

Welcome to Pylocwolowitz’s documentation!

Contents:

	source: https://github.com/hobbestigrou/Pylocwolowitz

	ticketing: https://github.com/hobbestigrou/Pylocwolowitz/issues

	documentation: http://pylocwolowitz.readthedocs.org/en/latest/

	Documentation of the api

	Example of i18n file
	Use YAML format

	Use JSON format

	How to contrib
	Create a ticket

	Create a branch

	Unit test

	Code review

	Hook to exec flake8

	Conclusion

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Pylocwolowitz is a port of the awesome Locale::Wolowitz [https://metacpan.org/module/Locale::Wolowitz] module from Perl in
Python. It is a very simple text localization system, meant to be used by web
applications (but can pretty much be used anywhere).

Yes, this is yet another localization system.

Pylocwolowitz works with JSON and YAML files.

Each file can serve one or more languages. When creating an instance of this
module, you are required to pass a path to a directory where your application’s
JSON localization files are present. These are all loaded and merged into one
big dict, which is stored in memory. A file with only one language has to be
named <lang>.json (where <lang> is the name of the language, you’d probably
want to use the two-letter ISO 639-1 code). A file with multiple language can
be call fr_and_es.json. The basic idea is to write your application in a base
language, and use the JSON files to translate text to other languages. For
example, lets say you’re writing your application in English and translating it
to Hebrew, Spanish, and Dutch. You put Spanish and Dutch translations in one
file, and since everybody hates Israel, you put Hebrew translations alone.

Example:

from pylocwolowitz import Pylocwolowitz
i18n = Pylocwolowitz('./i18n')
i18n.loc('hello', 'fr')
i18n.loc('welcome {name}', 'se', {'name': 'hobbestigrou'})

ACKNOWLEDGEMENTS

Thanks to Ido Perlmuter to Locale::Wolowitz. Thanks you to Julien Tayon for
his contributions. A big thank you to Victor Stinner, Marmotte and Ggreg for
their invaluable advice.

Documentation of the api

	
class pylocwolowitz.core.Pylocwolowitz(path, format_deserializer='json', default_key=None)

	Pylocwolitz is a very simple text localization system.

Pylocwolitz is a very simple text localization system, meant to be used
by web applications (but can pretty much be used anywhere). Yes, another
localization system.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – File path translation

	format_deserializer (str [https://docs.python.org/3/library/stdtypes.html#str]) – Indicate the serializer to use json or yaml

	default_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specify a default key if the key is not found

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Format not supported, only json or yaml.

	
loc(key, lang, values=None)

	Get the translate.

Return the string key, translated to the requested language (if such
a translation exists, otherwise no traslation occurs). Any other
parameters passed to the method are injected to the placeholders in the
string (if present).

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key translate

	lang (str [https://docs.python.org/3/library/stdtypes.html#str]) – Language to translate

	values (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Arguments are injected to the placeholders in the string

	Returns

	Translated to the requested language

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example of i18n file

Store files in the language folder first argument specified when creating the object.

Use YAML format

Here is an example with one language per file:

"welcome {name}": "Välkommen {name}"
"Hello": "Hej"

An example with two language in the same file:

"welcome {name}":
 "fr": "Bienvenue {name}"
 "en": "Welcome {name}"

Use JSON format

Here is an example with one language per file:

{
 "welcome {name}": "Välkommen {name}"
 "Hello": "Hej"
}

An example with two language in the same file:

{
 "welcome {name}": {
 "fr": "Bienvenue {name}",
 "en": "Welcome {name}"
 }
}

How to contrib

Choice to use a fairly close process to what is in us in other
Free and Open Source Software projects.

It is recommended for a new developer or contributor to read this document.

Create a ticket

For all new features or bug fixes, fill a new ticket in the issue
tracker.

Try to be specific in the ticket, with a proper title and description,
if you can provide steps to help the developper to understand the
process or the feature request. Without enough context, it can be
difficult to understand.

The ticket number is then used as a reference for the branch and
commits.

Create a branch

Except in exceptional cases, a developer must not directly commits in master.

The rule also applies to project core developers.

The branch must be prefixed by the ticket number, for example:

git pull origin master
git branch 425-assign_nobody

Don’t forget to be update master before creating your new branch from it.

Unit test

Except in exceptional cases, a pull request must come with tests.

It is important to write tests, it’s annoying but it pays in the long
run, not regression, refactoring opportunities, and so on.

If this is a bug fix, write a test for this case.

A branch will not merged if there is no test. Learn from the many
existing tests, ask questions if needed.

Code review

To err is human, several pair of eyes are better than one.

A developer should not merge in the master.

The code must be reviewed by another developer and merged by an
experienced core developer.

It is possible to discuss and point out any mistakes or errors.

If we detect a mistake after the branch as been merged, we will all
work together to fix it as soon as possible.

Hook to exec flake8

We want our beautiful code to be PEP8 compliant so it is strongly
recommended to add this pre-commit hook in git
(peopleask/.git/hooks/pre-commit):

#!/usr/bin/env bash
flake8 ./peopleask/

If not pep8 it will not be commiting

Conclusion

It is important to follow up the process. It is not to be annoying,
but it opens the discussion, helps to progress and to have a better
quality of code as well as letting every developer sees and valid
project progress.

Do not take the critic for you, each developer make mistakes and it is
fine.

Despite this process of functional bugs and errors happen and it is
fine as well, never forget it.

Index

 L
 | P

L

 	
 	loc() (pylocwolowitz.core.Pylocwolowitz method)

P

 	
 	Pylocwolowitz (class in pylocwolowitz.core)

 nav.xhtml

 Table of Contents

 		
 Welcome to Pylocwolowitz’s documentation!

 		
 Documentation of the api

 		
 Example of i18n file

 		
 Use YAML format

 		
 Use JSON format

 		
 How to contrib

 		
 Create a ticket

 		
 Create a branch

 		
 Unit test

 		
 Code review

 		
 Hook to exec flake8

 		
 Conclusion

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

