

Welcome to pylighthouse’s documentation!

Star pylighthouse on Github:

[image: Star this repo]
 [https://github.com/djhaskin987/pylighthouse]Fork pylighthouse on Github:

[image: Fork this repo]
 [https://github.com/djhaskin987/pylighthouse/fork]
Contents:

	pylighthouse
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage
	Basic Scheduling

	Placement Strategies

	Placement Enforcement

	Aversion Groups

	Modules

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

	Changelog
	Unreleased

	v0.1.0

	Credits
	Development Lead

	Contributors

	License
	Apache Software License 2.0

Indices and tables

	Index

	Module Index

	Search Page

pylighthouse

[image: _images/pylighthouse.svg]
 [https://pypi.python.org/pypi/pylighthouse][image: _images/pylighthouse1.svg]
 [https://travis-ci.org/djhaskin987/pylighthouse][image: Documentation Status]
 [https://pylighthouse.readthedocs.io/en/latest/?badge=latest]Helps workloads find safe harbor.

	Free software: Apache Software License 2.0

	Documentation: https://pylighthouse.readthedocs.io.

Features

	Scheduling-as-a-library, in pure python

	Schedule workloads onto nodes

	Flexible definition of requirements needed by workloads and resources offered
by nodes

	Tag nodes simply by adding a zero-quantity resource

	“Taints and Tolerations”-like behavior supported through the use of
Wards and Immunitites

	Anti-affinity-group-like behavior supported through the use of
Aversion Groups

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install pylighthouse, run this command in your terminal:

$ pip install pylighthouse

This is the preferred method to install pylighthouse, as it will always install
the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for pylighthouse can be downloaded from the Github repo [https://github.com/djhaskin987/pylighthouse].

You can either clone the public repository:

$ git clone git://github.com/djhaskin987/pylighthouse

Or download the tarball [https://github.com/djhaskin987/pylighthouse/tarball/master]:

$ curl -OL https://github.com/djhaskin987/pylighthouse/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use pylighthouse in a project:

import pylighthouse.pylighthouse as lighthouse

Basic Scheduling

You can schedule workloads onto nodes like this:

 import pylighthouse.pylighthouse as lighthouse

 distor = lighthouse.PrioritizedDistributor.from_list(
 nodes=lighthouse.Node.from_list([{
 "name": "cluster-member-1",
 "resources": {
 "cpu": 6,
 "mem": 12,
 "disk": 50
 }
 },
 {
 "name": "cluster-member-2",
 "resources": {
 "cpu": 4,
 "mem": 16,
 "disk": 40
 }
 },
 {
 "name": "cluster-member-3",
 "resources": {
 "cpu": 0.7,
 "mem": 1.3,
 "disk": 17
 }
 }
]))
 distor.attempt_assign_loads(lighthouse.Workload.from_list([
 {
 "name": "vm-1",
 "requirements": {
 "cpu": 0.2,
 "mem": 0.1
 }
 },
 {
 "name": "vm-2",
 "requirements": {
 "cpu": 0.3,
 "mem": 0.3,
 "disk": 1
 }
 }]))
=>
#{
"vm-1": "cluster-member-1",
"vm-2": "cluster-member-1"
#}

As you can see, attempt_assign_loads takes a list of workloads and
attempts to assign workloads to the nodes given to the distributor at
construction time. It returns a dictionary with keys being the names of the
workloads and values being the names of the nodes to which those loads
were assigned. If workload could not be assigned to a node, the value
is None for that key instead.

Caution

The name field for each workload and node must be unique
to that node or workload, or bad things will happen to innocent
people (you. At least, I hope you’re innocent :P).

Node resources and Workload requirements are free-form and can be arbitrary.

Note that the requirements in a workload need not include all the types
of resources found in nodes. In the above example, each node has
mem, cpu and disk attributes, but the requirements
need not list all of these as requirements.

Placement of workloads onto nodes is not guaranteed. That is, simply because
room exists for all workloads, this does not mean that pylighthouse will be
able to figure this out. You can help pylighthouse get better at packing nodes
tightly using the BinPackDistributor discussed below, and you can also
increase the capacity of the nodes.

Distributors and the nodes they contain are stateful. They remember workloads
previously given. So after this code:

parent = lighthouse.Node.from_list([
 "name": "parent",
 "resources": {
 "patience": 1
 }
])
a = lighthouse.Workload.from_dict({
 "name": "kid-a",
 "requirements": {
 "patience": 1
 }
})
b = lighthouse.Workload.from_dict({
 "name": "kid-b",
 "requirements": {
 "patience": 1
 }
})
pr = lighthouse.PrioritizedDistributor.from_list([parent])
result1 = pr.attempt_assign_loads([a])
=>
#{
"kid-a": "parent"
#}

Running this code afterwards:

result2 = pr.attempt_assign_loads([b])

Would result in this assignment:

{
 "kid-b": None
}

This reflects that there is no current room for the second workload, as the
first has consumed all resources.

Placement Strategies

pylighthouse comes with several different distributor classes, all of which
place workloads onto nodes. PrioritizedDistributor is the simplest,
but may not offer the best fit of loads onto nodes. RoundRobinDistributor
is also offered as a simple way to distribute workloads semi-evenly across
a cluster of nodes. In general, BinPackDistributor will attempt to pack
as many workloads as possible onto as few nodes as possible and is, in general,
recommended.

The following code will be referred to when discussing each of the
placement strategies below:

import pylighthouse.pylighthouse as lighthouse

nodes=lighthouse.Node.from_list([
 {
 "name": "node-1",
 "resources": {
 "cpu": 2,
 "mem": 8,
 "disk": 60
 }
 },
 {
 "name": "node-2",
 "resources": {
 "cpu": 6,
 "mem": 6,
 "disk": 20
 }
 },
 {
 "name": "node-3",
 "resources": {
 "cpu": 4,
 "mem": 2,
 "disk": 40
 }
 }
])
workloads = lighthouse.Workload.from_list([
 {
 "name": "req-1",
 "requirements": {
 "cpu": 8,
 "mem": 8,
 "disk": 80
 }
 },
 {
 "name": "req-2",
 "requirements": {
 "cpu": 8,
 "mem": 8,
 "disk": 80
 }
 },
 {
 "name": "req-3",
 "requirements": {
 "cpu": 8,
 "mem": 8,
 "disk": 60
 }
 }
])

Prioritized

With a PrioritizedDistributor, pylighthouse will attempt to assign
workloads to nodes in the order they appear in the given list of nodes, and in
the order the workloads appear.

This is the result if the above were run with PrioritizedDistributor:

distor = lighthouse.PrioritizedDistributor.from_list(nodes)
distor.attempt_assign_loads(workloads)
=>
#{
"req-1": "node-1",
"req-3": "node-1",
"req-2": "node-1"
#}

In this example, all nodes are assigned to node-1 because they can all
fit on node-1 and it appears first in the list of nodes given, so it is
tried first every time when loads are assigned to nodes.

RoundRobin

With a RoundRobinDistributor, assignment of workloads is done in the order
given in the list, but placement attempts for each successive load starts on
the node just after the successful placement of the previous load – in a
“round robin” fashion.

This is the result if the above were run with RoundRobinDistributor::
RoundRobin:

distor = lighthouse.RoundRobinDistributor.from_list(nodes)
distor.attempt_assign_loads(workloads)
=>
#{
"req-1": "node-1",
"req-3": "node-3",
"req-2": "node-2"
#}

BinPack

This strategy requires additional information. A rubric must be specified.
In discussing the example above, we will assume in our discussion that the
following code is also part of the script we are building:

rubric_dict = {
 "cpu": 1,
 "mem": 0.5,
 "disk": 0.025
}

BinPackDistributor attempts to pack in as many requirements into as few
nodes as possible. In order to do so, the caller must specify a rubric.
This gives quantities that will be used to score each workload and node by
multiplying each quantity for a given node or workload and summing the results.
If a quantity isn’t in the rubric but is in a node’s resources or a load’s
requirements, the quantity won’t count towards the score.
if a quantity is in the rubric but isn’t in a node’s resources or a load’s
requirements, the score will be computed as if the quantity was 0.

The score of any given node or workload semantically corresponds to the node
or load’s “size”. Therefore, as long as the quantities in nodes and loads that
are scored via the rubric are positive, it is recommended to always specify
positive quantities in the rubric as well.

Caution

Specifying negative quantities in the rubric is possible, but
should be rare, and should be intended only to multiply against a
requirement or resource which will also always be negative, such as those
discussed below under Wards and Immunities. If this rule is not
followed, BinPackDistributor may misbehave. As a rule,
if the value is expected to be negative, don’t include it in the rubric.

If BinPackDistributor was used in the above example, the result would look
like this:

distor = lighthouse.RoundRobinDistributor.from_list(rubric_dict, nodes)
distor.attempt_assign_loads(workloads)
=>
#{
"req-1": "node-3",
"req-3": "node-3",
"req-2": "node-3"
#}

In this example, all workloads were assigned to node-3, since node-3
had the least room in it going into scheduling, since it had the least disk
space.

BinPackDistributor first attempts to place workloads by score, but if two
workloads share the same score, BinPackDistributor will try to place the
workload in sorted order ascending by name of the nodes. So a node named
“a” will be tried before a node named “b” if both nodes share the same
score.

Placement Enforcement

At the time of placement of a workload onto a node, the requirements are
subtracted from the node’s resources so as to keep track of what nodes still
have room left for more assignments. In particular, all attributes associated
with the node must register with a quantity at or above zero in order for the
assignment to succeed at assignment time.

This allows for some interesting possibilities for how to enforce where
workloads can be assigned in your cluster of nodes.

Node Tagging

Sometimes it is desirable to mark a particular node as specifically dedicated
to a particular type of workload. When this is desired, it is simply a matter
of adding a resource to a node with zero as the quantity:

nodes = lighthouse.Nodes.from_list([
 {
 "name": "node1",
 "resources": {
 "dedicated": 0.0,
 #...
 }
 }
])

Then, simply place a similar attribute in the requirements dictionary
of the workloads that should be run on the dedicated nodes:

workloads = lighthouse.Workloads.from_list([
 {
 "name": "workload1",
 "requirements": {
 "dedicated": 0.0,
 #...
 }
 }
])

This works because all requirements listed for a workload must be present
on the node and none may be allowed to be below zero, but zero is okay.

For example:

nodes = lighthouse.Node.from_list([
 {
 "name": "phillip",
 "resources": {
 "bravery": 25,
 "kindness": 25
 }
 },
 {
 "name": "charming",
 "resources": {
 "bravery": 25,
 "kindness": 25,
 "nice-castle": 0,
 }
 }
])
workloads = lighthouse.Workload.from_list([
 {
 "name": "snow-white",
 "requirements": {
 "nice-castle": 0,
 }
 }])

Any distributor attempting to assign these workloads to the nodes
via attempt_assign_loads will yield the following assignment:

{
 "snow-white": "charming"
}

This is because prince charming has the nice-castle “tag”, while
phillip does not.

Tags also ensure that no assignment will be made if tags are not present:

no_room = lighthouse.Node.from_list([
 {
 "name": "phillip",
 "resources": {
 "bravery": 25,
 "kindness": 25
 }
 },
 {
 "name": "charming",
 "resources": {
 "bravery": 25,
 "kindness": 25
 }
 }
])

Any distributor attempting to assign these workloads to the nodes
via attempt_assign_loads will yield the following assignment:

{
 "snow-white": None
}

This is because none of the princes (nodes) had a nice-castle “tag”
present in their resources.

Semaphores

Often it is convenient to limit how many of a particular type of workload
is allowed to be placed on a node. This is done simply by listing a
resource in a node’s resource map and in relevant workload’s requirements maps.
The pattern is to list the number of workloads a node can handle at the same
time in the semaphore as the number for the resource in the node, and list
1 as the quantity for the requirement for each workload. For example:

nodes = lighthouse.Node.from_list([
 {
 "name": "prince",
 "resources": {
 "bravery": 25,
 "kindness": 25,
 "nice-castle": 0,
 "wife": 1
 }
 }
])
workloads = lighthouse.Workload.from_list([
 {
 "name": "aurora",
 "requirements": {
 "bravery": 12,
 "nice-castle": 0,
 "wife": 1,
 }
 },
 {
 "name": "buttercup",
 "requirements": {
 "bravery": 12,
 "nice-castle": 0,
 "wife": 1,
 }
 },
 {
 "name": "cinderella",
 "requirements": {
 "bravery": 12,
 "nice-castle": 0,
 "wife": 1,
 }
 }
])

In this example, the node is a potential suitor for a number of fairy tale
princesses. The prince can only have a single wife, and so wife is listed
as a resource with quantity 1. This is the semaphore. Any distributor
based off of those nodes will yield the same results as assignments if
attempt_assign_loads is called:

{
 "aurora": "prince",
 "buttercup": None,
 "cinderella": None
}

The PrioritizedDistributor and RoundRobinDistributor will both
schedule the first given princess in the list, aurora, but will
not be able to schedule the remaining princesses. BinPackDistributor
will likewise schedule aurora first because the scores of the workloads
based on any reasonable (non-negative) rubric will show that they have the same
sizes of requirements, and aurora sorts before the other names.

Wards and Immunities

This concept is similar to Kubernetes’ Taints and Tolerations [https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/] idea, but also
has nuances to it that make it more flexible.

The idea is to mark a particular set of nodes as unavailable for workloads
unless those workloads specifically opt into being run on those nodes.

We do this in pylighthouse using Wards and Immunities.

It is perfectly valid to list negative values for resources at node
construction time; however, as has been previously explained, if there are any
resources in a node with negative quantity at assignment time of a workload,
the workload will not be able to be attached to the node.

A negative resource with a finite quantity is called a
shortcoming, while a negative resource of infinite or very large quantity
may be termed a ward.

Negative resources can be overcome by a resource in one of two ways.

First, for negative resources of finite quantity, this can be overcome by
simply listing a negative requirement. That way, when one is subtracted from
the other, the result will be zero:

nodes = lighthouse.Node.from_list([
 {
 "id: "node1",
 "resources": {
 "flies": -5.0,
 #...
 }
 }
])
workloads = lighthouse.Workload.from_list([
 {
 "name": "workload1",
 "requirements": {
 "flies": -5.0,
 #...
 }
 }
])

This may be used to list “shortcomings” of a node that precludes it from having
workloads scheduled on it unless at least one workload has a sufficient
tolerance to the shortcoming.

Second, we list a node up front at construction time with a ward:

nodes = lighthouse.Node.from_list([
 {
 "name": "node1",
 "resources": {
 "spiders": -float("inf")
 #...
 }
 }
]

In this scenario, workloads will not be able to overcome the ward no
matter how finitely resilient the workload is. However, we can list an
immunity on the workload.

An immunity in a workload tells pylighthouse to ignore whatever value exists
for a resource in a node at assignment time of the workload. So, in order to
schedule a workload on the node listed above, we can simply add "spiders"
to the set of immunities for the workload:

workloads = lighthouse.Workload.from_list([
 {
 "name": "workload1",
 "requirements": {
 #...
 },
 "immunities": set([
 "spiders",
 #...
])
 }
])

Aversion Groups

Aversion Groups correspond to anti-affinity groups in other scheduling schemes.

Put simply, any aversion group listed for a workload causes that workload
to “prefer” to be scheduled on a node without any other workloads listed
as “belonging” to the same aversion group, like this::

...
nodes = lighthouse.Node.from_list([
 {
 "name": "node1",
 "resources": {
 # ...
 }
 },
 {
 "name": "node2",
 "resources": {
 # ...
 }
 }

])
workloads = lighthouse.Workload.from_list([
 {
 "name": "workload1",
 "requirements": {
 # ...
 },
 "aversion_groups": set([
 "io-bound",
 # ...
])
 },
 {
 "name": "workload2",
 "requirements": {
 # ...
 },
 "aversion_groups": set([
 "io-bound",
 # ...
])
 }
])

In the above example, both workload1 and workload2 will try really hard
to be scheduled on different nodes, becuase they both list the io-bound
aversion group in their aversion groups list.

In this example, we have two houses and two college students. Each
student goes to a different local university and is part of the same
cross-school rivalry. We may model this scenario like this:

nodes = lighthouse.Node.from_list([
 {
 "name": "house-1",
 "resources": {
 "bathroom": 25,
 "bedroom": 10,
 "kitchen": 10
 }
 },
 {
 "name": "house-2",
 "resources": {
 "bathroom": 25,
 "bedroom": 10,
 "kitchen": 15
 }
 }
])
workloads = lighthouse.Workload.from_list([
 {
 "name": "college-student-1",
 "requirements": {
 "bathroom": 5,
 "bedroom": 2,
 "kitchen": 2
 },
 "aversion_groups": [
 "north_south_rivalry"
]
 },
 {
 "name": "college-student-2",
 "requirements": {
 "bathroom": 5,
 "bedroom": 2,
 "kitchen": 2
 },
 "aversion_groups": [
 "north_south_rivalry"
]
 }
])

Note

The above example shows that aversion_groups can be specified as
a list or set when calling Workload.from_list, but they are internally
represented as sets.

Although there is plenty of room for both college students to live
in the same house, any distributor attempting to assign these workloads to the
nodes via attempt_assign_loads will yield the following assignment:

{
 "college-student-1": "house-1",
 "college-student-2": "house-2"
}

As can be seen, even though there is plenty of room for both students to be
in the same house, they are put in different houses due to them being in the
same rivalry (aversion group).

However, if there is no other house in which they might live, the students
will still reluctantly be scheduled together. Using this list of nodes instead
of the one above:

nodes = lighthouse.Node.from_list([
 {
 "name": "house-1",
 "resources": {
 "bathroom": 25,
 "bedroom": 10,
 "kitchen": 10
 }
 }
])

The assignments would look like this instead:

{
 "college-student-1": "house-1",
 "college-student-2": "house-1"
}

Modules

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

First, please read the pylighthouse Contributor Covenant Code of Conduct. This project
will not take any contribution coming from those who do not abide by
the code of conduct. This means that while a person is currently under
disciplinary action via avenues set forth in that document, this project will
ignore and not incorporate any contributions they might give at that time,
including pull requests, bug reports, feature requests, or any other
contribution. We here at pylighthouse are committed to caring about
the well-being of every one in our community, and we are prepared to act to
protect that well-being if needed.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/djhaskin987/pylighthouse/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

pylighthouse could always use more documentation, whether as part of the
official pylighthouse docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/djhaskin987/pylighthouse/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pylighthouse for local development.

	Fork the pylighthouse repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pylighthouse.git

	Install your local copy into a virtualenv. This is how you set up your fork
for local development:

$ cd pylighthouse/
$ virtualenv ve
$. ve/bin/activate
$ pip install -r requirements_dev.txt

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$. ve/bin/activate
$ flake8 pylighthouse tests
$ python setup.py test or py.test
$ tox

flake8 and tox should be installed if you are in the pipenv shell. If not,
just pip install them into your virtualenv like this:

$ pip install --user flake8
$ pip install --user tox

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

When you go to make the PR, please use the following checklist to test
whether or not it is likely to be accepted:

	Do you have tests in your PR, and do they pass? Tests are in
two places in pylighthouse: the tests/ directory, where more
or less normal unit tests reside. You must have at least a few
simple unit tests as a “spot-check” of your feature if the PR is to be
merged. The tests need not be elaborate; simple tests are better than no
tests.

	Is your PR backwards compatible? The biggest feature pylighthouse
provides is backwards compatibility. If pylighthouse breaks a build, it
is a bug. A PR is herein defined to be “backwards incompatible”
if 1) it significantly changes the content of any previously merged unit or
script test and 2) if it breaks any of them.

	Did you add documentation around the feature in your PR?
Generally this means adding something to the usage <usage>
document.

	Did you add an entry to the Changelog? This project keeps a
curated changelog.

There are some exceptions to the above rules. If your patch is less than
two lines’ difference from the previous version, your PR may be a “typo” PR,
which may qualify to get around some of the above rules. Just ask the team
on your GitHub issue.

Tips

To run a subset of tests:

$ py.test tests.test_pylighthouse

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run this:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age,
body size, disability, ethnicity, gender identity and expression, level of
experience, nationality, personal appearance, race, religion, or sexual
identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an
appointed representative at an online or offline event. Representation of a
project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at “djhaskin987 at gmail.com” . All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an
incident. Further details of specific enforcement policies may be posted
separately under the Contributing document.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant homepage [http://contributor-covenant.org],
version 1.4 [http://contributor-covenant.org/version/1/4/].

Changelog

All notable changes to this project will be documented here.

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/]
and this project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

Unreleased [https://github.com/djhaskin987/pylighthouse/compare/v0.1.0...HEAD]

Added

Changed

Fixed

v0.1.0

Added

	Node class

	Workload class

	Distributor base class

	PrioritizedDistributor class

	RoundRobinDistributor class

	BinPackDistributor class

	distributor classes have a method called attempt_attach_workloads,
the primary use case of this library

Changed

Fixed

Credits

Development Lead

	Daniel Jay Haskin <djhaskin987@gmail.com>

Contributors

None yet. Why not be the first?

License

Apache Software License 2.0

Copyright (c) 2018 the pylighthouse authors, see the AUTHORS file

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Index

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to pylighthouse’s documentation!

 		
 pylighthouse

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Basic Scheduling

 		
 Placement Strategies

 		
 Prioritized

 		
 RoundRobin

 		
 BinPack

 		
 Placement Enforcement

 		
 Node Tagging

 		
 Semaphores

 		
 Wards and Immunities

 		
 Aversion Groups

 		
 Modules

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

 		
 Changelog

 		
 Unreleased

 		
 Added

 		
 Changed

 		
 Fixed

 		
 v0.1.0

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 License

 		
 Apache Software License 2.0

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

