

Welcome to pyLDAvis’s documentation!

Contents:

	pyLDAvis
	Installation

	Usage

	Video demos

	More documentation

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Credits
	Development Lead

	Contributors

	History

	2.1.2 (2018-02-06)

	2.1.1 (2017-02-13)

	2.1.0 (2016-06-30)

	2.0.0 (2016-06-30)

	1.5.1 (2016-04-15)

	1.5.0 (2016-02-20)

	1.4.1 (2016-01-31)

	1.4.0 (2016-01-31)

	1.3.4 (2015-11-16)

	1.3.3 (2015-11-13)

	1.3.2 (2015-11-09)

	1.3.1 (2015-11-02)

	1.3.0 (2015-08-20)

	1.2.0 (2015-06-13)

	1.1.0 (2015-06-02)

	1.0.0 (2015-05-29)

Indices and tables

	Index

	Module Index

	Search Page

pyLDAvis

Python library for interactive topic model visualization.
This is a port of the fabulous R package [https://github.com/cpsievert/LDAvis] by Carson Sievert [https://cpsievert.me/] and Kenny Shirley [http://www.kennyshirley.com/].

[image: LDAvis icon]

pyLDAvis is designed to help users interpret the topics in a topic model that has been fit to a corpus of text data. The package extracts information from a fitted LDA topic model to inform an interactive web-based visualization.

The visualization is intended to be used within an IPython notebook but can also be saved to a stand-alone HTML file for easy sharing.

[image: version status] [https://pypi.python.org/pypi/pyLDAvis] [image: build status] [https://travis-ci.org/bmabey/pyLDAvis] [image: docs] [https://pyLDAvis.readthedocs.org]

Installation

	Stable version using pip:

pip install pyldavis

	Development version on GitHub

Clone the repository and run python setup.py

Usage

The best way to learn how to use pyLDAvis is to see it in action.
Check out this notebook for an overview [http://nbviewer.ipython.org/github/bmabey/pyLDAvis/blob/master/notebooks/pyLDAvis_overview.ipynb].
Refer to the documentation [https://pyLDAvis.readthedocs.org] for details.

For a concise explanation of the visualization see this
vignette [http://cran.r-project.org/web/packages/LDAvis/vignettes/details.pdf] from the LDAvis R package.

Video demos

Ben Mabey walked through the visualization in this short talk using a Hacker News corpus:

	Visualizing Topic Models [https://www.youtube.com/watch?v=tGxW2BzC_DU&index=4&list=PLykRMO7ZuHwP5cWnbEmP_mUIVgzd5DZgH]

	Notebook and visualization used in the demo [http://nbviewer.ipython.org/github/bmabey/hacker_news_topic_modelling/blob/master/HN%20Topic%20Model%20Talk.ipynb]

	Slide deck [https://speakerdeck.com/bmabey/visualizing-topic-models]

Carson Sievert <https://cpsievert.me/> created a video demoing the R package. The visualization is the same and so it applies equally to pyLDAvis:

	Visualizing & Exploring the Twenty Newsgroup Data [http://stat-graphics.org/movies/ldavis.html]

More documentation

To read about the methodology behind pyLDAvis, see the original
paper [http://nlp.stanford.edu/events/illvi2014/papers/sievert-illvi2014.pdf],
which was presented at the 2014 ACL Workshop on Interactive Language
Learning, Visualization, and
Interfaces [http://nlp.stanford.edu/events/illvi2014/] in Baltimore
on June 27, 2014.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/bmabey/pyLDAvis/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

pyLDAvis could always use more documentation, whether as part of the
official pyLDAvis docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/bmabey/pyLDAvis/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pyLDAvis for local development.

	Fork the pyLDAvis repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pyLDAvis.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pyLDAvis
$ cd pyLDAvis/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 pyLDAvis tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, and 3.4, and for PyPy. Check
https://travis-ci.org/bmabey/pyLDAvis/pull_requests
and make sure that the tests pass for all supported Python versions.

Credits

Development Lead

	Ben Mabey <ben@benmabey.com>

Contributors

	Paul English <paul@onfrst.com> - JS and CSS fixes and improvements.

History

2.1.2 (2018-02-06)

	Fix pandas deprecation warnings.

2.1.1 (2017-02-13)

	Fix gensim module to work with a sparse corpus #82.

2.1.0 (2016-06-30)

	Added missing dependency on scipy.

	Fixed term sorting that was incompatible with pandas 0.19.x.

2.0.0 (2016-06-30)

	Removed dependency on scikit-bio by adding an internal PCoA implementation.

	Added helper functions for scikit-learn LDA model! See the new notebook for details.

	Extended gensim helper functions to work with HDP models.

	Added scikit-learn’s Multi-dimensional scaling as another MDS option when scikit-learn is installed.

1.5.1 (2016-04-15)

	Add sort_topics option to prepare function to allow disabling of topic re-ordering.

1.5.0 (2016-02-20)

	Red Bar Width bug fix

In some cases, the widths of the red topic-term bars did not decrease (as they should have) from term #1 to
term #R under the relevance ranking with $lambda = 1$. In other words, when $lambda = 1$, there were topics
in which a narrow red bar was displayed above a wider red bar, which should never happen. The issue had to do
with the way topic-term bar widths are computed, and is discussed in detail in #32.

In the end, we implemented a quick fix in which we compute term frequencies implicitly, rather than using those
supplied in the createJSON() function. The upside is that the red bar widths are now explicitly controlled to
produce the correct visualization. The downside is that the blue bar widths do not necessarily match the
user-supplied term frequencies exactly – in fact, the new version of LDAvis ignores the user-supplied term
frequencies entirely. In a few experiments, the differences are small, and decrease (as a proportion of the true
term frequencies) as the true term frequencies increase.

1.4.1 (2016-01-31)

	Included requirements.txt in MANIFEST to (hopefully) fix bad release.

1.4.0 (2016-01-31)

	Updated to newest version of skibio for PCoA mds.

	requirements.txt cleanup

	New ‘tsne’ option for prepare, see docs and notebook for more info.

1.3.5 (2015-12-18)

	Add explicit version info for scikit-bio since the API has changed.

1.3.4 (2015-11-16)

	Gensim Python typo fix in imports. :/

1.3.3 (2015-11-13)

	Gensim Python 2.x fix for absolute imports.

1.3.2 (2015-11-09)

	Gensim prepare 25% speed increase, thanks @mattilyra!

	Pandas deprecation warnings are now gone.

	Pandas v0.17 is now being used.

1.3.1 (2015-11-02)

	Updates gensim and other logic to be python 3 compatible.

1.3.0 (2015-08-20)

	Fixes gensim logic and makes it more robust.

	Faster graphlab processing.

	kargs for gensim and graphlab are passed down to underlying prepare function.

	Requires recent version of pandas to avoid problems with our use of the newer DataFrame.to_dict API.

1.2.0 (2015-06-13)

	Updates gensim logic to be clearer and work with Python 3.x.

1.1.0 (2015-06-02)

	Fixes bug with GraphLab function that was producing bogus visualizations.

1.0.0 (2015-05-29)

	First release on PyPI. Faithful port of R version with IPython support and helper functions for GraphLab & gensim.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyLDAvis	

 	
 	
 pyLDAvis.urls	

 	
 	
 pyLDAvis.utils	

Index

 D
 | E
 | G
 | H
 | J
 | P
 | S
 | W

D

 	
 	disable_notebook() (in module pyLDAvis)

 	
 	display() (in module pyLDAvis)

E

 	
 	enable_notebook() (in module pyLDAvis)

G

 	
 	get_id() (in module pyLDAvis.utils)

H

 	
 	html_id_ok() (in module pyLDAvis.utils)

J

 	
 	js_PCoA() (in module pyLDAvis)

P

 	
 	prepare() (in module pyLDAvis)

 	prepared_data_to_html() (in module pyLDAvis)

 	
 	pyLDAvis (module)

 	pyLDAvis.urls (module)

 	pyLDAvis.utils (module)

S

 	
 	save_html() (in module pyLDAvis)

 	
 	save_json() (in module pyLDAvis)

 	show() (in module pyLDAvis)

W

 	
 	write_ipynb_local_js() (in module pyLDAvis.utils)

API documentation

Topic Models (e.g. LDA) visualization using D3

Functions: General Use

	prepare()

	transform and prepare a LDA model’s data for visualization

	prepared_data_to_html()

	convert prepared data to an html string

	show()

	launch a web server to view the visualization

	save_html()

	save a visualization to a standalone html file

	save_json()

	save the visualization JSON data of to a file

Functions: IPython Notebook

	display()

	display a figure in an IPython notebook

	enable_notebook()

	enable automatic D3 display of prepared model data in the IPython notebook.

	disable_notebook()

	disable automatic D3 display of prepared model data in the IPython notebook.

	
pyLDAvis.prepare(topic_term_dists, doc_topic_dists, doc_lengths, vocab, term_frequency, R=30, lambda_step=0.01, mds=<function js_PCoA>, n_jobs=-1, plot_opts={'xlab': 'PC1', 'ylab': 'PC2'}, sort_topics=True)

	Transforms the topic model distributions and related corpus data into
the data structures needed for the visualization.

	Parameters

	topic_term_dists : array-like, shape (n_topics, n_terms)

Matrix of topic-term probabilities. Where n_terms is len(vocab).

	doc_topic_distsarray-like, shape (n_docs, n_topics)

	Matrix of document-topic probabilities.

	doc_lengthsarray-like, shape n_docs

	The length of each document, i.e. the number of words in each document.
The order of the numbers should be consistent with the ordering of the
docs in doc_topic_dists.

	vocabarray-like, shape n_terms

	List of all the words in the corpus used to train the model.

	term_frequencyarray-like, shape n_terms

	The count of each particular term over the entire corpus. The ordering
of these counts should correspond with vocab and topic_term_dists.

	Rint

	The number of terms to display in the barcharts of the visualization.
Default is 30. Recommended to be roughly between 10 and 50.

	lambda_stepfloat, between 0 and 1

	Determines the interstep distance in the grid of lambda values over
which to iterate when computing relevance.
Default is 0.01. Recommended to be between 0.01 and 0.1.

	mdsfunction or a string representation of function

	A function that takes topic_term_dists as an input and outputs a
n_topics by 2 distance matrix. The output approximates the distance
between topics. See js_PCoA() for details on the default function.
A string representation currently accepts pcoa (or upper case variant),
mmds (or upper case variant) and tsne (or upper case variant),
if sklearn package is installed for the latter two.

	n_jobsint

	The number of cores to be used to do the computations. The regular
joblib conventions are followed so -1, which is the default, will
use all cores.

	plot_optsdict, with keys ‘xlab’ and ylab

	Dictionary of plotting options, right now only used for the axis labels.

	sort_topicssort topics by topic proportion (percentage of tokens covered). Set to false to

	to keep original topic order.

	Returns

	prepared_data : PreparedData

A named tuple containing all the data structures required to create
the visualization. To be passed on to functions like display().

See also

	save_json()

	save json representation of a figure to file

	save_html()

	save html representation of a figure to file

	show()

	launch a local server and show a figure in a browser

	display()

	embed figure within the IPython notebook

	enable_notebook()

	automatically embed visualizations in IPython notebook

Notes

This implements the method of Sievert, C. and Shirley, K. (2014):
LDAvis: A Method for Visualizing and Interpreting Topics, ACL Workshop on
Interactive Language Learning, Visualization, and Interfaces.

http://nlp.stanford.edu/events/illvi2014/papers/sievert-illvi2014.pdf

	
pyLDAvis.js_PCoA(distributions)

	Dimension reduction via Jensen-Shannon Divergence & Principal Coordinate Analysis
(aka Classical Multidimensional Scaling)

	Parameters

	distributions : array-like, shape (n_dists, k)

Matrix of distributions probabilities.

	Returns

	pcoa : array, shape (n_dists, 2)

	
pyLDAvis.prepared_data_to_html(data, d3_url=None, ldavis_url=None, ldavis_css_url=None, template_type='general', visid=None, use_http=False)

	Output HTML with embedded visualization

	Parameters

	data : PreparedData, created using prepare()

The data for the visualization.

d3_url : string (optional)

The URL of the d3 library. If not specified, a standard web path
will be used.

ldavis_url : string (optional)

The URL of the LDAvis library. If not specified, a standard web path
will be used.

template_type : string

string specifying the type of HTML template to use. Options are:

	"simple"

	suitable for a simple html page with one visualization. Will
fail if require.js is available on the page.

	"notebook"

	assumes require.js and jquery are available.

	"general"

	more complicated, but works both in and out of the
notebook, whether or not require.js and jquery are available

visid : string (optional)

The html/css id of the visualization div, which must not contain spaces.
If not specified, a random id will be generated.

use_http : boolean (optional)

If true, use http:// instead of https:// for d3_url and ldavis_url.

	Returns

	vis_html : string

the HTML visualization

See also

	save_json()

	save json representation of visualization to file

	save_html()

	save html representation of a visualization to file

	show()

	launch a local server and show a visualization in a browser

	display()

	embed visualization within the IPython notebook

	enable_notebook()

	automatically embed visualizations in IPython notebook

	
pyLDAvis.display(data, local=False, **kwargs)

	Display visualization in IPython notebook via the HTML display hook

	Parameters

	data : PreparedData, created using prepare()

The data for the visualization.

local : boolean (optional, default=False)

if True, then copy the d3 & mpld3 libraries to a location visible to
the notebook server, and source them from there. See Notes below.

**kwargs :

additional keyword arguments are passed through to prepared_data_to_html().

	Returns

	vis_d3 : IPython.display.HTML object

the IPython HTML rich display of the visualization.

See also

	show()

	launch a local server and show a visualization in a browser

	enable_notebook()

	automatically embed visualizations in IPython notebook

Notes

Known issues: using local=True may not work correctly in certain cases:

	In IPython < 2.0, local=True may fail if the current working
directory is changed within the notebook (e.g. with the %cd command).

	In IPython 2.0+, local=True may fail if a url prefix is added
(e.g. by setting NotebookApp.base_url).

	
pyLDAvis.show(data, ip='127.0.0.1', port=8888, n_retries=50, local=True, open_browser=True, http_server=None, **kwargs)

	Starts a local webserver and opens the visualization in a browser.

	Parameters

	data : PreparedData, created using prepare()

The data for the visualization.

ip : string, default = ‘127.0.0.1’

the ip address used for the local server

port : int, default = 8888

the port number to use for the local server. If already in use,
a nearby open port will be found (see n_retries)

n_retries : int, default = 50

the maximum number of ports to try when locating an empty port.

local : bool, default = True

if True, use the local d3 & LDAvis javascript versions, within the
js/ folder. If False, use the standard urls.

open_browser : bool (optional)

if True (default), then open a web browser to the given HTML

http_server : class (optional)

optionally specify an HTTPServer class to use for showing the
visualization. The default is Python’s basic HTTPServer.

**kwargs :

additional keyword arguments are passed through to prepared_data_to_html()

See also

	display()

	embed visualization within the IPython notebook

	enable_notebook()

	automatically embed visualizations in IPython notebook

	
pyLDAvis.save_html(data, fileobj, **kwargs)

	Save an embedded visualization to file.

This will produce a self-contained HTML file. Internet access is still required
for the D3 and LDAvis libraries.

	Parameters

	data : PreparedData, created using prepare()

The data for the visualization.

fileobj : filename or file object

The filename or file-like object in which to write the HTML
representation of the visualization.

**kwargs :

additional keyword arguments will be passed to prepared_data_to_html()

See also

	save_json()

	save json representation of a visualization to file

	prepared_data_to_html()

	output html representation of the visualization

	fig_to_dict()

	output dictionary representation of the visualization

	
pyLDAvis.save_json(data, fileobj)

	Save the visualization’s data a json file.

	Parameters

	data : PreparedData, created using prepare()

The data for the visualization.

fileobj : filename or file object

The filename or file-like object in which to write the HTML
representation of the visualization.

See also

	save_html()

	save html representation of a visualization to file

	prepared_data_to_html()

	output html representation of the visualization

	
pyLDAvis.enable_notebook(local=False, **kwargs)

	Enable the automatic display of visualizations in the IPython Notebook.

	Parameters

	local : boolean (optional, default=False)

if True, then copy the d3 & LDAvis libraries to a location visible to
the notebook server, and source them from there. See Notes below.

**kwargs :

all keyword parameters are passed through to prepared_data_to_html()

See also

	disable_notebook()

	undo the action of enable_notebook

	display()

	embed visualization within the IPython notebook

	show()

	launch a local server and show a visualization in a browser

Notes

Known issues: using local=True may not work correctly in certain cases:

	In IPython < 2.0, local=True may fail if the current working
directory is changed within the notebook (e.g. with the %cd command).

	In IPython 2.0+, local=True may fail if a url prefix is added
(e.g. by setting NotebookApp.base_url).

	
pyLDAvis.disable_notebook()

	Disable the automatic display of visualizations in the IPython Notebook.

See also

	enable_notebook()

	automatically embed visualizations in IPython notebook

pyLDAvis Utilities

Utility routines for the pyLDAvis package

	
pyLDAvis.utils.get_id(obj, suffix='', prefix='el', warn_on_invalid=True)

	Get a unique id for the object

	
pyLDAvis.utils.html_id_ok(objid, html5=False)

	Check whether objid is valid as an HTML id attribute.

If html5 == True, then use the more liberal html5 rules.

	
pyLDAvis.utils.write_ipynb_local_js(location=None, d3_src=None, ldavis_src=None, ldavis_css=None)

	Write the pyLDAvis and d3 javascript libraries to the given file location.

This utility is used by the IPython notebook tools to enable easy use
of pyLDAvis with no web connection.

	Parameters

	location : string (optioal)

the directory in which the d3 and pyLDAvis javascript libraries will be
written. If not specified, the IPython nbextensions directory will be
used. If IPython doesn’t support nbextensions (< 2.0),
the current working directory will be used.

d3_src : string (optional)

the source location of the d3 library. If not specified, the standard
path in pyLDAvis.urls.D3_LOCAL will be used.

ldavis_src : string (optional)

the source location of the pyLDAvis library. If not specified, the
standard path in pyLDAvis.urls.LDAVIS_LOCAL will be used.

	Returns

	d3_url, ldavis_url : string

The URLs to be used for loading these js files.

LDAvis URLs

URLs and filepaths for the LDAvis javascript libraries

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/ldavis-pic.png

_images/pyLDAvis.png
build failing.

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to pyLDAvis’s documentation!

 		
 pyLDAvis

 		
 Installation

 		
 Usage

 		
 Video demos

 		
 More documentation

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 2.1.2 (2018-02-06)

 		
 2.1.1 (2017-02-13)

 		
 2.1.0 (2016-06-30)

 		
 2.0.0 (2016-06-30)

 		
 1.5.1 (2016-04-15)

 		
 1.5.0 (2016-02-20)

 		
 1.4.1 (2016-01-31)

 		
 1.4.0 (2016-01-31)

 		
 1.3.4 (2015-11-16)

 		
 1.3.3 (2015-11-13)

 		
 1.3.2 (2015-11-09)

 		
 1.3.1 (2015-11-02)

 		
 1.3.0 (2015-08-20)

 		
 1.2.0 (2015-06-13)

 		
 1.1.0 (2015-06-02)

 		
 1.0.0 (2015-05-29)

_static/up-pressed.png

_static/up.png

_static/plus.png

