_{l}^{k}\) should be
set to \(N/M\), where \(M\) is the number of observations in each
mini-batch. This is done with supplying total_size parameter to
observed nodes (e.g. Normal('x', 0, 1, observed=data, total_size=10000)).
In this case it is possible to automatically determine appropriate scaling for \(logp\)
of observed nodes. Interesting to note that it is possible to have two independent
observed variables with different total_size and iterate them independently
during inference.

For working with ADVI, we need to give


	The probabilistic model

model with three types of RVs (observed_RVs,
global_RVs and local_RVs).



	(optional) Minibatches

The tensors to which mini-bathced samples are supplied are
handled separately by using callbacks in Inference.fit() method
that change storage of shared theano variable or by pymc3.generator()
that automatically iterates over minibatches and defined beforehand.



	(optional) Parameters of deterministic mappings

They have to be passed along with other params to Inference.fit() method
as more_obj_params argument.





For more information concerning training stage please reference
pymc3.variational.opvi.ObjectiveFunction.step_function()





	Parameters:	
	local_rv (dict[var->tuple]) – mapping {model_variable -> local_variable (\(\mu\), \(\rho\))}
Local Vars are used for Autoencoding Variational Bayes
See (AEVB; Kingma and Welling, 2014) for details

	model (pymc3.Model) – PyMC3 model for inference

	cost_part_grad_scale (scalar) – Scaling score part of gradient can be useful near optimum for
archiving better convergence properties. Common schedule is
1 at the start and 0 in the end. So slow decay will be ok.
See (Sticking the Landing; Geoffrey Roeder,
Yuhuai Wu, David Duvenaud, 2016) for details

	scale_cost_to_minibatch (bool) – Scale cost to minibatch instead of full dataset, default False

	random_seed (None or int) – leave None to use package global RandomStream or other
valid value to create instance specific one

	start (Point) – starting point for inference
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classmethod from_mean_field(mean_field)

	Construct ADVI from MeanField approximation





	Parameters:	mean_field (MeanField) – approximation to start with


	Returns:	ADVI














	
class pymc3.variational.inference.FullRankADVI(local_rv=None, model=None, cost_part_grad_scale=1, scale_cost_to_minibatch=False, gpu_compat=False, random_seed=None, start=None)

	Full Rank Automatic Differentiation Variational Inference (ADVI)





	Parameters:	
	local_rv (dict[var->tuple]) – mapping {model_variable -> local_variable (\(\mu\), \(\rho\))}
Local Vars are used for Autoencoding Variational Bayes
See (AEVB; Kingma and Welling, 2014) for details

	model (pymc3.Model) – PyMC3 model for inference

	cost_part_grad_scale (scalar) – Scaling score part of gradient can be useful near optimum for
archiving better convergence properties. Common schedule is
1 at the start and 0 in the end. So slow decay will be ok.
See (Sticking the Landing; Geoffrey Roeder,
Yuhuai Wu, David Duvenaud, 2016) for details

	scale_cost_to_minibatch (bool, default False) – Scale cost to minibatch instead of full dataset

	random_seed (None or int) – leave None to use package global RandomStream or other
valid value to create instance specific one

	start (Point) – starting point for inference
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classmethod from_advi(advi, gpu_compat=False)

	Construct FullRankADVI from ADVI





	Parameters:	advi (ADVI) – 


	Other Parameters:

	 	gpu_compat (bool) – use GPU compatible version or not


	Returns:	FullRankADVI










	
classmethod from_full_rank(full_rank)

	Construct FullRankADVI from FullRank approximation





	Parameters:	full_rank (FullRank) – approximation to start with


	Returns:	FullRankADVI










	
classmethod from_mean_field(mean_field, gpu_compat=False)

	Construct FullRankADVI from MeanField approximation





	Parameters:	mean_field (MeanField) – approximation to start with


	Other Parameters:

	 	gpu_compat (bool) – use GPU compatible version or not


	Returns:	FullRankADVI














	
class pymc3.variational.inference.SVGD(n_particles=100, jitter=0.01, model=None, kernel=<pymc3.variational.test_functions.RBF object>, temperature=1, scale_cost_to_minibatch=False, start=None, histogram=None, random_seed=None, local_rv=None)

	Stein Variational Gradient Descent

This inference is based on Kernelized Stein Discrepancy
it’s main idea is to move initial noisy particles so that
they fit target distribution best.

Algorithm is outlined below


	Input: A target distribution with density function \(p(x)\)

	and a set of initial particles \({x^0_i}^n_{i=1}\)



Output: A set of particles \({x_i}^n_{i=1}\) that approximates the target distribution.


\[\begin{split}x_i^{l+1} &\leftarrow x_i^{l} + \epsilon_l \hat{\phi}^{*}(x_i^l) \\
\hat{\phi}^{*}(x) &= \frac{1}{n}\sum^{n}_{j=1}[k(x^l_j,x) \nabla_{x^l_j} logp(x^l_j)+ \nabla_{x^l_j} k(x^l_j,x)]\end{split}\]





	Parameters:	
	n_particles (int) – number of particles to use for approximation

	jitter (float) – noise sd for initial point

	model (pymc3.Model) – PyMC3 model for inference

	kernel (callable) – kernel function for KSD \(f(histogram) -> (k(x,.), \nabla_x k(x,.))\)

	temperature (float) – parameter responsible for exploration, higher temperature gives more broad posterior estimate

	scale_cost_to_minibatch (bool, default False) – Scale cost to minibatch instead of full dataset

	start (Point) – initial point for inference

	histogram (Empirical) – initialize SVGD with given Empirical approximation instead of default initial particles

	random_seed (None or int) – leave None to use package global RandomStream or other
valid value to create instance specific one

	start – starting point for inference
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class pymc3.variational.inference.ASVGD(approx=<class 'pymc3.variational.approximations.FullRank'>, local_rv=None, kernel=<pymc3.variational.test_functions.RBF object>, temperature=1, model=None, **kwargs)

	Amortized Stein Variational Gradient Descent

This inference is based on Kernelized Stein Discrepancy
it’s main idea is to move initial noisy particles so that
they fit target distribution best.

Algorithm is outlined below

Input: Parametrized random generator \(R_{\theta}\)

Output: \(R_{\theta^{*}}\) that approximates the target distribution.


\[\begin{split}\Delta x_i &= \hat{\phi}^{*}(x_i) \\
\hat{\phi}^{*}(x) &= \frac{1}{n}\sum^{n}_{j=1}[k(x_j,x) \nabla_{x_j} logp(x_j)+ \nabla_{x_j} k(x_j,x)] \\
\Delta_{\theta} &= \frac{1}{n}\sum^{n}_{i=1}\Delta x_i\frac{\partial x_i}{\partial \theta}\end{split}\]





	Parameters:	
	approx (Approximation) – 

	local_rv (dict[var->tuple]) – mapping {model_variable -> local_variable (\(\mu\), \(\rho\))}
Local Vars are used for Autoencoding Variational Bayes
See (AEVB; Kingma and Welling, 2014) for details

	kernel (callable) – kernel function for KSD \(f(histogram) -> (k(x,.), \nabla_x k(x,.))\)

	temperature (float) – parameter responsible for exploration, higher temperature gives more broad posterior estimate

	model (Model) – 

	kwargs (kwargs for Approximation) – 
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fit(n=10000, score=None, callbacks=None, progressbar=True, obj_n_mc=30, **kwargs)

	Performs Amortized Stein Variational Gradient Descent





	Parameters:	
	n (int) – number of iterations

	score (bool) – evaluate loss on each iteration or not

	callbacks (list[function : (Approximation, losses, i) -> None]) – calls provided functions after each iteration step

	progressbar (bool) – whether to show progressbar or not

	obj_n_mc (int) – sample n particles for Stein gradient

	kwargs (kwargs) – additional kwargs for ObjectiveFunction.step_function()






	Returns:	Approximation
















	
class pymc3.variational.inference.Inference(op, approx, tf, local_rv=None, model=None, op_kwargs=None, **kwargs)

	Base class for Variational Inference

Communicates Operator, Approximation and Test Function to build Objective Function





	Parameters:	
	op (Operator class) – 

	approx (Approximation class or instance) – 

	tf (TestFunction instance) – 

	local_rv (dict) – mapping {model_variable -> local_variable}
Local Vars are used for Autoencoding Variational Bayes
See (AEVB; Kingma and Welling, 2014) for details

	model (Model) – PyMC3 Model

	op_kwargs (dict) – kwargs passed to Operator

	kwargs (kwargs) – additional kwargs for Approximation










	
fit(n=10000, score=None, callbacks=None, progressbar=True, **kwargs)

	Performs Operator Variational Inference





	Parameters:	
	n (int) – number of iterations

	score (bool) – evaluate loss on each iteration or not

	callbacks (list[function : (Approximation, losses, i) -> None]) – calls provided functions after each iteration step

	progressbar (bool) – whether to show progressbar or not

	kwargs (kwargs) – additional kwargs for ObjectiveFunction.step_function()






	Returns:	Approximation
















	
pymc3.variational.inference.fit(n=10000, local_rv=None, method='advi', model=None, random_seed=None, start=None, inf_kwargs=None, **kwargs)

	Handy shortcut for using inference methods in functional way





	Parameters:	
	n (int) – number of iterations

	local_rv (dict[var->tuple]) – mapping {model_variable -> local_variable (\(\mu\), \(\rho\))}
Local Vars are used for Autoencoding Variational Bayes
See (AEVB; Kingma and Welling, 2014) for details

	method (str or Inference) – string name is case insensitive in {‘advi’, ‘fullrank_advi’, ‘advi->fullrank_advi’, ‘svgd’, ‘asvgd’}

	model (pymc3.Model) – PyMC3 model for inference

	random_seed (None or int) – leave None to use package global RandomStream or other
valid value to create instance specific one

	inf_kwargs (dict) – additional kwargs passed to Inference

	start (Point) – starting point for inference






	Other Parameters:

	 	
	frac (float) – if method is ‘advi->fullrank_advi’ represents advi fraction when training

	kwargs (kwargs) – additional kwargs for Inference.fit()






	Returns:	Approximation














Approximations


	
class pymc3.variational.approximations.MeanField(local_rv=None, model=None, cost_part_grad_scale=1, scale_cost_to_minibatch=False, random_seed=None, **kwargs)

	Mean Field approximation to the posterior where spherical Gaussian family
is fitted to minimize KL divergence from True posterior. It is assumed
that latent space variables are uncorrelated that is the main drawback
of the method





	Parameters:	
	local_rv (dict[var->tuple]) – mapping {model_variable -> local_variable (\(\mu\), \(\rho\))}
Local Vars are used for Autoencoding Variational Bayes
See (AEVB; Kingma and Welling, 2014) for details

	model (pymc3.Model) – PyMC3 model for inference

	start (Point) – initial mean

	cost_part_grad_scale (scalar) – Scaling score part of gradient can be useful near optimum for
archiving better convergence properties. Common schedule is
1 at the start and 0 in the end. So slow decay will be ok.
See (Sticking the Landing; Geoffrey Roeder,
Yuhuai Wu, David Duvenaud, 2016) for details

	scale_cost_to_minibatch (bool) – Scale cost to minibatch instead of full dataset, default False

	random_seed (None or int) – leave None to use package global RandomStream or other
valid value to create instance specific one
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log_q_W_global(z)

	log_q_W samples over q for global vars










	
class pymc3.variational.approximations.FullRank(local_rv=None, model=None, cost_part_grad_scale=1, scale_cost_to_minibatch=False, gpu_compat=False, random_seed=None, **kwargs)

	Full Rank approximation to the posterior where Multivariate Gaussian family
is fitted to minimize KL divergence from True posterior. In contrast to
MeanField approach correlations between variables are taken in account. The
main drawback of the method is computational cost.





	Parameters:	
	local_rv (dict[var->tuple]) – mapping {model_variable -> local_variable (\(\mu\), \(\rho\))}
Local Vars are used for Autoencoding Variational Bayes
See (AEVB; Kingma and Welling, 2014) for details

	model (PyMC3 model for inference) – 

	start (Point) – initial mean

	cost_part_grad_scale (float or scalar tensor) – Scaling score part of gradient can be useful near optimum for
archiving better convergence properties. Common schedule is
1 at the start and 0 in the end. So slow decay will be ok.
See (Sticking the Landing; Geoffrey Roeder,
Yuhuai Wu, David Duvenaud, 2016) for details

	scale_cost_to_minibatch (bool, default False) – Scale cost to minibatch instead of full dataset

	random_seed (None or int) – leave None to use package global RandomStream or other
valid value to create instance specific one






	Other Parameters:

	 	gpu_compat (bool) – use GPU compatible version or not
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classmethod from_mean_field(mean_field, gpu_compat=False)

	Construct FullRank from MeanField approximation





	Parameters:	mean_field (MeanField) – approximation to start with


	Other Parameters:

	 	gpu_compat (bool) – use GPU compatible version or not


	Returns:	FullRank










	
log_q_W_global(z)

	log_q_W samples over q for global vars










	
class pymc3.variational.approximations.Empirical(trace, local_rv=None, scale_cost_to_minibatch=False, model=None, random_seed=None, **kwargs)

	Builds Approximation instance from a given trace,
it has the same interface as variational approximation





	Parameters:	
	trace (MultiTrace) – Trace storing samples (e.g. from step methods)

	local_rv (dict[var->tuple]) – Experimental for Empirical Approximation
mapping {model_variable -> local_variable (\(\mu\), \(\rho\))}
Local Vars are used for Autoencoding Variational Bayes
See (AEVB; Kingma and Welling, 2014) for details

	scale_cost_to_minibatch (bool) – Scale cost to minibatch instead of full dataset, default False

	model (pymc3.Model) – PyMC3 model for inference

	random_seed (None or int) – leave None to use package global RandomStream or other
valid value to create instance specific one









Examples

>>> with model:
...     step = NUTS()
...     trace = sample(1000, step=step)
...     histogram = Empirical(trace[100:])






	
classmethod from_noise(size, jitter=0.01, local_rv=None, start=None, model=None, random_seed=None, **kwargs)

	Initialize Histogram with random noise





	Parameters:	
	size (int) – number of initial particles

	jitter (float) – initial sd

	local_rv (dict) – mapping {model_variable -> local_variable}
Local Vars are used for Autoencoding Variational Bayes
See (AEVB; Kingma and Welling, 2014) for details

	start (Point) – initial point

	model (pymc3.Model) – PyMC3 model for inference

	random_seed (None or int) – leave None to use package global RandomStream or other
valid value to create instance specific one

	kwargs (other kwargs passed to init) – 






	Returns:	Empirical












	
histogram

	Shortcut to flattened Trace






	
histogram_logp

	Symbolic logp for every point in trace










	
pymc3.variational.approximations.sample_approx(approx, draws=100, include_transformed=True)

	Draw samples from variational posterior.





	Parameters:	
	approx (Approximation) – Approximation to sample from

	draws (int) – Number of random samples.

	include_transformed (bool) – If True, transformed variables are also sampled. Default is True.






	Returns:	trace (class:pymc3.backends.base.MultiTrace) – Samples drawn from variational posterior.














Operators


	
class pymc3.variational.operators.KL(approx)

	Operator based on Kullback Leibler Divergence


\[KL[q(v)||p(v)] = \int q(v)\log\frac{q(v)}{p(v)}dv\]






	
class pymc3.variational.operators.KSD(approx, temperature=1)

	Operator based on Kernelized Stein Discrepancy


	Input: A target distribution with density function \(p(x)\)

	and a set of initial particles \(\{x^0_i\}^n_{i=1}\)



Output: A set of particles \(\{x_i\}^n_{i=1}\) that approximates the target distribution.


\[\begin{split}x_i^{l+1} \leftarrow \epsilon_l \hat{\phi}^{*}(x_i^l) \\
\hat{\phi}^{*}(x) = \frac{1}{n}\sum^{n}_{j=1}[k(x^l_j,x) \nabla_{x^l_j} logp(x^l_j)+ \nabla_{x^l_j} k(x^l_j,x)]\end{split}\]





	Parameters:	approx (Empirical) – Empirical Approximation used for inference
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Generalized Linear Models


	
class pymc3.glm.linear.LinearComponent(x, y, intercept=True, labels=None, priors=None, vars=None, name='', model=None)

	Creates linear component, y_est is accessible via attribute





	Parameters:	
	name (str - name, associated with the linear component) – 

	x (pd.DataFrame or np.ndarray) – 

	y (pd.Series or np.array) – 

	intercept (bool - fit with intercept or not?) – 

	labels (list - replace variable names with these labels) – 

	priors (dict - priors for coefficients) – 
	use Intercept key for defining Intercept prior

	defaults to Flat.dist()

	use Regressor key for defining default prior for all regressors

	defaults to Normal.dist(mu=0, tau=1.0E-6)





	vars (dict - random variables instead of creating new ones) – 














	
class pymc3.glm.linear.GLM(x, y, intercept=True, labels=None, priors=None, vars=None, family='normal', name='', model=None)

	Creates glm model, y_est is accessible via attribute





	Parameters:	
	name (str - name, associated with the linear component) – 

	x (pd.DataFrame or np.ndarray) – 

	y (pd.Series or np.array) – 

	intercept (bool - fit with intercept or not?) – 

	labels (list - replace variable names with these labels) – 

	priors (dict - priors for coefficients) – 
	use Intercept key for defining Intercept prior

	defaults to Flat.dist()

	use Regressor key for defining default prior for all regressors

	defaults to Normal.dist(mu=0, tau=1.0E-6)





	init (dict - test_vals for coefficients) – 

	vars (dict - random variables instead of creating new ones) – 

	family (pymc3..families object) – 
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Gaussian Processes


GP


	
class pymc3.gp.gp.GP(mean_func=None, cov_func=None, X=None, sigma=0, *args, **kwargs)

	Gausian process





	Parameters:	
	mean_func (Mean) – Mean function of Gaussian process

	cov_func (Covariance) – Covariance function of Gaussian process

	X (array) – Grid of points to evaluate Gaussian process over. Only required if the
GP is not an observed variable.

	sigma (scalar or array) – Observation standard deviation (defaults to zero)














	
pymc3.gp.gp.sample_gp(trace, gp, X_values, samples=None, obs_noise=True, model=None, random_seed=None, progressbar=True)

	Generate samples from a posterior Gaussian process.





	Parameters:	
	trace (backend, list, or MultiTrace) – Trace generated from MCMC sampling.

	gp (Gaussian process object) – The GP variable to sample from.

	X_values (array) – Grid of values at which to sample GP.

	samples (int) – Number of posterior predictive samples to generate. Defaults to the
length of trace

	obs_noise (bool) – Flag for including observation noise in sample. Defaults to True.

	model (Model) – Model used to generate trace. Optional if in with context manager.

	random_seed (integer > 0) – Random number seed for sampling.

	progressbar (bool) – Flag for showing progress bar.






	Returns:	Array of samples from posterior GP evaluated at Z.














Covariance Functions / Kernels
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Plots


	
pymc3.plots.traceplot(trace, varnames=None, transform=<function identity_transform>, figsize=None, lines=None, combined=False, plot_transformed=False, grid=False, alpha=0.35, priors=None, prior_alpha=1, prior_style='--', ax=None, live_plot=False, skip_first=0, refresh_every=100, roll_over=1000)

	Plot samples histograms and values.





	Parameters:	
	trace (result of MCMC run) – 

	varnames (list of variable names) – Variables to be plotted, if None all variable are plotted

	transform (callable) – Function to transform data (defaults to identity)

	figsize (figure size tuple) – If None, size is (12, num of variables * 2) inch

	lines (dict) – Dictionary of variable name / value  to be overplotted as vertical
lines to the posteriors and horizontal lines on sample values
e.g. mean of posteriors, true values of a simulation.
If an array of values, line colors are matched to posterior colors.
Otherwise, a default red line

	combined (bool) – Flag for combining multiple chains into a single chain. If False
(default), chains will be plotted separately.

	plot_transformed (bool) – Flag for plotting automatically transformed variables in addition to
original variables (defaults to False).

	grid (bool) – Flag for adding gridlines to histogram. Defaults to True.

	alpha (float) – Alpha value for plot line. Defaults to 0.35.

	priors (iterable of PyMC distributions) – PyMC prior distribution(s) to be plotted alongside posterior. Defaults
to None (no prior plots).

	prior_alpha (float) – Alpha value for prior plot. Defaults to 1.

	prior_style (str) – Line style for prior plot. Defaults to ‘–’ (dashed line).

	ax (axes) – Matplotlib axes. Accepts an array of axes, e.g.:

	live_plot (bool) – Flag for updating the current figure while sampling

	skip_first (int) – Number of first samples not shown in plots (burn-in). This affects
frequency and stream plots.

	refresh_every (int) – Period of plot updates (in sample number)

	roll_over (int) – Width of the sliding window for the sample stream plots: last roll_over
samples are shown (no effect on frequency plots).

>>> fig, axs = plt.subplots(3, 2) # 3 RVs
>>> pymc3.traceplot(trace, ax=axs)





Creates own axes by default.








	Returns:	ax (matplotlib axes)












	
pymc3.plots.plot_posterior(trace, varnames=None, transform=<function identity_transform>, figsize=None, text_size=16, alpha_level=0.05, round_to=3, point_estimate='mean', rope=None, ref_val=None, kde_plot=False, plot_transformed=False, ax=None, **kwargs)

	Plot Posterior densities in style of John K. Kruschke book.





	Parameters:	
	trace (result of MCMC run) – 

	varnames (list of variable names) – Variables to be plotted, if None all variable are plotted

	transform (callable) – Function to transform data (defaults to identity)

	figsize (figure size tuple) – If None, size is (12, num of variables * 2) inch

	text_size (int) – Text size of the point_estimates, axis ticks, and HPD (Default:16)

	alpha_level (float) – Defines range for High Posterior Density

	round_to (int) – Controls formatting for floating point numbers

	point_estimate (str) – Must be in (‘mode’, ‘mean’, ‘median’)

	rope (list or numpy array) – Lower and upper values of the Region Of Practical Equivalence

	ref_val (bool) – display the percentage below and above ref_val

	kde_plot (bool) – if True plot a KDE instead of a histogram. For discrete variables this
argument is ignored.

	plot_transformed (bool) – Flag for plotting automatically transformed variables in addition to
original variables (defaults to False).

	ax (axes) – Matplotlib axes. Defaults to None.

	**kwargs – Passed as-is to plt.hist() or plt.plot() function, depending on the
value of the argument kde_plot
Some defaults are added, if not specified
color=’#87ceeb’ will match the style in the book






	Returns:	ax (matplotlib axes)












	
pymc3.plots.forestplot(trace_obj, varnames=None, transform=<function identity_transform>, alpha=0.05, quartiles=True, rhat=True, main=None, xtitle=None, xlim=None, ylabels=None, chain_spacing=0.05, vline=0, gs=None, plot_transformed=False, **plot_kwargs)

	Forest plot (model summary plot).

Generates a “forest plot” of 100*(1-alpha)% credible intervals for either
the set of variables in a given model, or a specified set of nodes.





	Parameters:	
	trace_obj (NpTrace or MultiTrace object) – Trace(s) from an MCMC sample.

	varnames (list) – List of variables to plot (defaults to None, which results in all
variables plotted).

	transform (callable) – Function to transform data (defaults to identity)

	(optional) (vline) – Alpha value for (1-alpha)*100% credible intervals (defaults to 0.05).

	(optional) – Flag for plotting the interquartile range, in addition to the
(1-alpha)*100% intervals (defaults to True).

	(optional) – Flag for plotting Gelman-Rubin statistics. Requires 2 or more chains
(defaults to True).

	(optional) – Title for main plot. Passing False results in titles being suppressed;
passing None (default) results in default titles.

	(optional) – Label for x-axis. Defaults to no label

	(optional) – Range for x-axis. Defaults to matplotlib’s best guess.

	(optional) – User-defined labels for each variable. If not provided, the node
__name__ attributes are used.

	(optional) – Plot spacing between chains (defaults to 0.05).

	(optional) – Location of vertical reference line (defaults to 0).

	gs (GridSpec) – Matplotlib GridSpec object. Defaults to None.

	plot_transformed (bool) – Flag for plotting automatically transformed variables in addition to
original variables (defaults to False).

	plot_kwargs (dict) – Optional arguments for plot elements. Currently accepts ‘fontsize’,
‘linewidth’, ‘color’, ‘marker’, and ‘markersize’.






	Returns:	gs (matplotlib GridSpec)












	
pymc3.plots.autocorrplot(trace, varnames=None, max_lag=100, burn=0, plot_transformed=False, symmetric_plot=False, ax=None, figsize=None)

	Bar plot of the autocorrelation function for a trace.





	Parameters:	
	trace (result of MCMC run) – 

	varnames (list of variable names) – Variables to be plotted, if None all variable are plotted.
Vector-value stochastics are handled automatically.

	max_lag (int) – Maximum lag to calculate autocorrelation. Defaults to 100.

	burn (int) – Number of samples to discard from the beginning of the trace.
Defaults to 0.

	plot_transformed (bool) – Flag for plotting automatically transformed variables in addition to
original variables (defaults to False).

	symmetric_plot (boolean) – Plot from either [0, +lag] or [-lag, lag]. Defaults to False, [-, +lag].

	ax (axes) – Matplotlib axes. Defaults to None.

	figsize (figure size tuple) – If None, size is (12, num of variables * 2) inches.
Note this is not used if ax is supplied.






	Returns:	ax (matplotlib axes)
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Stats

Statistical utility functions for PyMC


	
pymc3.stats.autocorr(pymc3_obj, *args, **kwargs)

	Sample autocorrelation at specified lag.





	Parameters:	
	x (Numpy array) – An array containing MCMC samples

	lag (int) – The desidered lag to take in consideration














	
pymc3.stats.autocov(pymc3_obj, *args, **kwargs)

	Sample autocovariance at specified lag.





	Parameters:	
	x (Numpy array) – An array containing MCMC samples

	lag (int) – The desidered lag to take in consideration






	Returns:	
	2x2 matrix with the variances of

	x[ (-lag] and x[lag:] in the diagonal and the autocovariance)

	on the off-diagonal.
















	
pymc3.stats.dic(trace, model=None)

	Calculate the deviance information criterion of the samples in trace from model
Read more theory here - in a paper by some of the leading authorities on Model Selection -
dx.doi.org/10.1111/1467-9868.00353





	Parameters:	
	trace (result of MCMC run) – 

	model (PyMC Model) – Optional model. Default None, taken from context.






	Returns:	float representing the deviance information criterion of the model and trace












	
pymc3.stats.bpic(trace, model=None)

	Calculates Bayesian predictive information criterion n of the samples in trace from model
Read more theory here - in a paper by some of the leading authorities on Model Selection -
dx.doi.org/10.1111/1467-9868.00353





	Parameters:	
	trace (result of MCMC run) – 

	model (PyMC Model) – Optional model. Default None, taken from context.














	
pymc3.stats.waic(trace, model=None, pointwise=False)

	Calculate the widely available information criterion, its standard error
and the effective number of parameters of the samples in trace from model.
Read more theory here - in a paper by some of the leading authorities on
Model Selection - dx.doi.org/10.1111/1467-9868.00353





	Parameters:	
	trace (result of MCMC run) – 

	model (PyMC Model) – Optional model. Default None, taken from context.

	pointwise (bool) – if True the pointwise predictive accuracy will be returned.
Default False






	Returns:	
	namedtuple with the following elements

	waic (widely available information criterion)

	waic_se (standard error of waic)

	p_waic (effective number parameters)

	waic_i (and array of the pointwise predictive accuracy, only if pointwise True)
















	
pymc3.stats.loo(trace, model=None, pointwise=False)

	Calculates leave-one-out (LOO) cross-validation for out of sample predictive
model fit, following Vehtari et al. (2015). Cross-validation is computed using
Pareto-smoothed importance sampling (PSIS).





	Parameters:	
	trace (result of MCMC run) – 

	model (PyMC Model) – Optional model. Default None, taken from context.

	pointwise (bool) – if True the pointwise predictive accuracy will be returned.
Default False






	Returns:	
	namedtuple with the following elements

	loo (approximated Leave-one-out cross-validation)

	loo_se (standard error of loo)

	p_loo (effective number of parameters)

	loo_i (and array of the pointwise predictive accuracy, only if pointwise True)
















	
pymc3.stats.hpd(pymc3_obj, *args, **kwargs)

	Calculate highest posterior density (HPD) of array for given alpha. The HPD is the
minimum width Bayesian credible interval (BCI).





	Arguments:	
	x : Numpy array

	An array containing MCMC samples



	alpha : float

	Desired probability of type I error (defaults to 0.05)



	transform : callable

	Function to transform data (defaults to identity)
















	
pymc3.stats.quantiles(pymc3_obj, *args, **kwargs)

	Returns a dictionary of requested quantiles from array





	Parameters:	
	x (Numpy array) – An array containing MCMC samples

	qlist (tuple or list) – A list of desired quantiles (defaults to (2.5, 25, 50, 75, 97.5))

	transform (callable) – Function to transform data (defaults to identity)






	Returns:	`dictionary` with the quantiles {quantile (value})












	
pymc3.stats.mc_error(pymc3_obj, *args, **kwargs)

	
	Calculates the simulation standard error, accounting for non-independent

	samples. The trace is divided into batches, and the standard deviation of
the batch means is calculated.







	Parameters:	
	x (Numpy array) – An array containing MCMC samples

	batches (integer) – Number of batches






	Returns:	float representing the error












	
pymc3.stats.summary(trace, varnames=None, transform=<function <lambda>>, alpha=0.05, start=0, batches=None, roundto=3, include_transformed=False, to_file=None)

	Generate a pretty-printed summary of the node.





	Parameters:	
	trace (Trace object) – Trace containing MCMC sample

	varnames (list of strings) – List of variables to summarize. Defaults to None, which results
in all variables summarized.

	transform (callable) – Function to transform data (defaults to identity)

	alpha (float) – The alpha level for generating posterior intervals. Defaults to
0.05.

	start (int) – The starting index from which to summarize (each) chain. Defaults
to zero.

	batches (None or int) – Batch size for calculating standard deviation for non-independent
samples. Defaults to the smaller of 100 or the number of samples.
This is only meaningful when stat_funcs is None.

	roundto (int) – The number of digits to round posterior statistics.

	include_transformed (bool) – Flag for summarizing automatically transformed variables in addition to
original variables (defaults to False).

	to_file (None or string) – File to write results to. If not given, print to stdout.














	
pymc3.stats.df_summary(trace, varnames=None, transform=<function <lambda>>, stat_funcs=None, extend=False, include_transformed=False, alpha=0.05, start=0, batches=None)

	Create a data frame with summary statistics.





	Parameters:	
	trace (MultiTrace instance) – 

	varnames (list) – Names of variables to include in summary

	transform (callable) – Function to transform data (defaults to identity)

	stat_funcs (None or list) – A list of functions used to calculate statistics. By default,
the mean, standard deviation, simulation standard error, and
highest posterior density intervals are included.

The functions will be given one argument, the samples for a
variable as a 2 dimensional array, where the first axis
corresponds to sampling iterations and the second axis
represents the flattened variable (e.g., x__0, x__1,...). Each
function should return either


	A pandas.Series instance containing the result of
calculating the statistic along the first axis. The name
attribute will be taken as the name of the statistic.

	A pandas.DataFrame where each column contains the
result of calculating the statistic along the first axis.
The column names will be taken as the names of the
statistics.





	extend (boolean) – If True, use the statistics returned by stat_funcs in
addition to, rather than in place of, the default statistics.
This is only meaningful when stat_funcs is not None.

	include_transformed (bool) – Flag for reporting automatically transformed variables in addition
to original variables (defaults to False).

	alpha (float) – The alpha level for generating posterior intervals. Defaults
to 0.05. This is only meaningful when stat_funcs is None.

	start (int) – The starting index from which to summarize (each) chain. Defaults
to zero.

	batches (None or int) – Batch size for calculating standard deviation for non-independent
samples. Defaults to the smaller of 100 or the number of samples.
This is only meaningful when stat_funcs is None.










See also


	summary()

	Generate a pretty-printed summary of a trace.









	Returns:	pandas.DataFrame with summary statistics for each variable





Examples

>>> import pymc3 as pm
>>> trace.mu.shape
(1000, 2)
>>> pm.df_summary(trace, ['mu'])
           mean        sd  mc_error     hpd_5    hpd_95
mu__0  0.106897  0.066473  0.001818 -0.020612  0.231626
mu__1 -0.046597  0.067513  0.002048 -0.174753  0.081924





Other statistics can be calculated by passing a list of functions.

>>> import pandas as pd
>>> def trace_sd(x):
...     return pd.Series(np.std(x, 0), name='sd')
...
>>> def trace_quantiles(x):
...     return pd.DataFrame(pm.quantiles(x, [5, 50, 95]))
...
>>> pm.df_summary(trace, ['mu'], stat_funcs=[trace_sd, trace_quantiles])
             sd         5        50        95
mu__0  0.066473  0.000312  0.105039  0.214242
mu__1  0.067513 -0.159097 -0.045637  0.062912










	
pymc3.stats.compare(traces, models, ic='WAIC')

	Compare models based on the widely available information criterion (WAIC)
or leave-one-out (LOO) cross-validation.
Read more theory here - in a paper by some of the leading authorities on
Model Selection - dx.doi.org/10.1111/1467-9868.00353





	Parameters:	
	traces (list of PyMC3 traces) – 

	models (list of PyMC3 models) – in the same order as traces.

	ic (string) – Information Criterion (WAIC or LOO) used to compare models.
Default WAIC.






	Returns:	
	A DataFrame, ordered from lowest to highest IC. The index reflects

	the order in which the models are passed to this function. The columns are

	IC (Information Criteria (WAIC or LOO).) – Smaller IC indicates higher out-of-sample predictive fit (“better” model).
Default WAIC.

	pIC (Estimated effective number of parameters.)

	dIC (Relative difference between each IC (WAIC or LOO))

	and the lowest IC (WAIC or LOO). – It’s always 0 for the top-ranked model.

	weight (Akaike weights for each model.) – This can be loosely interpreted as the probability of each model
(among the compared model) given the data. Be careful that these
weights are based on point estimates of the IC (uncertainty is ignored).

	SE (Standard error of the IC estimate.) – For a “large enough” sample size this is an estimate of the uncertainty
in the computation of the IC.

	dSE (Standard error of the difference in IC between each model and)

	the top-ranked model. – It’s always 0 for the top-ranked model.

	warning (A value of 1 indicates that the computation of the IC may not be)

	reliable see http (//arxiv.org/abs/1507.04544 for details.)
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Diagnostics

Convergence diagnostics and model validation


	
pymc3.diagnostics.geweke(pymc3_obj, *args, **kwargs)

	Return z-scores for convergence diagnostics.

Compare the mean of the first % of series with the mean of the last % of
series. x is divided into a number of segments for which this difference is
computed. If the series is converged, this score should oscillate between
-1 and 1.





	Parameters:	
	x (array-like) – The trace of some stochastic parameter.

	first (float) – The fraction of series at the beginning of the trace.

	last (float) – The fraction of series at the end to be compared with the section
at the beginning.

	intervals (int) – The number of segments.






	Returns:	scores (list [[]]) – Return a list of [i, score], where i is the starting index for each
interval and score the Geweke score on the interval.







Notes

The Geweke score on some series x is computed by:



\[\frac{E[x_s] - E[x_e]}{\sqrt{V[x_s] + V[x_e]}}\]




where \(E\) stands for the mean, \(V\) the variance,
\(x_s\) a section at the start of the series and
\(x_e\) a section at the end of the series.

References

Geweke (1992)






	
pymc3.diagnostics.gelman_rubin(mtrace)

	Returns estimate of R for a set of traces.

The Gelman-Rubin diagnostic tests for lack of convergence by comparing
the variance between multiple chains to the variance within each chain.
If convergence has been achieved, the between-chain and within-chain
variances should be identical. To be most effective in detecting evidence
for nonconvergence, each chain should have been initialized to starting
values that are dispersed relative to the target distribution.





	Parameters:	mtrace (MultiTrace) – A MultiTrace object containing parallel traces (minimum 2)
of one or more stochastic parameters.


	Returns:	Rhat (dict) – Returns dictionary of the potential scale reduction
factors, \(\hat{R}\)





Notes

The diagnostic is computed by:



\[\hat{R} = \frac{\hat{V}}{W}\]




where \(W\) is the within-chain variance and \(\hat{V}\) is
the posterior variance estimate for the pooled traces. This is the
potential scale reduction factor, which converges to unity when each
of the traces is a sample from the target posterior. Values greater
than one indicate that one or more chains have not yet converged.

References

Brooks and Gelman (1998)
Gelman and Rubin (1992)






	
pymc3.diagnostics.effective_n(mtrace)

	Returns estimate of the effective sample size of a set of traces.





	Parameters:	mtrace (MultiTrace) – A MultiTrace object containing parallel traces (minimum 2)
of one or more stochastic parameters.


	Returns:	n_eff (float) – Return the effective sample size, \(\hat{n}_{eff}\)





Notes

The diagnostic is computed by:


\[\hat{n}_{eff} = \frac{mn}{1 + 2 \sum_{t=1}^T \hat{\rho}_t}\]

where \(\hat{\rho}_t\) is the estimated autocorrelation at lag t, and T
is the first odd positive integer for which the sum
\(\hat{\rho}_{T+1} + \hat{\rho}_{T+1}\) is negative.

References

Gelman et al. (2014)
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Backends

Backends for traces


Available backends


	NumPy array (pymc3.backends.NDArray)

	Text files (pymc3.backends.Text)

	SQLite (pymc3.backends.SQLite)



The NDArray backend holds the entire trace in memory, whereas the Text
and SQLite backends store the values while sampling.




Selecting a backend

By default, a NumPy array is used as the backend. To specify a different
backend, pass a backend instance to sample.

For example, the following would save the sampling values to CSV files
in the directory ‘test’.

>>> import pymc3 as pm
>>> db = pm.backends.Text('test')
>>> trace = pm.sample(..., trace=db)








Selecting values from a backend

After a backend is finished sampling, it returns a MultiTrace object.
Values can be accessed in a few ways. The easiest way is to index the
backend object with a variable or variable name.

>>> trace['x']  # or trace.x or trace[x]





The call will return the sampling values of x, with the values for
all chains concatenated. (For a single call to sample, the number of
chains will correspond to the njobs argument.)

To discard the first N values of each chain, slicing syntax can be
used.

>>> trace['x', 1000:]





The get_values method offers more control over which values are
returned. The call below will discard the first 1000 iterations
from each chain and keep the values for each chain as separate arrays.

>>> trace.get_values('x', burn=1000, combine=False)





The chains parameter of get_values can be used to limit the chains
that are retrieved.

>>> trace.get_values('x', burn=1000, chains=[0, 2])





MultiTrace objects also support slicing. For example, the following
call would return a new trace object without the first 1000 sampling
iterations for all traces and variables.

>>> sliced_trace = trace[1000:]





The backend for the new trace is always NDArray, regardless of the
type of original trace.  Only the NDArray backend supports a stop
value in the slice.




Loading a saved backend

Saved backends can be loaded using load function in the module for the
specific backend.

>>> trace = pm.backends.text.load('test')








Writing custom backends

Backends consist of a class that handles sampling storage and value
selection. Three sampling methods of backend will be called:


	setup: Before sampling is started, the setup method will be called
with two arguments: the number of draws and the chain number. This is
useful setting up any structure for storing the sampling values that
require the above information.

	record: Record the sampling results for the current draw. This method
will be called with a dictionary of values mapped to the variable
names. This is the only sampling function that must do something to
have a meaningful backend.

	close: This method is called following sampling and should perform any
actions necessary for finalizing and cleaning up the backend.



The base storage class backends.base.BaseTrace provides common model
setup that is used by all the PyMC backends.

Several selection methods must also be defined:


	get_values: This is the core method for selecting values from the
backend. It can be called directly and is used by __getitem__ when the
backend is indexed with a variable name or object.

	_slice: Defines how the backend returns a slice of itself. This
is called if the backend is indexed with a slice range.

	point: Returns values for each variable at a single iteration. This is
called if the backend is indexed with a single integer.

	__len__: This should return the number of draws.



When pymc3.sample finishes, it wraps all trace objects in a MultiTrace
object that provides a consistent selection interface for all backends.
If the traces are stored on disk, then a load function should also be
defined that returns a MultiTrace object.

For specific examples, see pymc3.backends.{ndarray,text,sqlite}.py.




ndarray

NumPy array trace backend

Store sampling values in memory as a NumPy array.


	
class pymc3.backends.ndarray.NDArray(name=None, model=None, vars=None)

	NDArray trace object





	Parameters:	
	name (str) – Name of backend. This has no meaning for the NDArray backend.

	model (Model) – If None, the model is taken from the with context.

	vars (list of variables) – Sampling values will be stored for these variables. If None,
model.unobserved_RVs is used.










	
get_values(varname, burn=0, thin=1)

	Get values from trace.





	Parameters:	
	varname (str) – 

	burn (int) – 

	thin (int) – 






	Returns:	A NumPy array












	
point(idx)

	Return dictionary of point values at idx for current chain
with variable names as keys.






	
record(point, sampler_stats=None)

	Record results of a sampling iteration.





	Parameters:	point (dict) – Values mapped to variable names










	
setup(draws, chain, sampler_vars=None)

	Perform chain-specific setup.





	Parameters:	
	draws (int) – Expected number of draws

	chain (int) – Chain number

	sampler_vars (list of dicts) – Names and dtypes of the variables that are
exported by the samplers.




















sqlite

SQLite trace backend

Store and retrieve sampling values in SQLite database file.


Database format

For each variable, a table is created with the following format:


recid (INT), draw (INT), chain (INT),  v0 (FLOAT), v1 (FLOAT), v2 (FLOAT) ...


The variable column names are extended to reflect additional dimensions.
For example, a variable with the shape (2, 2) would be stored as


key (INT), draw (INT), chain (INT),  v0_0 (FLOAT), v0_1 (FLOAT), v1_0 (FLOAT) ...


The key is autoincremented each time a new row is added to the table.
The chain column denotes the chain index and starts at 0.


	
class pymc3.backends.sqlite.SQLite(name, model=None, vars=None)

	SQLite trace object





	Parameters:	
	name (str) – Name of database file

	model (Model) – If None, the model is taken from the with context.

	vars (list of variables) – Sampling values will be stored for these variables. If None,
model.unobserved_RVs is used.










	
get_values(varname, burn=0, thin=1)

	Get values from trace.





	Parameters:	
	varname (str) – 

	burn (int) – 

	thin (int) – 






	Returns:	A NumPy array












	
point(idx)

	Return dictionary of point values at idx for current chain
with variables names as keys.






	
record(point)

	Record results of a sampling iteration.





	Parameters:	point (dict) – Values mapped to variable names










	
setup(draws, chain)

	Perform chain-specific setup.





	Parameters:	
	draws (int) – Expected number of draws

	chain (int) – Chain number


















	
pymc3.backends.sqlite.load(name, model=None)

	Load SQLite database.





	Parameters:	
	name (str) – Path to SQLite database file

	model (Model) – If None, the model is taken from the with context.






	Returns:	A MultiTrace instance
















text

Text file trace backend

Store sampling values as CSV files.


File format

Sampling values for each chain are saved in a separate file (under a
directory specified by the name argument).  The rows correspond to
sampling iterations.  The column names consist of variable names and
index labels.  For example, the heading


x,y__0_0,y__0_1,y__1_0,y__1_1,y__2_0,y__2_1


represents two variables, x and y, where x is a scalar and y has a
shape of (3, 2).


	
class pymc3.backends.text.Text(name, model=None, vars=None)

	Text trace object





	Parameters:	
	name (str) – Name of directory to store text files

	model (Model) – If None, the model is taken from the with context.

	vars (list of variables) – Sampling values will be stored for these variables. If None,
model.unobserved_RVs is used.










	
get_values(varname, burn=0, thin=1)

	Get values from trace.





	Parameters:	
	varname (str) – 

	burn (int) – 

	thin (int) – 






	Returns:	A NumPy array












	
point(idx)

	Return dictionary of point values at idx for current chain
with variables names as keys.






	
record(point)

	Record results of a sampling iteration.





	Parameters:	point (dict) – Values mapped to variable names










	
setup(draws, chain)

	Perform chain-specific setup.





	Parameters:	
	draws (int) – Expected number of draws

	chain (int) – Chain number


















	
pymc3.backends.text.dump(name, trace, chains=None)

	Store values from NDArray trace as CSV files.





	Parameters:	
	name (str) – Name of directory to store CSV files in

	trace (MultiTrace of NDArray traces) – Result of MCMC run with default NDArray backend

	chains (list) – Chains to dump. If None, all chains are dumped.














	
pymc3.backends.text.load(name, model=None)

	Load Text database.





	Parameters:	
	name (str) – Name of directory with files (one per chain)

	model (Model) – If None, the model is taken from the with context.






	Returns:	A MultiTrace instance
















tracetab

Functions for converting traces into a table-like format


	
pymc3.backends.tracetab.trace_to_dataframe(trace, chains=None, varnames=None, include_transformed=False)

	Convert trace to Pandas DataFrame.





	Parameters:	
	trace (NDarray trace) – 

	chains (int or list of ints) – Chains to include. If None, all chains are used. A single
chain value can also be given.

	varnames (list of variable names) – Variables to be included in the DataFrame, if None all variable are
included.

	include_transformed (boolean) – If true transformed variables will be included in the resulting
DataFrame.
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Math

This submodule contains various mathematical functions. Most of them
are imported directly from theano.tensor (see there for more
details). Doing any kind of math with PyMC3 random variables, or
defining custom likelihoods or priors requires you to use these theano
expressions rather than NumPy or Python code.
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Data


	
pymc3.data.get_data(filename)

	Returns a BytesIO object for a package data file.





	Parameters:	filename (str) – file to load


	Returns:	BytesIO of the data










	
class pymc3.data.GeneratorAdapter(generator)

	Helper class that helps to infer data type of generator with looking
at the first item, preserving the order of the resulting generator






	
class pymc3.data.Minibatch(data, batch_size=128, dtype=None, broadcastable=None, name='Minibatch', random_seed=42, update_shared_f=None, in_memory_size=None)

	Multidimensional minibatch that is pure TensorVariable





	Parameters:	
	data (ndarray) – initial data

	batch_size (int or List[int|tuple(size, random_seed)]) – batch size for inference, random seed is needed
for child random generators

	dtype (str) – cast data to specific type

	broadcastable (tuple[bool]) – change broadcastable pattern that defaults to (False, ) * ndim

	name (str) – name for tensor, defaults to “Minibatch”

	random_seed (int) – random seed that is used by default

	update_shared_f (callable) – returns ndarray that will be carefully
stored to underlying shared variable
you can use it to change source of
minibatches programmatically

	in_memory_size (int or List[int|slice|Ellipsis]) – data size for storing in theano.shared










	
shared

	shared tensor – Used for storing data






	
minibatch

	minibatch tensor – Used for training





Examples

Consider we have data
>>> data = np.random.rand(100, 100)

if we want 1d slice of size 10 we do
>>> x = Minibatch(data, batch_size=10)

Note, that your data is cast to floatX if it is not integer type
But you still can add dtype kwarg for Minibatch

in case we want 10 sampled rows and columns
[(size, seed), (size, seed)] it is
>>> x = Minibatch(data, batch_size=[(10, 42), (10, 42)], dtype=’int32’)
>>> assert str(x.dtype) == ‘int32’

or simpler with default random seed = 42
[size, size]
>>> x = Minibatch(data, batch_size=[10, 10])

x is a regular TensorVariable that supports any math
>>> assert x.eval().shape == (10, 10)

You can pass it to your desired model
>>> with pm.Model() as model:
...     mu = pm.Flat(‘mu’)
...     sd = pm.HalfNormal(‘sd’)
...     lik = pm.Normal(‘lik’, mu, sd, observed=x, total_size=(100, 100))

Then you can perform regular Variational Inference out of the box
>>> with model:
...     approx = pm.fit()

Notable thing is that Minibatch has shared, minibatch, attributes
you can call later
>>> x.set_value(np.random.laplace(size=(100, 100)))

and minibatches will be then from new storage
it directly affects x.shared.
the same thing would be but less convenient
>>> x.shared.set_value(pm.floatX(np.random.laplace(size=(100, 100))))

programmatic way to change storage is as follows
I import partial for simplicity
>>> from functools import partial
>>> datagen = partial(np.random.laplace, size=(100, 100))
>>> x = Minibatch(datagen(), batch_size=10, update_shared_f=datagen)
>>> x.update_shared()

To be more concrete about how we get minibatch, here is a demo
1) create shared variable
>>> shared = theano.shared(data)

2) create random slice of size 10
>>> ridx = pm.tt_rng().uniform(size=(10,), low=0, high=data.shape[0]-1e-10).astype(‘int64’)

3) take that slice
>>> minibatch = shared[ridx]

That’s done. Next you can use this minibatch somewhere else.
You can see that implementation does not require fixed shape
for shared variable. Feel free to use that if needed.

Suppose you need some replacements in the graph, e.g. change minibatch to testdata
>>> node = x ** 2  # arbitrary expressions on minibatch x
>>> testdata = pm.floatX(np.random.laplace(size=(1000, 10)))

Then you should create a dict with replacements
>>> replacements = {x: testdata}
>>> rnode = theano.clone(node, replacements)
>>> assert (testdata ** 2 == rnode.eval()).all()

To replace minibatch with it’s shared variable you should do
the same things. Minibatch variable is accessible as an attribute
as well as shared, associated with minibatch
>>> replacements = {x.minibatch: x.shared}
>>> rnode = theano.clone(node, replacements)

For more complex slices some more code is needed that can seem not so clear
>>> moredata = np.random.rand(10, 20, 30, 40, 50)

default total_size that can be passed to PyMC3 random node
is then (10, 20, 30, 40, 50) but can be less verbose in some cases

1) Advanced indexing, total_size = (10, Ellipsis, 50)
>>> x = Minibatch(moredata, [2, Ellipsis, 10])

We take slice only for the first and last dimension
>>> assert x.eval().shape == (2, 20, 30, 40, 10)

2) Skipping particular dimension, total_size = (10, None, 30)
>>> x = Minibatch(moredata, [2, None, 20])
>>> assert x.eval().shape == (2, 20, 20, 40, 50)

3) Mixing that all, total_size = (10, None, 30, Ellipsis, 50)
>>> x = Minibatch(moredata, [2, None, 20, Ellipsis, 10])
>>> assert x.eval().shape == (2, 20, 20, 40, 10)
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 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z
 


A


  	
      	ADVI (class in pymc3.variational.inference)


      	all_discrete() (in module pymc3.distributions.mixture)


      	apply() (pymc3.variational.opvi.Operator method)


      	apply_replacements() (pymc3.variational.opvi.Approximation method)


  

  	
      	Approximation (class in pymc3.variational.opvi)


      	ASVGD (class in pymc3.variational.inference)


      	autocorr() (in module pymc3.stats)


      	autocorrplot() (in module pymc3.plots)


      	autocov() (in module pymc3.stats)


  





B


  	
      	Bernoulli (class in pymc3.distributions.discrete)


      	Beta (class in pymc3.distributions.continuous)


      	BetaBinomial (class in pymc3.distributions.discrete)


  

  	
      	BinaryGibbsMetropolis (class in pymc3.step_methods.metropolis)


      	BinaryMetropolis (class in pymc3.step_methods.metropolis)


      	Binomial (class in pymc3.distributions.discrete)


      	bpic() (in module pymc3.stats)


  





C


  	
      	Categorical (class in pymc3.distributions.discrete)


      	CategoricalGibbsMetropolis (class in pymc3.step_methods.metropolis)


      	Cauchy (class in pymc3.distributions.continuous)


      	check_model() (pymc3.variational.opvi.Approximation method)


      	ChiSquared (class in pymc3.distributions.continuous)


      	compare() (in module pymc3.stats)


  

  	
      	competence() (pymc3.step_methods.metropolis.BinaryGibbsMetropolis static method)

      
        	(pymc3.step_methods.metropolis.BinaryMetropolis static method)


        	(pymc3.step_methods.metropolis.CategoricalGibbsMetropolis static method)


      


      	Constant (class in pymc3.distributions.discrete)


      	construct_replacements() (pymc3.variational.opvi.Approximation method)


      	Cosine (class in pymc3.gp.cov)


      	create_shared_params() (pymc3.variational.opvi.Approximation method)


  





D


  	
      	df_summary() (in module pymc3.stats)


      	dic() (in module pymc3.stats)


      	Dirichlet (class in pymc3.distributions.multivariate)


  

  	
      	DiscreteUniform (class in pymc3.distributions.discrete)


      	DiscreteWeibull (class in pymc3.distributions.discrete)


      	dump() (in module pymc3.backends.text)


  





E


  	
      	effective_n() (in module pymc3.diagnostics)


      	Empirical (class in pymc3.variational.approximations)


      	ExGaussian (class in pymc3.distributions.continuous)


  

  	
      	expand_packed_triangular() (in module pymc3.math)


      	Exponential (class in pymc3.distributions.continuous)

      
        	(class in pymc3.gp.cov)


      


      	ExpQuad (class in pymc3.gp.cov)


  





F


  	
      	fit() (in module pymc3.variational.inference)

      
        	(pymc3.variational.inference.ASVGD method)


        	(pymc3.variational.inference.Inference method)


      


      	Flat (class in pymc3.distributions.continuous)


      	forestplot() (in module pymc3.plots)


      	from_advi() (pymc3.variational.inference.FullRankADVI class method)


  

  	
      	from_full_rank() (pymc3.variational.inference.FullRankADVI class method)


      	from_mean_field() (pymc3.variational.approximations.FullRank class method)

      
        	(pymc3.variational.inference.ADVI class method)


        	(pymc3.variational.inference.FullRankADVI class method)


      


      	from_noise() (pymc3.variational.approximations.Empirical class method)


      	FullRank (class in pymc3.variational.approximations)


      	FullRankADVI (class in pymc3.variational.inference)


  





G


  	
      	Gamma (class in pymc3.distributions.continuous)


      	gelman_rubin() (in module pymc3.diagnostics)


      	GeneratorAdapter (class in pymc3.data)


      	Geometric (class in pymc3.distributions.discrete)


      	get_data() (in module pymc3.data)


      	get_values() (pymc3.backends.ndarray.NDArray method)

      
        	(pymc3.backends.sqlite.SQLite method)


        	(pymc3.backends.text.Text method)


      


  

  	
      	geweke() (in module pymc3.diagnostics)


      	Gibbs (class in pymc3.gp.cov)


      	GLM (class in pymc3.glm.linear)


      	GP (class in pymc3.gp.gp)


  





H


  	
      	HalfCauchy (class in pymc3.distributions.continuous)


      	HalfNormal (class in pymc3.distributions.continuous)


      	HamiltonianMC (class in pymc3.step_methods.hmc.hmc)


  

  	
      	histogram (pymc3.variational.approximations.Empirical attribute)


      	histogram_logp (pymc3.variational.approximations.Empirical attribute)


      	hpd() (in module pymc3.stats)


  





I


  	
      	Inference (class in pymc3.variational.inference)


      	init_nuts() (in module pymc3.sampling)


      	initial() (pymc3.variational.opvi.Approximation method)


  

  	
      	Interpolated (class in pymc3.distributions.continuous)


      	InverseGamma (class in pymc3.distributions.continuous)


      	iter_sample() (in module pymc3.sampling)


  





K


  	
      	KL (class in pymc3.variational.operators)


  

  	
      	KSD (class in pymc3.variational.operators)


  





L


  	
      	Laplace (class in pymc3.distributions.continuous)


      	Linear (class in pymc3.gp.cov)


      	LinearComponent (class in pymc3.glm.linear)


      	LKJCholeskyCov (class in pymc3.distributions.multivariate)


      	LKJCorr (class in pymc3.distributions.multivariate)


      	load() (in module pymc3.backends.sqlite)

      
        	(in module pymc3.backends.text)


      


  

  	
      	log_q_W_global() (pymc3.variational.approximations.FullRank method)

      
        	(pymc3.variational.approximations.MeanField method)


        	(pymc3.variational.opvi.Approximation method)


      


      	log_q_W_local() (pymc3.variational.opvi.Approximation method)


      	LogDet (class in pymc3.math)


      	Lognormal (class in pymc3.distributions.continuous)


      	logq() (pymc3.variational.opvi.Approximation method)


      	loo() (in module pymc3.stats)


  





M


  	
      	Matern32 (class in pymc3.gp.cov)


      	Matern52 (class in pymc3.gp.cov)


      	mc_error() (in module pymc3.stats)


      	MeanField (class in pymc3.variational.approximations)


      	Metropolis (class in pymc3.step_methods.metropolis)


  

  	
      	Minibatch (class in pymc3.data)


      	minibatch (pymc3.data.Minibatch attribute)


      	Mixture (class in pymc3.distributions.mixture)


      	Multinomial (class in pymc3.distributions.multivariate)


      	MvNormal (class in pymc3.distributions.multivariate)


      	MvStudentT (class in pymc3.distributions.multivariate)


  





N


  	
      	NDArray (class in pymc3.backends.ndarray)


      	NegativeBinomial (class in pymc3.distributions.discrete)


  

  	
      	Normal (class in pymc3.distributions.continuous)


      	NormalMixture (class in pymc3.distributions.mixture)


      	NUTS (class in pymc3.step_methods.hmc.nuts)


  





O


  	
      	OBJECTIVE (pymc3.variational.operators.KSD attribute)

      
        	(pymc3.variational.opvi.Operator attribute)


      


  

  	
      	ObjectiveFunction (class in pymc3.variational.opvi)


      	Operator (class in pymc3.variational.opvi)


  





P


  	
      	Pareto (class in pymc3.distributions.continuous)


      	plot_posterior() (in module pymc3.plots)


      	point() (pymc3.backends.ndarray.NDArray method)

      
        	(pymc3.backends.sqlite.SQLite method)


        	(pymc3.backends.text.Text method)


      


      	Poisson (class in pymc3.distributions.discrete)


      	Polynomial (class in pymc3.gp.cov)


      	pymc3.backends (module)


      	pymc3.backends.ndarray (module)


      	pymc3.backends.sqlite (module)


      	pymc3.backends.text (module)


      	pymc3.backends.tracetab (module)


      	pymc3.data (module)


      	pymc3.diagnostics (module)


      	pymc3.distributions.continuous (module)


      	pymc3.distributions.discrete (module)


  

  	
      	pymc3.distributions.mixture (module)


      	pymc3.distributions.multivariate (module)


      	pymc3.glm.linear (module)


      	pymc3.gp.cov (module)


      	pymc3.gp.gp (module)


      	pymc3.math (module)


      	pymc3.plots (module)


      	pymc3.sampling (module)


      	pymc3.stats (module)


      	pymc3.step_methods.hmc.nuts (module)


      	pymc3.step_methods.metropolis (module)


      	pymc3.step_methods.slicer (module)


      	pymc3.variational.approximations (module)


      	pymc3.variational.inference (module)


      	pymc3.variational.operators (module)


      	pymc3.variational.opvi (module)


  





Q


  	
      	quantiles() (in module pymc3.stats)


  





R


  	
      	random() (pymc3.variational.opvi.Approximation method)

      
        	(pymc3.variational.opvi.ObjectiveFunction method)


      


      	random_fn (pymc3.variational.opvi.Approximation attribute)


      	random_global() (pymc3.variational.opvi.Approximation method)


  

  	
      	random_local() (pymc3.variational.opvi.Approximation method)


      	RatQuad (class in pymc3.gp.cov)


      	record() (pymc3.backends.ndarray.NDArray method)

      
        	(pymc3.backends.sqlite.SQLite method)


        	(pymc3.backends.text.Text method)


      


  





S


  	
      	sample() (in module pymc3.sampling)

      
        	(pymc3.variational.opvi.Approximation method)


      


      	sample_approx() (in module pymc3.variational.approximations)


      	sample_gp() (in module pymc3.gp.gp)


      	sample_node() (pymc3.variational.opvi.Approximation method)


      	sample_ppc() (in module pymc3.sampling)


      	scale_grad() (pymc3.variational.opvi.Approximation method)


      	score_function() (pymc3.variational.opvi.ObjectiveFunction method)


      	seed() (pymc3.variational.opvi.Approximation method)


      	setup() (pymc3.backends.ndarray.NDArray method)

      
        	(pymc3.backends.sqlite.SQLite method)


        	(pymc3.backends.text.Text method)


      


  

  	
      	shared (pymc3.data.Minibatch attribute)


      	SkewNormal (class in pymc3.distributions.continuous)


      	Slice (class in pymc3.step_methods.slicer)


      	SQLite (class in pymc3.backends.sqlite)


      	step_function() (pymc3.variational.opvi.ObjectiveFunction method)


      	StudentT (class in pymc3.distributions.continuous)


      	summary() (in module pymc3.stats)


      	SVGD (class in pymc3.variational.inference)


  





T


  	
      	Text (class in pymc3.backends.text)


      	to_flat_input() (pymc3.variational.opvi.Approximation method)


  

  	
      	trace_to_dataframe() (in module pymc3.backends.tracetab)


      	traceplot() (in module pymc3.plots)


      	tround() (in module pymc3.math)


  





U


  	
      	Uniform (class in pymc3.distributions.continuous)


  

  	
      	updates() (pymc3.variational.opvi.ObjectiveFunction method)


  





V


  	
      	view() (pymc3.variational.opvi.Approximation method)


  

  	
      	VonMises (class in pymc3.distributions.continuous)


  





W


  	
      	waic() (in module pymc3.stats)


      	Wald (class in pymc3.distributions.continuous)


      	WarpedInput (class in pymc3.gp.cov)


  

  	
      	Weibull (class in pymc3.distributions.continuous)


      	Wishart (class in pymc3.distributions.multivariate)


      	WishartBartlett() (in module pymc3.distributions.multivariate)


  





Z


  	
      	ZeroInflatedBinomial (class in pymc3.distributions.discrete)


  

  	
      	ZeroInflatedNegativeBinomial (class in pymc3.distributions.discrete)


      	ZeroInflatedPoisson (class in pymc3.distributions.discrete)
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GLM: Logistic Regression


	This is a reproduction with a few slight alterations of Bayesian Log
Reg [http://jbencook.github.io/portfolio/bayesian_logistic_regression.html]
by J. Benjamin Cook

	Author: Peadar Coyle and J. Benjamin Cook

	How likely am I to make more than $50,000 US Dollars?

	Exploration of model selection techniques too - I use DIC and WAIC to
select the best model.

	The convenience functions are all taken from Jon Sedars work.

	This example also has some explorations of the features so serves as
a good example of Exploratory Data Analysis and how that can guide
the model creation/ model selection process.





In [1]:






%matplotlib inline
import pandas as pd
import numpy as np
import pymc3 as pm
import matplotlib.pyplot as plt
import seaborn
import warnings
warnings.filterwarnings('ignore')
from collections import OrderedDict
from time import time

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from scipy.optimize import fmin_powell
from scipy import integrate

import theano as thno
import theano.tensor as T










In [26]:






def run_models(df, upper_order=5):
    '''
    Convenience function:
    Fit a range of pymc3 models of increasing polynomial complexity.
    Suggest limit to max order 5 since calculation time is exponential.
    '''

    models, traces = OrderedDict(), OrderedDict()

    for k in range(1,upper_order+1):

        nm = 'k{}'.format(k)
        fml = create_poly_modelspec(k)

        with pm.Model() as models[nm]:

            print('\nRunning: {}'.format(nm))
            pm.glm.GLM.from_formula(fml, df, family=pm.glm.families.Normal())

            traces[nm] = pm.sample(2000, init=None)

    return models, traces

def plot_traces(traces, retain=1000):
    '''
    Convenience function:
    Plot traces with overlaid means and values
    '''

    ax = pm.traceplot(traces[-retain:], figsize=(12,len(traces.varnames)*1.5),
        lines={k: v['mean'] for k, v in pm.df_summary(traces[-retain:]).iterrows()})

    for i, mn in enumerate(pm.df_summary(traces[-retain:])['mean']):
        ax[i,0].annotate('{:.2f}'.format(mn), xy=(mn,0), xycoords='data'
                    ,xytext=(5,10), textcoords='offset points', rotation=90
                    ,va='bottom', fontsize='large', color='#AA0022')

def create_poly_modelspec(k=1):
    '''
    Convenience function:
    Create a polynomial modelspec string for patsy
    '''
    return ('income ~ educ + hours + age ' + ' '.join(['+ np.power(age,{})'.format(j)
                                     for j in range(2,k+1)])).strip()







The Adult Data Set [http://archive.ics.uci.edu/ml/datasets/Adult] is
commonly used to benchmark machine learning algorithms. The goal is to
use demographic features, or variables, to predict whether an individual
makes more than \$50,000 per year. The data set is almost 20 years old,
and therefore, not perfect for determining the probability that I will
make more than $50K, but it is a nice, simple dataset that can be used
to showcase a few benefits of using Bayesian logistic regression over
its frequentist counterpart.

The motivation for myself to reproduce this piece of work was to learn
how to use Odd Ratio in Bayesian Regression.



In [3]:






data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data", header=None, names=['age', 'workclass', 'fnlwgt',
                'education-categorical', 'educ',
                'marital-status', 'occupation',
                'relationship', 'race', 'sex',
                'captial-gain', 'capital-loss',
                'hours', 'native-country',
                'income'])









In [4]:






data.head(10)









Out[4]:









  
    
      	
      	age
      	workclass
      	fnlwgt
      	education-categorical
      	educ
      	marital-status
      	occupation
      	relationship
      	race
      	sex
      	captial-gain
      	capital-loss
      	hours
      	native-country
      	income
    

  
  
    
      	0
      	39
      	State-gov
      	77516
      	Bachelors
      	13
      	Never-married
      	Adm-clerical
      	Not-in-family
      	White
      	Male
      	2174
      	0
      	40
      	United-States
      	<=50K
    

    
      	1
      	50
      	Self-emp-not-inc
      	83311
      	Bachelors
      	13
      	Married-civ-spouse
      	Exec-managerial
      	Husband
      	White
      	Male
      	0
      	0
      	13
      	United-States
      	<=50K
    

    
      	2
      	38
      	Private
      	215646
      	HS-grad
      	9
      	Divorced
      	Handlers-cleaners
      	Not-in-family
      	White
      	Male
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	3
      	53
      	Private
      	234721
      	11th
      	7
      	Married-civ-spouse
      	Handlers-cleaners
      	Husband
      	Black
      	Male
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	4
      	28
      	Private
      	338409
      	Bachelors
      	13
      	Married-civ-spouse
      	Prof-specialty
      	Wife
      	Black
      	Female
      	0
      	0
      	40
      	Cuba
      	<=50K
    

    
      	5
      	37
      	Private
      	284582
      	Masters
      	14
      	Married-civ-spouse
      	Exec-managerial
      	Wife
      	White
      	Female
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	6
      	49
      	Private
      	160187
      	9th
      	5
      	Married-spouse-absent
      	Other-service
      	Not-in-family
      	Black
      	Female
      	0
      	0
      	16
      	Jamaica
      	<=50K
    

    
      	7
      	52
      	Self-emp-not-inc
      	209642
      	HS-grad
      	9
      	Married-civ-spouse
      	Exec-managerial
      	Husband
      	White
      	Male
      	0
      	0
      	45
      	United-States
      	>50K
    

    
      	8
      	31
      	Private
      	45781
      	Masters
      	14
      	Never-married
      	Prof-specialty
      	Not-in-family
      	White
      	Female
      	14084
      	0
      	50
      	United-States
      	>50K
    

    
      	9
      	42
      	Private
      	159449
      	Bachelors
      	13
      	Married-civ-spouse
      	Exec-managerial
      	Husband
      	White
      	Male
      	5178
      	0
      	40
      	United-States
      	>50K
    

  








Scrubbing and cleaning

We need to remove any null entries in Income. And we also want to
restrict this study to the United States.



In [5]:






data = data[~pd.isnull(data['income'])]










In [6]:






data[data['native-country']==" United-States"]









Out[6]:









  
    
      	
      	age
      	workclass
      	fnlwgt
      	education-categorical
      	educ
      	marital-status
      	occupation
      	relationship
      	race
      	sex
      	captial-gain
      	capital-loss
      	hours
      	native-country
      	income
    

  
  
    
      	0
      	39
      	State-gov
      	77516
      	Bachelors
      	13
      	Never-married
      	Adm-clerical
      	Not-in-family
      	White
      	Male
      	2174
      	0
      	40
      	United-States
      	<=50K
    

    
      	1
      	50
      	Self-emp-not-inc
      	83311
      	Bachelors
      	13
      	Married-civ-spouse
      	Exec-managerial
      	Husband
      	White
      	Male
      	0
      	0
      	13
      	United-States
      	<=50K
    

    
      	2
      	38
      	Private
      	215646
      	HS-grad
      	9
      	Divorced
      	Handlers-cleaners
      	Not-in-family
      	White
      	Male
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	3
      	53
      	Private
      	234721
      	11th
      	7
      	Married-civ-spouse
      	Handlers-cleaners
      	Husband
      	Black
      	Male
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	5
      	37
      	Private
      	284582
      	Masters
      	14
      	Married-civ-spouse
      	Exec-managerial
      	Wife
      	White
      	Female
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	7
      	52
      	Self-emp-not-inc
      	209642
      	HS-grad
      	9
      	Married-civ-spouse
      	Exec-managerial
      	Husband
      	White
      	Male
      	0
      	0
      	45
      	United-States
      	>50K
    

    
      	8
      	31
      	Private
      	45781
      	Masters
      	14
      	Never-married
      	Prof-specialty
      	Not-in-family
      	White
      	Female
      	14084
      	0
      	50
      	United-States
      	>50K
    

    
      	9
      	42
      	Private
      	159449
      	Bachelors
      	13
      	Married-civ-spouse
      	Exec-managerial
      	Husband
      	White
      	Male
      	5178
      	0
      	40
      	United-States
      	>50K
    

    
      	10
      	37
      	Private
      	280464
      	Some-college
      	10
      	Married-civ-spouse
      	Exec-managerial
      	Husband
      	Black
      	Male
      	0
      	0
      	80
      	United-States
      	>50K
    

    
      	12
      	23
      	Private
      	122272
      	Bachelors
      	13
      	Never-married
      	Adm-clerical
      	Own-child
      	White
      	Female
      	0
      	0
      	30
      	United-States
      	<=50K
    

    
      	13
      	32
      	Private
      	205019
      	Assoc-acdm
      	12
      	Never-married
      	Sales
      	Not-in-family
      	Black
      	Male
      	0
      	0
      	50
      	United-States
      	<=50K
    

    
      	16
      	25
      	Self-emp-not-inc
      	176756
      	HS-grad
      	9
      	Never-married
      	Farming-fishing
      	Own-child
      	White
      	Male
      	0
      	0
      	35
      	United-States
      	<=50K
    

    
      	17
      	32
      	Private
      	186824
      	HS-grad
      	9
      	Never-married
      	Machine-op-inspct
      	Unmarried
      	White
      	Male
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	18
      	38
      	Private
      	28887
      	11th
      	7
      	Married-civ-spouse
      	Sales
      	Husband
      	White
      	Male
      	0
      	0
      	50
      	United-States
      	<=50K
    

    
      	19
      	43
      	Self-emp-not-inc
      	292175
      	Masters
      	14
      	Divorced
      	Exec-managerial
      	Unmarried
      	White
      	Female
      	0
      	0
      	45
      	United-States
      	>50K
    

    
      	20
      	40
      	Private
      	193524
      	Doctorate
      	16
      	Married-civ-spouse
      	Prof-specialty
      	Husband
      	White
      	Male
      	0
      	0
      	60
      	United-States
      	>50K
    

    
      	21
      	54
      	Private
      	302146
      	HS-grad
      	9
      	Separated
      	Other-service
      	Unmarried
      	Black
      	Female
      	0
      	0
      	20
      	United-States
      	<=50K
    

    
      	22
      	35
      	Federal-gov
      	76845
      	9th
      	5
      	Married-civ-spouse
      	Farming-fishing
      	Husband
      	Black
      	Male
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	23
      	43
      	Private
      	117037
      	11th
      	7
      	Married-civ-spouse
      	Transport-moving
      	Husband
      	White
      	Male
      	0
      	2042
      	40
      	United-States
      	<=50K
    

    
      	24
      	59
      	Private
      	109015
      	HS-grad
      	9
      	Divorced
      	Tech-support
      	Unmarried
      	White
      	Female
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	25
      	56
      	Local-gov
      	216851
      	Bachelors
      	13
      	Married-civ-spouse
      	Tech-support
      	Husband
      	White
      	Male
      	0
      	0
      	40
      	United-States
      	>50K
    

    
      	26
      	19
      	Private
      	168294
      	HS-grad
      	9
      	Never-married
      	Craft-repair
      	Own-child
      	White
      	Male
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	28
      	39
      	Private
      	367260
      	HS-grad
      	9
      	Divorced
      	Exec-managerial
      	Not-in-family
      	White
      	Male
      	0
      	0
      	80
      	United-States
      	<=50K
    

    
      	29
      	49
      	Private
      	193366
      	HS-grad
      	9
      	Married-civ-spouse
      	Craft-repair
      	Husband
      	White
      	Male
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	30
      	23
      	Local-gov
      	190709
      	Assoc-acdm
      	12
      	Never-married
      	Protective-serv
      	Not-in-family
      	White
      	Male
      	0
      	0
      	52
      	United-States
      	<=50K
    

    
      	31
      	20
      	Private
      	266015
      	Some-college
      	10
      	Never-married
      	Sales
      	Own-child
      	Black
      	Male
      	0
      	0
      	44
      	United-States
      	<=50K
    

    
      	32
      	45
      	Private
      	386940
      	Bachelors
      	13
      	Divorced
      	Exec-managerial
      	Own-child
      	White
      	Male
      	0
      	1408
      	40
      	United-States
      	<=50K
    

    
      	33
      	30
      	Federal-gov
      	59951
      	Some-college
      	10
      	Married-civ-spouse
      	Adm-clerical
      	Own-child
      	White
      	Male
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	34
      	22
      	State-gov
      	311512
      	Some-college
      	10
      	Married-civ-spouse
      	Other-service
      	Husband
      	Black
      	Male
      	0
      	0
      	15
      	United-States
      	<=50K
    

    
      	36
      	21
      	Private
      	197200
      	Some-college
      	10
      	Never-married
      	Machine-op-inspct
      	Own-child
      	White
      	Male
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	...
      	...
      	...
      	...
      	...
      	...
      	...
      	...
      	...
      	...
      	...
      	...
      	...
      	...
      	...
      	...
    

    
      	32528
      	31
      	Private
      	292592
      	HS-grad
      	9
      	Married-civ-spouse
      	Machine-op-inspct
      	Wife
      	White
      	Female
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	32529
      	29
      	Private
      	125976
      	HS-grad
      	9
      	Separated
      	Sales
      	Unmarried
      	White
      	Female
      	0
      	0
      	35
      	United-States
      	<=50K
    

    
      	32530
      	35
      	?
      	320084
      	Bachelors
      	13
      	Married-civ-spouse
      	?
      	Wife
      	White
      	Female
      	0
      	0
      	55
      	United-States
      	>50K
    

    
      	32531
      	30
      	?
      	33811
      	Bachelors
      	13
      	Never-married
      	?
      	Not-in-family
      	Asian-Pac-Islander
      	Female
      	0
      	0
      	99
      	United-States
      	<=50K
    

    
      	32532
      	34
      	Private
      	204461
      	Doctorate
      	16
      	Married-civ-spouse
      	Prof-specialty
      	Husband
      	White
      	Male
      	0
      	0
      	60
      	United-States
      	>50K
    

    
      	32534
      	37
      	Private
      	179137
      	Some-college
      	10
      	Divorced
      	Adm-clerical
      	Unmarried
      	White
      	Female
      	0
      	0
      	39
      	United-States
      	<=50K
    

    
      	32535
      	22
      	Private
      	325033
      	12th
      	8
      	Never-married
      	Protective-serv
      	Own-child
      	Black
      	Male
      	0
      	0
      	35
      	United-States
      	<=50K
    

    
      	32536
      	34
      	Private
      	160216
      	Bachelors
      	13
      	Never-married
      	Exec-managerial
      	Not-in-family
      	White
      	Female
      	0
      	0
      	55
      	United-States
      	>50K
    

    
      	32537
      	30
      	Private
      	345898
      	HS-grad
      	9
      	Never-married
      	Craft-repair
      	Not-in-family
      	Black
      	Male
      	0
      	0
      	46
      	United-States
      	<=50K
    

    
      	32538
      	38
      	Private
      	139180
      	Bachelors
      	13
      	Divorced
      	Prof-specialty
      	Unmarried
      	Black
      	Female
      	15020
      	0
      	45
      	United-States
      	>50K
    

    
      	32539
      	71
      	?
      	287372
      	Doctorate
      	16
      	Married-civ-spouse
      	?
      	Husband
      	White
      	Male
      	0
      	0
      	10
      	United-States
      	>50K
    

    
      	32540
      	45
      	State-gov
      	252208
      	HS-grad
      	9
      	Separated
      	Adm-clerical
      	Own-child
      	White
      	Female
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	32541
      	41
      	?
      	202822
      	HS-grad
      	9
      	Separated
      	?
      	Not-in-family
      	Black
      	Female
      	0
      	0
      	32
      	United-States
      	<=50K
    

    
      	32542
      	72
      	?
      	129912
      	HS-grad
      	9
      	Married-civ-spouse
      	?
      	Husband
      	White
      	Male
      	0
      	0
      	25
      	United-States
      	<=50K
    

    
      	32543
      	45
      	Local-gov
      	119199
      	Assoc-acdm
      	12
      	Divorced
      	Prof-specialty
      	Unmarried
      	White
      	Female
      	0
      	0
      	48
      	United-States
      	<=50K
    

    
      	32544
      	31
      	Private
      	199655
      	Masters
      	14
      	Divorced
      	Other-service
      	Not-in-family
      	Other
      	Female
      	0
      	0
      	30
      	United-States
      	<=50K
    

    
      	32545
      	39
      	Local-gov
      	111499
      	Assoc-acdm
      	12
      	Married-civ-spouse
      	Adm-clerical
      	Wife
      	White
      	Female
      	0
      	0
      	20
      	United-States
      	>50K
    

    
      	32546
      	37
      	Private
      	198216
      	Assoc-acdm
      	12
      	Divorced
      	Tech-support
      	Not-in-family
      	White
      	Female
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	32548
      	65
      	Self-emp-not-inc
      	99359
      	Prof-school
      	15
      	Never-married
      	Prof-specialty
      	Not-in-family
      	White
      	Male
      	1086
      	0
      	60
      	United-States
      	<=50K
    

    
      	32549
      	43
      	State-gov
      	255835
      	Some-college
      	10
      	Divorced
      	Adm-clerical
      	Other-relative
      	White
      	Female
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	32550
      	43
      	Self-emp-not-inc
      	27242
      	Some-college
      	10
      	Married-civ-spouse
      	Craft-repair
      	Husband
      	White
      	Male
      	0
      	0
      	50
      	United-States
      	<=50K
    

    
      	32551
      	32
      	Private
      	34066
      	10th
      	6
      	Married-civ-spouse
      	Handlers-cleaners
      	Husband
      	Amer-Indian-Eskimo
      	Male
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	32552
      	43
      	Private
      	84661
      	Assoc-voc
      	11
      	Married-civ-spouse
      	Sales
      	Husband
      	White
      	Male
      	0
      	0
      	45
      	United-States
      	<=50K
    

    
      	32554
      	53
      	Private
      	321865
      	Masters
      	14
      	Married-civ-spouse
      	Exec-managerial
      	Husband
      	White
      	Male
      	0
      	0
      	40
      	United-States
      	>50K
    

    
      	32555
      	22
      	Private
      	310152
      	Some-college
      	10
      	Never-married
      	Protective-serv
      	Not-in-family
      	White
      	Male
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	32556
      	27
      	Private
      	257302
      	Assoc-acdm
      	12
      	Married-civ-spouse
      	Tech-support
      	Wife
      	White
      	Female
      	0
      	0
      	38
      	United-States
      	<=50K
    

    
      	32557
      	40
      	Private
      	154374
      	HS-grad
      	9
      	Married-civ-spouse
      	Machine-op-inspct
      	Husband
      	White
      	Male
      	0
      	0
      	40
      	United-States
      	>50K
    

    
      	32558
      	58
      	Private
      	151910
      	HS-grad
      	9
      	Widowed
      	Adm-clerical
      	Unmarried
      	White
      	Female
      	0
      	0
      	40
      	United-States
      	<=50K
    

    
      	32559
      	22
      	Private
      	201490
      	HS-grad
      	9
      	Never-married
      	Adm-clerical
      	Own-child
      	White
      	Male
      	0
      	0
      	20
      	United-States
      	<=50K
    

    
      	32560
      	52
      	Self-emp-inc
      	287927
      	HS-grad
      	9
      	Married-civ-spouse
      	Exec-managerial
      	Wife
      	White
      	Female
      	15024
      	0
      	40
      	United-States
      	>50K
    

  


29170 rows × 15 columns








In [7]:






income = 1 * (data['income'] == " >50K")
age2 = np.square(data['age'])









In [8]:






data = data[['age', 'educ', 'hours']]
data['age2'] = age2
data['income'] = income









In [9]:






income.value_counts()









Out[9]:






0    24720
1     7841
Name: income, dtype: int64










Exploring the data

Let us get a feel for the parameters. * We see that age is a tailed
distribution. Certainly not Gaussian! * We don’t see much of a
correlation between many of the features, with the exception of Age and
Age2. * Hours worked has some interesting behaviour. How would one
describe this distribution?



In [10]:






g = seaborn.pairplot(data)












[image: ../_images/notebooks_GLM-logistic_13_0.png]






In [11]:






# Compute the correlation matrix
corr = data.corr()

# Generate a mask for the upper triangle
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True

# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))

# Generate a custom diverging colormap
cmap = seaborn.diverging_palette(220, 10, as_cmap=True)

# Draw the heatmap with the mask and correct aspect ratio
seaborn.heatmap(corr, mask=mask, cmap=cmap, vmax=.3,
            linewidths=.5, cbar_kws={"shrink": .5}, ax=ax)









Out[11]:






<matplotlib.axes._subplots.AxesSubplot at 0x7f9c105c9fd0>
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We see here not many strong correlations. The highest is 0.30 according
to this plot. We see a weak-correlation between hours and income (which
is logical), we see a slighty stronger correlation between education and
income (which is the kind of question we are answering).




The model

We will use a simple model, which assumes that the probability of making
more than $50K is a function of age, years of education and hours worked
per week. We will use PyMC3 do inference.

In Bayesian statistics, we treat everything as a random variable and we
want to know the posterior probability distribution of the parameters
(in this case the regression coefficients) The posterior is equal to the
likelihood


\[p(\theta | D) = \frac{p(D|\theta)p(\theta)}{p(D)}\]

Because the denominator is a notoriously difficult integral, $p(D) =
:raw-latex:`\int `p(D \| :raw-latex:`theta`) p(:raw-latex:`\theta`) d
:raw-latex:`theta `$ we would prefer to skip computing it. Fortunately,
if we draw examples from the parameter space, with probability
proportional to the height of the posterior at any given point, we end
up with an empirical distribution that converges to the posterior as the
number of samples approaches infinity.

What this means in practice is that we only need to worry about the
numerator.

Getting back to logistic regression, we need to specify a prior and a
likelihood in order to draw samples from the posterior. We could use
sociological knowledge about the effects of age and education on income,
but instead, let’s use the default prior specification for GLM
coefficients that PyMC3 gives us, which is \(p(θ)=N(0,10^{12}I)\).
This is a very vague prior that will let the data speak for themselves.

The likelihood is the product of n Bernoulli trials,
\(\prod^{n}_{i=1} p_{i}^{y} (1 - p_{i})^{1-y_{i}}\), where
\(p_i = \frac{1}{1 + e^{-z_i}}\),

\(z_{i} = \beta_{0} + \beta_{1}(age)_{i} + \beta_2(age)^{2}_{i} + \beta_{3}(educ)_{i} + \beta_{4}(hours)_{i}\)
and \(y_{i} = 1\) if income is greater than 50K and
\(y_{i} = 0\) otherwise.

With the math out of the way we can get back to the data. Here I use
PyMC3 to draw samples from the posterior. The sampling algorithm used is
NUTS, which is a form of Hamiltonian Monte Carlo, in which parameteres
are tuned automatically. Notice, that we get to borrow the syntax of
specifying GLM’s from R, very convenient! I use a convenience function
from above to plot the trace infromation from the first 1000 parameters.



In [13]:






with pm.Model() as logistic_model:
    pm.glm.GLM.from_formula('income ~ age + age2 + educ + hours', data, family=pm.glm.families.Binomial())
    trace_logistic_model = pm.sample(4000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 18,443:  27%|██▋       | 53098/200000 [06:10<23:38, 103.58it/s]
Convergence archived at 53100
Interrupted at 53,100 [26%]: Average Loss = 1.3951e+06
100%|██████████| 4500/4500 [29:39<00:00,  2.53it/s]








In [14]:






plot_traces(trace_logistic_model, retain=1000)
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Some results

One of the major benefits that makes Bayesian data analysis worth the
extra computational effort in many circumstances is that we can be
explicit about our uncertainty. Maximum likelihood returns a number, but
how certain can we be that we found the right number? Instead, Bayesian
inference returns a distribution over parameter values.

I’ll use seaborn to look at the distribution of some of these factors.



In [15]:






plt.figure(figsize=(9,7))
trace = trace_logistic_model[1000:]
seaborn.jointplot(trace['age'], trace['educ'], kind="hex", color="#4CB391")
plt.xlabel("beta_age")
plt.ylabel("beta_educ")
plt.show()












<matplotlib.figure.Figure at 0x7f9c1292ec18>
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So how do age and education affect the probability of making more than
\($50K?\) To answer this question, we can show how the probability
of making more than $50K changes with age for a few different education
levels. Here, we assume that the number of hours worked per week is
fixed at 50. PyMC3 gives us a convenient way to plot the posterior
predictive distribution. We need to give the function a linear model and
a set of points to evaluate. We will pass in three different linear
models: one with educ == 12 (finished high school), one with educ == 16
(finished undergrad) and one with educ == 19 (three years of grad
school).



In [16]:






# Linear model with hours == 50 and educ == 12
lm = lambda x, samples: 1 / (1 + np.exp(-(samples['Intercept'] +
                                          samples['age']*x +
                                          samples['age2']*np.square(x) +
                                          samples['educ']*12 +
                                          samples['hours']*50)))

# Linear model with hours == 50 and educ == 16
lm2 = lambda x, samples: 1 / (1 + np.exp(-(samples['Intercept'] +
                                          samples['age']*x +
                                          samples['age2']*np.square(x) +
                                          samples['educ']*16 +
                                          samples['hours']*50)))

# Linear model with hours == 50 and educ == 19
lm3 = lambda x, samples: 1 / (1 + np.exp(-(samples['Intercept'] +
                                          samples['age']*x +
                                          samples['age2']*np.square(x) +
                                          samples['educ']*19 +
                                          samples['hours']*50)))







Each curve shows how the probability of earning more than $ 50K$ changes
with age. The red curve represents 19 years of education, the green
curve represents 16 years of education and the blue curve represents 12
years of education. For all three education levels, the probability of
making more than $50K increases with age until approximately age 60,
when the probability begins to drop off. Notice that each curve is a
little blurry. This is because we are actually plotting 100 different
curves for each level of education. Each curve is a draw from our
posterior distribution. Because the curves are somewhat translucent, we
can interpret dark, narrow portions of a curve as places where we have
low uncertainty and light, spread out portions of the curve as places
where we have somewhat higher uncertainty about our coefficient values.



In [17]:






# Plot the posterior predictive distributions of P(income > $50K) vs. age
pm.plot_posterior_predictive_glm(trace, eval=np.linspace(25, 75, 1000), lm=lm, samples=100, color="blue", alpha=.15)
pm.plot_posterior_predictive_glm(trace, eval=np.linspace(25, 75, 1000), lm=lm2, samples=100, color="green", alpha=.15)
pm.plot_posterior_predictive_glm(trace, eval=np.linspace(25, 75, 1000), lm=lm3, samples=100, color="red", alpha=.15)
import matplotlib.lines as mlines
blue_line = mlines.Line2D(['lm'], [], color='b', label='High School Education')
green_line = mlines.Line2D(['lm2'], [], color='g', label='Bachelors')
red_line = mlines.Line2D(['lm3'], [], color='r', label='Grad School')
plt.legend(handles=[blue_line, green_line, red_line], loc='lower right')
plt.ylabel("P(Income > $50K)")
plt.xlabel("Age")
plt.show()
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In [18]:






b = trace['educ']
plt.hist(np.exp(b), bins=20, normed=True)
plt.xlabel("Odds Ratio")
plt.show()
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Finally, we can find a credible interval (remember kids - credible
intervals are Bayesian and confidence intervals are frequentist) for
this quantity. This may be the best part about Bayesian statistics: we
get to interpret credibility intervals the way we’ve always wanted to
interpret them. We are 95% confident that the odds ratio lies within our
interval!



In [19]:






lb, ub = np.percentile(b, 2.5), np.percentile(b, 97.5)

print("P(%.3f < O.R. < %.3f) = 0.95"%(np.exp(3*lb),np.exp(3*ub)))













P(2.612 < O.R. < 2.829) = 0.95









Model selection

The Deviance Information Criterion
(DIC) [https://en.wikipedia.org/wiki/Deviance_information_criterion]
is a fairly unsophisticated method for comparing the deviance of
likelhood across the the sample traces of a model run. However, this
simplicity apparently yields quite good results in a variety of cases.
We’ll run the model with a few changes to see what effect higher order
terms have on this model.

One question that was immediately asked was what effect does age have on
the model, and why should it be age^2 versus age? We’ll use the DIC to
answer this question.



In [27]:






models_lin, traces_lin = run_models(data, 4)













Assigned NUTS to Intercept
Assigned NUTS to educ
Assigned NUTS to hours
Assigned NUTS to age
Assigned NUTS to sd_log__













Running: k1












100%|██████████| 2500/2500 [00:35<00:00, 70.76it/s]
Assigned NUTS to Intercept
Assigned NUTS to educ
Assigned NUTS to hours
Assigned NUTS to age
Assigned NUTS to np.power(age, 2)
Assigned NUTS to sd_log__













Running: k2












100%|██████████| 2500/2500 [01:15<00:00, 33.11it/s]
Assigned NUTS to Intercept
Assigned NUTS to educ
Assigned NUTS to hours
Assigned NUTS to age
Assigned NUTS to np.power(age, 2)
Assigned NUTS to np.power(age, 3)
Assigned NUTS to sd_log__













Running: k3












100%|██████████| 2500/2500 [03:19<00:00, 12.51it/s]
Assigned NUTS to Intercept
Assigned NUTS to educ
Assigned NUTS to hours
Assigned NUTS to age
Assigned NUTS to np.power(age, 2)
Assigned NUTS to np.power(age, 3)
Assigned NUTS to np.power(age, 4)
Assigned NUTS to sd_log__













Running: k4












100%|██████████| 2500/2500 [21:35<00:00,  2.28it/s]








In [28]:






dfdic = pd.DataFrame(index=['k1','k2','k3','k4'], columns=['lin'])
dfdic.index.name = 'model'

for nm in dfdic.index:
    dfdic.loc[nm, 'lin'] = pm.stats.dic(traces_lin[nm], models_lin[nm])


dfdic = pd.melt(dfdic.reset_index(), id_vars=['model'], var_name='poly', value_name='dic')

g = seaborn.factorplot(x='model', y='dic', col='poly', hue='poly', data=dfdic, kind='bar', size=6)












[image: ../_images/notebooks_GLM-logistic_30_0.png]




There isn’t a lot of difference between these models in terms of DIC. So
our choice is fine in the model above, and there isn’t much to be gained
for going up to age^3 for example. Next we look at
WAIC [http://watanabe-www.math.dis.titech.ac.jp/users/swatanab/dicwaic.html].
Which is another model selection technique.



In [29]:






dfdic = pd.DataFrame(index=['k1','k2','k3','k4'], columns=['lin'])
dfdic.index.name = 'model'

for nm in dfdic.index:
    dfdic.loc[nm, 'lin'] = pm.stats.waic(traces_lin[nm],models_lin[nm])[0]


dfdic = pd.melt(dfdic.reset_index(), id_vars=['model'], var_name='poly', value_name='waic')

g = seaborn.factorplot(x='model', y='waic', col='poly', hue='poly', data=dfdic, kind='bar', size=6)












[image: ../_images/notebooks_GLM-logistic_32_0.png]




The WAIC confirms our decision to use age^2.
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Inferring parameters of SDEs using a Euler-Maruyama scheme

This notebook is derived from a presentation prepared for the
Theoretical Neuroscience Group, Institute of Systems Neuroscience at
Aix-Marseile University.



In [1]:






%pylab inline
import pymc3 as pm
import theano.tensor as tt
import scipy
from pymc3.distributions.timeseries import EulerMaruyama













Populating the interactive namespace from numpy and matplotlib







Toy model 1

Here’s a scalar linear SDE in symbolic form

$ dX_t = :raw-latex:`\lambda `X\_t + :raw-latex:`sigma`^2 dW_t $

discretized with the Euler-Maruyama scheme



In [2]:






# parameters
λ = -0.78
σ2 = 5e-3
N = 200
dt = 1e-1

# time series
x = 0.1
x_t = []

# simulate
for i in range(N):
    x += dt * λ * x + sqrt(dt) * σ2 * randn()
    x_t.append(x)

x_t = array(x_t)

# z_t noisy observation
z_t = x_t + randn(x_t.size) * 5e-3









In [3]:






figure(figsize=(10, 3))
subplot(121)
plot(x_t[:30], 'k', label='$x(t)$', alpha=0.5), plot(z_t[:30], 'r', label='$z(t)$', alpha=0.5)
title('Transient'), legend()
subplot(122)
plot(x_t[30:], 'k', label='$x(t)$', alpha=0.5), plot(z_t[30:], 'r', label='$z(t)$', alpha=0.5)
title('All time');
tight_layout()












[image: ../_images/notebooks_Euler-Maruyama_and_SDEs_4_0.png]




What is the inference we want to make? Since we’ve made a noisy
observation of the generated time series, we need to estimate both
\(x(t)\) and \(\lambda\).

First, we rewrite our SDE as a function returning a tuple of the drift
and diffusion coefficients



In [4]:






def lin_sde(x, lam):
    return lam * x, σ2







Next, we describe the probability model as a set of three stochastic
variables, lam, xh, and zh:



In [5]:






with pm.Model() as model:

    # uniform prior, but we know it must be negative
    lam = pm.Flat('lam')

    # "hidden states" following a linear SDE distribution
    # parametrized by time step (det. variable) and lam (random variable)
    xh = EulerMaruyama('xh', dt, lin_sde, (lam, ), shape=N, testval=x_t)

    # predicted observation
    zh = pm.Normal('zh', mu=xh, sd=5e-3, observed=z_t)







Once the model is constructed, we perform inference, i.e. sample from
the posterior distribution, in the following steps:



In [6]:






with model:

    # optimize to find the mode of the posterior as starting point for prob. mass
    start = pm.find_MAP(vars=[xh], fmin=scipy.optimize.fmin_l_bfgs_b)

    # "warm up" to transition from mode to prob. mass
    step = pm.NUTS(scaling=start)
    trace = pm.sample(1000, step, progressbar=True)

    # sample from the prob. mass
    step = pm.NUTS(scaling=trace[-1], gamma=.25)
    trace = pm.sample(2000, step, start=trace[-1], progressbar=True)













100%|██████████| 1000/1000 [00:10<00:00, 93.65it/s]
100%|██████████| 2000/2000 [00:11<00:00, 178.16it/s]






Next, we plot some basic statistics on the samples from the posterior,



In [7]:






figure(figsize=(10, 3))
subplot(121)
plot(percentile(trace[xh], [2.5, 97.5], axis=0).T, 'k', label='$\hat{x}_{95\%}(t)$')
plot(x_t, 'r', label='$x(t)$')
legend()

subplot(122)
hist(trace[lam], 30, label='$\hat{\lambda}$', alpha=0.5)
axvline(λ, color='r', label='$\lambda$', alpha=0.5)
legend();












[image: ../_images/notebooks_Euler-Maruyama_and_SDEs_13_0.png]




A model can fit the data precisely and still be wrong; we need to use
posterior predictive checks to assess if, under our fit model, the
data our likely.

In other words, we - assume the model is correct - simulate new
observations - check that the new observations fit with the original
data



In [8]:






# generate trace from posterior
ppc_trace = pm.sample_ppc(trace, model=model)

# plot with data
figure(figsize=(10, 3))
plot(percentile(ppc_trace['zh'], [2.5, 97.5], axis=0).T, 'k', label=r'$z_{95\% PP}(t)$')
plot(z_t, 'r', label='$z(t)$')
legend()













100%|██████████| 2000/2000 [00:03<00:00, 504.18it/s]








Out[8]:






<matplotlib.legend.Legend at 0x117dac080>












[image: ../_images/notebooks_Euler-Maruyama_and_SDEs_15_2.png]




Note that


	inference also estimates the initial conditions

	the observed data \(z(t)\) lies fully within the 95% interval of
the PPC.

	there are many other ways of evaluating fit




Toy model 2

As the next model, let’s use a 2D deterministic oscillator,


\begin{align}
\dot{x} &= \tau (x - x^3/3 + y) \\
\dot{y} &= \frac{1}{\tau} (a - x)
\end{align}
with noisy observation \(z(t) = m x + (1 - m) y + N(0, 0.05)\).



In [9]:






N, τ, a, m, σ2 = 200, 3.0, 1.05, 0.2, 1e-1
xs, ys = [0.0], [1.0]
for i in range(N):
    x, y = xs[-1], ys[-1]
    dx = τ * (x - x**3.0/3.0 + y)
    dy = (1.0 / τ) * (a - x)
    xs.append(x + dt * dx + sqrt(dt) * σ2 * randn())
    ys.append(y + dt * dy + sqrt(dt) * σ2 * randn())
xs, ys = array(xs), array(ys)
zs = m * xs + (1 - m) * ys + randn(xs.size) * 0.1

figure(figsize=(10, 2))
plot(xs, label='$x(t)$')
plot(ys, label='$y(t)$')
plot(zs, label='$z(t)$')
legend()









Out[9]:






<matplotlib.legend.Legend at 0x117facb00>












[image: ../_images/notebooks_Euler-Maruyama_and_SDEs_18_1.png]




Now, estimate the hidden states \(x(t)\) and \(y(t)\), as well
as parameters \(\tau\), \(a\) and \(m\).

As before, we rewrite our SDE as a function returned drift & diffusion
coefficients:



In [10]:






def osc_sde(xy, τ, a):
    x, y = xy[:, 0], xy[:, 1]
    dx = τ * (x - x**3.0/3.0 + y)
    dy = (1.0 / τ) * (a - x)
    dxy = tt.stack([dx, dy], axis=0).T
    return dxy, σ2







As before, the Euler-Maruyama discretization of the SDE is written as a
prediction of the state at step \(i+1\) based on the state at step
\(i\).

We can now write our statistical model as before, with uninformative
priors on \(\tau\), \(a\) and \(m\):



In [11]:






xys = c_[xs, ys]

with pm.Model() as model:
    τh = pm.Uniform('τh', lower=0.1, upper=5.0)
    ah = pm.Uniform('ah', lower=0.5, upper=1.5)
    mh = pm.Uniform('mh', lower=0.0, upper=1.0)
    xyh = EulerMaruyama('xyh', dt, osc_sde, (τh, ah), shape=xys.shape, testval=xys)
    zh = pm.Normal('zh', mu=mh * xyh[:, 0] + (1 - mh) * xyh[:, 1], sd=0.1, observed=zs)







As with the linear SDE, we 1) find a MAP estimate, 2) warm up and 3)
sample from the probability mass:



In [12]:






with model:

    # optimize to find the mode of the posterior as starting point for prob. mass
    start = pm.find_MAP(vars=[xyh], fmin=scipy.optimize.fmin_l_bfgs_b)

    # "warm up" to transition from mode to prob. mass
    step = pm.NUTS(scaling=start)
    trace = pm.sample(100, step, progressbar=True)

    # sample from the prob. mass
    step = pm.NUTS(scaling=trace[-1], gamma=.25)
    trace = pm.sample(2000, step, start=trace[-1], progressbar=True)













100%|██████████| 100/100 [00:17<00:00,  6.02it/s]
100%|██████████| 2000/2000 [01:38<00:00, 20.29it/s]






Again, the result is a set of samples from the posterior, including our
parameters of interest but also the hidden states



In [13]:






figure(figsize=(10, 6))
subplot(211)
plot(percentile(trace[xyh][..., 0], [2.5, 97.5], axis=0).T, 'k', label='$\hat{x}_{95\%}(t)$')
plot(xs, 'r', label='$x(t)$')
legend(loc=0)
subplot(234), hist(trace['τh']), axvline(τ), xlim([1.0, 4.0]), title('τ')
subplot(235), hist(trace['ah']), axvline(a), xlim([0, 2.0]), title('a')
subplot(236), hist(trace['mh']), axvline(m), xlim([0, 1]), title('m')
tight_layout()












[image: ../_images/notebooks_Euler-Maruyama_and_SDEs_27_0.png]




Again, we can perform a posterior predictive check, that our data are
likely given the fit model



In [14]:






# generate trace from posterior
ppc_trace = pm.sample_ppc(trace, model=model)

# plot with data
figure(figsize=(10, 3))
plot(percentile(ppc_trace['zh'], [2.5, 97.5], axis=0).T, 'k', label=r'$z_{95\% PP}(t)$')
plot(zs, 'r', label='$z(t)$')
legend()













100%|██████████| 2000/2000 [00:09<00:00, 210.01it/s]








Out[14]:






<matplotlib.legend.Legend at 0x122c6fa90>
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Lasso regression with block updating

Sometimes, it is very useful to update a set of parameters together. For
example, variables that are highly correlated are often good to update
together. In PyMC 3 block updating is simple, as example will
demonstrate.

Here we have a LASSO regression model where the two coefficients are
strongly correlated. Normally, we would define the coefficient
parameters as a single random variable, but here we define them
separately to show how to do block updates.

First we generate some fake data.



In [1]:






%pylab inline
from matplotlib.pylab import *
from pymc3 import *
import numpy as np

d = np.random.normal(size=(3, 30))
d1 = d[0] + 4
d2 = d[1] + 4
yd = .2*d1 +.3*d2 + d[2]













Populating the interactive namespace from numpy and matplotlib






Then define the random variables.



In [2]:






lam = 3

with Model() as model:
    s = Exponential('s', 1)
    tau = Uniform('tau', 0, 1000)
    b = lam * tau
    m1 = Laplace('m1', 0, b)
    m2 = Laplace('m2', 0, b)

    p = d1*m1 + d2*m2

    y = Normal('y', mu=p, sd=s, observed=yd)







For most samplers, including Metropolis and HamiltonianMC, simply pass a
list of variables to sample as a block. This works with both scalar and
array parameters.



In [4]:






with model:
    start = find_MAP()

    step1 = Metropolis([m1, m2])

    step2 = Slice([s, tau])

    trace = sample(10000, [step1, step2], start=start)













Optimization terminated successfully.
         Current function value: 52.260224
         Iterations: 15
         Function evaluations: 23
         Gradient evaluations: 23












100%|██████████| 10000/10000 [00:14<00:00, 688.86it/s]








In [5]:






traceplot(trace);












[image: ../_images/notebooks_lasso_block_update_6_0.png]






In [6]:






hexbin(trace[m1],trace[m2], gridsize = 50)









Out[6]:






<matplotlib.collections.PolyCollection at 0x1141ed208>
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    <no title>
    
    

    
 
  
  

    
      
          
            
  



In [1]:






%matplotlib inline
from pymc3 import Gamma, Poisson, Normal, Model, sample, forestplot, NUTS, Metropolis, find_MAP, starting, traceplot
import theano.tensor as tt
from theano import function as fn
from theano import printing
import numpy as np
import scipy as sp







Here is the original model, implemented in BUGS:

model
{
    # Set up data
        for(i in 1:Nsubj) {
            for(j in 1:T) {
    # risk set = 1 if obs.t >= t
                Y[i,j] <- step(obs.t[i] - t[j] + eps)
    # counting process jump = 1 if obs.t in [ t[j], t[j+1] )
    #                      i.e. if t[j] <= obs.t < t[j+1]
                dN[i, j] <- Y[i, j] * step(t[j + 1] - obs.t[i] - eps) * FAIL[i]
            }
        }

    # Model
        for(j in 1:T) {
            for(i in 1:Nsubj) {
                dN[i, j]   ~ dpois(Idt[i, j])              # Likelihood
                Idt[i, j] <- Y[i, j] * exp(beta[1]*pscenter[i] + beta[2]*
                hhcenter[i] + beta[3]*ncomact[i] + beta[4]*rleader[i] + beta[5]*dleader[i] + beta[6]*inter1[i] + beta[7]*inter2[i]) * dL0[j]    # Intensity
            }
            dL0[j] ~ dgamma(mu[j], c)
            mu[j] <- dL0.star[j] * c    # prior mean hazard
        }


    c ~ dgamma(0.0001, 0.00001)
    r ~ dgamma(0.001, 0.0001)


    for (j in 1 : T) {  dL0.star[j] <- r * (t[j + 1] - t[j])  }
    # next line indicates number of covariates and is for the corresponding betas
    for(i in 1:7) {beta[i] ~ dnorm(0.0,0.00001)}


}







In [2]:






dta = dict(T=73, Nsubj=430, eps=0.0,  t=[1, 21, 85, 128, 129, 148, 178, 204,
                                         206, 210, 211, 212, 225, 238, 241,
                                         248, 259, 273, 275, 281, 286, 289,
                                         301, 302, 303, 304, 313, 317, 323,
                                         344, 345, 349, 350, 351, 355, 356,
                                         359, 364, 385, 386, 389, 390, 391,
                                         392, 394, 395, 396, 397, 398, 399,
                                         400, 406, 415, 416, 426, 427, 434,
                                         435, 437, 441, 447, 448, 449, 450,
                                         451, 453, 455, 456, 458, 459, 460,
                                         461, 462, 463],
obs_t = [460, 313, 435, 350, 435, 350, 350, 460, 460, 448, 225, 225, 396, 435, 396, 396, 453, 396, 456, 397, 397, 396, 395, 275, 449, 395, 395, 462, 302, 302, 458, 461, 396, 241, 389, 458, 304, 304, 395, 395, 364, 460, 415, 463, 396, 459, 441, 435, 396, 458, 437, 396, 356, 356, 396, 455, 396, 462, 399, 400, 350, 350, 395, 395, 441, 355, 85, 458, 128, 396, 386, 386, 386, 462, 458, 390, 390, 396, 396, 396, 427, 458, 395, 275, 275, 395, 359, 395, 395, 441, 395, 463, 178, 275, 463, 396, 396, 259, 396, 396, 458, 441, 396, 463, 396, 463, 435, 396, 437, 396, 398, 463, 460, 462, 460, 460, 210, 396, 435, 458, 385, 323, 323, 359, 396, 396, 460, 238, 441, 450, 392, 458, 396, 458, 396, 396, 462, 435, 396, 394, 396, 435, 458, 1, 395, 395, 451, 462, 458, 462, 396, 286, 396, 349, 449, 462, 455, 21, 463, 461, 461, 456, 435, 396, 460, 462, 462, 435, 435, 460, 386, 396, 458, 386, 461, 441, 435, 435, 463, 456, 396, 275, 460, 406, 460, 406, 317, 406, 461, 396, 359, 458, 463, 435, 462, 458, 396, 396, 273, 396, 435, 281, 275, 396, 447, 225, 447, 396, 435, 416, 396, 248, 396, 435, 435, 396, 461, 385, 396, 458, 458, 396, 461, 396, 448, 396, 396, 460, 455, 456, 463, 462, 458, 463, 396, 462, 395, 456, 396, 463, 396, 435, 459, 396, 396, 396, 395, 435, 455, 395, 461, 344, 396, 395, 396, 317, 396, 395, 426, 461, 396, 289, 441, 395, 396, 458, 396, 396, 435, 396, 395, 396, 441, 345, 396, 359, 435, 435, 396, 396, 395, 458, 461, 458, 212, 301, 458, 456, 395, 396, 395, 435, 396, 396, 303, 458, 460, 400, 396, 462, 359, 458, 396, 206, 441, 396, 458, 396, 462, 396, 396, 275, 396, 395, 435, 435, 462, 225, 458, 462, 396, 396, 289, 396, 303, 455, 400, 400, 359, 461, 396, 462, 460, 463, 463, 463, 204, 435, 435, 396, 396, 396, 463, 458, 396, 455, 435, 396, 396, 463, 396, 461, 463, 460, 441, 460, 435, 435, 460, 455, 460, 395, 460, 460, 460, 435, 449, 463, 462, 129, 391, 396, 391, 391, 434, 356, 462, 396, 349, 225, 396, 435, 461, 391, 391, 351, 211, 461, 212, 434, 148, 356, 458, 456, 455, 435, 463, 463, 462, 435, 463, 437, 460, 396, 406, 451, 460, 435, 396, 460, 455, 396, 398, 456, 458, 396, 456, 449, 396, 128, 396, 462, 463, 396, 396, 396, 435, 460, 396, 458],
FAIL= [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
pscenter= [
 -.01434325, -.01460965, .01322687, .00971885, -.03223412, -.01113493, -.01359567, -.03357866, -.0387039, -.0553269, -.03238896, -.07464545, -.07325128, -.07062459, -.07464545, -.07032613, -.0703005, .00965232, -.01408955, .00577483, -.00219072, -.00084567, .01643198, .06509522, .06824313, .07300876, .07300876, .01394272, .06824313, .02063087, .00383186, -.02573045, -.02410864, -.02272752, .05120398, -.00997729, -.00550709, -.02062663, -.03077685, -.01688493, .01035959, .01149963, .01149963, .01149963, .01149963, .01149963, .01149963, .01149963, .01149963, .01149963, .01149963, .01149963, .01149963, .01149963, .01149963, .0034338, .0376236, .00733331, .01520069, .03832785, .03832785, -.02622275, -.02622275, -.02622275, -.01492678, -.02897806, -.02897806, -.02897806, -.02847666, -.031893, -.03919478, -.04224754, -.04743705, -.0510477, -.031893, -.01129093, .01706207, .00193999, -.01503116, .003101, -.00083466, .02395027, -.07952866, -.08559135, -.07251801, -.06586029, -.08432532, -.0613939, -.081205, -.07540084, -.08488011, -.08488011, -.08488011, -.07492433, -.08907269, -.09451609, -.05301854, -.08980743, -.0771635, -.0771635, -.08650947, -.07856082, -.0771635, -.08204606, -.08178245, -.05263504, -.05355574, -.05109092, -.04696729, -.04696729, -.04696729, -.05257489, -.05303248, -.05348096, -.04983674, -.04699414, .00584956, -.00792241, -.01719816, -.02138029, -.01576016, -.04274812, -.04014061, .0471441, .0471441, .0471441, .0471441, .0471441, .0471441, .0471441, .04233112, .0471441, .04233112, .050568, .07388823, .0493324, .04512087, .03205975, .02913185, .06010427, .05324252, .06973204, .05579907, .01212243, .07962459, .05054695, .06672142, .14026688, .01734403, .06078221, .06543709, .06438115, .20126908, -.03138622, -.02180659, .01637333, -.02415774, .01828684, .03106104, .04268495, .01897239, .01591935, -.02367065, -.0619156, -.06403028, -.06851645, -.04821694, -.03889525, -.05023452, -.05013452, -.01557191, -.01171948, -.01362136, -.01174715, -.02707938, -.02634164, -.02634164, -.02634164, -.00692153, -.02381614, -.00890537, -.00611669, -.00894752, -.03551984, -.0252678, -.01513384, -.01016569, -.03551984, -.03773227, -.01978032, .06803483, .06706496, .10551275, .15091534, .03092981, .06556855, .10781559, .12671031, .0936299, .09362991, .09362991, .08294538, .09362991, .09362991, .09362991, .01177025, .02610553, .03546937, .03546937, .03546937, .034415, -.00305626, .04973665, .05103208, .07546701, .05306436, .00824125, .01961115, .01202359, -.02919447, -.01016712, .01756074, -.04035511, -.04753104, -.04463152, -.04845615, -.05010044, .00031411, -.07911871, -.08799869, -.07980882, -.09393142, -.08000018, -.07666632, -.07817401, -.07444922, -.07226554, -.08216553, -.0777643, -.07752042, -.05767992, -.04727952, -.03774814, -.06870384, -.05999847, -.05947695, .02989959, .04627543, .02772475, .02883079, .03642944, .02871235, .04148949, .04240279, .07747082, .07626323, .04268012, .03225577, .06468724, -.05140995, -.05399637, -.05351515, .07302427, .02432223, .0490674, .0490674, .0490674, .0490674, .09013112, .10476315, .10476315, .10476315, .10476315, .10476315, .10476315, .10476315, .10476315, .10476315, .10476315, .10476315, .10476315, .10476315, .07008056, .08666077, .01546215, .01667466, .03417671, .05253941, .04293926, .01496588, .02692172, -.03827151, .04809769, .08742411, .04533176, .01455173, .01831875, .02710811, .09834951, .09952456, .06993483, .02945534, .038731, .1181948, .04435538, .04435538, -.02357505, .05824019, .05820741, -.02357505, .09324722, .15534712, .07207468, .04692869, -.03490683, -.04404809, -.05054474, -.05325826, -.0474724, -.04905931, .01068221, .02879751, .00852646, .02693032, .01835589, .02989959, .02989959, .02989959, .04976377, .04439012, .03397319, .02989959, .02989959, .05468828, .04463226, .05886378, .06311052, .02989959, .04595331, .04203459, .01231324, -.01399783, .04595331, .00145386, .04601278, .06459354, -.0007196, .00012216, -.07614055, -.08435525, -.07957162, -.10299519, -.08156988, -.08225659, -.07449063, -.00210284, -.00797183, -.025355, -.01258251, -.04372031, -.03985972, -.03545086, -.03384566, -.04025533, -.07523724, -.05947702, -.061286, -.07666647, -.07663169, -.05902354, -.07652324, -.07645561, -.06258684, -.09604834, -.08813326, -.03292062, -.07848112, -.08239502, -.08316891, -.07244316, -.075417, -.07652324, -.07922532, -.08755959, -.08583414, -.07450142, -.08066016, -.06057205, -.07652324, -.06249051, -.08781742, -.086076, -.07652324, -.07696518, -.0618688, -.06073988, -.06524737, -.04419825, -.04489509, -.04390368, -.04358438, -.04489509, -.04520512, -.04187583, -.03653955, -.03973426, -.03753508, -.03569439, -.06789339, .06689456, .05526327, .05139003, .02641841, .04891529, .07078697, .06862645, .06832582, .04104258, -.00120631, .01947345, .04891779, .04891779, .03561932, .02576244, .03158225, .03608047, .08685057, .04632537, .06841581, -.02899643],
hhcenter= [ -.78348798, -.63418788, -.91218799, -.98388809, -.23518796, .11481193, -1.415588, -1.2535881, -.55738801, -.88128799, -1.109488, .05721192, -1.045788, -.30888793, .29651192, -.36688802, -.50058788, .02271203, -.59088796, -.04198809, .50561196, -.07418796, .98481184, .78921205, .09431199, -.06488796, 2.1662121, .08891205, 1.4004121, 1.316112, 1.9362121, 2.0107121, 1.150712, .31951192, -.23918791, -.1562881, -.9575879, -.07728811, .29641202, 1.2273121, 1.7717118, 1.5764117, .14181189, .72131211, 1.279212, .68241197, -.72808808, -.00488802, -.23938794, -1.000788, .55081207, -.52348799, 1.780612, -.35888812, .36481193, 1.5480118, -.03078791, 1.389112, .30211189, .70901209, -.16668792, 1.435812, .47001198, 2.0838118, 1.1673121, .18461208, -.30608794, 1.4470119, .23301201, -.58458799, .44011191, -.61948794, -.41388795, .263212, .66171199, .92451197, .78081208, .90991193, 1.6920118, 1.334012, 1.2101121, .41591194, -.48498794, -.73278803, -1.093588, .09911207, -.93418807, -.46908805, .0205119, .0535119, -.14228792, -.55708808, -.45498797, -.54008788, -.30998799, -.10958811, -.0960879, -.01338812, -.88168806, -.51788801, .36801198, .46621206, .13271193, -.11208793, -.76768798, -.54508799, -1.2773881, .16641192, .95871216, -.48238799, 1.6281118, -.18848796, -.49718806, -.41348812, -.31628796, -.59528798, -.11718794, -.57058805, -.59488791, -.21248789, -.65658802, -.56298798, -.52698797, -.65758795, -.04988809, .55341202, -.76328796, .254612, 1.3500118, -.54958791, 1.665812, .14671211, 1.963912, .29161194, -.56838793, 1.9371119, .90991193, -.39558789, .39521196, -.55208796, -.05268808, -.77368802, -.45428798, .05841212, -.45308802, -.12458798, .01431207, -.28228804, .79281193, -.26358792, -.54738802, -.38158795, -.54118794, -.72828788, -.58128804, .355912, -.24078794, -1.0384881, -.75038809, -.41018793, -.43538806, -1.566388, -.53388804, -.28388807, -1.2348881, -.69028801, -1.620088, -.78128809, -.54648799, -.92738789, .11871199, .26851204, .61571199, .82891208, 1.1985121, 1.012012, 1.0602121, -.02988811, .79301196, .67731196, .43991187, .9404121, .5254119, 1.0365119, 1.6220121, .61671191, -.50318807, 2.6073117, .02361206, -.60438794, -.79278797, -.18108793, -.48178813, -.44038793, -.22628804, -.07398792, .519512, .40211204, .582012, 1.830512, .80441195, .58801204, -.56368798, -1.5451881, .45991209, -.23448797, -.36918804, 1.3247118, .19541197, -.20818801, 1.163012, -.78228801, -.6048879, -.575288, 1.3241119, .0147119, -.76518792, -.37478802, -.35508797, -.90038794, -1.250888, -.46608803, -.98488802, -1.5185881, -.90908808, -1.048188, -.90138787, -.77278799, -1.248988, -.34448811, -.61628789, .38531187, -.51728791, -.00878807, -.60078806, -.45358798, .46301201, -.22048803, -.71518797, -.76478809, -.75028795, -.4952881, .01731209, -.83718795, .57951194, .54291207, .45341209, .16941194, 1.054112, .61721212, 2.2717118, 1.1593118, 2.0280118, .92281204, 1.0100121, -.1866879, 2.6503119, 2.3914118, -.19948788, -.36418793, -.9259879, -.71058792, -.1104879, .16971211, 1.474812, 1.9360118, 2.5344119, 2.0171118, 1.9387121, .55071193, -.03918811, .20681195, .40421203, -.75518793, -.45678803, -1.0271881, .77211195, 1.146812, -1.147788, -1.565588, -.34888789, 1.303812, 1.952312, 1.639112, .07731203, .25901201, -.45608804, -.5028879, .03641204, -.03808804, .38571194, .31831196, -.17648788, -.44528791, -.55918807, -.53108805, .39721206, -.06328794, -.34038803, -.05988808, -.89548796, -.03518792, .045512, -.1859879, -.039288, -.82568806, .01431207, .40091208, -.2531881, .030412, -.31918809, -.54958791, -.79078788, .36691192, -.324388, -1.0082881, -1.232188, -.53248805, -.23678799, -.89188808, .25111201, -.6766879, -.3565881, -.61228794, -.21078797, -1.0343881, -.58358806, -.15588804, -.39238808, -.67818803, -.19498797, 1.099412, 1.2767119, -.64068788, -.50678796, -.64058799, -.86918801, 1.4048119, -.59648794, .23331194, .68371207, .11251191, -.17128797, .17081194, -.44218799, -.48708794, .09591202, .20131211, -.20108791, -.02158805, -.48188803, -.3012881, -.55008787, -1.146188, -.82128805, -.87638801, -.54488796, -.60288805, -1.003088, -.25078794, -.14818807, -.14738794, -.80938786, -.85988802, -.90188807, -.94998807, -.75718802, -.37418792, -.66708797, 1.0981121, 1.1441121, .47381189, -.12958808, -.34358808, -.84328789, -.33498809, -.98088807, -.6903879, -1.284988, -.80838794, -.91838807, -.81848806, -.34488794, -.83438796, .12971191, .99381214, -.91608804, -.31808802, -.01018806, .98171192, -.91638798, -1.043988, -1.0103881, 1.451612, -.01528808, .02441196, -.41458794, .25691202, .18601207, -.815988, -.02908798, -.59088796, -.35608789, .79691201, 1.8123121, -.98588794, 1.548912, 2.3653121, -.09238812, .96741205, .05891208, -.15618797, -.5660879, -.28338811, -.10088798, 1.1663117, .21981196, .07151202, -.009088, -.49578807, .15441208, -.44488809, -.2677879, -.54388803, -.25468799, .68631202, -.88128799, -.84628791, -1.2549881, -.36198804],
ncomact= [ 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1],
rleader= [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
dleader= [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
inter1= [ -.01434325, -.01460965, 0, 0, 0, -.01113493, 0, 0, 0, -.0553269, -.03238896, 0, 0, -.07062459, -.07464545, -.07032613, 0, 0, -.01408955, 0, -.00219072, 0, 0, 0, 0, 0, .07300876, .01394272, 0, 0, 0, 0, 0, 0, .05120398, 0, -.00550709, -.02062663, -.03077685, -.01688493, 0, .01149963, 0, .01149963, .01149963, 0, 0, 0, 0, 0, 0, 0, 0, 0, .01149963, .0034338, .0376236, .00733331, 0, .03832785, .03832785, -.02622275, -.02622275, -.02622275, -.01492678, 0, 0, -.02897806, -.02847666, 0, 0, -.04224754, -.04743705, -.0510477, -.031893, 0, 0, 0, -.01503116, .003101, -.00083466, .02395027, -.07952866, 0, 0, -.06586029, 0, -.0613939, -.081205, -.07540084, -.08488011, -.08488011, 0, -.07492433, -.08907269, -.09451609, 0, -.08980743, 0, -.0771635, 0, 0, -.0771635, -.08204606, 0, -.05263504, 0, -.05109092, -.04696729, 0, -.04696729, 0, -.05303248, -.05348096, 0, 0, .00584956, -.00792241, -.01719816, 0, -.01576016, 0, -.04014061, 0, 0, 0, 0, 0, .0471441, 0, .04233112, 0, .04233112, 0, 0, .0493324, .04512087, .03205975, .02913185, 0, .05324252, 0, 0, 0, 0, .05054695, 0, .14026688, .01734403, .06078221, 0, 0, 0, -.03138622, 0, .01637333, 0, 0, 0, 0, .01897239, .01591935, 0, -.0619156, 0, -.06851645, 0, -.03889525, -.05023452, -.05013452, 0, 0, -.01362136, 0, 0, -.02634164, 0, 0, 0, 0, -.00890537, -.00611669, 0, 0, 0, -.01513384, 0, -.03551984, 0, -.01978032, 0, .06706496, .10551275, 0, .03092981, .06556855, 0, 0, 0, .09362991, 0, 0, 0, 0, 0, 0, .02610553, .03546937, 0, 0, .034415, 0, 0, 0, .07546701, 0, 0, 0, 0, -.02919447, -.01016712, 0, 0, 0, 0, -.04845615, -.05010044, 0, 0, 0, 0, 0, 0, -.07666632, 0, 0, -.07226554, -.08216553, -.0777643, 0, 0, -.04727952, 0, -.06870384, -.05999847, 0, 0, 0, .02772475, .02883079, .03642944, 0, .04148949, 0, 0, 0, .04268012, .03225577, 0, -.05140995, -.05399637, 0, 0, .02432223, 0, .0490674, .0490674, .0490674, 0, 0, 0, 0, 0, 0, 0, 0, .10476315, 0, 0, 0, 0, 0, .07008056, 0, 0, .01667466, 0, .05253941, .04293926, 0, .02692172, 0, 0, .08742411, .04533176, 0, .01831875, 0, .09834951, .09952456, 0, .02945534, .038731, 0, .04435538, 0, -.02357505, 0, 0, -.02357505, .09324722, 0, 0, 0, -.03490683, 0, -.05054474, 0, -.0474724, -.04905931, 0, .02879751, 0, 0, 0, 0, 0, 0, 0, .04439012, 0, .02989959, .02989959, .05468828, .04463226, 0, 0, 0, 0, 0, .01231324, -.01399783, .04595331, .00145386, 0, .06459354, -.0007196, 0, -.07614055, -.08435525, 0, -.10299519, 0, 0, 0, -.00210284, -.00797183, 0, 0, 0, 0, -.03545086, 0, 0, 0, 0, -.061286, -.07666647, 0, -.05902354, -.07652324, -.07645561, 0, 0, 0, -.03292062, 0, 0, 0, 0, -.075417, 0, -.07922532, 0, -.08583414, -.07450142, -.08066016, 0, 0, -.06249051, 0, 0, 0, 0, -.0618688, 0, -.06524737, -.04419825, -.04489509, 0, 0, 0, -.04520512, -.04187583, 0, 0, -.03753508, 0, 0, 0, 0, 0, 0, 0, 0, .06862645, 0, 0, -.00120631, .01947345, 0, 0, .03561932, 0, .03158225, .03608047, 0, 0, 0, -.02899643],

inter2= [-.78348798, -.63418788, 0, 0, 0, .11481193, 0, 0, 0, -.88128799, -1.109488, 0, 0, -.30888793, .29651192, -.36688802, 0, 0, -.59088796, 0, .50561196, 0, 0, 0, 0, 0, 2.1662121, .08891205, 0, 0, 0, 0, 0, 0, -.23918791, 0, -.9575879, -.07728811, .29641202, 1.2273121, 0, 1.5764117, 0, .72131211, 1.279212, 0, 0, 0, 0, 0, 0, 0, 0, 0, .36481193, 1.5480118, -.03078791, 1.389112, 0, .70901209, -.16668792, 1.435812, .47001198, 2.0838118, 1.1673121, 0, 0, 1.4470119, .23301201, 0, 0, -.61948794, -.41388795, .263212, .66171199, 0, 0, 0, 1.6920118, 1.334012, 1.2101121, .41591194, -.48498794, 0, 0, .09911207, 0, -.46908805, .0205119, .0535119, -.14228792, -.55708808, 0, -.54008788, -.30998799, -.10958811, 0, -.01338812, 0, -.51788801, 0, 0, .13271193, -.11208793, 0, -.54508799, 0, .16641192, .95871216, 0, 1.6281118, 0, -.49718806, -.41348812, 0, 0, -.11718794, -.57058805, -.59488791, 0, -.65658802, 0, -.52698797, 0, 0, 0, 0, 0, 1.3500118, 0, 1.665812, 0, 1.963912, 0, 0, 1.9371119, .90991193, -.39558789, .39521196, 0, -.05268808, 0, 0, 0, 0, -.12458798, 0, -.28228804, .79281193, -.26358792, 0, 0, 0, -.72828788, 0, .355912, 0, 0, 0, 0, -.43538806, -1.566388, 0, -.28388807, 0, -.69028801, 0, -.78128809, -.54648799, -.92738789, 0, 0, .61571199, 0, 0, 1.012012, 0, 0, 0, 0, .43991187, .9404121, 0, 0, 0, .61671191, 0, 2.6073117, 0, -.60438794, 0, -.18108793, -.48178813, 0, -.22628804, -.07398792, 0, 0, 0, 1.830512, 0, 0, 0, 0, 0, 0, -.36918804, 1.3247118, 0, 0, 1.163012, 0, 0, 0, 1.3241119, 0, 0, 0, 0, -.90038794, -1.250888, 0, 0, 0, 0, -1.048188, -.90138787, 0, 0, 0, 0, 0, 0, -.00878807, 0, 0, .46301201, -.22048803, -.71518797, 0, 0, -.4952881, 0, -.83718795, .57951194, 0, 0, 0, 1.054112, .61721212, 2.2717118, 0, 2.0280118, 0, 0, 0, 2.6503119, 2.3914118, 0, -.36418793, -.9259879, 0, 0, .16971211, 0, 1.9360118, 2.5344119, 2.0171118, 0, 0, 0, 0, 0, 0, 0, 0, .77211195, 0, 0, 0, 0, 0, 1.952312, 0, 0, .25901201, 0, -.5028879, .03641204, 0, .38571194, 0, 0, -.44528791, -.55918807, 0, .39721206, 0, -.34038803, -.05988808, 0, -.03518792, .045512, 0, -.039288, 0, .01431207, 0, 0, .030412, -.31918809, 0, 0, 0, -.324388, 0, -1.232188, 0, -.23678799, -.89188808, 0, -.6766879, 0, 0, 0, 0, 0, 0, 0, -.67818803, 0, 1.099412, 1.2767119, -.64068788, -.50678796, 0, 0, 0, 0, 0, .68371207, .11251191, -.17128797, .17081194, 0, -.48708794, .09591202, 0, -.20108791, -.02158805, 0, -.3012881, 0, 0, 0, -.87638801, -.54488796, 0, 0, 0, 0, -.14738794, 0, 0, 0, 0, -.75718802, -.37418792, 0, 1.0981121, 1.1441121, .47381189, 0, 0, 0, -.33498809, 0, 0, 0, 0, -.91838807, 0, -.34488794, 0, .12971191, .99381214, -.91608804, 0, 0, .98171192, 0, 0, 0, 0, -.01528808, 0, -.41458794, .25691202, .18601207, 0, 0, 0, -.35608789, .79691201, 0, 0, 1.548912, 0, 0, 0, 0, 0, 0, 0, 0, 1.1663117, 0, 0, -.009088, -.49578807, 0, 0, -.2677879, 0, -.25468799, .68631202, 0, 0, 0, -.36198804])









In [3]:






def load_data_cox(dta):
    array = lambda x : np.array(dta[x], dtype=float)
    t = array('t')
    obs_t = array('obs_t')
    pscenter = array('pscenter')
    hhcenter = array('hhcenter')
    ncomact = array('ncomact')
    rleader = array('rleader')
    dleader = array('dleader')
    inter1 = array('inter1')
    inter2 = array('inter2')
    fail = array('FAIL')
    return (t, obs_t, pscenter, hhcenter, ncomact,
            rleader, dleader, inter1, inter2, fail)









In [4]:






(t, obs_t, pscenter, hhcenter, ncomact, rleader,
     dleader, inter1, inter2, fail) = load_data_cox(dta)









In [5]:






X = np.array([pscenter, hhcenter, ncomact, rleader, dleader, inter1, inter2])









In [6]:






X.shape









Out[6]:






(7, 430)









In [7]:






with Model() as model:

    T = len(t) - 1
    nsubj = len(obs_t)

    # risk set equals one if obs_t >= t
    Y = np.array([[int(obs >= time) for time in t] for obs in obs_t])
    # counting process. jump = 1 if obs_t \in [t[j], t[j+1])
    dN = np.array([[Y[i,j]*int(t[j+1] >= obs_t[i])*fail[i] for j in range(T)] for i in
                    range(nsubj)])

    c = Gamma('c', .0001, .00001)
    r = Gamma('r', .001, .0001)

    dL0_star = r*np.diff(t)

    mu = dL0_star * c # prior mean hazard

    dL0 = Gamma('dL0', mu, c, shape=T)

    beta = Normal('beta', np.zeros(7),
                  np.ones(7)*100, shape=7)

    linear_model = tt.exp(tt.dot(X.T, beta))
    idt = Y[:, :-1] * tt.outer(linear_model, dL0)

    dn_like = Poisson('dn_like', idt, observed=dN)









In [8]:






with model:
    trace = sample(2000, n_init=10000, init='advi_map')













Auto-assigning NUTS sampler...
Initializing NUTS using advi_map...












Warning: Desired error not necessarily achieved due to precision loss.
         Current function value: 2811.898224
         Iterations: 913
         Function evaluations: 999
         Gradient evaluations: 988












Average ELBO = -2,860.41: 100%|██████████| 10000/10000 [00:14<00:00, 674.72it/s]
Finished [100%]: Average ELBO = -2,845.79
100%|██████████| 2000/2000 [02:30<00:00, 13.25it/s]








In [9]:






traceplot(trace);












[image: ../_images/notebooks_cox_model_9_0.png]






In [10]:






forestplot(trace, varnames=['beta'])









Out[10]:






<matplotlib.gridspec.GridSpec at 0x115a44d68>












[image: ../_images/notebooks_cox_model_10_1.png]
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Updating priors

In this notebook, I will show how it is possible to update the priors as
new data becomes available. The example is a slightly modified version
of the linear regression in the Getting started with
PyMC3 [https://github.com/pymc-devs/pymc3/blob/master/docs/source/notebooks/getting_started.ipynb]
notebook.



In [1]:






import matplotlib.pyplot as plt
import matplotlib as mpl
from pymc3 import Model, Normal, Slice
from pymc3 import sample
from pymc3 import traceplot
from pymc3.distributions import Interpolated
from theano import as_op
import theano.tensor as tt
import numpy as np
from scipy import stats

%matplotlib inline








Generating data



In [2]:






# Initialize random number generator
np.random.seed(123)

# True parameter values
alpha_true = 5
beta0_true = 7
beta1_true = 13

# Size of dataset
size = 100

# Predictor variable
X1 = np.random.randn(size)
X2 = np.random.randn(size) * 0.2

# Simulate outcome variable
Y = alpha_true + beta0_true * X1 + beta1_true * X2 + np.random.randn(size)










Model specification

Our initial beliefs about the parameters are quite informative (sd=1)
and a bit off the true values.



In [3]:






basic_model = Model()

with basic_model:

    # Priors for unknown model parameters
    alpha = Normal('alpha', mu=0, sd=1)
    beta0 = Normal('beta0', mu=12, sd=1)
    beta1 = Normal('beta1', mu=18, sd=1)

    # Expected value of outcome
    mu = alpha + beta0 * X1 + beta1 * X2

    # Likelihood (sampling distribution) of observations
    Y_obs = Normal('Y_obs', mu=mu, sd=1, observed=Y)

    # draw 10000 posterior samples
    trace = sample(10000)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 178.22:   9%|▉         | 17840/200000 [00:01<00:14, 12503.42it/s]
Convergence archived at 19000
Interrupted at 19,000 [9%]: Average Loss = 467.35
100%|██████████| 10500/10500 [00:07<00:00, 1319.61it/s]








In [4]:






traceplot(trace);












[image: ../_images/notebooks_updating_priors_8_0.png]




In order to update our beliefs about the parameters, we use the
posterior distributions, which will be used as the prior distributions
for the next inference. The data used for each inference iteration has
to be independent from the previous iterations, otherwise the same
(possibly wrong) belief is injected over and over in the system,
amplifying the errors and misleading the inference. By ensuring the data
is independent, the system should converge to the true parameter values.

Because we draw samples from the posterior distribution (shown on the
right in the figure above), we need to estimate their probability
density (shown on the left in the figure above). Kernel density
estimation [https://en.wikipedia.org/wiki/Kernel_density_estimation]
(KDE) is a way to achieve this, and we will use this technique here. In
any case, it is an empirical distribution that cannot be expressed
analytically. Fortunately PyMC3 provides a way to use custom
distributions, via Interpolated class.



In [5]:






def from_posterior(param, samples):
    smin, smax = np.min(samples), np.max(samples)
    width = smax - smin
    x = np.linspace(smin, smax, 100)
    y = stats.gaussian_kde(samples)(x)

    # what was never sampled should have a small probability but not 0,
    # so we'll extend the domain and use linear approximation of density on it
    x = np.concatenate([[x[0] - 3 * width], x, [x[-1] + 3 * width]])
    y = np.concatenate([[0], y, [0]])
    return Interpolated(param, x, y)







Now we just need to generate more data and build our Bayesian model so
that the prior distributions for the current iteration are the posterior
distributions from the previous iteration. It is still possible to
continue using NUTS sampling method because Interpolated class
implements calculation of gradients that are necessary for Hamiltonian
Monte Carlo samplers.



In [6]:






traces = [trace]









In [7]:






for _ in range(10):

    # generate more data
    X1 = np.random.randn(size)
    X2 = np.random.randn(size) * 0.2
    Y = alpha_true + beta0_true * X1 + beta1_true * X2 + np.random.randn(size)

    model = Model()
    with model:
        # Priors are posteriors from previous iteration
        alpha = from_posterior('alpha', trace['alpha'])
        beta0 = from_posterior('beta0', trace['beta0'])
        beta1 = from_posterior('beta1', trace['beta1'])

        # Expected value of outcome
        mu = alpha + beta0 * X1 + beta1 * X2

        # Likelihood (sampling distribution) of observations
        Y_obs = Normal('Y_obs', mu=mu, sd=1, observed=Y)

        # draw 10000 posterior samples
        trace = sample(10000)
        traces.append(trace)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 134.38:  76%|███████▌  | 151778/200000 [00:26<00:10, 4430.76it/s]
Convergence archived at 152000
Interrupted at 152,000 [76%]: Average Loss = 135.22
100%|██████████| 10500/10500 [00:22<00:00, 471.27it/s]
Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 133.92: 100%|██████████| 200000/200000 [00:35<00:00, 5604.42it/s]
Finished [100%]: Average Loss = 133.93
100%|██████████| 10500/10500 [00:17<00:00, 609.08it/s]
Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 146.08: 100%|██████████| 200000/200000 [00:34<00:00, 5721.10it/s]
Finished [100%]: Average Loss = 146.08
100%|██████████| 10500/10500 [00:20<00:00, 501.26it/s]
Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 139.86: 100%|██████████| 200000/200000 [00:36<00:00, 5436.09it/s]
Finished [100%]: Average Loss = 139.86
100%|██████████| 10500/10500 [00:15<00:00, 665.97it/s]
Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 142.14: 100%|██████████| 200000/200000 [00:38<00:00, 5232.45it/s]
Finished [100%]: Average Loss = 142.14
100%|██████████| 10500/10500 [00:18<00:00, 571.45it/s]
Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 144.7: 100%|██████████| 200000/200000 [00:35<00:00, 5702.77it/s]
Finished [100%]: Average Loss = 144.7
100%|██████████| 10500/10500 [00:18<00:00, 578.01it/s]
Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 136.71: 100%|██████████| 200000/200000 [00:35<00:00, 5574.27it/s]
Finished [100%]: Average Loss = 136.71
100%|██████████| 10500/10500 [00:19<00:00, 543.68it/s]
Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 149.03: 100%|██████████| 200000/200000 [00:37<00:00, 5387.42it/s]
Finished [100%]: Average Loss = 149.03
 99%|█████████▉| 10420/10500 [00:15<00:00, 814.47it/s]/Users/alex/src/pymc3/pymc3/step_methods/hmc/nuts.py:247: UserWarning: Chain 0 contains diverging samples after tuning. If increasing `target_accept` doesn't help, try to reparameterize.
  "try to reparameterize." % chain)
100%|██████████| 10500/10500 [00:15<00:00, 677.70it/s]
Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 135.59: 100%|██████████| 200000/200000 [00:38<00:00, 5164.57it/s]
Finished [100%]: Average Loss = 135.59
100%|██████████| 10500/10500 [00:16<00:00, 644.75it/s]
Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 145.41: 100%|██████████| 200000/200000 [00:35<00:00, 5597.51it/s]
Finished [100%]: Average Loss = 145.41
100%|██████████| 10500/10500 [00:16<00:00, 619.25it/s]








In [8]:






print('Posterior distributions after ' + str(len(traces)) + ' iterations.')
cmap = mpl.cm.autumn
for param in ['alpha', 'beta0', 'beta1']:
    plt.figure(figsize=(8, 2))
    for update_i, trace in enumerate(traces):
        samples = trace[param]
        smin, smax = np.min(samples), np.max(samples)
        x = np.linspace(smin, smax, 100)
        y = stats.gaussian_kde(samples)(x)
        plt.plot(x, y, color=cmap(1 - update_i / len(traces)))
    plt.axvline({'alpha': alpha_true, 'beta0': beta0_true, 'beta1': beta1_true}[param], c='k')
    plt.ylabel('Frequency')
    plt.title(param)
    plt.show()













Posterior distributions after 11 iterations.
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You can re-execute the last two cells to generate more updates.

What is interesting to note is that the posterior distributions for our
parameters tend to get centered on their true value (vertical lines),
and the distribution gets thiner and thiner. This means that we get more
confident each time, and the (false) belief we had at the beginning gets
flushed away by the new data we incorporate.
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Sequential Monte Carlo with two gaussians

Sampling from \(n\)-dimensional distributions with multiple peaks
with a standard Metropolis-Hastings algorithm can be difficult, if not
impossible, as the Markov chain often gets stuck in either of the
minima.

This problem can be avoided by running many (n_chains) Markov chains
in parallel for (n_steps) steps. To speed this process up we do not
sample right away from the posterior distribution, but rather from an
intermediate distribution that is similar to the previous distribution.
Once the sampling for all the chains is finished, the algorithm enters a
‘transitional stage’.

In this stage the similarity between the intermediate distributions is
evaluated by a tempering parameter (beta), which is automatically
determined from the sampling results (coefficient of variation - COV)
from the previous intermediate distribution. If the COV is high the
cooling is slow, resulting in small steps in beta and vice versa.
Also based on the parameter distributions the MultivariateProposal
is updated and new seed points for the following Markov chains are
determined. The end points of the Markov chains with the highest
likelihoods are chosen as new seed-points for the Markov chains of the
next sampling stage.

So the sampling of the intermediate distribution is repeated until
beta > 1, which means that the posterior distribution is reached.



In [1]:






import pymc3 as pm
import numpy as np
from pymc3.step_methods import smc
import theano.tensor as tt
from matplotlib import pyplot as plt
from tempfile import mkdtemp
import shutil
%matplotlib inline

test_folder = mkdtemp(prefix='ATMIP_TEST')







The number of Markov chains and the number of steps each Markov chain is
sampling has to be defined, as well as the tune_interval and the
number of processors to be used in the parallel sampling. In this very
simple example using only one processor is faster than forking the
interpreter. However, if the calculation cost of the model increases it
becomes more efficient to use many processors.



In [2]:






n_chains = 500
n_steps = 100
tune_interval = 25
n_jobs = 1







Define the number of dimensions for the multivariate gaussians, their
weights and the covariance matrix.



In [3]:






n = 4

mu1 = np.ones(n) * (1. / 2)
mu2 = -mu1

stdev = 0.1
sigma = np.power(stdev, 2) * np.eye(n)
isigma = np.linalg.inv(sigma)
dsigma = np.linalg.det(sigma)

w1 = 0.1
w2 = (1 - w1)







The PyMC3 model. Note that we are making two gaussians, where one has
w1 (90%) of the mass:



In [4]:






def two_gaussians(x):
    log_like1 = - 0.5 * n * tt.log(2 * np.pi) \
                - 0.5 * tt.log(dsigma) \
                - 0.5 * (x - mu1).T.dot(isigma).dot(x - mu1)
    log_like2 = - 0.5 * n * tt.log(2 * np.pi) \
                - 0.5 * tt.log(dsigma) \
                - 0.5 * (x - mu2).T.dot(isigma).dot(x - mu2)
    return tt.log(w1 * tt.exp(log_like1) + w2 * tt.exp(log_like2))


with pm.Model() as ATMIP_test:
    X = pm.Uniform('X',
                   shape=n,
                   lower=-2. * np.ones_like(mu1),
                   upper=2. * np.ones_like(mu1),
                   testval=-1. * np.ones_like(mu1),
                   transform=None)
    like = pm.Deterministic('like', two_gaussians(X))
    llk = pm.Potential('like', like)







Note: In contrast to other pymc3 samplers here we have to define a
random variable like that contains the model likelihood. The
likelihood has to be stored in the sampling traces along with the model
parameter samples, in order to determine the coefficient of variation
[COV] in each transition stage.

Now the sampler is initialised dependent on the previous specifications:



In [5]:






with ATMIP_test:
    step = smc.SMC(
        n_chains=n_chains, tune_interval=tune_interval,
        likelihood_name=ATMIP_test.deterministics[0].name)













/home/jovyan/pymc3/pymc3/step_methods/smc.py:144: UserWarning: Warning: SMC is an experimental step method, and not yet recommended for use in PyMC3!
  warnings.warn(EXPERIMENTAL_WARNING)






Finally, the sampling is executed:



In [6]:






mtrace = smc.ATMIP_sample(
    n_steps=n_steps,
    step=step,
    n_jobs=n_jobs,
    progressbar=False,
    stage='0',
    homepath=test_folder,
    model=ATMIP_test,
    rm_flag=True)













/home/jovyan/pymc3/pymc3/step_methods/smc.py:549: UserWarning: Warning: SMC is an experimental step method, and not yet recommended for use in PyMC3!
  warnings.warn(EXPERIMENTAL_WARNING)
Sample initial stage: ...
Beta: 0.000000 Stage: 0
Initialising chain traces ...
Sampling ...
Beta: 0.010404 Stage: 1
Initialising chain traces ...
Sampling ...
Beta: 0.028533 Stage: 2
Initialising chain traces ...
Sampling ...
Beta: 0.062573 Stage: 3
Initialising chain traces ...
Sampling ...
Beta: 0.133869 Stage: 4
Initialising chain traces ...
Sampling ...
Beta: 0.279577 Stage: 5
Initialising chain traces ...
Sampling ...
Beta: 0.569002 Stage: 6
Initialising chain traces ...
Sampling ...
Beta > 1.: 1.205892
Sample final stage
Initialising chain traces ...
Sampling ...






Note: Complex models run for a long time and might stop for some reason
during the sampling. In order to restart the sampling in the stage when
the sampler stopped, set the stage argument to the right stage number
(“stage='4'”). The rm_flag determines whether existing results
are deleted - there is NO additional warning, so the user should pay
attention to that one!

Plotting the results using the traceplot:



In [7]:






_ = pm.traceplot(mtrace, combined=True)












[image: ../_images/notebooks_SMC2_gaussians_15_0.png]




Finally, we delete the sampling result folder. This folder may occupy
significant disc-space (Gigabytes), depending on the number of sampling
parameters for complex models. So we advice the user to check in advance
if there is enough space on the disc.



In [8]:






shutil.rmtree(test_folder)
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Profiling

Sometimes computing the likelihood is not as fast as we would like.
Theano provides handy profiling tools, which pymc3 provides a wrapper
model.profile which returns a ProfileStats object. Here we’ll
profile the likelihood and gradient for the stochastic volatility
example.

First we build the model.



In [1]:






import numpy as np
from pymc3 import *
from pymc3.math import exp
from pymc3.distributions.timeseries import *

n = 400
returns = np.genfromtxt(get_data('SP500.csv'))[-n:]
with Model() as model:
    sigma = Exponential('sigma', 1. / .02, testval=.1)
    nu = Exponential('nu', 1. / 10)
    s = GaussianRandomWalk('s', sigma ** -2, shape=n)
    r = StudentT('r', nu, lam=exp(-2 * s), observed=returns)








Then call profile and summarize it.



In [2]:






model.profile(model.logpt).summary()














Function profiling
==================
  Message: /home/jovyan/pymc3/pymc3/model.py:605
  Time in 1000 calls to Function.__call__: 1.775136e-01s
  Time in Function.fn.__call__: 1.416550e-01s (79.800%)
  Time in thunks: 8.041668e-02s (45.302%)
  Total compile time: 1.353232e+00s
    Number of Apply nodes: 20
    Theano Optimizer time: 6.614311e-01s
       Theano validate time: 4.212379e-03s
    Theano Linker time (includes C, CUDA code generation/compiling): 6.327283e-01s
       Import time 3.420997e-02s
       Node make_thunk time 6.312668e-01s
           Node Elemwise{Composite{(Switch(Identity(GT(i0, i1)), (i2 - (i3 * i0)), i4) + i5 + Switch(Identity(GT(i6, i1)), (i7 - (i8 * i6)), i4) + i9 + i10 + i11)}}[(0, 0)](Elemwise{exp,no_inplace}.0, TensorConstant{0}, TensorConstant{3.9120230674743652}, TensorConstant{50.0}, TensorConstant{-inf}, sigma_log_, Elemwise{exp,no_inplace}.0, TensorConstant{-2.3025850929940455}, TensorConstant{0.1}, nu_log_, Sum{acc_dtype=float64}.0, Sum{acc_dtype=float64}.0) time 5.813510e-01s
           Node InplaceDimShuffle{x}(sigma) time 5.518913e-03s
           Node Elemwise{Composite{Switch(Identity((GT(Composite{exp((i0 * i1))}(i0, i1), i2) * i3 * GT(inv(sqrt(Composite{exp((i0 * i1))}(i0, i1))), i2))), (((i4 + (i5 * log(((i6 * Composite{exp((i0 * i1))}(i0, i1)) / i7)))) - i8) - (i5 * i9 * log1p(((Composite{exp((i0 * i1))}(i0, i1) * i10) / i7)))), i11)}}(TensorConstant{(1,) of -2.0}, s, TensorConstant{(1,) of 0}, Elemwise{gt,no_inplace}.0, Elemwise{Composite{scalar_gammaln((i0 * i1))}}.0, TensorConstant{(1,) of 0.5}, TensorConstant{(1,) of 0...8309886184}, InplaceDimShuffle{x}.0, Elemwise{Composite{scalar_gammaln((i0 * i1))}}.0, Elemwise{add,no_inplace}.0, TensorConstant{[  4.05769..48400e-06]}, TensorConstant{(1,) of -inf}) time 5.294800e-03s
           Node Elemwise{Composite{inv(sqr(i0))}}(InplaceDimShuffle{x}.0) time 4.826069e-03s
           Node Elemwise{Composite{log((i0 * i1))}}(TensorConstant{(1,) of 0...9154943092}, Elemwise{Composite{inv(sqr(i0))}}.0) time 4.477978e-03s

Time in all call to theano.grad() 0.000000e+00s
Time since theano import 10.620s
Class
---
<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Class name>
  71.7%    71.7%       0.058s       4.81e-06s     C    12000      12   theano.tensor.elemwise.Elemwise
   7.4%    79.1%       0.006s       2.98e-06s     C     2000       2   theano.tensor.elemwise.Sum
   7.2%    86.3%       0.006s       2.90e-06s     C     2000       2   theano.tensor.subtensor.Subtensor
   7.0%    93.4%       0.006s       2.83e-06s     C     2000       2   theano.tensor.elemwise.DimShuffle
   6.6%   100.0%       0.005s       2.66e-06s     C     2000       2   theano.compile.ops.ViewOp
   ... (remaining 0 Classes account for   0.00%(0.00s) of the runtime)

Ops
---
<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Op name>
  30.5%    30.5%       0.025s       2.45e-05s     C     1000        1   Elemwise{Composite{Switch(Identity((GT(Composite{exp((i0 * i1))}(i0, i1), i2) * i3 * GT(inv(sqrt(Composite{exp((i0 * i1))}(i0, i1))), i2))), (((i4 + (i5 * log(((i6 * Composite{exp((i0 * i1))}(i0, i1)) / i7)))) - i8) - (i5 * i9 * log1p(((Composite{exp((i0 * i1))}(i0, i1) * i10) / i7)))), i11)}}
   7.5%    38.0%       0.006s       3.02e-06s     C     2000        2   Elemwise{exp,no_inplace}
   7.4%    45.4%       0.006s       2.98e-06s     C     2000        2   Sum{acc_dtype=float64}
   7.0%    52.5%       0.006s       2.83e-06s     C     2000        2   InplaceDimShuffle{x}
   7.0%    59.4%       0.006s       2.81e-06s     C     2000        2   Elemwise{Composite{scalar_gammaln((i0 * i1))}}
   6.6%    66.1%       0.005s       2.66e-06s     C     2000        2   ViewOp
   5.1%    71.2%       0.004s       4.14e-06s     C     1000        1   Elemwise{Composite{Switch(i0, (i1 * ((-(i2 * sqr((i3 - i4)))) + i5)), i6)}}
   3.9%    75.1%       0.003s       3.16e-06s     C     1000        1   Elemwise{Composite{(Switch(Identity(GT(i0, i1)), (i2 - (i3 * i0)), i4) + i5 + Switch(Identity(GT(i6, i1)), (i7 - (i8 * i6)), i4) + i9 + i10 + i11)}}[(0, 0)]
   3.8%    78.9%       0.003s       3.02e-06s     C     1000        1   Subtensor{int64::}
   3.6%    82.5%       0.003s       2.93e-06s     C     1000        1   Elemwise{gt,no_inplace}
   3.6%    86.2%       0.003s       2.92e-06s     C     1000        1   Elemwise{Composite{log((i0 * i1))}}
   3.6%    89.8%       0.003s       2.89e-06s     C     1000        1   Elemwise{Composite{Identity(GT(inv(sqrt(i0)), i1))}}
   3.5%    93.2%       0.003s       2.78e-06s     C     1000        1   Subtensor{:int64:}
   3.4%    96.7%       0.003s       2.76e-06s     C     1000        1   Elemwise{add,no_inplace}
   3.3%   100.0%       0.003s       2.69e-06s     C     1000        1   Elemwise{Composite{inv(sqr(i0))}}
   ... (remaining 0 Ops account for   0.00%(0.00s) of the runtime)

Apply
------
<% time> <sum %> <apply time> <time per call> <#call> <id> <Apply name>
  30.5%    30.5%       0.025s       2.45e-05s   1000    16   Elemwise{Composite{Switch(Identity((GT(Composite{exp((i0 * i1))}(i0, i1), i2) * i3 * GT(inv(sqrt(Composite{exp((i0 * i1))}(i0, i1))), i2))), (((i4 + (i5 * log(((i6 * Composite{exp((i0 * i1))}(i0, i1)) / i7)))) - i8) - (i5 * i9 * log1p(((Composite{exp((i0 * i1))}(i0, i1) * i10) / i7)))), i11)}}(TensorConstant{(1,) of -2.0}, s, TensorConstant{(1,) of 0}, Elemwise{gt,no_inplace}.0, Elemwise{Composite{scalar_gammaln((i0 * i1))}}.0, TensorConstant{(1,) o
   5.1%    35.6%       0.004s       4.14e-06s   1000    15   Elemwise{Composite{Switch(i0, (i1 * ((-(i2 * sqr((i3 - i4)))) + i5)), i6)}}(Elemwise{Composite{Identity(GT(inv(sqrt(i0)), i1))}}.0, TensorConstant{(1,) of 0.5}, Elemwise{Composite{inv(sqr(i0))}}.0, Subtensor{int64::}.0, Subtensor{:int64:}.0, Elemwise{Composite{log((i0 * i1))}}.0, TensorConstant{(1,) of -inf})
   3.9%    39.6%       0.003s       3.16e-06s   1000    19   Elemwise{Composite{(Switch(Identity(GT(i0, i1)), (i2 - (i3 * i0)), i4) + i5 + Switch(Identity(GT(i6, i1)), (i7 - (i8 * i6)), i4) + i9 + i10 + i11)}}[(0, 0)](Elemwise{exp,no_inplace}.0, TensorConstant{0}, TensorConstant{3.9120230674743652}, TensorConstant{50.0}, TensorConstant{-inf}, sigma_log_, Elemwise{exp,no_inplace}.0, TensorConstant{-2.3025850929940455}, TensorConstant{0.1}, nu_log_, Sum{acc_dtype=float64}.0, Sum{acc_dtype=float64}.0)
   3.9%    43.5%       0.003s       3.14e-06s   1000     0   Elemwise{exp,no_inplace}(sigma_log_)
   3.8%    47.2%       0.003s       3.03e-06s   1000    17   Sum{acc_dtype=float64}(Elemwise{Composite{Switch(i0, (i1 * ((-(i2 * sqr((i3 - i4)))) + i5)), i6)}}.0)
   3.8%    51.0%       0.003s       3.02e-06s   1000     3   Subtensor{int64::}(s, Constant{1})
   3.7%    54.7%       0.003s       2.99e-06s   1000    14   Elemwise{Composite{scalar_gammaln((i0 * i1))}}(TensorConstant{(1,) of 0.5}, Elemwise{add,no_inplace}.0)
   3.6%    58.4%       0.003s       2.93e-06s   1000    18   Sum{acc_dtype=float64}(Elemwise{Composite{Switch(Identity((GT(Composite{exp((i0 * i1))}(i0, i1), i2) * i3 * GT(inv(sqrt(Composite{exp((i0 * i1))}(i0, i1))), i2))), (((i4 + (i5 * log(((i6 * Composite{exp((i0 * i1))}(i0, i1)) / i7)))) - i8) - (i5 * i9 * log1p(((Composite{exp((i0 * i1))}(i0, i1) * i10) / i7)))), i11)}}.0)
   3.6%    62.0%       0.003s       2.93e-06s   1000    11   Elemwise{gt,no_inplace}(InplaceDimShuffle{x}.0, TensorConstant{(1,) of 0})
   3.6%    65.6%       0.003s       2.92e-06s   1000    12   Elemwise{Composite{log((i0 * i1))}}(TensorConstant{(1,) of 0...9154943092}, Elemwise{Composite{inv(sqr(i0))}}.0)
   3.6%    69.2%       0.003s       2.91e-06s   1000     1   Elemwise{exp,no_inplace}(nu_log_)
   3.6%    72.8%       0.003s       2.89e-06s   1000    13   Elemwise{Composite{Identity(GT(inv(sqrt(i0)), i1))}}(Elemwise{Composite{inv(sqr(i0))}}.0, TensorConstant{(1,) of 0})
   3.6%    76.4%       0.003s       2.86e-06s   1000     6   InplaceDimShuffle{x}(sigma)
   3.5%    79.9%       0.003s       2.81e-06s   1000     7   InplaceDimShuffle{x}(nu)
   3.5%    83.3%       0.003s       2.78e-06s   1000     2   Subtensor{:int64:}(s, Constant{-1})
   3.4%    86.8%       0.003s       2.76e-06s   1000     9   Elemwise{add,no_inplace}(TensorConstant{(1,) of 1.0}, InplaceDimShuffle{x}.0)
   3.3%    90.1%       0.003s       2.69e-06s   1000     8   Elemwise{Composite{inv(sqr(i0))}}(InplaceDimShuffle{x}.0)
   3.3%    93.4%       0.003s       2.68e-06s   1000     5   ViewOp(Elemwise{exp,no_inplace}.0)
   3.3%    96.7%       0.003s       2.65e-06s   1000     4   ViewOp(Elemwise{exp,no_inplace}.0)
   3.3%   100.0%       0.003s       2.63e-06s   1000    10   Elemwise{Composite{scalar_gammaln((i0 * i1))}}(TensorConstant{(1,) of 0.5}, InplaceDimShuffle{x}.0)
   ... (remaining 0 Apply instances account for 0.00%(0.00s) of the runtime)

Here are tips to potentially make your code run faster
                 (if you think of new ones, suggest them on the mailing list).
                 Test them first, as they are not guaranteed to always provide a speedup.
  - Try the Theano flag floatX=float32
We don't know if amdlibm will accelerate this scalar op. scalar_gammaln
We don't know if amdlibm will accelerate this scalar op. scalar_gammaln
  - Try installing amdlibm and set the Theano flag lib.amdlibm=True. This speeds up only some Elemwise operation.
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model.profile(gradient(model.logpt, model.vars)).summary()













Function profiling
==================
  Message: /home/jovyan/pymc3/pymc3/model.py:605
  Time in 1000 calls to Function.__call__: 3.743136e-01s
  Time in Function.fn.__call__: 3.272467e-01s (87.426%)
  Time in thunks: 1.778915e-01s (47.525%)
  Total compile time: 1.396206e+00s
    Number of Apply nodes: 47
    Theano Optimizer time: 6.084559e-01s
       Theano validate time: 1.443505e-02s
    Theano Linker time (includes C, CUDA code generation/compiling): 7.295318e-01s
       Import time 8.256626e-02s
       Node make_thunk time 7.264183e-01s
           Node Elemwise{Composite{Switch(i0, (i1 * (i2 + ((i3 * i4 * i5 * i6) / i7))), i8)}}[(0, 6)](Elemwise{Composite{Identity((GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1)))}}.0, TensorConstant{(1,) of -2.0}, TensorConstant{(1,) of 0.5}, TensorConstant{(1,) of -0.5}, InplaceDimShuffle{x}.0, TensorConstant{[  4.05769..48400e-06]}, Elemwise{Composite{exp((i0 * i1))}}.0, Elemwise{Add}[(0, 1)].0, TensorConstant{(1,) of 0}) time 5.903370e-01s
           Node Join(TensorConstant{0}, Rebroadcast{1}.0, Rebroadcast{1}.0, IncSubtensor{InplaceInc;:int64:}.0) time 1.472402e-02s
           Node Elemwise{Composite{Switch(i0, ((i1 * i2 * i3 * i4) / i5), i6)}}(Elemwise{Composite{Identity((GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1)))}}.0, TensorConstant{(1,) of 0.5}, InplaceDimShuffle{x}.0, Elemwise{Composite{exp((i0 * i1))}}.0, TensorConstant{[  4.05769..48400e-06]}, Elemwise{Add}[(0, 1)].0, TensorConstant{(1,) of 0}) time 1.461983e-02s
           Node Elemwise{Composite{Switch(i0, (i1 * i2 * i3), i4)}}(Elemwise{Composite{Identity(GT(inv(sqrt(i0)), i1))}}.0, TensorConstant{(1,) of -1.0}, InplaceDimShuffle{x}.0, Elemwise{sub,no_inplace}.0, TensorConstant{(1,) of 0}) time 7.709503e-03s
           Node Elemwise{Composite{(i0 + Switch(Identity(GT(i1, i2)), (i3 * i1), i2) + (((i4 * i5 * psi((i4 * i6))) + (i7 * (i8 / i9)) + (i4 * i10 * psi((i4 * i9))) + (i4 * i11) + (i12 / i9)) * i1))}}[(0, 5)](TensorConstant{1.0}, Elemwise{exp,no_inplace}.0, TensorConstant{0}, TensorConstant{-0.1}, TensorConstant{0.5}, Sum{acc_dtype=float64}.0, Elemwise{add,no_inplace}.0, TensorConstant{3.141592653589793}, Sum{acc_dtype=float64}.0, nu, Sum{acc_dtype=float64}.0, Sum{acc_dtype=float64}.0, Sum{acc_dtype=float64}.0) time 7.651806e-03s

Time in all call to theano.grad() 7.784910e-01s
Time since theano import 13.326s
Class
---
<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Class name>
  54.0%    54.0%       0.096s       4.00e-06s     C    24000      24   theano.tensor.elemwise.Elemwise
  12.9%    66.9%       0.023s       3.29e-06s     C     7000       7   theano.tensor.elemwise.Sum
   6.4%    73.3%       0.011s       5.70e-06s     C     2000       2   theano.tensor.subtensor.IncSubtensor
   4.9%    78.2%       0.009s       2.88e-06s     C     3000       3   theano.tensor.elemwise.DimShuffle
   3.8%    81.9%       0.007s       6.69e-06s     C     1000       1   theano.tensor.basic.Join
   3.7%    85.6%       0.007s       3.28e-06s     C     2000       2   theano.tensor.subtensor.Subtensor
   3.4%    89.0%       0.006s       3.04e-06s     C     2000       2   theano.tensor.basic.Reshape
   3.2%    92.3%       0.006s       5.70e-06s     C     1000       1   theano.tensor.basic.Alloc
   3.1%    95.4%       0.006s       2.76e-06s     C     2000       2   theano.compile.ops.ViewOp
   3.0%    98.3%       0.005s       2.66e-06s     C     2000       2   theano.compile.ops.Rebroadcast
   1.7%   100.0%       0.003s       2.95e-06s     C     1000       1   theano.compile.ops.Shape_i
   ... (remaining 0 Classes account for   0.00%(0.00s) of the runtime)

Ops
---
<% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Op name>
  12.9%    12.9%       0.023s       3.29e-06s     C     7000        7   Sum{acc_dtype=float64}
   7.6%    20.6%       0.014s       3.40e-06s     C     4000        4   Elemwise{Switch}
   4.9%    25.4%       0.009s       2.88e-06s     C     3000        3   InplaceDimShuffle{x}
   4.8%    30.2%       0.009s       8.55e-06s     C     1000        1   Elemwise{Composite{Switch(i0, (-log1p((i1 / i2))), i3)}}
   4.0%    34.3%       0.007s       7.18e-06s     C     1000        1   IncSubtensor{InplaceInc;int64::}
   4.0%    38.2%       0.007s       3.53e-06s     C     2000        2   Elemwise{exp,no_inplace}
   3.8%    42.0%       0.007s       6.69e-06s     C     1000        1   Join
   3.6%    45.6%       0.006s       6.32e-06s     C     1000        1   Elemwise{Composite{exp((i0 * i1))}}
   3.4%    49.0%       0.006s       3.04e-06s     C     2000        2   Reshape{1}
   3.2%    52.2%       0.006s       5.70e-06s     C     1000        1   Alloc
   3.1%    55.3%       0.006s       2.76e-06s     C     2000        2   ViewOp
   3.0%    58.3%       0.005s       2.66e-06s     C     2000        2   Rebroadcast{1}
   2.9%    61.2%       0.005s       5.22e-06s     C     1000        1   Elemwise{Composite{Switch(i0, (i1 * (i2 + ((i3 * i4 * i5 * i6) / i7))), i8)}}[(0, 6)]
   2.9%    64.1%       0.005s       5.19e-06s     C     1000        1   Elemwise{Composite{Switch(i0, ((i1 * i2 * i3 * i4) / i5), i6)}}
   2.9%    67.0%       0.005s       5.14e-06s     C     1000        1   Elemwise{Composite{Identity((GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1)))}}
   2.4%    69.4%       0.004s       4.31e-06s     C     1000        1   Elemwise{Composite{(i0 + Switch(Identity(GT(i1, i2)), (i3 * i1), i2) + (((i4 * i5 * psi((i4 * i6))) + (i7 * (i8 / i9)) + (i4 * i10 * psi((i4 * i9))) + (i4 * i11) + (i12 / i9)) * i1))}}[(0, 5)]
   2.4%    71.8%       0.004s       4.23e-06s     C     1000        1   IncSubtensor{InplaceInc;:int64:}
   2.2%    74.0%       0.004s       3.96e-06s     C     1000        1   Elemwise{Composite{Switch(i0, (i1 * i2 * i3), i4)}}
   2.2%    76.3%       0.004s       3.94e-06s     C     1000        1   Elemwise{sub,no_inplace}
   2.2%    78.4%       0.004s       3.83e-06s     C     1000        1   Elemwise{Composite{Switch(i0, (i1 * sqr(i2)), i3)}}
   ... (remaining 12 Ops account for  21.59%(0.04s) of the runtime)

Apply
------
<% time> <sum %> <apply time> <time per call> <#call> <id> <Apply name>
   4.8%     4.8%       0.009s       8.55e-06s   1000    22   Elemwise{Composite{Switch(i0, (-log1p((i1 / i2))), i3)}}(Elemwise{Composite{Identity((GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1)))}}.0, Elemwise{mul,no_inplace}.0, InplaceDimShuffle{x}.0, TensorConstant{(1,) of 0})
   4.0%     8.8%       0.007s       7.18e-06s   1000    39   IncSubtensor{InplaceInc;int64::}(Elemwise{Composite{Switch(i0, (i1 * (i2 + ((i3 * i4 * i5 * i6) / i7))), i8)}}[(0, 6)].0, Elemwise{Composite{Switch(i0, (i1 * i2 * i3), i4)}}.0, Constant{1})
   3.8%    12.6%       0.007s       6.69e-06s   1000    46   Join(TensorConstant{0}, Rebroadcast{1}.0, Rebroadcast{1}.0, IncSubtensor{InplaceInc;:int64:}.0)
   3.6%    16.2%       0.006s       6.32e-06s   1000     5   Elemwise{Composite{exp((i0 * i1))}}(TensorConstant{(1,) of -2.0}, s)
   3.2%    19.4%       0.006s       5.70e-06s   1000    29   Alloc(Elemwise{switch,no_inplace}.0, Elemwise{Composite{(i0 - Switch(LT(i1, i0), i2, i0))}}[(0, 0)].0)
   2.9%    22.3%       0.005s       5.22e-06s   1000    36   Elemwise{Composite{Switch(i0, (i1 * (i2 + ((i3 * i4 * i5 * i6) / i7))), i8)}}[(0, 6)](Elemwise{Composite{Identity((GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1)))}}.0, TensorConstant{(1,) of -2.0}, TensorConstant{(1,) of 0.5}, TensorConstant{(1,) of -0.5}, InplaceDimShuffle{x}.0, TensorConstant{[  4.05769..48400e-06]}, Elemwise{Composite{exp((i0 * i1))}}.0, Elemwise{Add}[(0, 1)].0, TensorConstant{(1,) of 0})
   2.9%    25.2%       0.005s       5.19e-06s   1000    34   Elemwise{Composite{Switch(i0, ((i1 * i2 * i3 * i4) / i5), i6)}}(Elemwise{Composite{Identity((GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1)))}}.0, TensorConstant{(1,) of 0.5}, InplaceDimShuffle{x}.0, Elemwise{Composite{exp((i0 * i1))}}.0, TensorConstant{[  4.05769..48400e-06]}, Elemwise{Add}[(0, 1)].0, TensorConstant{(1,) of 0})
   2.9%    28.1%       0.005s       5.14e-06s   1000    18   Elemwise{Composite{Identity((GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1)))}}(Elemwise{Composite{exp((i0 * i1))}}.0, TensorConstant{(1,) of 0}, Elemwise{gt,no_inplace}.0)
   2.4%    30.5%       0.004s       4.31e-06s   1000    40   Elemwise{Composite{(i0 + Switch(Identity(GT(i1, i2)), (i3 * i1), i2) + (((i4 * i5 * psi((i4 * i6))) + (i7 * (i8 / i9)) + (i4 * i10 * psi((i4 * i9))) + (i4 * i11) + (i12 / i9)) * i1))}}[(0, 5)](TensorConstant{1.0}, Elemwise{exp,no_inplace}.0, TensorConstant{0}, TensorConstant{-0.1}, TensorConstant{0.5}, Sum{acc_dtype=float64}.0, Elemwise{add,no_inplace}.0, TensorConstant{3.141592653589793}, Sum{acc_dtype=float64}.0, nu, Sum{acc_dtype=float64}.0, Sum{
   2.4%    32.9%       0.004s       4.23e-06s   1000    42   IncSubtensor{InplaceInc;:int64:}(IncSubtensor{InplaceInc;int64::}.0, Elemwise{Composite{Switch(i0, (i1 * i2), i3)}}[(0, 2)].0, Constant{-1})
   2.2%    35.1%       0.004s       3.96e-06s   1000    19   Elemwise{Composite{Switch(i0, (i1 * i2 * i3), i4)}}(Elemwise{Composite{Identity(GT(inv(sqrt(i0)), i1))}}.0, TensorConstant{(1,) of -1.0}, InplaceDimShuffle{x}.0, Elemwise{sub,no_inplace}.0, TensorConstant{(1,) of 0})
   2.2%    37.3%       0.004s       3.94e-06s   1000     7   Elemwise{sub,no_inplace}(Subtensor{int64::}.0, Subtensor{:int64:}.0)
   2.2%    39.5%       0.004s       3.88e-06s   1000     3   Elemwise{exp,no_inplace}(sigma_log_)
   2.2%    41.7%       0.004s       3.83e-06s   1000    20   Elemwise{Composite{Switch(i0, (i1 * sqr(i2)), i3)}}(Elemwise{Composite{Identity(GT(inv(sqrt(i0)), i1))}}.0, TensorConstant{(1,) of 0.5}, Elemwise{sub,no_inplace}.0, TensorConstant{(1,) of 0})
   2.1%    43.7%       0.004s       3.66e-06s   1000    10   Elemwise{mul,no_inplace}(Elemwise{Composite{exp((i0 * i1))}}.0, TensorConstant{[  4.05769..48400e-06]})
   2.0%    45.8%       0.004s       3.62e-06s   1000    38   Elemwise{Composite{(i0 + Switch(Identity(GT(i1, i2)), (i3 * i1), i2) + (i4 * (((i5 * i6 * Composite{inv(Composite{(sqr(i0) * i0)}(i0))}(i7)) / i8) - (i9 * Composite{inv(Composite{(sqr(i0) * i0)}(i0))}(i7))) * i1))}}[(0, 6)](TensorConstant{1.0}, Elemwise{exp,no_inplace}.0, TensorConstant{0}, TensorConstant{-50.0}, TensorConstant{-2.0}, TensorConstant{0.5}, Sum{acc_dtype=float64}.0, sigma, Elemwise{Composite{inv(sqr(i0))}}.0, Sum{acc_dtype=float64}.0)
   2.0%    47.7%       0.003s       3.48e-06s   1000    25   Elemwise{Switch}(Elemwise{Composite{Identity((GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1)))}}.0, TensorConstant{(1,) of 1.0}, TensorConstant{(1,) of 0.0})
   1.9%    49.7%       0.003s       3.45e-06s   1000    24   Elemwise{switch,no_inplace}(Elemwise{Composite{Identity((GT(i0, i1) * i2 * GT(inv(sqrt(i0)), i1)))}}.0, TensorConstant{(1,) of -0..9154943092}, TensorConstant{(1,) of 0})
   1.9%    51.6%       0.003s       3.44e-06s   1000     2   Subtensor{int64::}(s, Constant{1})
   1.9%    53.5%       0.003s       3.44e-06s   1000    35   Sum{acc_dtype=float64}(Alloc.0)
   ... (remaining 27 Apply instances account for 46.46%(0.08s) of the runtime)

Here are tips to potentially make your code run faster
                 (if you think of new ones, suggest them on the mailing list).
                 Test them first, as they are not guaranteed to always provide a speedup.
  - Try the Theano flag floatX=float32
We don't know if amdlibm will accelerate this scalar op. psi
We don't know if amdlibm will accelerate this scalar op. psi
  - Try installing amdlibm and set the Theano flag lib.amdlibm=True. This speeds up only some Elemwise operation.
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Probabilistic Matrix Factorization for Making Personalized Recommendations

The model discussed in this analysis was developed by Ruslan
Salakhutdinov and Andriy Mnih. All of the code and supporting text, when
not referenced, is the original work of Mack
Sweeney [https://www.linkedin.com/in/macksweeney].


Motivation

Say I download a handbook of a hundred jokes, and I’d like to know very
quickly which ones will be my favorite. So maybe I read a few, I laugh,
I read a few more, I stop laughing, and I indicate on a scale of -10 to
10 how funny I thought each joke was. Maybe I do this for 5 jokes out of
the 100. Now I go to the back of the book, and there’s a little program
included for calculating my preferences for all the other jokes. I enter
in my preference numbers and shazam! The program spits out a list of all
100 jokes, sorted in the order I’ll like them. That certainly would be
nice. Today we’ll write a program that does exactly this.

We’ll start out by getting some intuition for how our model will work.
Then we’ll formalize our intuition. Afterwards, we’ll examine the
dataset we are going to use. Once we have some notion of what our data
looks like, we’ll define some baseline methods for predicting
preferences for jokes. Following that, we’ll look at Probabilistic
Matrix Factorization (PMF), which is a more sophisticated Bayesian
method for predicting preferences. Having detailed the PMF model, we’ll
use PyMC3 for MAP estimation and MCMC inference. Finally, we’ll compare
the results obtained with PMF to those obtained from our baseline
methods and discuss the outcome.




Intuition

Normally if we want recommendations for something, we try to find people
who are similar to us and ask their opinions. If Bob, Alice, and Monty
are all similar to me, and they all like knock-knock jokes, I’ll
probably like knock-knock jokes. Now this isn’t always true. It depends
on what we consider to be “similar”. In order to get the best bang for
our buck, we really want to look for people who have the most similar
sense of humor. Humor being a complex beast, we’d probably like to break
it down into something more understandable. We might try to characterize
each joke in terms of various factors. Perhaps jokes can be dry,
sarcastic, crude, sexual, political, etc. Now imagine we go through our
handbook of jokes and assign each joke a rating in each of the
categories. How dry is it? How sarcastic is it? How much does it use
sexual innuendos? Perhaps we use numbers between 0 and 1 for each
category. Intuitively, we might call this the joke’s humor profile.

Now let’s suppose we go back to those 5 jokes we rated. At this point,
we can get a richer picture of our own preferences by looking at the
humor profiles of each of the jokes we liked and didn’t like. Perhaps we
take the averages across the 5 humor profiles and call this our ideal
type of joke. In other words, we have computed some notion of our
inherent preferences for various types of jokes. Suppose Bob, Alice,
and Monty all do the same. Now we can compare our preferences and
determine how similar each of us really are. I might find that Bob is
the most similar and the other two are still more similar than other
people, but not as much as Bob. So I want recommendations from all three
people, but when I make my final decision, I’m going to put more weight
on Bob’s recommendation than those I get from Alice and Monty.

While the above procedure sounds fairly effective as is, it also reveals
an unexpected additional source of information. If we rated a particular
joke highly, and we know its humor profile, we can compare with the
profiles of other jokes. If we find one with very close numbers, it is
probable we’ll also enjoy this joke. Both this approach and the one
above are commonly known as neighborhood approaches. Techniques that
leverage both of these approaches simultaneously are often called
collaborative filtering
[1] [http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf].
The first approach we talked about uses user-user similarity, while the
second uses item-item similarity. Ideally, we’d like to use both sources
of information. The idea is we have a lot of items available to us, and
we’d like to work together with others to filter the list of items down
to those we’ll each like best. My list should have the items I’ll like
best at the top and those I’ll like least at the bottom. Everyone else
wants the same. If I get together with a bunch of other people, we all
read 5 jokes, and we have some efficient computational process to
determine similarity, we can very quickly order the jokes to our liking.




Formalization

Let’s take some time to make the intuitive notions we’ve been discussing
more concrete. We have a set of \(M\) jokes, or items
(\(M = 100\) in our example above). We also have \(N\) people,
whom we’ll call users of our recommender system. For each item, we’d
like to find a \(D\) dimensional factor composition (humor profile
above) to describe the item. Ideally, we’d like to do this without
actually going through and manually labeling all of the jokes. Manual
labeling would be both slow and error-prone, as different people will
likely label jokes differently. So we model each joke as a \(D\)
dimensional vector, which is its latent factor composition. Furthermore,
we expect each user to have some preferences, but without our manual
labeling and averaging procedure, we have to rely on the latent factor
compositions to learn \(D\) dimensional latent preference vectors
for each user. The only thing we get to observe is the
\(N \times M\) ratings matrix \(R\) provided by the users. Entry
\(R_{ij}\) is the rating user \(i\) gave to item \(j\). Many
of these entries may be missing, since most users will not have rated
all 100 jokes. Our goal is to fill in the missing values with predicted
ratings based on the latent variables \(U\) and \(V\). We denote
the predicted ratings by \(R_{ij}^*\). We also define an indicator
matrix \(I\), with entry \(I_{ij} = 0\) if \(R_{ij}\) is
missing and \(I_{ij} = 1\) otherwise.

So we have an \(N \times D\) matrix of user preferences which we’ll
call \(U\) and an \(M \times D\) factor composition matrix we’ll
call \(V\). We also have a \(N \times M\) rating matrix we’ll
call \(R\). We can think of each row \(U_i\) as indications of
how much each user prefers each of the \(D\) latent factors. Each
row \(V_j\) can be thought of as how much each item can be described
by each of the latent factors. In order to make a recommendation, we
need a suitable prediction function which maps a user preference vector
\(U_i\) and an item latent factor vector \(V_j\) to a predicted
ranking. The choice of this prediction function is an important modeling
decision, and a variety of prediction functions have been used. Perhaps
the most common is the dot product of the two vectors,
\(U_i \cdot V_j\)
[1] [http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf].

To better understand CF techniques, let us explore a particular example.
Imagine we are seeking to recommend jokes using a model which infers
five latent factors, \(V_j\), for \(j = 1,2,3,4,5\). In reality,
the latent factors are often unexplainable in a straightforward manner,
and most models make no attempt to understand what information is being
captured by each factor. However, for the purposes of explanation, let
us assume the five latent factors might end up capturing the humor
profile we were discussing above. So our five latent factors are: dry,
sarcastic, crude, sexual, and political. Then for a particular user
\(i\), imagine we infer a preference vector
\(U_i = <0.2, 0.1, 0.3, 0.1, 0.3>\). Also, for a particular item
\(j\), we infer these values for the latent factors:
\(V_j = <0.5, 0.5, 0.25, 0.8, 0.9>\). Using the dot product as the
prediction function, we would calculate 0.575 as the ranking for that
item, which is more or less a neutral preference given our -10 to 10
rating scale.


\[0.2 \times 0.5 + 0.1 \times 0.5 + 0.3 \times 0.25 + 0.1 \times 0.8 + 0.3 \times 0.9 = 0.575\]




Data

The v1 Jester dataset [http://eigentaste.berkeley.edu/dataset/]
provides something very much like the handbook of jokes we have been
discussing. The original version of this dataset was constructed in
conjunction with the development of the Eigentaste recommender
system [http://eigentaste.berkeley.edu/about.html]
[2] [http://goldberg.berkeley.edu/pubs/eigentaste.pdf]. At this
point in time, v1 contains over 4.1 million continuous ratings in the
range [-10, 10] of 100 jokes from 73,421 users. These ratings were
collected between Apr. 1999 and May 2003. In order to reduce the
training time of the model for illustrative purposes, 1,000 users who
have rated all 100 jokes will be selected randomly. We will implement a
model that is suitable for collaborative filtering on this data and
evaluate it in terms of root mean squared error (RMSE) to validate the
results.

Let’s begin by exploring our data. We want to get a general feel for
what it looks like and a sense for what sort of patterns it might
contain.



In [1]:






% matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import os
import shutil
DATA_DIR = '../data/pmf'

data = pd.read_csv(os.path.join(DATA_DIR, 'jester-dataset-v1-dense-first-1000.csv'))
data.head()









Out[1]:








  
    
      	
      	1
      	2
      	3
      	4
      	5
      	6
      	7
      	8
      	9
      	10
      	...
      	91
      	92
      	93
      	94
      	95
      	96
      	97
      	98
      	99
      	100
    

  
  
    
      	0
      	4.08
      	-0.29
      	6.36
      	4.37
      	-2.38
      	-9.66
      	-0.73
      	-5.34
      	8.88
      	9.22
      	...
      	2.82
      	-4.95
      	-0.29
      	7.86
      	-0.19
      	-2.14
      	3.06
      	0.34
      	-4.32
      	1.07
    

    
      	1
      	-6.17
      	-3.54
      	0.44
      	-8.50
      	-7.09
      	-4.32
      	-8.69
      	-0.87
      	-6.65
      	-1.80
      	...
      	-3.54
      	-6.89
      	-0.68
      	-2.96
      	-2.18
      	-3.35
      	0.05
      	-9.08
      	-5.05
      	-3.45
    

    
      	2
      	6.84
      	3.16
      	9.17
      	-6.21
      	-8.16
      	-1.70
      	9.27
      	1.41
      	-5.19
      	-4.42
      	...
      	7.23
      	-1.12
      	-0.10
      	-5.68
      	-3.16
      	-3.35
      	2.14
      	-0.05
      	1.31
      	0.00
    

    
      	3
      	-3.79
      	-3.54
      	-9.42
      	-6.89
      	-8.74
      	-0.29
      	-5.29
      	-8.93
      	-7.86
      	-1.60
      	...
      	4.37
      	-0.29
      	4.17
      	-0.29
      	-0.29
      	-0.29
      	-0.29
      	-0.29
      	-3.40
      	-4.95
    

    
      	4
      	1.31
      	1.80
      	2.57
      	-2.38
      	0.73
      	0.73
      	-0.97
      	5.00
      	-7.23
      	-1.36
      	...
      	1.46
      	1.70
      	0.29
      	-3.30
      	3.45
      	5.44
      	4.08
      	2.48
      	4.51
      	4.66
    

  


5 rows × 100 columns








In [2]:






# Extract the ratings from the DataFrame
all_ratings = np.ndarray.flatten(data.values)
ratings = pd.Series(all_ratings)

# Plot histogram and density.
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 7))
ratings.plot(kind='density', ax=ax1, grid=False)
ax1.set_ylim(0, 0.08)
ax1.set_xlim(-11, 11)

# Plot histogram
ratings.plot(kind='hist', ax=ax2, bins=20, grid=False)
ax2.set_xlim(-11, 11)
plt.show()
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In [3]:






ratings.describe()









Out[3]:






count    100000.000000
mean          0.996219
std           5.265215
min          -9.950000
25%          -2.860000
50%           1.650000
75%           5.290000
max           9.420000
dtype: float64







This must be a decent batch of jokes. From our exploration above, we
know most ratings are in the range -1 to 10, and positive ratings are
more likely than negative ratings. Let’s look at the means for each joke
to see if we have any particularly good (or bad) humor here.



In [4]:






joke_means = data.mean(axis=0)
joke_means.plot(kind='bar', grid=False, figsize=(16, 6),
                title="Mean Ratings for All 100 Jokes")









Out[4]:






<matplotlib.axes._subplots.AxesSubplot at 0x7f1b53b11400>
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While the majority of the jokes generally get positive feedback from
users, there are definitely a few that stand out as poor humor. Let’s
take a look at the worst and best joke, just for fun.



In [5]:






import json
# Worst and best joke?
worst_joke_id = joke_means.argmin()
best_joke_id = joke_means.argmax()

# Let's see for ourselves. Load the jokes.
with open(os.path.join(DATA_DIR, 'jokes.json')) as buff:
    joke_dict = json.load(buff)

print('The worst joke:\n---------------\n%s\n' % joke_dict[worst_joke_id])
print('The best joke:\n--------------\n%s' % joke_dict[best_joke_id])













The worst joke:
---------------
How many teddybears does it take to change a lightbulb?

It takes only one teddybear, but it takes a whole lot of lightbulbs.


The best joke:
--------------
*A radio conversation of a US naval
ship with Canadian authorities ... *

Americans: Please divert your course 15 degrees to the North to avoid a
collision.

Canadians: Recommend you divert YOUR course 15 degrees to the South to
avoid a collision.

Americans: This is the Captain of a US Navy ship.  I say again, divert
YOUR course.

Canadians: No.  I say again, you divert YOUR course.

Americans: This is the aircraft carrier USS LINCOLN, the second largest ship in the United States' Atlantic Fleet. We are accompanied by three destroyers, three cruisers and numerous support vessels. I demand that you change your course 15 degrees north, that's ONE FIVE DEGREES NORTH, or counter-measures will be undertaken to ensure the safety of this ship.

Canadians: *This is a lighthouse.  Your call*.







Make sense to me. We now know there are definite popularity differences
between the jokes. Some of them are simply funnier than others, and some
are downright lousy. Looking at the joke means allowed us to discover
these general trends. Perhaps there are similar trends across users. It
might be the case that some users are simply more easily humored than
others. Let’s take a look.



In [6]:






user_means = data.mean(axis=1)
_, ax = plt.subplots(figsize=(16, 6))
user_means.plot(kind='bar', grid=False, ax=ax,
                title="Mean Ratings for All 1000 Users")
ax.set_xticklabels('')  # 1000 labels is nonsensical









Out[6]:






[]
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We see even more significant trends here. Some users rate nearly
everything highly, and some (though not as many) rate nearly everything
negatively. These observations will come in handy when considering
models to use for predicting user preferences on unseen jokes.




Methods

Having explored the data, we’re now ready to dig in and start addressing
the problem. We want to predict how much each user is going to like all
of the jokes he or she has not yet read.


Baselines

Every good analysis needs some kind of baseline methods to compare
against. It’s difficult to claim we’ve produced good results if we have
no reference point for what defines “good”. We’ll define three very
simple baseline methods and find the RMSE using these methods. Our goal
will be to obtain lower RMSE scores with whatever model we produce.


Uniform Random Baseline

Our first baseline is about as dead stupid as you can get. Every place
we see a missing value in \(R\), we’ll simply fill it with a number
drawn uniformly at random in the range [-10, 10]. We expect this method
to do the worst by far.


\[R_{ij}^* \sim Uniform\]




Global Mean Baseline

This method is only slightly better than the last. Wherever we have a
missing value, we’ll fill it in with the mean of all observed ratings.


\[\text{global_mean} = \frac{1}{N \times M} \sum_{i=1}^N \sum_{j=1}^M I_{ij}(R_{ij})\]


\[R_{ij}^* = \text{global_mean}\]




Mean of Means Baseline

Now we’re going to start getting a bit smarter. We imagine some users
might be easily amused, and inclined to rate all jokes more highly.
Other users might be the opposite. Additionally, some jokes might simply
be more witty than others, so all users might rate some jokes more
highly than others in general. We can clearly see this in our graph of
the joke means above. We’ll attempt to capture these general trends
through per-user and per-joke rating means. We’ll also incorporate the
global mean to smooth things out a bit. So if we see a missing value in
cell \(R_{ij}\), we’ll average the global mean with the mean of
\(U_i\) and the mean of \(V_j\) and use that value to fill it
in.


\[\text{user_means} = \frac{1}{M} \sum_{j=1}^M I_{ij}(R_{ij})\]


\[\text{joke_means} = \frac{1}{N} \sum_{i=1}^N I_{ij}(R_{ij})\]


\[R_{ij}^* = \frac{1}{3} \left(\text{user_means}_i + \text{ joke_means}_j + \text{ global_mean} \right)\]



In [7]:






from collections import OrderedDict

# Create a base class with scaffolding for our 3 baselines.

def split_title(title):
    """Change "BaselineMethod" to "Baseline Method"."""
    words = []
    tmp = [title[0]]
    for c in title[1:]:
        if c.isupper():
            words.append(''.join(tmp))
            tmp = [c]
        else:
            tmp.append(c)
    words.append(''.join(tmp))
    return ' '.join(words)


class Baseline(object):
    """Calculate baseline predictions."""

    def __init__(self, train_data):
        """Simple heuristic-based transductive learning to fill in missing
        values in data matrix."""
        self.predict(train_data.copy())

    def predict(self, train_data):
        raise NotImplementedError(
            'baseline prediction not implemented for base class')

    def rmse(self, test_data):
        """Calculate root mean squared error for predictions on test data."""
        return rmse(test_data, self.predicted)

    def __str__(self):
        return split_title(self.__class__.__name__)



# Implement the 3 baselines.

class UniformRandomBaseline(Baseline):
    """Fill missing values with uniform random values."""

    def predict(self, train_data):
        nan_mask = np.isnan(train_data)
        masked_train = np.ma.masked_array(train_data, nan_mask)
        pmin, pmax = masked_train.min(), masked_train.max()
        N = nan_mask.sum()
        train_data[nan_mask] = np.random.uniform(pmin, pmax, N)
        self.predicted = train_data


class GlobalMeanBaseline(Baseline):
    """Fill in missing values using the global mean."""

    def predict(self, train_data):
        nan_mask = np.isnan(train_data)
        train_data[nan_mask] = train_data[~nan_mask].mean()
        self.predicted = train_data


class MeanOfMeansBaseline(Baseline):
    """Fill in missing values using mean of user/item/global means."""

    def predict(self, train_data):
        nan_mask = np.isnan(train_data)
        masked_train = np.ma.masked_array(train_data, nan_mask)
        global_mean = masked_train.mean()
        user_means = masked_train.mean(axis=1)
        item_means = masked_train.mean(axis=0)
        self.predicted = train_data.copy()
        n, m = train_data.shape
        for i in range(n):
            for j in range(m):
                if np.ma.isMA(item_means[j]):
                    self.predicted[i,j] = np.mean(
                        (global_mean, user_means[i]))
                else:
                    self.predicted[i,j] = np.mean(
                        (global_mean, user_means[i], item_means[j]))


baseline_methods = OrderedDict()
baseline_methods['ur'] = UniformRandomBaseline
baseline_methods['gm'] = GlobalMeanBaseline
baseline_methods['mom'] = MeanOfMeansBaseline














Probabilistic Matrix Factorization

Probabilistic Matrix Factorization
(PMF) [http://papers.nips.cc/paper/3208-probabilistic-matrix-factorization.pdf]
[3] is a probabilistic approach to the collaborative filtering problem
that takes a Bayesian perspective. The ratings \(R\) are modeled as
draws from a Gaussian distribution. The mean for \(R_{ij}\) is
\(U_i V_j^T\). The precision \(\alpha\) is a fixed parameter
that reflects the uncertainty of the estimations; the normal
distribution is commonly reparameterized in terms of precision, which is
the inverse of the variance. Complexity is controlled by placing
zero-mean spherical Gaussian priors on \(U\) and \(V\). In other
words, each row of \(U\) is drawn from a multivariate Gaussian with
mean \(\mu = 0\) and precision which is some multiple of the
identity matrix \(I\). Those multiples are \(\alpha_U\) for
\(U\) and \(\alpha_V\) for \(V\). So our model is defined
by:

\(\newcommand\given[1][]{\:#1\vert\:}\)


\begin{equation}
P(R \given U, V, \alpha^2) =
    \prod_{i=1}^N \prod_{j=1}^M
        \left[ \mathcal{N}(R_{ij} \given U_i V_j^T, \alpha^{-1}) \right]^{I_{ij}}
\end{equation}

\begin{equation}
P(U \given \alpha_U^2) =
    \prod_{i=1}^N \mathcal{N}(U_i \given 0, \alpha_U^{-1} \boldsymbol{I})
\end{equation}

\begin{equation}
P(V \given \alpha_U^2) =
    \prod_{j=1}^M \mathcal{N}(V_j \given 0, \alpha_V^{-1} \boldsymbol{I})
\end{equation}
Given small precision parameters, the priors on \(U\) and \(V\)
ensure our latent variables do not grow too far from 0. This prevents
overly strong user preferences and item factor compositions from being
learned. This is commonly known as complexity control, where the
complexity of the model here is measured by the magnitude of the latent
variables. Controlling complexity like this helps prevent overfitting,
which allows the model to generalize better for unseen data. We must
also choose an appropriate \(\alpha\) value for the normal
distribution for \(R\). So the challenge becomes choosing
appropriate values for \(\alpha_U\), \(\alpha_V\), and
\(\alpha\). This challenge can be tackled with the soft
weight-sharing methods discussed by Nowland and Hinton,
1992 [http://www.cs.toronto.edu/~fritz/absps/sunspots.pdf] [4].
However, for the purposes of this analysis, we will stick to using point
estimates obtained from our data.



In [8]:






import time
import logging
import pymc3 as pm
import theano
import scipy as sp


# Enable on-the-fly graph computations, but ignore
# absence of intermediate test values.
theano.config.compute_test_value = 'ignore'

# Set up logging.
logger = logging.getLogger()
logger.setLevel(logging.INFO)


class PMF(object):
    """Probabilistic Matrix Factorization model using pymc3."""

    def __init__(self, train, dim, alpha=2, std=0.01, bounds=(-10, 10)):
        """Build the Probabilistic Matrix Factorization model using pymc3.

        :param np.ndarray train: The training data to use for learning the model.
        :param int dim: Dimensionality of the model; number of latent factors.
        :param int alpha: Fixed precision for the likelihood function.
        :param float std: Amount of noise to use for model initialization.
        :param (tuple of int) bounds: (lower, upper) bound of ratings.
            These bounds will simply be used to cap the estimates produced for R.

        """
        self.dim = dim
        self.alpha = alpha
        self.std = np.sqrt(1.0 / alpha)
        self.bounds = bounds
        self.data = train.copy()
        n, m = self.data.shape

        # Perform mean value imputation
        nan_mask = np.isnan(self.data)
        self.data[nan_mask] = self.data[~nan_mask].mean()

        # Low precision reflects uncertainty; prevents overfitting.
        # Set to the mean variance across users and items.
        self.alpha_u = 1 / self.data.var(axis=1).mean()
        self.alpha_v = 1 / self.data.var(axis=0).mean()

        # Specify the model.
        logging.info('building the PMF model')
        with pm.Model() as pmf:
            U = pm.MvNormal(
                'U', mu=0, tau=self.alpha_u * np.eye(dim),
                shape=(n, dim), testval=np.random.randn(n, dim) * std)
            V = pm.MvNormal(
                'V', mu=0, tau=self.alpha_v * np.eye(dim),
                shape=(m, dim), testval=np.random.randn(m, dim) * std)
            R = pm.Normal(
                'R', mu=theano.tensor.dot(U, V.T), tau=self.alpha * np.ones((n, m)),
                observed=self.data)

        logging.info('done building the PMF model')
        self.model = pmf

    def __str__(self):
        return self.name







We’ll also need functions for calculating the MAP and performing
sampling on our PMF model. When the observation noise variance
\(\alpha\) and the prior variances \(\alpha_U\) and
\(\alpha_V\) are all kept fixed, maximizing the log posterior is
equivalent to minimizing the sum-of-squared-errors objective function
with quadratic regularization terms.


\[E = \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^M I_{ij} (R_{ij} - U_i V_j^T)^2 + \frac{\lambda_U}{2} \sum_{i=1}^N \|U\|_{Fro}^2 + \frac{\lambda_V}{2} \sum_{j=1}^M \|V\|_{Fro}^2,\]

where \(\lambda_U = \alpha_U / \alpha\),
\(\lambda_V = \alpha_V / \alpha\), and \(\|\cdot\|_{Fro}^2\)
denotes the Frobenius norm [3]. Minimizing this objective function gives
a local minimum, which is essentially a maximum a posteriori (MAP)
estimate. While it is possible to use a fast Stochastic Gradient Descent
procedure to find this MAP, we’ll be finding it using the utilities
built into pymc3. In particular, we’ll use find_MAP with Powell
optimization (scipy.optimize.fmin_powell). Having found this MAP
estimate, we can use it as our starting point for MCMC sampling.

Since it is a reasonably complex model, we expect the MAP estimation to
take some time. So let’s save it after we’ve found it. Note that we
define a function for finding the MAP below, assuming it will receive a
namespace with some variables in it. Then we attach that function to the
PMF class, where it will have such a namespace after initialization. The
PMF class is defined in pieces this way so I can say a few things
between each piece to make it clearer.



In [9]:






try:
    import ujson as json
except ImportError:
    import json


# First define functions to save our MAP estimate after it is found.
# We adapt these from `pymc3`'s `backends` module, where the original
# code is used to save the traces from MCMC samples.
def save_np_vars(vars, savedir):
    """Save a dictionary of numpy variables to `savedir`. We assume
    the directory does not exist; an OSError will be raised if it does.
    """
    logging.info('writing numpy vars to directory: %s' % savedir)
    if not os.path.isdir(savedir):
        os.mkdir(savedir)
    shapes = {}
    for varname in vars:
        data = vars[varname]
        var_file = os.path.join(savedir, varname + '.txt')
        np.savetxt(var_file, data.reshape(-1, data.size))
        shapes[varname] = data.shape

        ## Store shape information for reloading.
        shape_file = os.path.join(savedir, 'shapes.json')
        with open(shape_file, 'w') as sfh:
            json.dump(shapes, sfh)


def load_np_vars(savedir):
    """Load numpy variables saved with `save_np_vars`."""
    shape_file = os.path.join(savedir, 'shapes.json')
    with open(shape_file, 'r') as sfh:
        shapes = json.load(sfh)

    vars = {}
    for varname, shape in shapes.items():
        var_file = os.path.join(savedir, varname + '.txt')
        vars[varname] = np.loadtxt(var_file).reshape(shape)

    return vars


# Now define the MAP estimation infrastructure.
def _map_dir(self):
    basename = 'pmf-map-d%d' % self.dim
    return os.path.join(DATA_DIR, basename)

def _find_map(self):
    """Find mode of posterior using Powell optimization."""
    tstart = time.time()
    with self.model:
        logging.info('finding PMF MAP using Powell optimization...')
        self._map = pm.find_MAP(fmin=sp.optimize.fmin_powell, disp=True)

    elapsed = int(time.time() - tstart)
    logging.info('found PMF MAP in %d seconds' % elapsed)

    # This is going to take a good deal of time to find, so let's save it.
    save_np_vars(self._map, self.map_dir)

def _load_map(self):
    self._map = load_np_vars(self.map_dir)

def _map(self):
    try:
        return self._map
    except:
        if os.path.isdir(self.map_dir):
            self.load_map()
        else:
            self.find_map()
        return self._map


# Update our class with the new MAP infrastructure.
PMF.find_map = _find_map
PMF.load_map = _load_map
PMF.map_dir = property(_map_dir)
PMF.map = property(_map)







So now our PMF class has a map property which will either be
found using Powell optimization or loaded from a previous optimization.
Once we have the MAP, we can use it as a starting point for our MCMC
sampler. We’ll need a sampling function in order to draw MCMC samples to
approximate the posterior distribution of the PMF model.
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# Draw MCMC samples.
def _trace_dir(self):
    basename = 'pmf-mcmc-d%d' % self.dim
    return os.path.join(DATA_DIR, basename)

def _draw_samples(self, nsamples=1000, njobs=2):
    # First make sure the trace_dir does not already exist.
    if os.path.isdir(self.trace_dir):
        shutil.rmtree(self.trace_dir)

    with self.model:
        logging.info('drawing %d samples using %d jobs' % (nsamples, njobs))
        backend = pm.backends.Text(self.trace_dir)
        logging.info('backing up trace to directory: %s' % self.trace_dir)
        self.trace = pm.sample(draws=nsamples, init='advi',
                               n_init=150000, njobs=njobs, trace=backend)

def _load_trace(self):
    with self.model:
        self.trace = pm.backends.text.load(self.trace_dir)


# Update our class with the sampling infrastructure.
PMF.trace_dir = property(_trace_dir)
PMF.draw_samples = _draw_samples
PMF.load_trace = _load_trace







We could define some kind of default trace property like we did for the
MAP, but that would mean using possibly nonsensical values for
nsamples and njobs. Better to leave it as a non-optional call to
draw_samples. Finally, we’ll need a function to make predictions
using our inferred values for \(U\) and \(V\). For user
\(i\) and joke \(j\), a prediction is generated by drawing from
\(\mathcal{N}(U_i V_j^T, \alpha)\). To generate predictions from the
sampler, we generate an \(R\) matrix for each \(U\) and
\(V\) sampled, then we combine these by averaging over the \(K\)
samples.


\begin{equation}
P(R_{ij}^* \given R, \alpha, \alpha_U, \alpha_V) \approx
    \frac{1}{K} \sum_{k=1}^K \mathcal{N}(U_i V_j^T, \alpha)
\end{equation}
We’ll want to inspect the individual \(R\) matrices before averaging
them for diagnostic purposes. So we’ll write code for the averaging
piece during evaluation. The function below simply draws an \(R\)
matrix given a \(U\) and \(V\) and the fixed \(\alpha\)
stored in the PMF object.
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def _predict(self, U, V):
    """Estimate R from the given values of U and V."""
    R = np.dot(U, V.T)
    n, m = R.shape
    sample_R = np.array([
        [np.random.normal(R[i,j], self.std) for j in range(m)]
        for i in range(n)
    ])

    # bound ratings
    low, high = self.bounds
    sample_R[sample_R < low] = low
    sample_R[sample_R > high] = high
    return sample_R


PMF.predict = _predict







One final thing to note: the dot products in this model are often
constrained using a logistic function \(g(x) = 1/(1 + exp(-x))\),
that bounds the predictions to the range [0, 1]. To facilitate this
bounding, the ratings are also mapped to the range [0, 1] using
\(t(x) = (x + min) / range\). The authors of PMF also introduced a
constrained version which performs better on users with less ratings
[3]. Both models are generally improvements upon the basic model
presented here. However, in the interest of time and space, these will
not be implemented here.




Evaluation


Metrics

In order to understand how effective our models are, we’ll need to be
able to evaluate them. We’ll be evaluating in terms of root mean squared
error (RMSE), which looks like this:


\begin{equation}
RMSE = \sqrt{ \frac{ \sum_{i=1}^N \sum_{j=1}^M I_{ij} (R_{ij} - R_{ij}^*)^2 }
                   { \sum_{i=1}^N \sum_{j=1}^M I_{ij} } }
\end{equation}
In this case, the RMSE can be thought of as the standard deviation of
our predictions from the actual user preferences.
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# Define our evaluation function.
def rmse(test_data, predicted):
    """Calculate root mean squared error.
    Ignoring missing values in the test data.
    """
    I = ~np.isnan(test_data)   # indicator for missing values
    N = I.sum()                # number of non-missing values
    sqerror = abs(test_data - predicted) ** 2  # squared error array
    mse = sqerror[I].sum() / N                 # mean squared error
    return np.sqrt(mse)                        # RMSE










Training Data vs. Test Data

The next thing we need to do is split our data into a training set and a
test set. Matrix factorization techniques use transductive
learning [http://en.wikipedia.org/wiki/Transduction_%28machine_learning%29]
rather than inductive learning. So we produce a test set by taking a
random sample of the cells in the full \(N \times M\) data matrix.
The values selected as test samples are replaced with nan values in
a copy of the original data matrix to produce the training set. Since
we’ll be producing random splits, let’s also write out the train/test
sets generated. This will allow us to replicate our results. We’d like
to be able to idenfity which split is which, so we’ll take a hash of the
indices selected for testing and use that to save the data.
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import hashlib


# Define a function for splitting train/test data.
def split_train_test(data, percent_test=10):
    """Split the data into train/test sets.
    :param int percent_test: Percentage of data to use for testing. Default 10.
    """
    n, m = data.shape             # # users, # jokes
    N = n * m                     # # cells in matrix
    test_size = N / percent_test  # use 10% of data as test set
    train_size = N - test_size    # and remainder for training

    # Prepare train/test ndarrays.
    train = data.copy().values
    test = np.ones(data.shape) * np.nan

    # Draw random sample of training data to use for testing.
    tosample = np.where(~np.isnan(train))       # ignore nan values in data
    idx_pairs = zip(tosample[0], tosample[1])   # tuples of row/col index pairs
    indices = np.arange(len(idx_pairs))         # indices of index pairs
    sample = np.random.choice(indices, replace=False, size=test_size)

    # Transfer random sample from train set to test set.
    for idx in sample:
        idx_pair = idx_pairs[idx]
        test[idx_pair] = train[idx_pair]  # transfer to test set
        train[idx_pair] = np.nan          # remove from train set

    # Verify everything worked properly
    assert(np.isnan(train).sum() == test_size)
    assert(np.isnan(test).sum() == train_size)

    # Finally, hash the indices and save the train/test sets.
    index_string = ''.join(map(str, np.sort(sample)))
    name = hashlib.sha1(index_string).hexdigest()
    savedir = os.path.join(DATA_DIR, name)
    save_np_vars({'train': train, 'test': test}, savedir)

    # Return train set, test set, and unique hash of indices.
    return train, test, name


def load_train_test(name):
    """Load the train/test sets."""
    savedir = os.path.join(DATA_DIR, name)
    vars = load_np_vars(savedir)
    return vars['train'], vars['test']

# train, test, name = split_train_test(data)







In order to facilitate reproducibility, I’ve produced a train/test split
using the code above which we’ll now use for all the evaluations below.
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train, test = load_train_test('6bb8d06c69c0666e6da14c094d4320d115f1ffc8')












Results
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# Let's see the results:
baselines = {}
for name in baseline_methods:
    Method = baseline_methods[name]
    method = Method(train)
    baselines[name] = method.rmse(test)
    print('%s RMSE:\t%.5f' % (method, baselines[name]))














Uniform Random Baseline RMSE:   7.77545
Global Mean Baseline RMSE:      5.25004
Mean Of Means Baseline RMSE:    4.79832






As expected: the uniform random baseline is the worst by far, the global
mean baseline is next best, and the mean of means method is our best
baseline. Now let’s see how PMF stacks up.
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# We use a fixed precision for the likelihood.
# This reflects uncertainty in the dot product.
# We choose 2 in the footsteps Salakhutdinov
# Mnihof.
ALPHA = 2

# The dimensionality D; the number of latent factors.
# We can adjust this higher to try to capture more subtle
# characteristics of each joke. However, the higher it is,
# the more expensive our inference procedures will be.
# Specifically, we have D(N + M) latent variables. For our
# Jester dataset, this means we have D(1100), so for 5
# dimensions, we are sampling 5500 latent variables.
DIM = 5


pmf = PMF(train, DIM, ALPHA, std=0.05)













INFO:root:building the PMF model
INFO:root:done building the PMF model







Predictions Using MAP
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# Find MAP for PMF.
pmf.find_map()













INFO:root:finding PMF MAP using Powell optimization...












Optimization terminated successfully.
         Current function value: 1545253.531949
         Iterations: 20
         Function evaluations: 993692












INFO:root:found PMF MAP in 1243 seconds
INFO:root:writing numpy vars to directory: ../data/pmf/pmf-map-d5






Excellent. The first thing we want to do is make sure the MAP estimate
we obtained is reasonable. We can do this by computing RMSE on the
predicted ratings obtained from the MAP values of \(U\) and
\(V\). First we define a function for generating the predicted
ratings \(R\) from \(U\) and \(V\). We ensure the actual
rating bounds are enforced by setting all values below -10 to -10 and
all values above 10 to 10. Finally, we compute RMSE for both the
training set and the test set. We expect the test RMSE to be higher. The
difference between the two gives some idea of how much we have overfit.
Some difference is always expected, but a very low RMSE on the training
set with a high RMSE on the test set is a definite sign of overfitting.



In [18]:






def eval_map(pmf_model, train, test):
    U = pmf_model.map['U']
    V = pmf_model.map['V']

    # Make predictions and calculate RMSE on train & test sets.
    predictions = pmf_model.predict(U, V)
    train_rmse = rmse(train, predictions)
    test_rmse = rmse(test, predictions)
    overfit = test_rmse - train_rmse

    # Print report.
    print('PMF MAP training RMSE: %.5f' % train_rmse)
    print('PMF MAP testing RMSE:  %.5f' % test_rmse)
    print('Train/test difference: %.5f' % overfit)

    return test_rmse


# Add eval function to PMF class.
PMF.eval_map = eval_map
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# Evaluate PMF MAP estimates.
pmf_map_rmse = pmf.eval_map(train, test)
pmf_improvement = baselines['mom'] - pmf_map_rmse
print('PMF MAP Improvement:   %.5f' % pmf_improvement)













PMF MAP training RMSE: 3.98510
PMF MAP testing RMSE:  4.23455
Train/test difference: 0.24945
PMF MAP Improvement:   0.56377






So we see a pretty nice improvement here when compared to our best
baseline, which was the mean of means method. We also have a fairly
small difference in the RMSE values between the train and the test sets.
This indicates that the point estimates for \(\alpha_U\) and
\(\alpha_V\) that we calculated from our data are doing a good job
of controlling model complexity. Now let’s see if we can improve our
estimates by approximating our posterior distribution with MCMC
sampling. We’ll draw 1000 samples and back them up using the
pymc3.backend.Text backend.




Predictions using MCMC



In [ ]:






# Draw MCMC samples.
pmf.draw_samples(300)

# uncomment to load previous trace rather than drawing new samples.
# pmf.load_trace()










Diagnostics and Posterior Predictive Check

The next step is to check how many samples we should discard as burn-in.
Normally, we’d do this using a traceplot to get some idea of where the
sampled variables start to converge. In this case, we have
high-dimensional samples, so we need to find a way to approximate them.
One way was proposed by Salakhutdinov and Mnih,
p.886 [https://www.cs.toronto.edu/~amnih/papers/bpmf.pdf]. We can
calculate the Frobenius norms of \(U\) and \(V\) at each step
and monitor those for convergence. This essentially gives us some idea
when the average magnitude of the latent variables is stabilizing. The
equations for the Frobenius norms of \(U\) and \(V\) are shown
below. We will use numpy‘s linalg package to calculate these.


\[\|U\|_{Fro}^2 = \sqrt{\sum_{i=1}^N \sum_{d=1}^D |U_{id}|^2}, \hspace{40pt} \|V\|_{Fro}^2 = \sqrt{\sum_{j=1}^M \sum_{d=1}^D |V_{jd}|^2}\]
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def _norms(pmf_model, monitor=('U', 'V'), ord='fro'):
    """Return norms of latent variables at each step in the
    sample trace. These can be used to monitor convergence
    of the sampler.
    """
    monitor = ('U', 'V')
    norms = {var: [] for var in monitor}
    for sample in pmf_model.trace:
        for var in monitor:
            norms[var].append(np.linalg.norm(sample[var], ord))
    return norms


def _traceplot(pmf_model):
    """Plot Frobenius norms of U and V as a function of sample #."""
    trace_norms = pmf_model.norms()
    u_series = pd.Series(trace_norms['U'])
    v_series = pd.Series(trace_norms['V'])
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 7))
    u_series.plot(kind='line', ax=ax1, grid=False,
                  title="$\|U\|_{Fro}^2$ at Each Sample")
    v_series.plot(kind='line', ax=ax2, grid=False,
                  title="$\|V\|_{Fro}^2$ at Each Sample")
    ax1.set_xlabel("Sample Number")
    ax2.set_xlabel("Sample Number")


PMF.norms = _norms
PMF.traceplot = _traceplot
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pmf.traceplot()












[image: ../_images/notebooks_probabilistic_matrix_factorization_44_0.png]




It appears we get convergence of \(U\) and \(V\) after about 200
samples. When testing for convergence, we also want to see convergence
of the particular statistics we are looking for, since different
characteristics of the posterior may converge at different rates. Let’s
also do a traceplot of the RSME. We’ll compute RMSE for both the train
and the test set, even though the convergence is indicated by RMSE on
the training set alone. In addition, let’s compute a running RMSE on the
train/test sets to see how aggregate performance improves or decreases
as we continue to sample.
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def _running_rmse(pmf_model, test_data, train_data, burn_in=0, plot=True):
    """Calculate RMSE for each step of the trace to monitor convergence.
    """
    burn_in = burn_in if len(pmf_model.trace) >= burn_in else 0
    results = {'per-step-train': [], 'running-train': [],
               'per-step-test': [], 'running-test': []}
    R = np.zeros(test_data.shape)
    for cnt, sample in enumerate(pmf_model.trace[burn_in:]):
        sample_R = pmf_model.predict(sample['U'], sample['V'])
        R += sample_R
        running_R = R / (cnt + 1)
        results['per-step-train'].append(rmse(train_data, sample_R))
        results['running-train'].append(rmse(train_data, running_R))
        results['per-step-test'].append(rmse(test_data, sample_R))
        results['running-test'].append(rmse(test_data, running_R))

    results = pd.DataFrame(results)

    if plot:
        results.plot(
            kind='line', grid=False, figsize=(15, 7),
            title='Per-step and Running RMSE From Posterior Predictive')

    # Return the final predictions, and the RMSE calculations
    return running_R, results


PMF.running_rmse = _running_rmse
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predicted, results = pmf.running_rmse(test, train, burn_in=200)
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In [25]:






# And our final RMSE?
final_test_rmse = results['running-test'].values[-1]
final_train_rmse = results['running-train'].values[-1]
print('Posterior predictive train RMSE: %.5f' % final_train_rmse)
print('Posterior predictive test RMSE:  %.5f' % final_test_rmse)
print('Train/test difference:           %.5f' % (final_test_rmse - final_train_rmse))
print('Improvement from MAP:            %.5f' % (pmf_map_rmse - final_test_rmse))
print('Improvement from Mean of Means:  %.5f' % (baselines['mom'] - final_test_rmse))













Posterior predictive train RMSE: 3.92308
Posterior predictive test RMSE:  4.18124
Train/test difference:           0.25816
Improvement from MAP:            0.05331
Improvement from Mean of Means:  0.61708






We have some interesting results here. As expected, our MCMC sampler
provides lower error on the training set. However, it seems it does so
at the cost of overfitting the data. This results in a decrease in test
RMSE as compared to the MAP, even though it is still much better than
our best baseline. So why might this be the case? Recall that we used
point estimates for our precision paremeters \(\alpha_U\) and
\(\alpha_V\) and we chose a fixed precision \(\alpha\). It is
quite likely that by doing this, we constrained our posterior in a way
that biased it towards the training data. In reality, the variance in
the user ratings and the joke ratings is unlikely to be equal to the
means of sample variances we used. Also, the most reasonable observation
precision \(\alpha\) is likely different as well.




Summary of Results

Let’s summarize our results.
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size = 100  # RMSE doesn't really change after 100th sample anyway.
all_results = pd.DataFrame({
    'uniform random': np.repeat(baselines['ur'], size),
    'global means': np.repeat(baselines['gm'], size),
    'mean of means': np.repeat(baselines['mom'], size),
    'PMF MAP': np.repeat(pmf_map_rmse, size),
    'PMF MCMC': results['running-test'][:size],
})
fig, ax = plt.subplots(figsize=(10, 5))
all_results.plot(kind='line', grid=False, ax=ax,
                 title='RMSE for all methods')
ax.set_xlabel("Number of Samples")
ax.set_ylabel("RMSE")









Out[26]:






<matplotlib.text.Text at 0x7f1b306efdd8>
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Summary

We set out to predict user preferences for unseen jokes. First we
discussed the intuitive notion behind the user-user and item-item
neighborhood approaches to collaborative filtering. Then we formalized
our intuitions. With a firm understanding of our problem context, we
moved on to exploring our subset of the Jester data. After discovering
some general patterns, we defined three baseline methods: uniform
random, global mean, and mean of means. With the goal of besting our
baseline methods, we implemented the basic version of Probabilistic
Matrix Factorization (PMF) using pymc3.

Our results demonstrate that the mean of means method is our best
baseline on our prediction task. As expected, we are able to obtain a
significant decrease in RMSE using the PMF MAP estimate obtained via
Powell optimization. We illustrated one way to monitor convergence of an
MCMC sampler with a high-dimensionality sampling space using the
Frobenius norms of the sampled variables. The traceplots using this
method seem to indicate that our sampler converged to the posterior.
Results using this posterior showed that attempting to improve the MAP
estimation using MCMC sampling actually overfit the training data and
increased test RMSE. This was likely caused by the constraining of the
posterior via fixed precision parameters \(\alpha\),
\(\alpha_U\), and \(\alpha_V\).

As a followup to this analysis, it would be interesting to also
implement the logistic and constrained versions of PMF. We expect both
models to outperform the basic PMF model. We could also implement the
fully Bayesian version of
PMF [https://www.cs.toronto.edu/~amnih/papers/bpmf.pdf] (BPMF), which
places hyperpriors on the model parameters to automatically learn ideal
mean and precision parameters for \(U\) and \(V\). This would
likely resolve the issue we faced in this analysis. We would expect BPMF
to improve upon the MAP estimation produced here by learning more
suitable hyperparameters and parameters. For a basic (but working!)
implementation of BPMF in pymc3, see this
gist [https://gist.github.com/macks22/00a17b1d374dfc267a9a].

If you made it this far, then congratulations! You now have some idea of
how to build a basic recommender system. These same ideas and methods
can be used on many different recommendation tasks. Items can be movies,
products, advertisements, courses, or even other people. Any time you
can build yourself a user-item matrix with user preferences in the
cells, you can use these types of collaborative filtering algorithms to
predict the missing values. If you want to learn more about recommender
systems, the first reference is a good place to start.
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Model comparison

To demonstrate the use of model comparison criteria in PyMC3, we
implement the 8 schools example from Section 5.5 of Gelman et al
(2003), which attempts to infer the effects of coaching on SAT scores of
students from 8 schools. Below, we fit a pooled model, which assumes
a single fixed effect across all schools, and a hierarchical model
that allows for a random effect that partially pools the data.



In [1]:






%matplotlib inline
import pymc3 as pm
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_context('notebook')







The data include the observed treatment effects and associated standard
deviations in the 8 schools.



In [2]:






J = 8
y = np.array([28,  8, -3,  7, -1,  1, 18, 12])
sigma = np.array([15, 10, 16, 11,  9, 11, 10, 18])








Pooled model



In [3]:






with pm.Model() as pooled:
    mu = pm.Normal('mu', 0, sd=1e6)

    obs = pm.Normal('obs', mu, sd=sigma, observed=y)

    trace_p = pm.sample(2000)













Average ELBO = -42.09: 100%|██████████| 200000/200000 [00:17<00:00, 11675.35it/s] , 9446.54it/s]
100%|██████████| 2000/2000 [00:01<00:00, 1747.24it/s]








In [4]:






pm.traceplot(trace_p);












[image: ../_images/notebooks_Model_Comparison_6_0.png]







Hierarchical model



In [5]:






with pm.Model() as hierarchical:

    eta = pm.Normal('eta', 0, 1, shape=J)
    mu = pm.Normal('mu', 0, sd=1e6)
    tau = pm.HalfCauchy('tau', 5)

    theta = pm.Deterministic('theta', mu + tau*eta)

    obs = pm.Normal('obs', theta, sd=sigma, observed=y)

    trace_h = pm.sample(2000)













Average ELBO = -43.175: 100%|██████████| 200000/200000 [00:23<00:00, 8435.73it/s]3, 8478.86it/s]
100%|██████████| 2000/2000 [00:03<00:00, 477.25it/s]








In [6]:






pm.traceplot(trace_h, varnames=['mu']);
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In [7]:






pm.forestplot(trace_h, varnames=['theta']);
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Deviance Information Criterion (DIC)

DIC (Spiegelhalter et al. 2002) is an information theoretic criterion
for estimating predictive accuracy that is analogous to Akaike’s
Information Criterion (AIC). It is a more Bayesian approach that allows
for the modeling of random effects, replacing the maximum likelihood
estimate with the posterior mean and using the effective number of
parameters to correct for bias.



In [8]:






pooled_dic = pm.dic(trace_p, pooled)

pooled_dic









Out[8]:






90.832077760613302









In [9]:






hierarchical_dic = pm.dic(trace_h, hierarchical)

hierarchical_dic









Out[9]:






124.82406598767808










Widely-applicable Information Criterion (WAIC)

WAIC (Watanabe 2010) is a fully Bayesian criterion for estimating
out-of-sample expectation, using the computed log pointwise posterior
predictive density (LPPD) and correcting for the effective number of
parameters to adjust for overfitting.



In [10]:






pooled_waic = pm.waic(trace_p, pooled)

pooled_waic.WAIC









Out[10]:






61.121151094964134









In [11]:






hierarchical_waic = pm.waic(trace_h, hierarchical)

hierarchical_waic.WAIC









Out[11]:






61.570270537072844







PyMC3 includes two convenience functions to help compare WAIC for
different models. The first of this functions is compare, this one
computes WAIC (or LOO) from a set of traces and models and returns a
DataFrame.



In [12]:






df_comp_WAIC = pm.compare((trace_h, trace_p), (hierarchical, pooled))
df_comp_WAIC









Out[12]:








  
    
      	
      	WAIC
      	pWAIC
      	dWAIC
      	weight
      	SE
      	dSE
      	warning
    

  
  
    
      	1
      	61.1212
      	0.674471
      	0
      	0.555905
      	2.20084
      	0
      	0
    

    
      	0
      	61.5703
      	1.08163
      	0.449119
      	0.444095
      	1.96714
      	0.0259316
      	0
    

  







We have many columns so let check one by one the meaning of them:


	The first column clearly contains the values of WAIC. The DataFrame
is always sorted from lowest to highest WAIC. The index reflects the
order in which the models are passed to this function.

	The second column is the estimated effective number of parameters. In
general, models with more parameters will be more flexible to fit
data and at the same time could also lead to overfitting. Thus we can
interpret pWAIC as a penalization term, intuitively we can also
interpret it as measure of how flexible each model is in fitting the
data.

	The third column is the relative difference between the value of WAIC
for the top-ranked model and the value of WAIC for each model. For
this reason we will always get a value of 0 for the first model.

	Sometimes when comparing models, we do not want to select the “best”
model, instead we want to perform predictions by averaging along all
the models (or at least several models). Ideally we would like to
perform a weighted average, giving more weight to the model that
seems to explain/predict the data better. There are many approaches
to perform this task, one of them is to use Akaike weights based on
the values of WAIC for each model. These weights can be loosely
interpreted as the probability of each model (among the compared
models) given the data. One caveat of this approach is that the
weights are based on point estimates of WAIC (i.e. the uncertainty is
ignored).

	The fifth column records the standard error for the WAIC
computations. The standard error can be useful to assess the
uncertainty of the WAIC estimates. Nevertheless, caution need to be
taken because the estimation of the standard error assumes normality
and hence could be problematic when the sample size is low.

	In the same way that we can compute the standard error for each value
of WAIC, we can compute the standard error of the differences between
two values of WAIC. Notice that both quantities are not necessarily
the same, the reason is that the uncertainty about WAIC is correlated
between models. This quantity is always 0 for the top-ranked model.

	Finally we have the last column named “warning”. A value of 1
indicates that the computation of WAIC may not be reliable, this
warning is based on an empirical determined cutoff value and need to
be interpreted with caution. For more details you can read this
paper [https://arxiv.org/abs/1507.04544].



The second convenience function takes the output of compare and
produces a summary plot in the style of the one used in the book
Statistical
Rethinking [http://xcelab.net/rm/statistical-rethinking/] by Richard
McElreath (check also this
port [https://github.com/aloctavodia/Statistical-Rethinking-with-Python-and-PyMC3]
of the examples in the book to PyMC3).



In [13]:






pm.compare_plot(df_comp_WAIC);
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The empty circle represents the values of WAIC and the black error bars
associated with them are the values of the standard deviation of WAIC.

The value of the lowest WAIC is also indicated with a vertical dashed
grey line to ease comparison with other WAIC values.

The filled black dots are the in-sample deviance of each model, which
for WAIC is 2 pWAIC from the corresponding WAIC value.

For all models except the top-ranked one we also get a triangle
indicating the value of the difference of WAIC between that model and
the top model and a grey errobar indicating the standard error of the
differences between the top-ranked WAIC and WAIC for each model.




Leave-one-out Cross-validation (LOO)

LOO cross-validation is an estimate of the out-of-sample predictive fit.
In cross-validation, the data are repeatedly partitioned into training
and holdout sets, iteratively fitting the model with the former and
evaluating the fit with the holdout data. Vehtari et al. (2016)
introduced an efficient computation of LOO from MCMC samples, which are
corrected using Pareto-smoothed importance sampling (PSIS) to provide an
estimate of point-wise out-of-sample prediction accuracy.



In [14]:






pooled_loo = pm.loo(trace_p, pooled)

pooled_loo.LOO













/home/osvaldo/anaconda3/lib/python3.5/site-packages/pymc3/stats.py:208: UserWarning: Estimated shape parameter of Pareto distribution is
        greater than 0.7 for one or more samples.
        You should consider using a more robust model, this is
        because importance sampling is less likely to work well if the marginal
        posterior and LOO posterior are very different. This is more likely to
        happen with a non-robust model and highly influential observations.
  happen with a non-robust model and highly influential observations.""")








Out[14]:






61.591020562529295









In [15]:






hierarchical_loo  = pm.loo(trace_h, hierarchical)

hierarchical_loo.LOO













/home/osvaldo/anaconda3/lib/python3.5/site-packages/pymc3/stats.py:208: UserWarning: Estimated shape parameter of Pareto distribution is
        greater than 0.7 for one or more samples.
        You should consider using a more robust model, this is
        because importance sampling is less likely to work well if the marginal
        posterior and LOO posterior are very different. This is more likely to
        happen with a non-robust model and highly influential observations.
  happen with a non-robust model and highly influential observations.""")








Out[15]:






61.655191059793324







We can also use compare with LOO.



In [16]:






df_comp_LOO = pm.compare((trace_h, trace_p), (hierarchical, pooled), ic='LOO')
df_comp_LOO









Out[16]:








  
    
      	
      	LOO
      	pLOO
      	dLOO
      	weight
      	SE
      	dSE
      	warning
    

  
  
    
      	1
      	61.591
      	0.909406
      	0
      	0.508021
      	2.13514
      	0
      	1
    

    
      	0
      	61.6552
      	1.12409
      	0.0641705
      	0.491979
      	1.9971
      	0.0258501
      	1
    

  







The columns return the equivalent values for LOO, notice that in this
example we get two warnings. Also notice that the order of the models is
not the same as the one for WAIC.

We can also plot the results



In [17]:






pm.compare_plot(df_comp_LOO);
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Interpretation

Though we might expect the hierarchical model to outperform a complete
pooling model, there is little to choose between the models in this
case, giving that both models gives very similar values of the
information criteria. This is more clearly appreciated when we take into
account the uncertainty (in terms of standard errors) of WAIC and LOO.


Reference

Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive
information criteria for Bayesian models. Statistics and Computing,
24(6), 997–1016. [http://doi.org/10.1007/s11222-013-9416-2]

Vehtari, A, Gelman, A, Gabry, J. (2016). Practical Bayesian model
evaluation using leave-one-out cross-validation and WAIC. Statistics and
Computing [http://link.springer.com/article/10.1007/s11222-016-9696-4]
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GLM: Linear Regression



In [1]:






%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from pymc3 import  *
import theano
import pandas as pd
from statsmodels.formula.api import glm as glm_sm
import statsmodels.api as sm
from pandas.tools.plotting import scatter_matrix










Simple example

Lets generate some data with known slope and intercept and fit a simple
linear GLM.



In [2]:






size = 50
true_intercept = 1
true_slope = 2
x = np.linspace(0, 1, size)
y = true_intercept + x*true_slope + np.random.normal(scale=.5, size=size)
data = {'x': x, 'y': y}







The glm.linear_component() function can be used to generate the
output variable y_est and coefficients of the specified linear model.



In [3]:






with Model() as model:
    lm = glm.LinearComponent.from_formula('y ~ x', data)
    sigma = Uniform('sigma', 0, 20)
    y_obs = Normal('y_obs', mu=lm.y_est, sd=sigma, observed=y)
    trace = sample(2000, njobs=2)

plt.figure(figsize=(5, 5))
plt.plot(x, y, 'x')
plot_posterior_predictive_glm(trace)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 57.124:   9%|▉         | 18505/200000 [00:01<00:18, 9875.57it/s]
Convergence archived at 18600
Interrupted at 18,600 [9%]: Average Loss = 98.874
100%|██████████| 2500/2500 [00:04<00:00, 506.15it/s]











[image: ../_images/notebooks_GLM_5_1.png]




Since there are a couple of general linear models that are being used
over and over again (Normally distributed noise, logistic regression
etc), the glm.glm() function simplifies the above step by creating
the likelihood (y_obs) and its priors (sigma) for us. Since we are
working in the model context, the random variables are all added to the
model behind the scenes. This function also automatically finds a good
starting point which it returns.

Note that the below call to glm() is producing exactly the same
model as above, just more succinctly.



In [4]:






with Model() as model:
    GLM.from_formula('y ~ x', data)
    trace = sample(2000, njobs=2)

plt.figure(figsize=(5, 5))
plt.plot(x, y, 'x')
plot_posterior_predictive_glm(trace)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 56.78:   7%|▋         | 13100/200000 [00:01<00:17, 10717.30it/s]
Convergence archived at 14100
Interrupted at 14,100 [7%]: Average Loss = 96.604
100%|██████████| 2500/2500 [00:05<00:00, 478.76it/s]
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Robust GLM

Lets try the same model but with a few outliers in the data.



In [5]:






x_out = np.append(x, [.1, .15, .2])
y_out = np.append(y, [8, 6, 9])
data_outlier = dict(x=x_out, y=y_out)









In [6]:






with Model() as model:
    GLM.from_formula('y ~ x', data_outlier)
    trace = sample(2000, njobs=2)

plt.figure(figsize=(5, 5))
plt.plot(x_out, y_out, 'x')
plot_posterior_predictive_glm(trace)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 112.7:   5%|▍         | 9387/200000 [00:01<00:20, 9269.32it/s]
Convergence archived at 10100
Interrupted at 10,100 [5%]: Average Loss = 172.01
100%|██████████| 2500/2500 [00:04<00:00, 514.92it/s]











[image: ../_images/notebooks_GLM_10_1.png]




Because the normal distribution does not have a lot of mass in the
tails, an outlier will affect the fit strongly.

Instead, we can replace the Normal likelihood with a student T
distribution which has heavier tails and is more robust towards
outliers. While this could be done with the linear_compoment()
function and manually defining the T likelihood we can use the glm()
function for more automation. By default this function uses a normal
likelihood. To define the usage of a T distribution instead we can pass
a family object that contains information on how to link the output to
y_est (in this case we explicitly use the Identity link function
which is also the default) and what the priors for the T distribution
are. Here we fix the degrees of freedom nu to 1.5.



In [7]:






with Model() as model_robust:
    family = glm.families.StudentT(link=glm.families.Identity(),
                                   priors={'nu': 1.5,
                                           'lam': Uniform.dist(0, 20)})
    GLM.from_formula('y ~ x', data_outlier, family=family)
    trace = sample(2000, njobs=2)

plt.figure(figsize=(5, 5))
plt.plot(x_out, y_out, 'x')
plot_posterior_predictive_glm(trace)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 80.537:   5%|▌         | 10540/200000 [00:01<00:19, 9772.92it/s]
Convergence archived at 11100
Interrupted at 11,100 [5%]: Average Loss = 109.94
100%|██████████| 2500/2500 [00:06<00:00, 378.68it/s]
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Hierarchical GLM



In [8]:






sat_data = pd.read_csv(get_data('Guber1999data.txt'))









In [9]:






with Model() as model_sat:
    grp_mean = Normal('grp_mean', mu=0, sd=10)
    grp_sd = Uniform('grp_sd', 0, 200)
    # Define priors for intercept and regression coefficients.
    priors = {'Intercept': Normal.dist(mu=sat_data.sat_t.mean(), sd=sat_data.sat_t.std()),
          'spend': Normal.dist(mu=grp_mean, sd=grp_sd),
          'stu_tea_rat': Normal.dist(mu=grp_mean, sd=grp_sd),
          'salary': Normal.dist(mu=grp_mean, sd=grp_sd),
          'prcnt_take': Normal.dist(mu=grp_mean, sd=grp_sd)
    }
    GLM.from_formula('sat_t ~ spend + stu_tea_rat + salary + prcnt_take', sat_data, priors=priors)
    trace_sat = sample(2000, njobs=2)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 270.97:  11%|█         | 22364/200000 [00:03<00:20, 8680.71it/s]
Convergence archived at 22500
Interrupted at 22,500 [11%]: Average Loss = 29,630
 84%|████████▎ | 2092/2500 [00:43<00:07, 56.83it/s]/usr/local/lib/python3.5/dist-packages/pymc3/step_methods/hmc/nuts.py:456: UserWarning: Chain 1 contains 3 diverging samples after tuning. If increasing `target_accept` doesn't help try to reparameterize.
  % (self._chain_id, n_diverging))
100%|█████████▉| 2495/2500 [00:51<00:00, 63.13it/s]/usr/local/lib/python3.5/dist-packages/pymc3/step_methods/hmc/nuts.py:456: UserWarning: Chain 0 contains 1 diverging samples after tuning. If increasing `target_accept` doesn't help try to reparameterize.
  % (self._chain_id, n_diverging))
100%|██████████| 2500/2500 [00:51<00:00, 48.69it/s]








In [10]:






scatter_matrix(trace_to_dataframe(trace_sat), figsize=(12,12));













/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:1: FutureWarning: 'pandas.tools.plotting.scatter_matrix' is deprecated, import 'pandas.plotting.scatter_matrix' instead.
  """Entry point for launching an IPython kernel.
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In [11]:






with Model() as model_sat:
    grp_mean = Normal('grp_mean', mu=0, sd=10)
    grp_prec = Gamma('grp_prec', alpha=1, beta=.1, testval=1.)
    slope = StudentT.dist(mu=grp_mean, lam=grp_prec, nu=1)
    intercept = Normal.dist(mu=sat_data.sat_t.mean(), sd=sat_data.sat_t.std())
    GLM.from_formula('sat_t ~ spend + stu_tea_rat + salary + prcnt_take', sat_data,
        priors={'Intercept': intercept, 'Regressor': slope})
    trace_sat = sample(2000, njobs=2)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 266.59:  10%|▉         | 19702/200000 [00:02<00:21, 8240.22it/s]
Convergence archived at 20100
Interrupted at 20,100 [10%]: Average Loss = 33,127
100%|██████████| 2500/2500 [00:46<00:00, 53.91it/s]








In [12]:






scatter_matrix(trace_to_dataframe(trace_sat), figsize=(12,12));













/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:1: FutureWarning: 'pandas.tools.plotting.scatter_matrix' is deprecated, import 'pandas.plotting.scatter_matrix' instead.
  """Entry point for launching an IPython kernel.
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In [13]:






tdf_gain = 5.
with Model() as model_sat:
    grp_mean = Normal('grp_mean', mu=0, sd=10)
    grp_prec = Gamma('grp_prec', alpha=1, beta=.1, testval=1.)
    slope = StudentT.dist(mu=grp_mean, lam=grp_prec, nu=1) #grp_df)
    intercept = Normal.dist(mu=sat_data.sat_t.mean(), sd=sat_data.sat_t.std())
    GLM.from_formula('sat_t ~ spend + stu_tea_rat + salary + prcnt_take', sat_data,
                priors={'Intercept': intercept, 'Regressor': slope})

    trace_sat = sample(2000, njobs=2)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 266.58:  10%|▉         | 19977/200000 [00:03<00:28, 6292.44it/s]
Convergence archived at 20100
Interrupted at 20,100 [10%]: Average Loss = 33,127
100%|██████████| 2500/2500 [00:45<00:00, 55.08it/s]








In [14]:






scatter_matrix(trace_to_dataframe(trace_sat), figsize=(12,12));













/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:1: FutureWarning: 'pandas.tools.plotting.scatter_matrix' is deprecated, import 'pandas.plotting.scatter_matrix' instead.
  """Entry point for launching an IPython kernel.
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Logistic Regression



In [15]:






htwt_data = pd.read_csv(get_data('HtWt.csv'))
htwt_data.head()









Out[15]:









  
    
      	
      	male
      	height
      	weight
    

  
  
    
      	0
      	0
      	63.2
      	168.7
    

    
      	1
      	0
      	68.7
      	169.8
    

    
      	2
      	0
      	64.8
      	176.6
    

    
      	3
      	0
      	67.9
      	246.8
    

    
      	4
      	1
      	68.9
      	151.6
    

  









In [16]:






m = glm_sm('male ~ height + weight', htwt_data, family=sm.families.Binomial()).fit()
print(m.summary())













                 Generalized Linear Model Regression Results
==============================================================================
Dep. Variable:                   male   No. Observations:                   70
Model:                            GLM   Df Residuals:                       67
Model Family:                Binomial   Df Model:                            2
Link Function:                  logit   Scale:                             1.0
Method:                          IRLS   Log-Likelihood:                -28.298
Date:                Tue, 30 May 2017   Deviance:                       56.597
Time:                        15:14:11   Pearson chi2:                     62.8
No. Iterations:                     6
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept    -45.2059     10.887     -4.152      0.000     -66.545     -23.867
height         0.6571      0.164      4.018      0.000       0.337       0.978
weight         0.0096      0.011      0.892      0.372      -0.012       0.031
==============================================================================








In [17]:






with Model() as model_htwt:
    GLM.from_formula('male ~ height + weight', htwt_data, family=glm.families.Binomial())
    trace_htwt = sample(2000, njobs=2)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 528.1:   6%|▌         | 11629/200000 [00:01<00:20, 9049.29it/s]
Convergence archived at 11700
Interrupted at 11,700 [5%]: Average Loss = 1,513.3
 93%|█████████▎| 2313/2500 [02:50<00:10, 17.84it/s]/usr/local/lib/python3.5/dist-packages/pymc3/step_methods/hmc/nuts.py:448: UserWarning: Chain 1 reached the maximum tree depth. Increase max_treedepth, increase target_accept or reparameterize.
  'reparameterize.' % self._chain_id)
100%|█████████▉| 2499/2500 [03:03<00:00, 11.60it/s]/usr/local/lib/python3.5/dist-packages/pymc3/step_methods/hmc/nuts.py:448: UserWarning: Chain 0 reached the maximum tree depth. Increase max_treedepth, increase target_accept or reparameterize.
  'reparameterize.' % self._chain_id)
100%|██████████| 2500/2500 [03:03<00:00, 13.63it/s]








In [18]:






trace_df = trace_to_dataframe(trace_htwt)
print(trace_df.describe().drop('count').T)
scatter_matrix(trace_df, figsize=(8, 8))
print("P(weight < 0) = ", (trace_df['weight'] < 0).mean())
print("P(height < 0) = ", (trace_df['height'] < 0).mean())













                mean        std        min        25%        50%        75%  \
height      0.714955   0.166707   0.290146   0.597691   0.709490   0.823537
weight      0.010473   0.011286  -0.026680   0.002675   0.010263   0.017928
Intercept -49.197308  11.099544 -97.695082 -56.375218 -48.850502 -41.635109

                 max
height      1.467539
weight      0.060969
Intercept -22.206624












/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:3: FutureWarning: 'pandas.tools.plotting.scatter_matrix' is deprecated, import 'pandas.plotting.scatter_matrix' instead.
  This is separate from the ipykernel package so we can avoid doing imports until












P(weight < 0) =  0.181
P(height < 0) =  0.0
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Bayesian Logistic Lasso



In [19]:






lp = Laplace.dist(mu=0, b=0.05)
x_eval = np.linspace(-.5, .5, 300)
plt.plot(x_eval, theano.tensor.exp(lp.logp(x_eval)).eval())
plt.xlabel('x')
plt.ylabel('Probability')
plt.title('Laplace distribution');
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In [20]:






with Model() as model_lasso:
    # Define priors for intercept and regression coefficients.
    priors = {'Intercept': Normal.dist(mu=0, sd=50),
              'Regressor': Laplace.dist(mu=0, b=0.05)
    }
    GLM.from_formula('male ~ height + weight', htwt_data, family=glm.families.Binomial(),
                    priors=priors)

    trace_lasso = sample(500, njobs=2)

trace_df = trace_to_dataframe(trace_lasso)
scatter_matrix(trace_df, figsize=(8, 8));
print(trace_df.describe().drop('count').T)













Auto-assigning NUTS sampler...
Initializing NUTS using ADVI...
Average Loss = 618.18:   5%|▌         | 10391/200000 [00:00<00:12, 14898.77it/s]
Convergence archived at 11700
Interrupted at 11,700 [5%]: Average Loss = 1,506.1
100%|██████████| 1000/1000 [00:35<00:00, 25.74it/s]/usr/local/lib/python3.5/dist-packages/pymc3/step_methods/hmc/nuts.py:448: UserWarning: Chain 0 reached the maximum tree depth. Increase max_treedepth, increase target_accept or reparameterize.
  'reparameterize.' % self._chain_id)

/usr/local/lib/python3.5/dist-packages/pymc3/step_methods/hmc/nuts.py:448: UserWarning: Chain 1 reached the maximum tree depth. Increase max_treedepth, increase target_accept or reparameterize.
  'reparameterize.' % self._chain_id)
/usr/local/lib/python3.5/dist-packages/ipykernel_launcher.py:12: FutureWarning: 'pandas.tools.plotting.scatter_matrix' is deprecated, import 'pandas.plotting.scatter_matrix' instead.
  if sys.path[0] == '':












                mean       std        min        25%        50%        75%  \
height      0.348405  0.089288   0.027613   0.286484   0.347560   0.409454
weight      0.011833  0.009546  -0.015049   0.005789   0.011137   0.017528
Intercept -25.002341  5.917234 -44.146572 -29.108058 -25.044936 -20.806721

                max
height     0.632673
weight     0.049499
Intercept -4.222934
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Example of simple GP fit, adapted from Stan’s example-models
repository [https://github.com/stan-dev/example-models/blob/master/misc/gaussian-process/gp-fit.stan].



In [1]:






%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

import pymc3 as pm
from pymc3 import Model, MvNormal, HalfCauchy, sample, traceplot, summary, find_MAP, NUTS, Deterministic
import theano.tensor as T
from theano import shared
from theano.tensor.nlinalg import matrix_inverse









In [2]:






x = np.array([-5, -4.9, -4.8, -4.7, -4.6, -4.5, -4.4, -4.3, -4.2, -4.1, -4,
-3.9, -3.8, -3.7, -3.6, -3.5, -3.4, -3.3, -3.2, -3.1, -3, -2.9,
-2.8, -2.7, -2.6, -2.5, -2.4, -2.3, -2.2, -2.1, -2, -1.9, -1.8,
-1.7, -1.6, -1.5, -1.4, -1.3, -1.2, -1.1, -1, -0.9, -0.8, -0.7,
-0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,
1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1,
3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4,
4.5, 4.6, 4.7, 4.8, 4.9, 5])

y = np.array([1.04442478194401, 0.948306088493654, 0.357037759697332, 0.492336514646604,
0.520651364364746, 0.112629866592809, 0.470995468454158, -0.168442254267804,
0.0720344402575861, -0.188108980535916, -0.0160163306512027,
-0.0388792158617705, -0.0600673630622568, 0.113568725264636,
0.447160403837629, 0.664421188556779, -0.139510743820276, 0.458823971660986,
0.141214654640904, -0.286957663528091, -0.466537724021695, -0.308185884317105,
-1.57664872694079, -1.44463024170082, -1.51206214603847, -1.49393593601901,
-2.02292464164487, -1.57047488853653, -1.22973445533419, -1.51502367058357,
-1.41493587255224, -1.10140254663611, -0.591866485375275, -1.08781838696462,
-0.800375653733931, -1.00764767602679, -0.0471028950122742, -0.536820626879737,
-0.151688056391446, -0.176771681318393, -0.240094952335518, -1.16827876746502,
-0.493597351974992, -0.831683011472805, -0.152347043914137, 0.0190364158178343,
-1.09355955218051, -0.328157917911376, -0.585575679802941, -0.472837120425201,
-0.503633622750049, -0.0124446353828312, -0.465529814250314,
-0.101621725887347, -0.26988462590405, 0.398726664193302, 0.113805181040188,
0.331353802465398, 0.383592361618461, 0.431647298655434, 0.580036473774238,
0.830404669466897, 1.17919105883462, 0.871037583886711, 1.12290553424174,
0.752564860804382, 0.76897960270623, 1.14738839410786, 0.773151715269892,
0.700611498974798, 0.0412951045437818, 0.303526087747629, -0.139399513324585,
-0.862987735433697, -1.23399179134008, -1.58924289116396, -1.35105117911049,
-0.990144529089174, -1.91175364127672, -1.31836236129543, -1.65955735224704,
-1.83516148300526, -2.03817062501248, -1.66764011409214, -0.552154350554687,
-0.547807883952654, -0.905389222477036, -0.737156477425302, -0.40211249920415,
0.129669958952991, 0.271142753510592, 0.176311762529962, 0.283580281859344,
0.635808289696458, 1.69976647982837, 1.10748978734239, 0.365412229181044,
0.788821368082444, 0.879731888124867, 1.02180766619069, 0.551526067300283])

N = len(y)









In [3]:






squared_distance = lambda x, y: np.array([[(x[i] - y[j])**2 for i in range(len(x))] for j in range(len(y))])









In [4]:






with Model() as gp_fit:

    μ = np.zeros(N)

    η_sq = HalfCauchy('η_sq', 5)
    ρ_sq = HalfCauchy('ρ_sq', 5)
    σ_sq = HalfCauchy('σ_sq', 5)

    D = squared_distance(x, x)

    # Squared exponential
    Σ = T.fill_diagonal(η_sq * T.exp(-ρ_sq * D), η_sq + σ_sq)

    obs = MvNormal('obs', μ, Σ, observed=y)







This is what our initial covariance matrix looks like. Intuitively,
every data point’s Y-value correlates with points according to their
squared distances.



In [5]:






sns.heatmap(Σ.tag.test_value, xticklabels=False, yticklabels=False)









Out[5]:






<matplotlib.axes._subplots.AxesSubplot at 0x7fa0aca4cdd8>












[image: ../_images/notebooks_gaussian_process_7_1.png]




The following generates predictions from the GP model in a grid of
values:



In [6]:






with gp_fit:

    # Prediction over grid
    xgrid = np.linspace(-6, 6)
    D_pred = squared_distance(xgrid, xgrid)
    D_off_diag = squared_distance(x, xgrid)

    # Covariance matrices for prediction
    Σ_pred = η_sq * T.exp(-ρ_sq * D_pred)
    Σ_off_diag = η_sq * T.exp(-ρ_sq * D_off_diag)

    # Posterior mean
    μ_post = Deterministic('μ_post', T.dot(T.dot(Σ_off_diag, matrix_inverse(Σ)), y))
    # Posterior covariance
    Σ_post = Deterministic('Σ_post', Σ_pred - T.dot(T.dot(Σ_off_diag, matrix_inverse(Σ)), Σ_off_diag.T))









In [7]:






with gp_fit:
    gp_trace = pm.variational.svgd(n=300, n_particles=50)













100%|██████████| 300/300 [00:22<00:00, 13.43it/s]








In [8]:






traceplot(gp_trace, varnames=['η_sq', 'ρ_sq', 'σ_sq']);












[image: ../_images/notebooks_gaussian_process_11_0.png]




Sample from the posterior GP



In [9]:






y_pred = [np.random.multivariate_normal(m, S) for m, S in zip(gp_trace['μ_post'], gp_trace['Σ_post'])]













/home/wiecki/miniconda3/lib/python3.5/site-packages/ipykernel/__main__.py:1: RuntimeWarning: covariance is not positive-semidefinite.
  if __name__ == '__main__':








In [10]:






for yp in y_pred:
    plt.plot(np.linspace(-6, 6), yp, 'c-', alpha=0.1);
plt.plot(x, y, 'r.')









Out[10]:






[<matplotlib.lines.Line2D at 0x7fa08b5d38d0>]
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