

PyInstaller Manual

	Version

	PyInstaller 3.2.1

	Homepage

	http://www.pyinstaller.org

	Contact

	pyinstaller@googlegroups.com

	Authors

	David Cortesi, based on structure by Giovanni Bajo & William Caban, based on Gordon McMillan’s manual

	Copyright

	This document has been placed in the public domain.

PyInstaller bundles a Python application and all its dependencies into
a single package.
The user can run the packaged app without installing a Python interpreter or any modules.
PyInstaller supports Python 2.7 and Python 3.3+,
and correctly bundles the major Python packages
such as numpy, PyQt, Django, wxPython, and others.

PyInstaller is tested against Windows, Mac OS X, and Linux.
However, it is not a cross-compiler:
to make a Windows app you run PyInstaller in Windows;
to make a Linux app you run it in Linux, etc.
PyInstaller has been used successfully with AIX, Solaris, and FreeBSD,
but is not tested against them.

What’s New This Release

Release 3.0 is a major rewrite that adds Python 3 support,
better code quality through use of automated testing,
and resolutions for many old issues.

Functional changes include
removal of support for Python prior to 2.7,
an easier way to include data files
in the bundle (Adding Files to the Bundle),
and changes to the “hook” API (Understanding PyInstaller Hooks).

Contents:

	Requirements
	Windows

	Mac OS X

	Linux

	AIX, Solaris, and FreeBSD

	License

	How To Contribute

	How to Install PyInstaller
	Installing in Windows

	Installing in Mac OS X

	Installing from the archive

	Verifying the installation

	Installed commands

	What PyInstaller Does and How It Does It
	Analysis: Finding the Files Your Program Needs

	Bundling to One Folder

	How the One-Folder Program Works

	Bundling to One File

	How the One-File Program Works

	Using a Console Window

	Hiding the Source Code

	Using PyInstaller
	Options

	Shortening the Command

	Using UPX

	Encrypting Python Bytecode

	Supporting Multiple Platforms

	Making Linux Apps Forward-Compatible

	Capturing Windows Version Data

	Building Mac OS X App Bundles

	Run-time Information
	Using __file__ and sys._MEIPASS

	Using sys.executable and sys.argv[0]

	LD_LIBRARY_PATH / LIBPATH considerations

	Using Spec Files
	Spec File Operation

	Adding Files to the Bundle

	Giving Run-time Python Options

	Spec File Options for a Mac OS X Bundle

	Multipackage Bundles

	Globals Available to the Spec File

	When Things Go Wrong
	Recipes and Examples for Specific Problems

	Finding out What Went Wrong

	Helping PyInstaller Find Modules

	Getting the Latest Version

	Asking for Help

	Advanced Topics
	The Bootstrap Process in Detail

	The TOC and Tree Classes

	Inspecting Archives

	Inspecting Executables

	Creating a Reproducible Build

	Understanding PyInstaller Hooks
	How a Hook Is Loaded

	Hook Global Variables

	Useful Items in PyInstaller.compat

	Useful Items in PyInstaller.utils.hooks

	The hook(hook_api) Function

	The pre_find_module_path(pfmp_api) Method

	The pre_safe_import_module(psim_api) Method

	Building the Bootloader
	Development tools

	Building for Windows

	Building for LINUX

	Changelog for PyInstaller
	3.2.1 (2017-01-15)

	3.2 (2016-05-03)

	3.1.1 (2016-01-31)

	3.1 (2016-01-09)

	3.0 (2015-10-04)

	2.1 (2013-09-27)

	2.0 (2012-08-08)

	1.5.1 (2011-08-01)

	1.5 (2011-05-05)

	1.4 (2010-03-22)

	1.3 (2006-12-20)

	1.2 (2006-06-29)

	1.1 (2006-02-13)

	1.0 (2005-09-19) with respect to McMillan’s Python Installer 5b5

	Credits
	Contributions to PyInstaller 3.2.1

	Contributions to PyInstaller 3.2

	Contributions to PyInstaller 3.1.1

	Contributions to PyInstaller 3.1

	Contributions to PyInstaller 3.0

	Contributions to PyInstaller 2.1 and older

	Man Pages
	pyinstaller

	pyi-makespec

Indices and tables

	Index

	Module Index

	Search Page

Requirements

Windows

PyInstaller runs in Windows XP or newer.
It can create graphical windowed apps (apps that do not need a command window).

PyInstaller requires two Python modules in a Windows system.
It requires either the PyWin32 [http://sourceforge.net/projects/pywin32/files/] or pypiwin32 [https://pypi.python.org/pypi/pypiwin32/219] Python extension for Windows.
If you install PyInstaller using pip, and PyWin32 is not already installed,
pypiwin32 is automatically installed.
PyInstaller also requires the pefile [https://pypi.python.org/pypi/pefile/] package.

The pip-Win [https://sites.google.com/site/pydatalog/python/pip-for-windows] package is recommended, but not required.

Mac OS X

PyInstaller runs in Mac OS X 10.7 (Lion) or newer.
It can build graphical windowed apps (apps that do not use a terminal window).
PyInstaller builds apps that are compatible with the Mac OS X release in
which you run it, and following releases.
It can build 32-bit binaries in Mac OS X releases that support them.

Linux

PyInstaller requires the ldd terminal application to discover
the shared libraries required by each program or shared library.
It is typically found in the distribution-package glibc or libc-bin.

It also requires the objdump terminal application to extract
information from object files
and the objcopy terminal application to append data to the
bootloader.
These are typically found in the distribution-package binutils.

AIX, Solaris, and FreeBSD

Users have reported success running PyInstaller on these platforms,
but it is not tested on them.
The ldd and objdump commands are needed.

Each bundled app contains a copy of a bootloader,
a program that sets up the application and starts it
(see The Bootstrap Process in Detail).

When you install PyInstaller using pip [http://www.pip-installer.org/], the setup will attempt
to build a bootloader for this platform.
If that succeeds, the installation continues and PyInstaller is ready to use.

If the pip [http://www.pip-installer.org/] setup fails to build a bootloader,
or if you do not use pip [http://www.pip-installer.org/] to install,
you must compile a bootloader manually.
The process is described under Building the Bootloader.

License

PyInstaller is distributed under the GPL License [https://raw.github.com/pyinstaller/pyinstaller/develop/COPYING.txt] but with
an exception that allows you to use it to build commercial products:

	You may use PyInstaller to bundle commercial applications out of your
source code.

	The executable bundles generated by PyInstaller from your source code
can be shipped with whatever license you want.

	You may modify PyInstaller for your own needs but changes to the
PyInstaller source code fall under the terms of the GPL license.
That is, if you distribute your modifications you must distribute
them under GPL terms.

For updated information or clarification see our
FAQ [https://github.com/pyinstaller/pyinstaller/wiki/FAQ] at the PyInstaller [http://www.pyinstaller.org] home page.

How To Contribute

PyInstaller is an open-source project that is created and
maintained by volunteers.
At Pyinstaller.org [https://github.com/pyinstaller/pyinstaller/wiki/Community] you find links to the mailing list,
IRC channel, and Git repository,
and the important How to Contribute [https://github.com/pyinstaller/pyinstaller/wiki/How-to-Contribute] link.
Contributions to code and documentation are welcome,
as well as tested hooks for installing other packages.

How to Install PyInstaller

PyInstaller is a normal Python package.
You can download the archive from PyPi [https://pypi.python.org/pypi/PyInstaller/],
but it is easier to install using pip [http://www.pip-installer.org/] where is is available,
for example:

pip install pyinstaller

or upgrade to a newer version:

pip install --upgrade pyinstaller

Installing in Windows

For Windows, PyWin32 [http://sourceforge.net/projects/pywin32/files/] or the more recent pypiwin32 [https://pypi.python.org/pypi/pypiwin32/219], is a prerequisite.
The latter is installed automatically when you install PyInstaller
using pip [http://www.pip-installer.org/] or easy_install [http://peak.telecommunity.com/DevCenter/EasyInstall].
If necessary, follow the pypiwin32 [https://pypi.python.org/pypi/pypiwin32/219] link to install it manually.

It is particularly easy to use pip-Win [https://sites.google.com/site/pydatalog/python/pip-for-windows] to install PyInstaller
along with the correct version of PyWin32 [http://sourceforge.net/projects/pywin32/files/].
pip-Win [https://sites.google.com/site/pydatalog/python/pip-for-windows] also provides virtualenv [http://www.virtualenv.org/], which makes it simple
to maintain multiple different Python interpreters and install packages
such as PyInstaller in each of them.
(For more on the uses of virtualenv, see Supporting Multiple Platforms below.)

When pip-Win is working, enter this command in its Command field
and click Run:

venv -c -i pyi-env-name

This creates a new virtual environment rooted at C:\Python\pyi-env-name
and makes it the current environment.
A new command shell
window opens in which you can run commands within this environment.
Enter the command

pip install PyInstaller

Once it is installed, to use PyInstaller,

	Start pip-Win

	In the Command field enter venv pyi-env-name

	Click Run

Then you have a command shell window in which commands such as
pyinstaller execute in that Python environment.

Installing in Mac OS X

PyInstaller works with the default Python 2.7 provided with current
Mac OS X installations.
However, if you plan to use a later version of Python,
or if you use any of the major packages such as
PyQt, Numpy, Matplotlib, Scipy, and the like, we strongly
recommend that you install these using either MacPorts [https://www.macports.org/] or Homebrew [http://brew.sh/].

PyInstaller users report fewer problems when they use a package manager
than when they attempt to install major packages individually.

Installing from the archive

If pip is not available, download the compressed archive from PyPI [https://pypi.python.org/pypi/PyInstaller/].
If you are asked to test a problem using the latest development code,
download the compressed archive from the develop branch of
PyInstaller Downloads [https://github.com/pyinstaller/pyinstaller/releases] page.

Expand the archive.
Inside is a script named setup.py.
Execute python setup.py install
with administrator privilege to install or upgrade PyInstaller.

For platforms other than Windows, Linux and Mac OS, you must first
build a bootloader program for your platform: see Building the Bootloader.
After the bootloader has been created,
use python setup.py install with administrator privileges
to complete the installation.

Verifying the installation

On all platforms, the command pyinstaller should now exist on the
execution path. To verify this, enter the command

pyinstaller --version

The result should resemble 3.n for a released version,
and 3.n.dev0-xxxxxx for a development branch.

If the command is not found, make sure the execution path includes
the proper directory:

	Windows: C:\PythonXY\Scripts where XY stands for the
major and minor Python version number,
for example C:\Python34\Scripts for Python 3.4)

	Linux: /usr/bin/

	OS X (using the default Apple-supplied Python) /usr/bin

	OS X (using Python installed by homebrew) /usr/local/bin

	OS X (using Python installed by macports) /opt/local/bin

To display the current path in Windows the command is echo %path%
and in other systems, echo $PATH.

Installed commands

The complete installation places these commands on the execution path:

	pyinstaller is the main command to build a bundled application.
See Using PyInstaller.

	pyi-makespec is used to create a spec file. See Using Spec Files.

	pyi-archive_viewer is used to inspect a bundled application.
See Inspecting Archives.

	pyi-bindepend is used to display dependencies of an executable.
See Inspecting Executables.

	pyi-grab_version is used to extract a version resource from a Windows
executable. See Capturing Windows Version Data.

If you do not perform a complete installation
(installing via pip or executing setup.py),
these commands will not be installed as commands.
However, you can still execute all the functions documented below
by running Python scripts found in the distribution folder.
The equivalent of the pyinstaller command is
pyinstaller-folder/pyinstaller.py.
The other commands are found in pyinstaller-folder /cliutils/
with meaningful names (makespec.py, etc.)

What PyInstaller Does and How It Does It

This section covers the basic ideas of PyInstaller.
These ideas apply to all platforms.
Options and special cases are covered below, under Using PyInstaller.

PyInstaller reads a Python script written by you.
It analyzes your code to discover every other module and library
your script needs in order to execute.
Then it collects copies of all those files – including
the active Python interpreter! – and puts them with
your script in a single folder,
or optionally in a single executable file.

For the great majority of programs, this can be done with one short command,

pyinstaller myscript.py

or with a few added options, for example a windowed application
as a single-file executable,

pyinstaller –onefile –windowed myscript.py

You distribute the bundle as a folder or file to other people,
and they can execute
your program.
To your users, the app is self-contained.
They do not need to install any particular version of Python or any modules.
They do not need to have Python installed at all.

Note

The output of PyInstaller is specific to the active operating system
and the active version of Python.
This means that to prepare a distribution for:

	a different OS

	a different version of Python

	a 32-bit or 64-bit OS

you run PyInstaller on that OS, under that version of Python.
The Python interpreter that executes PyInstaller is part of
the bundle, and it is specific to the OS and the word size.

Analysis: Finding the Files Your Program Needs

What other modules and libraries does your script need in order to run?
(These are sometimes called its “dependencies”.)

To find out, PyInstaller finds all the import statements
in your script.
It finds the imported modules and looks in them for import
statements, and so on recursively, until it has a complete list of
modules your script may use.

PyInstaller understands the “egg” distribution format often used
for Python packages.
If your script imports a module from an “egg”, PyInstaller adds
the egg and its dependencies to the set of needed files.

PyInstaller also knows about many major Python packages,
including the GUI packages
Qt [http://www.qt-project.org] (imported via PyQt [http://www.riverbankcomputing.co.uk/software/pyqt/intro] or PySide [http://qt-project.org/wiki/About-PySide]), WxPython [http://www.wxpython.org/], TkInter [http://wiki.python.org/moin/TkInter], Django [https://www.djangoproject.com/],
and other major packages.
For a complete list, see Supported Packages [https://github.com/pyinstaller/pyinstaller/wiki/Supported-Packages].

Some Python scripts import modules in ways that PyInstaller cannot detect:
for example, by using the __import__() function with variable data,
or manipulating the sys.path value at run time.
If your script requires files that PyInstaller does not know about,
you must help it:

	You can give additional files on the pyinstaller command line.

	You can give additional import paths on the command line.

	You can edit the myscript.spec file
that PyInstaller writes the first time you run it for your script.
In the spec file you can tell PyInstaller about code modules
that are unique to your script.

	You can write “hook” files that inform PyInstaller of hidden imports.
If you create a “hook” for a package that other users might also use,
you can contribute your hook file to PyInstaller.

If your program depends on access to certain data files,
you can tell PyInstaller to include them in the bundle as well.
You do this by modifying the spec file, an advanced topic that is
covered under Using Spec Files.

In order to locate included files at run time,
your program needs to be able to learn its path at run time
in a way that works regardless of
whether or not it is running from a bundle.
This is covered under Run-time Information.

PyInstaller does not include libraries that should exist in
any installation of this OS.
For example in Linux, it does not bundle any file
from /lib or /usr/lib, assuming these will be found in every system.

Bundling to One Folder

When you apply PyInstaller to myscript.py the default
result is a single folder named myscript.
This folder contains all your script’s dependencies,
and an executable file also named myscript
(myscript.exe in Windows).

You compress the folder
to myscript.zip and transmit it to your users.
They install the program simply by unzipping it.
A user runs your app by
opening the folder and launching the myscript executable inside it.

It is easy to debug problems that occur when building the app
when you use one-folder mode.
You can see exactly what files PyInstaller collected into the folder.

Another advantage of a one-folder bundle
is that when you change your code, as long
as it imports exactly the same set of dependencies, you could send out
only the updated myscript executable.
That is typically much smaller
than the entire folder.
(If you change the script so that it imports more
or different dependencies, or if the dependencies
are upgraded, you must redistribute the whole bundle.)

A small disadvantage of the one-folder format is that the one folder contains
a large number of files.
Your user must find the myscript executable
in a long list of names or among a big array of icons.
Also your user can create
a problem by accidentally dragging files out of the folder.

How the One-Folder Program Works

A bundled program always starts execution in the PyInstaller bootloader.
This is the heart of the myscript executable in the folder.

The PyInstaller bootloader is a binary
executable program for the active platform
(Windows, Linux, Mac OS X, etc.).
When the user launches your program, it is the bootloader that runs.
The bootloader creates a temporary Python environment
such that the Python interpreter will find all imported modules and
libraries in the myscript folder.

The bootloader starts a copy of the Python interpreter
to execute your script.
Everything follows normally from there, provided
that all the necessary support files were included.

(This is an overview.
For more detail, see The Bootstrap Process in Detail below.)

Bundling to One File

PyInstaller can bundle your script and all its dependencies into a single
executable named myscript (myscript.exe in Windows).

The advantage is that your users get something they understand,
a single executable to launch.
A disadvantage is that any related files
such as a README must be distributed separately.
Also, the single executable is a little slower to start up than
the one-folder bundle.

Before you attempt to bundle to one file, make sure your app
works correctly when bundled to one folder.
It is is much easier to diagnose problems in one-folder mode.

How the One-File Program Works

The bootloader is the heart of the one-file bundle also.
When started it creates a temporary folder
in the appropriate temp-folder location for this OS.
The folder is named _MEIxxxxxx, where xxxxxx is a random number.

The one executable file contains an embedded archive of all the Python
modules used by your script, as well as
compressed copies of any non-Python support files (e.g. .so files).
The bootloader uncompresses the support files and writes copies
into the the temporary folder.
This can take a little time.
That is why a one-file app is a little slower to start
than a one-folder app.

After creating the temporary folder, the bootloader
proceeds exactly as for the one-folder bundle,
in the context of the temporary folder.
When the bundled code terminates,
the bootloader deletes the temporary folder.

(In Linux and related systems, it is possible
to mount the /tmp folder with a “no-execution” option.
That option is not compatible with a PyInstaller
one-file bundle. It needs to execute code out of /tmp.)

Because the program makes a temporary folder with a unique name,
you can run multiple copies of the app;
they won’t interfere with each other.
However, running multiple copies is expensive in disk space because
nothing is shared.

The _MEIxxxxxx folder is not removed if the program crashes
or is killed (kill -9 on Unix, killed by the Task Manager on Windows,
“Force Quit” on Mac OS).
Thus if your app crashes frequently, your users will lose disk space to
multiple _MEIxxxxxx temporary folders.

Note

Do not give administrator privileges to a one-file executable
(setuid root in Unix/Linux, or the “Run this program as an administrator”
property in Windows 7).
There is an unlikely but not impossible way in which a malicious attacker could
corrupt one of the shared libraries in the temp folder
while the bootloader is preparing it.
Distribute a privileged program in one-folder mode instead.

Note

Applications that use os.setuid() may encounter permissions errors.
The temporary folder where the bundled app runs may not being readable
after setuid is called. If your script needs to
call setuid, it may be better to use one-folder mode
so as to have more control over the permissions on its files.

Using a Console Window

By default the bootloader creates a command-line console
(a terminal window in Linux and Mac OS, a command window in Windows).
It gives this window to the Python interpreter for its standard input and output.
Your script’s use of print and input() are directed here.
Error messages from Python and default logging output
also appear in the console window.

An option for Windows and Mac OS is to tell PyInstaller to not provide a console window.
The bootloader starts Python with no target for standard output or input.
Do this when your script has a graphical interface for user input and can properly
report its own diagnostics.

Hiding the Source Code

The bundled app does not include any source code.
However, PyInstaller bundles compiled Python scripts (.pyc files).
These could in principle be decompiled to reveal the logic of
your code.

If you want to hide your source code more thoroughly, one possible option
is to compile some of your modules with Cython [http://www.cython.org/].
Using Cython you can convert Python modules into C and compile
the C to machine language.
PyInstaller can follow import statements that refer to
Cython C object modules and bundle them.

Additionally, Python bytecode can be obfuscated with AES256 by specifying
an encryption key on PyInstaller’s command line. Please note that it is still
very easy to extract the key and get back the original bytecode, but it
should prevent most forms of “casual” tampering.

Using PyInstaller

The syntax of the pyinstaller command is:

pyinstaller [options] script [script …] | specfile

In the most simple case,
set the current directory to the location of your program myscript.py
and execute:

pyinstaller myscript.py

PyInstaller analyzes myscript.py and:

	Writes myscript.spec in the same folder as the script.

	Creates a folder build in the same folder as the script if it does not exist.

	Writes some log files and working files in the build folder.

	Creates a folder dist in the same folder as the script if it does not exist.

	Writes the myscript executable folder in the dist folder.

In the dist folder you find the bundled app you distribute to your users.

Normally you name one script on the command line.
If you name more, all are analyzed and included in the output.
However, the first script named supplies the name for the
spec file and for the executable folder or file.
Its code is the first to execute at run-time.

For certain uses you may edit the contents of myscript.spec
(described under Using Spec Files).
After you do this, you name the spec file to PyInstaller instead of the script:

pyinstaller myscript.spec

You may give a path to the script or spec file, for example

pyinstaller options… ~/myproject/source/myscript.py

or, on Windows,

pyinstaller "C:\Documents and Settings\project\myscript.spec"

Options

General Options

	-h, --help

	show this help message and exit

	-v, --version

	Show program version info and exit.

	--distpath DIR

	Where to put the bundled app (default: ./dist)

	--workpath WORKPATH

	Where to put all the temporary work files, .log, .pyz
and etc. (default: ./build)

	-y, --noconfirm

	Replace output directory (default:
SPECPATH/dist/SPECNAME) without asking for
confirmation

	--upx-dir UPX_DIR

	Path to UPX utility (default: search the execution
path)

	-a, --ascii

	Do not include unicode encoding support (default:
included if available)

	--clean

	Clean PyInstaller cache and remove temporary files
before building.

	--log-level LEVEL

	Amount of detail in build-time console messages. LEVEL
may be one of DEBUG, INFO, WARN, ERROR, CRITICAL
(default: INFO).

What to generate

	-D, --onedir

	Create a one-folder bundle containing an executable
(default)

	-F, --onefile

	Create a one-file bundled executable.

	--specpath DIR

	Folder to store the generated spec file (default:
current directory)

	-n NAME, --name NAME

	Name to assign to the bundled app and spec file
(default: first script’s basename)

What to bundle, where to search

	--add-data <SRC;DEST or SRC:DEST>

	Additional non-binary files or folders to be added to
the executable. The path separator is platform
specific, os.pathsep (which is ; on Windows
and : on most unix systems) is used. This option
can be used multiple times.

	--add-binary <SRC;DEST or SRC:DEST>

	Additional binary files to be added to the executable.
See the --add-data option for more details. This
option can be used multiple times.

	-p DIR, --paths DIR

	A path to search for imports (like using PYTHONPATH).
Multiple paths are allowed, separated by ‘:’, or use
this option multiple times

	--hidden-import MODULENAME, --hiddenimport MODULENAME

	Name an import not visible in the code of the
script(s). This option can be used multiple times.

	--additional-hooks-dir HOOKSPATH

	An additional path to search for hooks. This option
can be used multiple times.

	--runtime-hook RUNTIME_HOOKS

	Path to a custom runtime hook file. A runtime hook is
code that is bundled with the executable and is
executed before any other code or module to set up
special features of the runtime environment. This
option can be used multiple times.

	--exclude-module EXCLUDES

	Optional module or package (the Python name, not the
path name) that will be ignored (as though it was not
found). This option can be used multiple times.

	--key KEY

	The key used to encrypt Python bytecode.

How to generate

	-d, --debug

	Tell the bootloader to issue progress messages while
initializing and starting the bundled app. Used to
diagnose problems with missing imports.

	-s, --strip

	Apply a symbol-table strip to the executable and
shared libs (not recommended for Windows)

	--noupx

	Do not use UPX even if it is available (works
differently between Windows and *nix)

Windows and Mac OS X specific options

	-c, --console, --nowindowed

	Open a console window for standard i/o (default)

	-w, --windowed, --noconsole

	Windows and Mac OS X: do not provide a console window
for standard i/o. On Mac OS X this also triggers
building an OS X .app bundle. This option is ignored
in *NIX systems.

	-i <FILE.ico or FILE.exe,ID or FILE.icns>, --icon <FILE.ico or FILE.exe,ID or FILE.icns>

	FILE.ico: apply that icon to a Windows executable.
FILE.exe,ID, extract the icon with ID from an exe.
FILE.icns: apply the icon to the .app bundle on Mac OS
X

Windows specific options

	--version-file FILE

	add a version resource from FILE to the exe

	-m <FILE or XML>, --manifest <FILE or XML>

	add manifest FILE or XML to the exe

	-r RESOURCE, --resource RESOURCE

	Add or update a resource to a Windows executable. The
RESOURCE is one to four items,
FILE[,TYPE[,NAME[,LANGUAGE]]]. FILE can be a data file
or an exe/dll. For data files, at least TYPE and NAME
must be specified. LANGUAGE defaults to 0 or may be
specified as wildcard * to update all resources of the
given TYPE and NAME. For exe/dll files, all resources
from FILE will be added/updated to the final
executable if TYPE, NAME and LANGUAGE are omitted or
specified as wildcard *.This option can be used
multiple times.

	--uac-admin

	Using this option creates a Manifest which will
request elevation upon application restart.

	--uac-uiaccess

	Using this option allows an elevated application to
work with Remote Desktop.

Windows Side-by-side Assembly searching options (advanced)

	--win-private-assemblies

	Any Shared Assemblies bundled into the application
will be changed into Private Assemblies. This means
the exact versions of these assemblies will always be
used, and any newer versions installed on user
machines at the system level will be ignored.

	--win-no-prefer-redirects

	While searching for Shared or Private Assemblies to
bundle into the application, PyInstaller will prefer
not to follow policies that redirect to newer
versions, and will try to bundle the exact versions of
the assembly.

Mac OS X specific options

	--osx-bundle-identifier BUNDLE_IDENTIFIER

	Mac OS X .app bundle identifier is used as the default
unique program name for code signing purposes. The
usual form is a hierarchical name in reverse DNS
notation. For example:
com.mycompany.department.appname (default: first
script’s basename)

Shortening the Command

Because of its numerous options, a full pyinstaller command
can become very long.
You will run the same command again and again as you develop
your script.
You can put the command in a shell script or batch file,
using line continuations to make it readable.
For example, in Linux:

pyinstaller --noconfirm --log-level=WARN \
 --onefile --nowindow \
 --add-data="README:." \
 --add-data="image1.png:img" \
 --add-binary="libfoo.so:lib" \
 --hidden-import=secret1 \
 --hidden-import=secret2 \
 --upx-dir=/usr/local/share/ \
 myscript.spec

Or in Windows, use the little-known BAT file line continuation:

pyinstaller --noconfirm --log-level=WARN ^
 --onefile --nowindow ^
 --add-data="README;." ^
 --add-data="image1.png;img" ^
 --add-binary="libfoo.so;lib" ^
 --hidden-import=secret1 ^
 --hidden-import=secret2 ^
 --icon=..\MLNMFLCN.ICO ^
 myscript.spec

Using UPX

UPX [http://upx.sourceforge.net/] is a free utility available for most operating systems.
UPX compresses executable files and libraries, making them smaller,
sometimes much smaller.
UPX is available for most operating systems and can compress
a large number of executable file formats.
See the UPX [http://upx.sourceforge.net/] home page for downloads, and for the list of
supported executable formats.
Development of UPX appears to have ended in September 2013,
at which time it supported most executable formats except for
64-bit binaries for Mac OS X.
UPX has no effect on those.

A compressed executable program is wrapped in UPX
startup code that dynamically decompresses the program
when the program is launched.
After it has been decompressed, the program runs normally.
In the case of a PyInstaller one-file executable that has
been UPX-compressed, the full execution sequence is:

	The compressed program start up in the UPX decompressor code.

	After decompression, the program executes the PyInstaller bootloader,
which creates a temporary environment for Python.

	The Python interpreter executes your script.

PyInstaller looks for UPX on the execution path
or the path specified with the --upx-dir option.
If UPX exists, PyInstaller applies it to the final executable,
unless the --noupx option was given.
UPX has been used with PyInstaller output often, usually with no problems.

Encrypting Python Bytecode

To encrypt the Python bytecode modules stored in the bundle,
pass the --key=key-string argument on
the command line.

For this to work, you must have the PyCrypto [https://pypi.python.org/pypi/pycrypto/]
module installed.
The key-string is a string of 16 characters which is used to
encrypt each file of Python byte-code before it is stored in
the archive inside the executable file.

Supporting Multiple Platforms

If you distribute your application for only one combination of OS and Python,
just install PyInstaller like any other package and use it in your
normal development setup.

Supporting Multiple Python Environments

When you need to bundle your application within one OS
but for different versions of Python and support libraries – for example,
a Python 3 version and a Python 2.7 version;
or a supported version that uses Qt4 and a development version that uses Qt5 –
we recommend you use virtualenv [http://www.virtualenv.org/].
With virtualenv you can maintain different combinations of Python
and installed packages, and switch from one combination to another easily.
(If you work only with Python 3.4 and later, the built-in script pyvenv [https://docs.python.org/3.4/library/venv.html]
does the same job.)

	Use virtualenv to create as many different development environments as you need,
each with its unique combination of Python and installed packages.

	Install PyInstaller in each environment.

	Use PyInstaller to build your application in each environment.

Note that when using virtualenv, the path to the PyInstaller commands is:

	Windows: ENV_ROOT\Scripts

	Others: ENV_ROOT/bin

Under Windows, the pip-Win [https://sites.google.com/site/pydatalog/python/pip-for-windows] package installs virtualenv and makes it
especially easy to set up different environments and switch between them.
Under Linux and Mac OS, you switch environments at the command line.

Supporting Multiple Operating Systems

If you need to distribute your application for more than one OS,
for example both Windows and Mac OS X, you must install PyInstaller
on each platform and bundle your app separately on each.

You can do this from a single machine using virtualization.
The free virtualBox [https://www.virtualbox.org] or the paid VMWare [http://www.vmware.com/solutions/desktop/] and Parallels [http://www.parallels.com]
allow you to run another complete operating system as a “guest”.
You set up a virtual machine for each “guest” OS.
In it you install
Python, the support packages your application needs, and PyInstaller.

The Dropbox [https://www.dropbox.com/home] system is useful with virtual machines.
Install a Dropbox client in each virtual machine, all linked to your Dropbox account.
Keep a single copy of your script(s) in a Dropbox folder.
Then on any virtual machine you can run PyInstaller thus:

cd ~/Dropbox/project_folder/src # Linux, Mac -- Windows similar
rm *.pyc # get rid of modules compiled by another Python
pyinstaller --workpath=path-to-local-temp-folder \
 --distpath=path-to-local-dist-folder \
 ...other options as required... \
 ./myscript.py

PyInstaller reads scripts from the common Dropbox folder,
but writes its work files and the bundled app in folders that
are local to the virtual machine.

If you share the same home directory on multiple platforms, for
example Linux and OS X, you will need to set the PYINSTALLER_CONFIG_DIR
environment variable to different values on each platform otherwise
PyInstaller may cache files for one platform and use them on the other
platform, as by default it uses a subdirectory of your home directory
as its cache location.

It is said to be possible to cross-develop for Windows under Linux
using the free Wine [http://www.winehq.org/] environment.
Further details are needed, see How to Contribute [https://github.com/pyinstaller/pyinstaller/wiki/How-to-Contribute].

Making Linux Apps Forward-Compatible

Under Linux, PyInstaller does not bundle libc
(the C standard library, usually glibc, the Gnu version) with the app.
Instead, the app expects to link dynamically to the libc from the
local OS where it runs.
The interface between any app and libc is forward compatible to
newer releases, but it is not backward compatible to older releases.

For this reason, if you bundle your app on the current version of Linux,
it may fail to execute (typically with a runtime dynamic link error) if
it is executed on an older version of Linux.

The solution is to always build your app on the oldest version of
Linux you mean to support.
It should continue to work with the libc found on newer versions.

The Linux standard libraries such as glibc are distributed in 64-bit
and 32-bit versions, and these are not compatible.
As a result you cannot bundle your app on a 32-bit system and run it
on a 64-bit installation, nor vice-versa.
You must make a unique version of the app for each word-length supported.

Capturing Windows Version Data

A Windows app may require a Version resource file.
A Version resource contains a group of data structures,
some containing binary integers and some containing strings,
that describe the properties of the executable.
For details see the Microsoft Version Information Structures [http://msdn.microsoft.com/en-us/library/ff468916(v=vs.85).aspx] page.

Version resources are complex and
some elements are optional, others required.
When you view the version tab of a Properties dialog,
there’s no simple relationship between
the data displayed and the structure of the resource.
For this reason PyInstaller includes the pyi-grab_version command.
It is invoked with the full path name of any Windows executable
that has a Version resource:

pyi-grab_version executable_with_version_resource

The command writes text that represents
a Version resource in readable form to standard output.
You can copy it from the console window or redirect it to a file.
Then you can edit the version information to adapt it to your program.
Using pyi-grab_version you can find an executable that displays the kind of
information you want, copy its resource data, and modify it to suit your package.

The version text file is encoded UTF-8 and may contain non-ASCII characters.
(Unicode characters are allowed in Version resource string fields.)
Be sure to edit and save the text file in UTF-8 unless you are
certain it contains only ASCII string values.

Your edited version text file can be given with the --version-file=
option to pyinstaller or pyi-makespec.
The text data is converted to a Version resource and
installed in the bundled app.

In a Version resource there are two 64-bit binary values,
FileVersion and ProductVersion.
In the version text file these are given as four-element tuples,
for example:

filevers=(2, 0, 4, 0),
prodvers=(2, 0, 4, 0),

The elements of each tuple represent 16-bit values
from most-significant to least-significant.
For example the value (2, 0, 4, 0) resolves to
0002000000040000 in hex.

You can also install a Version resource from a text file after
the bundled app has been created, using the pyi-set_version command:

pyi-set_version version_text_file executable_file

The pyi-set_version utility reads a version text file as written
by pyi-grab_version, converts it to a Version resource,
and installs that resource in the executable_file specified.

For advanced uses, examine a version text file as written by pyi-grab_version.
You find it is Python code that creates a VSVersionInfo object.
The class definition for VSVersionInfo is found in
utils/win32/versioninfo.py in the PyInstaller distribution folder.
You can write a program that imports versioninfo.
In that program you can eval
the contents of a version info text file to produce a
VSVersionInfo object.
You can use the .toRaw() method of that object to
produce a Version resource in binary form.
Or you can apply the unicode() function to the object
to reproduce the version text file.

Building Mac OS X App Bundles

If you specify only --onefile under Mac OS X, the output
in dist is a UNIX executable
myscript.
It can be executed from a Terminal command line.
Standard input and output work as normal through the Terminal window.

If you also specify --windowed, the dist folder contains
two outputs: the UNIX executable myscript
and also an OS X application named myscript.app.

As you probably know, an application is a special type of folder.
The one built by PyInstaller contains a folder always named Contents.
It contains:

	A folder Frameworks which is empty.

	A folder MacOS that contains a copy of the same myscript UNIX executable.

	A folder Resources that contains an icon file.

	A file Info.plist that describes the app.

PyInstaller builds minimal versions of these elements.

Use the osx-bundle-identifier= argument to add a bundle identifier.
This becomes the CFBundleIdentifier used in code-signing
(see the PyInstaller code signing recipe [https://github.com/pyinstaller/pyinstaller/wiki/Recipe-OSX-Code-Signing]
and for more detail, the Apple code signing overview [https://developer.apple.com/library/mac/technotes/tn2206/_index.html] technical note).

Use the icon= argument to specify a custom icon for the application.
(If you do not specify an icon file, PyInstaller supplies a
file icon-windowed.icns with the PyInstaller logo.)

You can add items to the Info.plist by editing the spec file;
see Spec File Options for a Mac OS X Bundle below.

Making Mac OS X apps Forward-Compatible

In Mac OS X, components from one version of the OS are usually compatible
with later versions, but they may not work with earlier versions.

The only way to be certain your app supports an older version of Mac OS X
is to run PyInstaller in the oldest version of the OS you need to support.

For example, to be sure of compatibility with “Snow Leopard” (10.6)
and later versions, you should execute PyInstaller in that environment.
You would create a copy of Mac OS X 10.6, typically in a virtual machine.
In it, install the desired level of Python
(the default Python in Snow Leopard was 2.6, which PyInstaller no longer supports),
and install PyInstaller, your source, and all its dependencies.
Then build your app in that environment.
It should be compatible with later versions of Mac OS X.

Building 32-bit Apps in Mac OS X

Older versions of Mac OS X supported both 32-bit and 64-bit executables.
PyInstaller builds an app using the the word-length of the Python used to execute it.
That will typically be a 64-bit version of Python,
resulting in a 64-bit executable.
To create a 32-bit executable, run PyInstaller under a 32-bit Python.

Python as installed in OS X will usually be executable in either 64- or 32-bit mode.
To verify this, apply the file command to the Python executable:

$ file /usr/local/bin/python3
/usr/local/bin/python3: Mach-O universal binary with 2 architectures
/usr/local/bin/python3 (for architecture i386): Mach-O executable i386
/usr/local/bin/python3 (for architecture x86_64): Mach-O 64-bit executable x86_64

The OS chooses which architecture to run, and typically defaults to 64-bit.
You can force the use of either architecture by name using the arch command:

$ /usr/local/bin/python3
Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 5 2014, 20:42:22)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys; sys.maxsize
9223372036854775807

$ arch -i386 /usr/local/bin/python3
Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 5 2014, 20:42:22)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys; sys.maxsize
2147483647

Apple’s default /usr/bin/python may circumvent the arch
specification and run 64-bit regardless.
(That is not the case if you apply arch to a specific version
such as /usr/bin/python2.7.)
To make sure of running 32-bit in all cases, set the following environment variable:

VERSIONER_PYTHON_PREFER_32_BIT=yes
arch -i386 /usr/bin/python pyinstaller --clean -F -w myscript.py

Getting the Opened Document Names

Note

Support for OpenDocument events is broken in PyInstaller 3.0
owing to code changes needed in the bootloader to support current
versions of Mac OS X.
Do not attempt to use this feature until it has been fixed.
If this feature is important to you, follow and comment on
the status of PyInstaller Issue #1309 [https://github.com/pyinstaller/pyinstaller/issues/1309].

When a user double-clicks a document of a type your application
supports, or when a user drags a document icon and drops it
on your application’s icon, Mac OS X launches your application
and provides the name(s) of the opened document(s) in the
form of an OpenDocument AppleEvent.
This AppleEvent is received by the bootloader
before your code has started executing.

The bootloader gets the names of opened documents from
the OpenDocument event and encodes them into the argv
string before starting your code.
Thus your code can query sys.argv to get the names
of documents that should be opened at startup.

OpenDocument is the only AppleEvent the bootloader handles.
If you want to handle other events, or events that
are delivered after the program has launched, you must
set up the appropriate handlers.

Run-time Information

Your app should run in a bundle exactly as it does when run from source.
However, you may need to learn at run-time
whether the app is running from source, or is “frozen” (bundled).
For example, you might have
data files that are normally found based on a module’s __file__ attribute.
That will not work when the code is bundled.

The PyInstaller bootloader adds the name frozen to the sys module.
So the test for “are we bundled?” is:

import sys
if getattr(sys, 'frozen', False) :
 # running in a bundle
else :
 # running live

When your app is running, it may need to access data files in any of
three general locations:

	Files that were bundled with it (see Adding Data Files).

	Files the user has placed with the app bundle, say in the same folder.

	Files in the user’s current working directory.

The program has access to several path variables for these uses.

Using __file__ and sys._MEIPASS

When your program is not frozen, the standard Python
variable __file__ is the full path to the script now executing.
When a bundled app starts up,
the bootloader sets the sys.frozen attribute
and stores the absolute path to the bundle folder in sys._MEIPASS.
For a one-folder bundle, this is the path to that folder,
wherever the user may have put it.
For a one-file bundle, this is the path to the _MEIxxxxxx temporary folder
created by the bootloader (see How the One-File Program Works).

Using sys.executable and sys.argv[0]

When a normal Python script runs, sys.executable is the path to the
program that was executed, namely, the Python interpreter.
In a frozen app, sys.executable is also the path to the
program that was executed, but that is not Python;
it is the bootloader in either the one-file app
or the executable in the one-folder app.
This gives you a reliable way to locate the frozen executable the user
actually launched.

The value of sys.argv[0] is the name or relative path that was
used in the user’s command.
It may be a relative path or an absolute path depending
on the platform and how the app was launched.

If the user launches the app by way of a symbolic link,
sys.argv[0] uses that symbolic name,
while sys.executable is the actual path to the executable.
Sometimes the same app is linked under different names
and is expected to behave differently depending on the name that is
used to launch it.
For this case, you would test os.path.basename(sys.argv[0])

On the other hand, sometimes the user is told to store the executable
in the same folder as the files it will operate on,
for example a music player that should be stored in the same folder
as the audio files it will play.
For this case, you would use os.path.dirname(sys.executable).

The following small program explores some of these possibilities.
Save it as directories.py.
Execute it as a Python script,
then bundled as a one-folder app.
Then bundle it as a one-file app and launch it directly and also via a
symbolic link:

#!/usr/bin/python3
import sys, os
frozen = 'not'
if getattr(sys, 'frozen', False):
 # we are running in a bundle
 frozen = 'ever so'
 bundle_dir = sys._MEIPASS
else:
 # we are running in a normal Python environment
 bundle_dir = os.path.dirname(os.path.abspath(__file__))
print('we are',frozen,'frozen')
print('bundle dir is', bundle_dir)
print('sys.argv[0] is', sys.argv[0])
print('sys.executable is', sys.executable)
print('os.getcwd is', os.getcwd())

LD_LIBRARY_PATH / LIBPATH considerations

This environment variable is used to discover libraries, it is the library
search path - on Linux and *BSD LD_LIBRARY_PATH is used, on AIX it is
LIBPATH.

PyInstaller saves the original value to *_ORIG, then modifies the search
path so that the bundled libraries are found first by the bundled code.

But if your code executes a system program, you often do not want that this
system program loads your bundled libraries (that are maybe not compatible
with your system program) - it rather should load the correct libraries from
the system locations like it usually does.

Thus you need to restore the original path before creating the subprocess
with the system program.

env = dict(os.environ) # make a copy of the environment
lp_key = 'LD_LIBRARY_PATH' # for Linux and *BSD.
lp_orig = env.get(lp_key + '_ORIG') # pyinstaller >= 20160820 has this
if lp_orig is not None:
 env[lp_key] = lp_orig # restore the original, unmodified value
else:
 env.pop(lp_key, None) # last resort: remove the env var
p = Popen(system_cmd, ..., env=env) # create the process

Using Spec Files

When you execute

pyinstaller options.. myscript.py

the first thing PyInstaller does is to build a spec (specification) file
myscript.spec.
That file is stored in the --specpath= directory,
by default the current directory.

The spec file tells PyInstaller how to process your script.
It encodes the script names and most of the options
you give to the pyinstaller command.
The spec file is actually executable Python code.
PyInstaller builds the app by executing the contents of the spec file.

For many uses of PyInstaller you do not need to examine or modify the spec file.
It is usually enough to
give all the needed information (such as hidden imports)
as options to the pyinstaller command and let it run.

There are four cases where it is useful to modify the spec file:

	When you want to bundle data files with the app.

	When you want to include run-time libraries (.dll or .so files) that
PyInstaller does not know about from any other source.

	When you want to add Python run-time options to the executable.

	When you want to create a multiprogram bundle with merged common modules.

These uses are covered in topics below.

You create a spec file using this command:

pyi-makespec options name.py [other scripts …]

The options are the same options documented above
for the pyinstaller command.
This command creates the name.spec file but does not
go on to build the executable.

After you have created a spec file and modified it as necessary,
you build the application by passing the spec file to the pyinstaller command:

pyinstaller options name.spec

When you create a spec file, most command options are encoded in the spec file.
When you build from a spec file, those options cannot be changed.
If they are given on the command line they are ignored and
replaced by the options in the spec file.

Only the following command-line options have an effect when building from a spec file:

	–upx-dir=

	–distpath=

	–workpath=

	–noconfirm

	–ascii

Spec File Operation

After PyInstaller creates a spec file,
or opens a spec file when one is given instead of a script,
the pyinstaller command executes the spec file as code.
Your bundled application is created by the execution of the spec file.
The following is an shortened example of a spec file for a minimal, one-folder app:

block_cipher = None
a = Analysis(['minimal.py'],
 pathex=['/Developer/PItests/minimal'],
 binaries=None,
 datas=None,
 hiddenimports=[],
 hookspath=None,
 runtime_hooks=None,
 excludes=None,
 cipher=block_cipher)
pyz = PYZ(a.pure, a.zipped_data,
 cipher=block_cipher)
exe = EXE(pyz,...)
coll = COLLECT(...)

The statements in a spec file create instances of four classes,
Analysis, PYZ, EXE and COLLECT.

	A new instance of class Analysis takes a list of script names as input.
It analyzes all imports and other dependencies.
The resulting object (assigned to a) contains lists of dependencies
in class members named:

	scripts: the python scripts named on the command line;

	pure: pure python modules needed by the scripts;

	binaries: non-python modules needed by the scripts, including names
given by the --add-binary option;

	datas: non-binary files included in the app, including names given
by the --add-data option.

	An instance of class PYZ is a .pyz archive (described
under Inspecting Archives below), which contains all the
Python modules from a.pure.

	An instance of EXE is built from the analyzed scripts and the PYZ
archive. This object creates the executable file.

	An instance of COLLECT creates the output folder from all the other parts.

In one-file mode, there is no call to COLLECT, and the
EXE instance receives all of the scripts, modules and binaries.

You modify the spec file to pass additional values to Analysis and
to EXE.

Adding Files to the Bundle

To add files to the bundle, you create a list that describes the files
and supply it to the Analysis call.
When you bundle to a single folder (see Bundling to One Folder),
the added data files are copied into the folder with the executable.
When you bundle to a single executable (see Bundling to One File),
copies of added files are compressed into the executable, and expanded to the
_MEIxxxxxx temporary folder before execution.
This means that any changes a one-file executable makes to an added file
will be lost when the application ends.

In either case, to find the data files at run-time, see Run-time Information.

Adding Data Files

You can add data files to the bundle by using the --add-data command option, or by
adding them as a list to the spec file.

When using the spec file, provide a list that
describes the files as the value of the datas= argument to Analysis.
The list of data files is a list of tuples.
Each tuple has two values, both of which must be strings:

	The first string specifies the file or files as they are in this system now.

	The second specifies the name of the folder to contain
the files at run-time.

For example, to add a single README file to the top level of a one-folder app,
you could modify the spec file as follows:

a = Analysis(...
 datas=[('src/README.txt', '.')],
 ...
)

And the command line equivalent:

pyinstaller --add-data 'src/README.txt:.' myscript.py

You have made the datas= argument a one-item list.
The item is a tuple in which the first string says the existing file
is src/README.txt.
That file will be looked up (relative to the location of the spec file)
and copied into the top level of the bundled app.

The strings may use either / or \ as the path separator character.
You can specify input files using “glob” abbreviations.
For example to include all the .mp3 files from a certain folder:

a = Analysis(...
 datas= [('/mygame/sfx/*.mp3', 'sfx')],
 ...
)

All the .mp3 files in the folder /mygame/sfx will be copied
into a folder named sfx in the bundled app.

The spec file is more readable if you create the list of added files
in a separate statement:

added_files = [
 ('/mygame/sfx/*.mp3', 'sfx'),
 ('src/README.txt', '.')
]
 a = Analysis(...
 datas = added_files,
 ...
)

You can also include the entire contents of a folder:

added_files = [
 ('/mygame/data', 'data'),
 ('/mygame/sfx/*.mp3', 'sfx'),
 ('src/README.txt', '.')
]

The folder /mygame/data will be reproduced under the name
data in the bundle.

Using Data Files from a Module

If the data files you are adding are contained within a Python module,
you can retrieve them using pkgutils.get_data().

For example, suppose that part of your application is a module named helpmod.
In the same folder as your script and its spec file you have this folder
arrangement:

helpmod
 __init__.py
 helpmod.py
 help_data.txt

Because your script includes the statement import helpmod,
PyInstaller will create this folder arrangement in your bundled app.
However, it will only include the .py files.
The data file help_data.txt will not be automatically included.
To cause it to be included also, you would add a datas tuple
to the spec file:

a = Analysis(...
 datas= [('helpmod/help_data.txt', 'helpmod')],
 ...
)

When your script executes, you could find help_data.txt by
using its base folder path, as described in the previous section.
However, this data file is part of a module, so you can also retrieve
its contents using the standard library function pkgutil.get_data():

import pkgutil
help_bin = pkgutil.get_data('helpmod', 'help_data.txt')

In Python 3, this returns the contents of the help_data.txt file as a binary string.
If it is actually characters, you must decode it:

help_utf = help_bin.decode('UTF-8', 'ignore')

Adding Binary Files

You can add binary files to the bundle by using the --add-binary command option,
or by adding them as a list to the spec file.

In the spec file, make a list of tuples that describe the files needed.
Assign the list of tuples to the binaries= argument of Analysis.

Normally PyInstaller learns about .so and .dll libraries by
analyzing the imported modules.
Sometimes it is not clear that a module is imported;
in that case you use a --hidden-import= command option.
But even that might not find all dependencies.

Suppose you have a module special_ops.so that is written in C
and uses the Python C-API.
Your program imports special_ops, and PyInstaller finds and
includes special_ops.so.
But perhaps special_ops.so links to libiodbc.2.dylib.
PyInstaller does not find this dependency.
You could add it to the bundle this way:

a = Analysis(...
 binaries=[('/usr/lib/libiodbc.2.dylib', 'libiodbc.dylib')],
 ...

Or via the command line:

pyinstaller --add-binary '/usr/lib/libiodbc.2.dylib:libiodbc.dylib' myscript.py

As with data files, if you have multiple binary files to add,
create the list in a separate statement and pass the list by name.

Advanced Methods of Adding Files

PyInstaller supports a more advanced (and complex) way of adding
files to the bundle that may be useful for special cases.
See The TOC and Tree Classes below.

Giving Run-time Python Options

You can pass command-line options to the Python interpreter.
The interpreter takes a number of command-line options but only the
following are supported for a bundled app:

	v to write a message to stdout each time a module is initialized.

	u for unbuffered stdio.

	W and an option to change warning behavior: W ignore or
W once or W error.

To pass one or more of these options,
create a list of tuples, one for each option, and pass the list as
an additional argument to the EXE call.
Each tuple has three elements:

	The option as a string, for example v or W ignore.

	None

	The string OPTION

For example modify the spec file this way:

options = [('v', None, 'OPTION'), ('W ignore', None, 'OPTION')]
a = Analysis(...
)
...
exe = EXE(pyz,
 a.scripts,
 options, <--- added line
 exclude_binaries=...
)

Spec File Options for a Mac OS X Bundle

When you build a windowed Mac OS X app
(that is, running in Mac OS X, you specify the --onefile --windowed options),
the spec file contains an additional statement to
create the Mac OS X application bundle, or app folder:

app = BUNDLE(exe,
 name='myscript.app',
 icon=None,
 bundle_identifier=None)

The icon= argument to BUNDLE will have the path to an icon file
that you specify using the --icon= option.
The bundle_identifier will have the value you specify with the
--osx-bundle-identifier= option.

An Info.plist file is an important part of a Mac OS X app bundle.
(See the Apple bundle overview [https://developer.apple.com/library/mac/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html] for a discussion of the contents
of Info.plist.)

PyInstaller creates a minimal Info.plist.
You can add or overwrite entries in the plist by passing an
info_plist= parameter to the BUNDLE call.
The value of this argument is a Python dict.
Each key and value in the dict becomes a key and value in the Info.plist file.
For example, when you use PyQt5,
you can set NSHighResolutionCapable to True to let your app
also work in retina screen:

app = BUNDLE(exe,
 name='myscript.app',
 icon=None,
 bundle_identifier=None
 info_plist={
 'NSHighResolutionCapable': 'True'
 },
)

The info_plist= parameter only handles simple key:value pairs.
It cannot handle nested XML arrays.
For example, if you want to modify Info.plist to tell Mac OS X
what filetypes your app supports, you must add a
CFBundleDocumentTypes entry to Info.plist
(see Apple document types [https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/uid/20001431-101685]).
The value of that keyword is a list of dicts,
each containing up to five key:value pairs.

To add such a value to your app’s Info.plist you must edit the
plist file separately after PyInstaller has created the app.
However, when you re-run PyInstaller, your changes will be wiped out.
One solution is to prepare a complete Info.plist file and
copy it into the app after creating it.

Begin by building and testing the windowed app.
When it works, copy the Info.plist prepared by PyInstaller.
This includes the CFBundleExecutable value as well as the
icon path and bundle identifier if you supplied them.
Edit the Info.plist as necessary to add more items
and save it separately.

From that point on, to rebuild the app call PyInstaller in a shell script,
and follow it with a statement such as:

cp -f Info.plist dist/myscript.app/Contents/Info.plist

Multipackage Bundles

Note

This feature is broken in the PyInstaller 3.0 release.
Do not attempt building multipackage bundles until the feature
is fixed. If this feature is important to you,
follow and comment on PyInstaller Issue #1527 [https://github.com/pyinstaller/pyinstaller/issues/1527].

Some products are made of several different apps,
each of which might
depend on a common set of third-party libraries, or share code in other ways.
When packaging such an product it
would be a pity to treat each app in isolation, bundling it with
all its dependencies, because that means storing duplicate copies
of code and libraries.

You can use the multipackage feature to bundle a set of executable apps
so that they share single copies of libraries.
You can do this with either one-file or one-folder apps.
Each dependency (a DLL, for example) is packaged only once, in one of the apps.
Any other apps in the set that depend on that DLL
have an “external reference” to it, telling them
to extract that dependency from the executable file of the app that contains it.

This saves disk space because each dependency is stored only once.
However, to follow an external reference takes extra time when an app is starting up.
All but one of the apps in the set will have slightly slower launch times.

The external references between binaries include hard-coded
paths to the output directory, and cannot be rearranged.
If you use one-folder mode, you must
install all the application folders within a single parent directory.
If you use one-file mode, you must place all
the related applications in the same directory
when you install the application.

To build such a set of apps you must code a custom
spec file that contains a call to the MERGE function.
This function takes a list of analyzed scripts,
finds their common dependencies, and modifies the analyses
to minimize the storage cost.

The order of the analysis objects in the argument list matters.
The MERGE function packages each dependency into the
first script from left to right that needs that dependency.
A script that comes later in the list and needs the same file
will have an external reference to the prior script in the list.
You might sequence the scripts to place the most-used scripts first in the list.

A custom spec file for a multipackage bundle contains one call to the MERGE function:

MERGE(*args)

MERGE is used after the analysis phase and before EXE and COLLECT.
Its variable-length list of arguments consists of
a list of tuples, each tuple having three elements:

	The first element is an Analysis object, an instance of class Analysis,
as applied to one of the apps.

	The second element is the script name of the analyzed app (without the .py extension).

	The third element is the name for the executable (usually the same as the script).

MERGE examines the Analysis objects to learn the dependencies of each script.
It modifies these objects to avoid duplication of libraries and modules.
As a result the packages generated will be connected.

Example MERGE spec file

One way to construct a spec file for a multipackage bundle is to
first build a spec file for each app in the package.
Suppose you have a product that comprises three apps named
(because we have no imagination) foo, bar and zap:

pyi-makespec options as appropriate… foo.py

pyi-makespec options as appropriate… bar.py

pyi-makespec options as appropriate… zap.py

Check for warnings and test each of the apps individually.
Deal with any hidden imports and other problems.
When all three work correctly,
combine the statements from the three files foo.spec, bar.spec and zap.spec
as follows.

First copy the Analysis statements from each,
changing them to give each Analysis object a unique name:

foo_a = Analysis(['foo.py'],
 pathex=['/the/path/to/foo'],
 hiddenimports=[],
 hookspath=None)

bar_a = Analysis(['bar.py'], etc., etc...

zap_a = Analysis(['zap.py'], etc., etc...

Now call the MERGE method to process the three Analysis objects:

MERGE((foo_a, 'foo', 'foo'), (bar_a, 'bar', 'bar'), (zap_a, 'zap', 'zap'))

The Analysis objects foo_a, bar_a, and zap_a are modified
so that the latter two refer to the first for common dependencies.

Following this you can copy the PYZ, EXE and COLLECT statements from
the original three spec files,
substituting the unique names of the Analysis objects
where the original spec files have a., for example:

foo_pyz = PYZ(foo_a.pure)
foo_exe = EXE(foo_pyz, foo_a.scripts, ... etc.
foo_coll = COLLECT(foo_exe, foo_a.binaries, foo_a.datas... etc.

bar_pyz = PYZ(bar_a.pure)
bar_exe = EXE(bar_pyz, bar_a.scripts, ... etc.
bar_coll = COLLECT(bar_exe, bar_a.binaries, bar_a.datas... etc.

(If you are building one-file apps, there is no COLLECT step.)
Save the combined spec file as foobarzap.spec and then build it:

pyi-build foobarzap.spec

The output in the dist folder will be all three apps, but
the apps dist/bar/bar and dist/zap/zap will refer to
the contents of dist/foo/ for shared dependencies.

There are several multipackage examples in the
PyInstaller distribution folder under /tests/old_suite/multipackage.

Remember that a spec file is executable Python.
You can use all the Python facilities (for and with
and the members of sys and io)
in creating the Analysis
objects and performing the PYZ, EXE and COLLECT statements.
You may also need to know and use The TOC and Tree Classes described below.

Globals Available to the Spec File

While a spec file is executing it has access to a limited set of global names.
These names include the classes defined by PyInstaller:
Analysis, BUNDLE, COLLECT, EXE, MERGE,
PYZ, TOC and Tree,
which are discussed in the preceding sections.

Other globals contain information about the build environment:

	DISTPATH

	The relative path to the dist folder where
the application will be stored.
The default path is relative to the current directory.
If the --distpath= option is used, DISTPATH contains that value.

	HOMEPATH

	The absolute path to the PyInstaller
distribution, typically in the current Python site-packages folder.

	SPEC

	The complete spec file argument given to the
pyinstaller command, for example myscript.spec
or source/myscript.spec.

	SPECPATH

	The path prefix to the SPEC value as returned by os.split().

	specnm

	The name of the spec file, for example myscript.

	workpath

	The path to the build directory. The default is relative to
the current directory. If the workpath= option is used,
workpath contains that value.

	WARNFILE

	The full path to the warnings file in the build directory,
for example build/warnmyscript.txt.

When Things Go Wrong

The information above covers most normal uses of PyInstaller.
However, the variations of Python and third-party libraries are
endless and unpredictable.
It may happen that when you attempt to bundle your app either
PyInstaller itself, or your bundled app, terminates with a Python traceback.
Then please consider the following actions in sequence, before
asking for technical help.

Recipes and Examples for Specific Problems

The PyInstaller FAQ [https://github.com/pyinstaller/pyinstaller/wiki/FAQ] page has work-arounds for some common problems.
Code examples for some advanced uses and some common
problems are available on our PyInstaller Recipes [https://github.com/pyinstaller/pyinstaller/wiki/Recipes] page.
Some of the recipes there include:

	A more sophisticated way of collecting data files
than the one shown above (Adding Files to the Bundle).

	Bundling a typical Django app.

	A use of a run-time hook to set the PyQt4 API level.

	A workaround for a multiprocessing constraint under Windows.

and others.
Many of these Recipes were contributed by users.
Please feel free to contribute more recipes!

Finding out What Went Wrong

Build-time Messages

When the Analysis step runs, it produces error and warning messages.
These display after the command line if the --log-level option allows it.
Analysis also puts messages in a warnings file
named build/name/warnname.txt in the
work-path= directory.

Analysis creates a message when it detects an import
and the module it names cannot be found.
A message may also be produced when a class or function is declared in
a package (an __init__.py module), and the import specifies
package.name. In this case, the analysis can’t tell if name is supposed to
refer to a submodule or package.

The “module not found” messages are not classed as errors because
typically there are many of them.
For example, many standard modules
conditionally import modules for different platforms that may or may
not be present.

All “module not found” messages are written to the
build/name/warnname.txt file.
They are not displayed to standard output because there are many of them.
Examine the warning file; often there will be dozens of modules not found,
but their absence has no effect.

When you run the bundled app and it terminates with an ImportError,
that is the time to examine the warning file.
Then see Helping PyInstaller Find Modules below for how to proceed.

Build-Time Dependency Graph

If you specify --log-level=DEBUG to the pyinstaller command,
PyInstaller writes two files of data about dependencies into the
build folder.

The file build/name/xref-name.html in the
work-path= directory is an HTML file that lists the full
contents of the import graph, showing which modules are imported
by which.
You can open it in any web browser.
Find a module name, then keep clicking the “imported by” links
until you find the top-level import that causes that module to be included.

The file build/name/graph-name.dot in the
work-path= directory is a GraphViz [http://graphviz.org/Home.php] input file.
You can process it with the GraphViz [http://graphviz.org/Home.php] command dot to produce
a graphical display of the import dependencies.

These files are very large because even the simplest “hello world”
Python program ends up including a large number of standard modules.
For this reason the graph file is not very useful in this release.

Build-Time Python Errors

PyInstaller sometimes terminates by raising a Python exception.
In most cases the reason is clear from the exception message,
for example “Your system is not supported”, or “Pyinstaller
requires at least Python 2.7”.
Others clearly indicate a bug that should be reported.

One of these errors can be puzzling, however:
IOError("Python library not found!")
PyInstaller needs to bundle the Python library, which is the
main part of the Python interpreter, linked as a dynamic load library.
The name and location of this file varies depending on the platform in use.
Some Python installations do not include a dynamic Python library
by default (a static-linked one may be present but cannot be used).
You may need to install a development package of some kind.
Or, the library may exist but is not in a folder where PyInstaller
is searching.

The places where PyInstaller looks for the python library are
different in different operating systems, but /lib and /usr/lib
are checked in most systems.
If you cannot put the python library there,
try setting the correct path in the environment variable
LD_LIBRARY_PATH in Linux or
DYLD_LIBRARY_PATH in OS X.

Getting Debug Messages

Giving the --debug option causes the bundled executable itself to
write progress messages when it runs.
This can be useful during development of a complex package,
or when your app doesn’t seem to be starting,
or just to learn how the runtime works.

Normally the debug progress messages go to standard output.
If the --windowed option is used when bundling a Windows app,
they are displayed as MessageBoxes.
For a --windowed Mac OS app they are not displayed.

Remember to bundle without --debug for your production version.
Users would find the messages annoying.

Getting Python’s Verbose Imports

You can also pass a -v (verbose imports) flag to the embedded Python interpreter
(see Giving Run-time Python Options above).
This can be extremely useful.
It can be informative even with apps that are apparently working,
to make sure that they are getting all imports from the bundle,
and not leaking out to the local installed Python.

Python verbose and warning messages always go to standard output
and are not visible when the --windowed option is used.
Remember to not use this in the distributed program.

Helping PyInstaller Find Modules

Extending the Path

If Analysis recognizes that a module is needed, but cannot find that module,
it is often because the script is manipulating sys.path.
The easiest thing to do in this case is to use the --paths= option
to list all the other places that the script might be searching for imports:

pyi-makespec --paths=/path/to/thisdir \
 --paths=/path/to/otherdir myscript.py

These paths will be noted in the spec file.
They will be added to the current sys.path during analysis.

Listing Hidden Imports

If Analysis thinks it has found all the imports,
but the app fails with an import error,
the problem is a hidden import; that is, an import that is not
visible to the analysis phase.

Hidden imports can occur when the code is using __import__
or perhaps exec or eval.
Hidden imports can also occur when an extension module uses the
Python/C API to do an import.
When this occurs, Analysis can detect nothing.
There will be no warnings, only an ImportError at run-time.

To find these hidden imports,
build the app with the -v flag (Getting Python’s Verbose Imports above)
and run it.

Once you know what modules are needed, you add the needed modules
to the bundle using the --hidden-import= command option,
or by editing the spec file,
or with a hook file (see Understanding PyInstaller Hooks below).

Extending a Package’s __path__

Python allows a script to extend the search path used for imports
through the __path__ mechanism.
Normally, the __path__ of an imported module has only one entry,
the directory in which the __init__.py was found.
But __init__.py is free to extend its __path__ to include other directories.
For example, the win32com.shell.shell module actually resolves to
win32com/win32comext/shell/shell.pyd.
This is because win32com/__init__.py appends ../win32comext to its __path__.

Because the __init__.py of an imported module
is not actually executed during analysis,
changes it makes to __path__ are not seen by PyInstaller.
We fix the problem with the same hook mechanism we use for hidden imports,
with some additional logic; see Understanding PyInstaller Hooks below.

Note that manipulations of __path__ hooked in this way apply only
to the Analysis.
At runtime all imports are intercepted and satisfied from within the
bundle. win32com.shell is resolved the same
way as win32com.anythingelse, and win32com.__path__
knows nothing of ../win32comext.

Once in a while, that’s not enough.

Changing Runtime Behavior

More bizarre situations can be accomodated with runtime hooks.
These are small scripts that manipulate the environment before your main script runs,
effectively providing additional top-level code to your script.

There are two ways of providing runtime hooks.
You can name them with the option --runtime-hook=path-to-script.

Second, some runtime hooks are provided.
At the end of an analysis,
the names in the module list produced by the Analysis phase are looked up in
loader/rthooks.dat in the PyInstaller install folder.
This text file is the string representation of a
Python dictionary. The key is the module name, and the value is a list
of hook-script pathnames.
If there is a match, those scripts are included in the bundled app
and will be called before your main script starts.

Hooks you name with the option are executed
in the order given, and before any installed runtime hooks.
If you specify --runtime-hook=file1.py --runtime-hook=file2.py
then the execution order at runtime will be:

	Code of file1.py.

	Code of file2.py.

	Any hook specified for an included module that is found
in rthooks/rthooks.dat.

	Your main script.

Hooks called in this way, while they need to be careful of what they import,
are free to do almost anything.
One reason to write a run-time hook is to
override some functions or variables from some modules.
A good example of this is the Django runtime
hook (see loader/rthooks/pyi_rth_django.py in the
PyInstaller folder).
Django imports some modules dynamically and it is looking
for some .py files.
However .py files are not available in the one-file bundle.
We need to override the function
django.core.management.find_commands
in a way that will just return a list of values.
The runtime hook does this as follows:

import django.core.management
def _find_commands(_):
 return """cleanup shell runfcgi runserver""".split()
django.core.management.find_commands = _find_commands

Getting the Latest Version

If you have some reason to think you have found a bug in PyInstaller
you can try downloading the latest development version.
This version might have fixes or features that are not yet at PyPI [https://pypi.python.org/pypi/PyInstaller/].
You can download the latest stable version and the latest development
version from the PyInstaller Downloads [https://github.com/pyinstaller/pyinstaller/releases] page.

You can also install the latest version of PyInstaller directly
using pip [http://www.pip-installer.org/]:

pip install -e https://github.com/pyinstaller/pyinstaller/archive/develop.zip

Asking for Help

When none of the above suggestions help,
do ask for assistance on the PyInstaller Email List [https://groups.google.com/forum/#!forum/pyinstaller].

Then, if you think it likely that you see a bug in PyInstaller,
refer to the How to Report Bugs [https://github.com/pyinstaller/pyinstaller/wiki/How-to-Report-Bugs] page.

Advanced Topics

The following discussions cover details of PyInstaller internal methods.
You should not need this level of detail for normal use,
but such details are helpful if you want to investigate
the PyInstaller code and possibly contribute to it,
as described in How to Contribute [https://github.com/pyinstaller/pyinstaller/wiki/How-to-Contribute].

The Bootstrap Process in Detail

There are many steps that must take place before the bundled
script can begin execution.
A summary of these steps was given in the Overview
(How the One-Folder Program Works and
How the One-File Program Works).
Here is more detail to help you understand what the bootloader
does and how to figure out problems.

Bootloader

The bootloader prepares everything for running Python code.
It begins the setup and then returns itself in another process.
This approach of using two processes allows a lot of flexibility
and is used in all bundles except one-folder mode in Windows.
So do not be surprised if you will see your bundled app
as two processes in your system task manager.

What happens during execution of bootloader:

	First process: bootloader starts.

	If one-file mode, extract bundled files to temppath_MEIxxxxxx

	Modify various environment variables:

	Linux: save original value of LD_LIBRARY_PATH into LD_LIBRARY_PATH_ORIG,
prepend our path to LD_LIBRARY_PATH.

	AIX: same thing, but using LIBPATH and LIBPATH_ORIG.

	OSX: unset DYLD_LIBRARY_PATH.

	Set up to handle signals for both processes.

	Run the child process.

	Wait for the child process to finish.

	If one-file mode, delete temppath_MEIxxxxxx.

	Second process: bootloader itself started as a child process.

	On Windows set the activation context [http://msdn.microsoft.com/en-us/library/windows/desktop/aa374153(v=vs.85).aspx].

	Load the Python dynamic library.
The name of the dynamic library is embedded in the
executable file.

	Initialize Python interpreter: set sys.path, sys.prefix, sys.executable.

	Run python code.

Running Python code requires several steps:

	Run the Python initialization code which
prepares everything for running the user’s main script.
The initialization code can use only the Python built-in modules
because the general import mechanism is not yet available.
It sets up the Python import mechanism to load modules
only from archives embedded in the executable.
It also adds the attributes frozen
and _MEIPASS to the sys built-in module.

	Execute any run-time hooks: first those specified by the
user, then any standard ones.

	Install python “egg” files.
When a module is part of a zip file (.egg),
it has been bundled into the ./eggs directory.
Installing means appending .egg file names to sys.path.
Python automatically detects whether an
item in sys.path is a zip file or a directory.

	Run the main script.

Python imports in a bundled app

PyInstaller embeds compiled python code
(.pyc files) within the executable.
PyInstaller injects its code into the
normal Python import mechanism.
Python allows this;
the support is described in PEP 302 [https://www.python.org/dev/peps/pep-0302] “New Import Hooks”.

PyInstaller implements the PEP 302 specification for
importing built-in modules,
importing “frozen” modules (compiled python code
bundled with the app) and for C-extensions.
The code can be read in ./PyInstaller/loader/pyi_mod03_importers.py.

At runtime the PyInstaller PEP 302 [https://www.python.org/dev/peps/pep-0302] hooks are appended
to the variable sys.meta_path.
When trying to import modules the interpreter will
first try PEP 302 hooks in sys.meta_path
before searching in sys.path.
As a result, the Python interpreter
loads imported python modules from the archive embedded
in the bundled executable.

This is the resolution order of import statements
in a bundled app:

	Is it a built-in module?
A list of built-in modules is in variable
sys.builtin_module_names.

	Is it a module embedded in the executable?
Then load it from embedded archive.

	Is it a C-extension?
The app will try to find a file with name
package.subpackage.module.pyd or
package.subpackage.module.so

	Next examine paths in the sys.path.
There could be any additional location with python modules
or .egg filenames.

	If the module was not found then
raise ImportError.

The TOC and Tree Classes

PyInstaller manages lists of files using the TOC
(Table Of Contents) class.
It provides the Tree class as a convenient way to build a TOC
from a folder path.

TOC Class (Table of Contents)

Objects of the TOC class are used as input to the classes created in
a spec file.
For example, the scripts member of an Analysis object is a TOC
containing a list of scripts.
The pure member is a TOC with a list of modules, and so on.

Basically a TOC object contains a list of tuples of the form

(name,path,typecode)

In fact, it acts as an ordered set of tuples;
that is, it contains no duplicates
(where uniqueness is based on the name element of each tuple).
Within this constraint, a TOC preserves the order of tuples added to it.

A TOC behaves like a list and supports the same methods
such as appending, indexing, etc.
A TOC also behaves like a set, and supports taking differences and intersections.
In all of these operations a list of tuples can be used as one argument.
For example, the following expressions are equivalent ways to
add a file to the a.datas member:

a.datas.append([('README', 'src/README.txt', 'DATA')])
a.datas += [('README', 'src/README.txt', 'DATA')]

Set-difference makes excluding modules quite easy. For example:

a.binaries - [('badmodule', None, None)]

is an expression that produces a new TOC that is a copy of
a.binaries from which any tuple named badmodule has been removed.
The right-hand argument to the subtraction operator
is a list that contains one tuple
in which name is badmodule and the path and typecode elements
are None.
Because set membership is based on the name element of a tuple only,
it is not necessary to give accurate path and typecode elements when subtracting.

In order to add files to a TOC, you need to know the typecode values
and their related path values.
A typecode is a one-word string.
PyInstaller uses a number of typecode values internally,
but for the normal case you need to know only these:

	typecode

	description

	name

	path

	‘DATA’

	Arbitrary files.

	Run-time name.

	Full path name in build.

	‘BINARY’

	A shared library.

	Run-time name.

	Full path name in build.

	‘EXTENSION’

	A binary extension to Python.

	Run-time name.

	Full path name in build.

	‘OPTION’

	A Python run-time option.

	Option code

	ignored.

The run-time name of a file will be used in the final bundle.
It may include path elements, for example extras/mydata.txt.

A BINARY file or an EXTENSION file is assumed to be loadable, executable code,
for example a dynamic library.
The types are treated the same.
EXTENSION is generally used for a Python extension module,
for example a module compiled by Cython [http://www.cython.org/].
PyInstaller will examine either type of file for dependencies,
and if any are found, they are also included.

The Tree Class

The Tree class is a way of creating a TOC that describes some or all of the
files within a directory:

Tree(root, prefix=run-time-folder, excludes=string_list, typecode=code | 'DATA')

	The root argument is a path string to a directory.
It may be absolute or relative to the spec file directory.

	The prefix argument, if given, is a name for a subfolder
within the run-time folder to contain the tree files.
If you omit prefix or give None,
the tree files will be at
the top level of the run-time folder.

	The excludes argument, if given, is a list of one or more
strings that match files in the root that should be omitted from the Tree.
An item in the list can be either:

	a name, which causes files or folders with this basename to be excluded

	*.ext, which causes files with this extension to be excluded

	The typecode argument, if given, specifies the TOC typecode string
that applies to all items in the Tree.
If omitted, the default is DATA, which is appropriate for most cases.

For example:

extras_toc = Tree('../src/extras', prefix='extras', excludes=['tmp','*.pyc'])

This creates extras_toc as a TOC object that lists
all files from the relative path ../src/extras,
omitting those that have the basename (or are in a folder named) tmp
or that have the type .pyc.
Each tuple in this TOC has:

	A name composed of extras/filename.

	A path consisting of a complete, absolute path to that file in the ../src/extras folder (relative to the location of the spec file).

	A typecode of DATA (by default).

An example of creating a TOC listing some binary modules:

cython_mods = Tree('..src/cy_mods', excludes=['*.pyx','*.py','*.pyc'], typecode='EXTENSION')

This creates a TOC with a tuple for every file in the cy_mods folder,
excluding any with the .pyx, .py or .pyc suffixes
(so presumably collecting the .pyd or .so modules created by Cython).
Each tuple in this TOC has:

	Its own filename as name (no prefix; the file will be at the top level of the bundle).

	A path as an absolute path to that file in ../src/cy_mods relative to the spec file.

	A typecode of EXTENSION (BINARY could be used as well).

Inspecting Archives

An archive is a file that contains other files,
for example a .tar file, a .jar file, or a .zip file.
Two kinds of archives are used in PyInstaller.
One is a ZlibArchive, which
allows Python modules to be stored efficiently and,
with some import hooks, imported directly.
The other, a CArchive, is similar to a .zip file,
a general way of packing up (and optionally compressing) arbitrary blobs of data.
It gets its name from the fact that it can be manipulated easily from C
as well as from Python.
Both of these derive from a common base class, making it fairly easy to
create new kinds of archives.

ZlibArchive

A ZlibArchive contains compressed .pyc or .pyo files.
The PYZ class invocation in a spec file creates a ZlibArchive.

The table of contents in a ZlibArchive
is a Python dictionary that associates a key,
which is a member’s name as given in an import statement,
with a seek position and a length in the ZlibArchive.
All parts of a ZlibArchive are stored in the
marshalled [http://docs.python.org/library/marshal] format and so are platform-independent.

A ZlibArchive is used at run-time to import bundled python modules.
Even with maximum compression this works faster than the normal import.
Instead of searching sys.path, there’s a lookup in the dictionary.
There are no directory operations and no
file to open (the file is already open).
There’s just a seek, a read and a decompress.

A Python error trace will point to the source file from which the archive
entry was created (the __file__ attribute from the time the
.pyc was compiled, captured and saved in the archive).
This will not tell your user anything useful,
but if they send you a Python error trace,
you can make sense of it.

[image: Structure of the ZlibArchive]
Structure of the ZlibArchive

CArchive

A CArchive can contain any kind of file.
It’s very much like a .zip file.
They are easy to create in Python and easy to unpack from C code.
A CArchive can be appended to another file, such as
an ELF and COFF executable.
To allow this, the archive is made with its table of contents at the
end of the file, followed only by a cookie that tells where the
table of contents starts and
where the archive itself starts.

A CArchive can be embedded within another CArchive.
An inner archive can be opened and used in place,
without having to extract it.

Each table of contents entry has variable length.
The first field in the entry gives the length of the entry.
The last field is the name of the corresponding packed file.
The name is null terminated.
Compression is optional for each member.

There is also a type code associated with each member.
The type codes are used by the self-extracting executables.
If you’re using a CArchive as a .zip file, you don’t need to worry about the code.

The ELF executable format (Windows, Linux and some others) allows arbitrary
data to be concatenated to the end of the executable without disturbing its
functionality. For this reason, a CArchive’s Table of Contents is
at the end of the archive. The executable can open itself as a binary
file, seek to the end and ‘open’ the CArchive.

[image: CArchive]
Structure of the CArchive

[image: Structure of the Self Extracting Executable]
Structure of the Self Extracting Executable

Using pyi-archive_viewer

Use the pyi-archive_viewer command to inspect any type of archive:

pyi-archive_viewer archivefile

With this command you can examine the contents of any archive built with
PyInstaller (a PYZ or PKG), or any executable (.exe file
or an ELF or COFF binary).
The archive can be navigated using these commands:

	O name

	Open the embedded archive name (will prompt if omitted).
For example when looking in a one-file executable, you
can open the outPYZ.pyz archive inside it.

	U

	Go up one level (back to viewing the containing archive).

	X name

	Extract name (will prompt if omitted).
Prompts for an output filename.
If none given, the member is extracted to stdout.

	Q

	Quit.

The pyi-archive_viewer command has these options:

	-h, --help

	Show help.

	-l, --log

	Quick contents log.

	-b, --brief

	Print a python evaluable list of contents filenames.

	-r, --recursive

	Used with -l or -b, applies recursive behaviour.

Inspecting Executables

You can inspect any executable file with pyi-bindepend:

pyi-bindepend executable_or_dynamic_library

The pyi-bindepend command analyzes the executable or DLL you name
and writes to stdout all its binary dependencies.
This is handy to find out which DLLs are required by
an executable or by another DLL.

pyi-bindepend is used by PyInstaller to
follow the chain of dependencies of binary extensions
during Analysis.

Creating a Reproducible Build

In certain cases it is important that when you build the same application twice,
using exactly the same set of dependencies,
the two bundles should be exactly, bit-for-bit identical.

That is not the case normally.
Python uses a random hash to make dicts and other hashed types,
and this affects compiled byte-code as well as PyInstaller
internal data structures.
As a result, two builds may not produce bit-for-bit identical results
even when all the components of the application bundle are the same
and the two applications execute in identical ways.

You can assure that a build will produce the same bits
by setting the PYTHONHASHSEED environment variable to a known
integer value before running PyInstaller.
This forces Python to use the same random hash sequence until
PYTHONHASHSEED is unset or set to 'random'.
For example, execute PyInstaller in a script such as
the following (for Linux and OS X):

set seed to a known repeatable integer value
PYTHONHASHSEED=1
export PYTHONHASHSEED
create one-file build as myscript
pyinstaller myscript.spec
make checksum
cksum dist/myscript/myscript | awk '{print $1}' > dist/myscript/checksum.txt
let Python be unpredictable again
unset PYTHONHASHSEED

Understanding PyInstaller Hooks

In summary, a “hook” file extends PyInstaller to adapt it to
the special needs and methods used by a Python package.
The word “hook” is used for two kinds of files.
A runtime hook helps the bootloader to launch an app.
For more on runtime hooks, see Changing Runtime Behavior.
Other hooks run while an app is being analyzed.
They help the Analysis phase find needed files.

The majority of Python packages use normal methods of importing
their dependencies, and PyInstaller locates all their files without difficulty.
But some packages make unusual uses of the Python import mechanism,
or make clever changes to the import system at runtime.
For this or other reasons, PyInstaller cannot reliably find
all the needed files, or may include too many files.
A hook can tell about additional source files or data files to import,
or files not to import.

A hook file is a Python script, and can use all Python features.
It can also import helper methods from PyInstaller.utils.hooks
and useful variables from PyInstaller.compat.
These helpers are documented below.

The name of a hook file is hook-full-import-name.py,
where full-import-name is
the fully-qualified name of an imported script or module.
You can browse through the existing hooks in the
hooks folder of the PyInstaller distribution folder
and see the names of the packages for which hooks have been written.
For example hook-PyQt5.QtCore.py is a hook file telling
about hidden imports needed by the module PyQt5.QtCore.
When your script contains import PyQt5.QtCore
(or from PyQt5 import QtCore),
Analysis notes that hook-PyQt5.QtCore.py exists, and will call it.

Many hooks consist of only one statement, an assignment to hiddenimports.
For example, the hook for the dnspython [http://www.dnspython.org/] package, called
hook-dns.rdata.py, has only this statement:

hiddenimports = [
 "dns.rdtypes.*",
 "dns.rdtypes.ANY.*"
]

When Analysis sees import dns.rdata or from dns import rdata
it calls hook-dns.rdata.py and examines its value
of hiddenimports.
As a result, it is as if your source script also contained:

import dns.rdtypes.*
import dsn.rdtypes.ANY.*

A hook can also cause the addition of data files,
and it can cause certain files to not be imported.
Examples of these actions are shown below.

When the module that needs these hidden imports is useful only to your project,
store the hook file(s) somewhere near your source file.
Then specify their location to the pyinstaller or pyi-makespec
command with the --additional-hooks-dir= option.
If the hook file(s) are at the same level as the script,
the command could be simply:

pyinstaller --additional-hooks-dir=. myscript.py

If you write a hook for a module used by others,
please send us the hook file so we can make it available.

How a Hook Is Loaded

A hook is a module named hook-full-import-name.py
in a folder where the Analysis object looks for hooks.
Each time Analysis detects an import, it looks for a hook file with
a matching name.
When one is found, Analysis imports the hook’s code into a Python namespace.
This results in the execution of all top-level statements in the hook source,
for example import statements, assignments to global names, and
function definitions.
The names defined by these statements are visible to Analysis
as attributes of the namespace.

Thus a hook is a normal Python script and can use all normal Python facilities.
For example it could test sys.version and adjust its
assignment to hiddenimports based on that.
There are over 150 hooks in the PyInstaller installation.
You are welcome to browse through them for examples.

Hook Global Variables

A majority of the existing hooks consist entirely of assignments of
values to one or more of the following global variables.
If any of these are defined by the hook, Analysis takes their values and
applies them to the bundle being created.

	hiddenimports

	A list of module names (relative or absolute) that should
be part of the bundled app.
This has the same effect as the --hidden-import command line option,
but it can contain a list of names and is applied automatically
only when the hooked module is imported.
Example:

hiddenimports = ['_proxy', 'utils', 'defs']

	excludedimports

	A list of absolute module names that should
not be part of the bundled app.
If an excluded module is imported only by the hooked module or one
of its sub-modules, the excluded name and its sub-modules
will not be part of the bundle.
(If an excluded name is explicitly imported in the
source file or some other module, it will be kept.)
Several hooks use this to prevent automatic inclusion of
the tkinter module. Example:

excludedimports = [modname_tkinter]

	datas

	A list of files to bundle with the app as data.
Each entry in the list is a tuple containing two strings.
The first string specifies a file (or file “glob”) in this system,
and the second specifies the name(s) the file(s) are to have in
the bundle.
(This is the same format as used for the datas= argument,
see Adding Data Files.)
Example:

datas = [('/usr/share/icons/education_*.png', 'icons')]

If you need to collect multiple directories or nested directories,
you can use helper functions from the PyInstaller.utils.hooks module
(see below) to create this list, for example:

datas = collect_data_files('submodule1')
datas+= collect_data_files('submodule2')

In rare cases you may need to apply logic to locate
particular files within the file system,
for example because the files are
in different places on different platforms or under different versions.
Then you can write a hook() function as described
below under The hook(hook_api) Function.

	binaries

	A list of files or directories to bundle as binaries.
The format is the same as datas (tuples with strings that
specify the source and the destination).
Binaries is a special case of datas, in that PyInstaller will
check each file to see if it depends on other dynamic libraries.
Example:

binaries = [('C:\\Windows\\System32*.dll', 'dlls')]

Many hooks use helpers from the PyInstaller.utils.hooks module
to create this list (see below):

binaries = collect_dynamic_libs('zmq')

Useful Items in PyInstaller.compat

A hook may import the following names from PyInstaller.compat,
for example:

from PyInstaller.compat import modname_tkinter, is_win

	is_py2:

	True when the active Python is version 2.7.

	is_py3:

	True when the active Python is version 3.X.

	is_py34, is_py35, is_py36:

	True when the current version of Python is at least 3.4, 3.5 or 3.6 respectively.

	is_win:

	True in a Windows system.

	is_cygwin:

	True when sys.platform=='cygwin'.

	is_darwin:

	True in Mac OS X.

	is_linux:

	True in any Linux system (sys.platform.startswith('linux')).

	is_solar:

	True in Solaris.

	is_aix:

	True in AIX.

	is_freebsd:

	True in FreeBSD.

	is_venv:

	True in any virtual environment (either virtualenv or venv).

	base_prefix:

	String, the correct path to the base Python installation,
whether the installation is native or a virtual environment.

	modname_tkinter:

	String, Tkinter in Python 2.7 but tkinter in Python 3.
To prevent an unnecessary import of Tkinter, write:

from PyInstaller.compat import modname_tkinter
excludedimports = [modname_tkinter]

	EXTENSION_SUFFIXES:

	List of Python C-extension file suffixes. Used for finding all
binary dependencies in a folder; see hook-cryptography.py for an example.

Useful Items in PyInstaller.utils.hooks

A hook may import useful functions from PyInstaller.utils.hooks.
Use a fully-qualified import statement, for example:

from PyInstaller.utils.hooks import collect_data_files, eval_statement

The PyInstaller.utils.hooks functions listed here are generally useful
and used in a number of existing hooks.
There are several more functions besides these that serve the needs
of specific hooks, such as hooks for PyQt4/5.
You are welcome to read the PyInstaller.utils.hooks module
(and read the existing hooks that import from it) to get code and ideas.

	exec_statement('statement'):

	Execute a single Python statement in an externally-spawned interpreter
and return the standard output that results, as a string.
Examples:

tk_version = exec_statement(
 "from _tkinter import TK_VERSION; print(TK_VERSION)"
)

mpl_data_dir = exec_statement(
 "import matplotlib; print(matplotlib._get_data_path())"
)
datas = [(mpl_data_dir, "")]

	eval_statement('statement'):

	Execute a single Python statement in an externally-spawned interpreter.
If the resulting standard output text is not empty, apply
the eval() function to it; else return None. Example:

databases = eval_statement('''
 import sqlalchemy.databases
 print(sqlalchemy.databases.__all__)
 ''')
for db in databases:
 hiddenimports.append("sqlalchemy.databases." + db)

	is_module_satisfies(requirements, version=None, version_attr='__version__'):

	Check that the named module (fully-qualified) exists and satisfies the
given requirement. Example:

if is_module_satisfies('sqlalchemy >= 0.6'):

This function provides robust version checking based on the same low-level
algorithm used by easy_install and pip, and should always be
used in preference to writing your own comparison code.
In particular, version strings should never be compared lexicographically
(except for exact equality).
For example '00.5' > '0.6' returns True, which is not the desired result.

The requirements argument uses the same syntax as supported by
the Package resources [https://pythonhosted.org/setuptools/pkg_resources.html#requirements-parsing] module of setup tools (follow the link to
see the supported syntax).

The optional version argument is is a PEP0440-compliant,
dot-delimited version specifier such as '3.14-rc5'.

When the package being queried has been installed by easy_install
or pip, the existing setup tools machinery is used to perform the test
and the version and version_attr arguments are ignored.

When that is not the case, the version argument is taken as the
installed version of the package
(perhaps obtained by interrogating the package in some other way).
When version is None, the named package is imported into a
subprocess, and the __version__ value of that import is tested.
If the package uses some other name than __version__ for its version
global, that name can be passed as the version_attr argument.

For more details and examples refer to the function’s doc-string, found
in Pyinstaller/utils/hooks/__init__.py.

	collect_submodules('package-name', pattern=None):

	Returns a list of strings that specify all the modules in a package,
ready to be assigned to the hiddenimports global.
Returns an empty list when package does not name a package
(a package is defined as a module that contains a __path__ attribute).

The pattern, if given, is function to filter through the submodules
found, selecting which should be included in the returned list. It takes one
argument, a string, which gives the name of a submodule. Only if the
function returns true is the given submodule is added to the list of
returned modules. For example, filter=lambda name: 'test' not in
name will return modules that don’t contain the word test.

	is_module_or_submodule(name, mod_or_submod):

	This helper function is designed for use in the filter argument of
collect_submodules, by returning True if the given name is
a module or a submodule of mod_or_submod. For example:
collect_submodules('foo', lambda name: not is_module_or_submodule(name,
'foo.test')) excludes foo.test and foo.test.one but not
foo.testifier.

	collect_data_files('module-name', subdir=None, include_py_files=False):

	Returns a list of (source, dest) tuples for all non-Python (i.e. data)
files found in module-name, ready to be assigned to the datas global.
module-name is the fully-qualified name of a module or
package (but not a zipped “egg”).
The function uses os.walk() to visit the module directory recursively.
subdir, if given, restricts the search to a relative subdirectory.

Normally Python executable files (ending in .py, .pyc, etc.)
are not collected. Pass include_py_files=True to collect those
files as well.
(This can be used with routines such as those in pkgutil that
search a directory for Python executable files and load them as
extensions or plugins.)

	collect_dynamic_libs('module-name'):

	Returns a list of (source, dest) tuples for all the dynamic libs
present in a module directory.
The list is ready to be assigned to the binaries global variable.
The function uses os.walk() to examine all files in the
module directory recursively.
The name of each file found is tested against the likely patterns for
a dynamic lib: *.dll, *.dylib, lib*.pyd, and lib*.so.
Example:

binaries = collect_dynamic_libs('enchant')

	get_module_file_attribute('module-name'):

	Return the absolute path to module-name, a fully-qualified module name.
Example:

nacl_dir = os.path.dirname(get_module_file_attribute('nacl'))

	get_package_paths('package-name'):

	Given the name of a package, return a tuple.
The first element is the absolute path to the folder where the package is stored.
The second element is the absolute path to the named package.
For example, if pkg.subpkg is stored in /abs/Python/lib
the result of:

get_package_paths('pkg.subpkg')

is the tuple, ('/abs/Python/lib', '/abs/Python/lib/pkg/subpkg')

	copy_metadata('package-name'):

	Given the name of a package, return the name of its distribution
metadata folder as a list of tuples ready to be assigned
(or appended) to the datas global variable.

Some packages rely on metadata files accessed through the
pkg_resources module.
Normally PyInstaller does not include these metadata files.
If a package fails without them, you can use this
function in a hook file to easily add them to the bundle.
The tuples in the returned list have two strings.
The first is the full pathname to a folder in this system.
The second is the folder name only.
When these tuples are added to datas,
the folder will be bundled at the top level.
If package-name does not have metadata, an
AssertionError exception is raised.

	get_homebrew_path(formula=''):

	Return the homebrew path to the named formula, or to the
global prefix when formula is omitted. Returns None if
not found.

	django_find_root_dir():

	Return the path to the top-level Python package containing
the Django files, or None if nothing can be found.

	django_dottedstring_imports('django-root-dir')

	Return a list of all necessary Django modules specified in
the Django settings.py file, such as the
Django.settings.INSTALLED_APPS list and many others.

The hook(hook_api) Function

In addition to, or instead of, setting global values,
a hook may define a function hook(hook_api).
A hook() function should only be needed if the hook
needs to apply sophisticated logic or to make a complex
search of the source machine.

The Analysis object calls the function and passes it a hook_api object
which has the following immutable properties:

	__name__:

	The fully-qualified name of the module that caused the
hook to be called, e.g., six.moves.tkinter.

	__file__:

	The absolute path of the module. If it is:

	A standard (rather than namespace) package, this is the absolute path
of this package’s directory.

	A namespace (rather than standard) package, this is the abstract
placeholder -.

	A non-package module or C extension, this is the absolute path of the
corresponding file.

	__path__:

	A list of the absolute paths of all directories comprising the module
if it is a package, or None. Typically the list contains only the
absolute path of the package’s directory.

The hook_api object also offers the following methods:

	add_imports(*names):

	The names argument may be a single string or a list of strings
giving the fully-qualified name(s) of modules to be imported.
This has the same effect as adding the names to the hiddenimports global.

	del_imports(*names):

	The names argument may be a single string or a list of strings,
giving the fully-qualified name(s) of modules that are not
to be included if they are imported only by the hooked module.
This has the same effect as adding names to the excludedimports global.

	add_datas(tuple_list):

	The tuple_list argument has the format used with the datas global
variable. This call has the effect of adding items to that list.

	add_binaries(tuple_list):

	The tuple_list argument has the format used with the binaries
global variable. This call has the effect of adding items to that list.

The hook() function can add, remove or change included files using the
above methods of hook_api.
Or, it can simply set values in the four global variables, because
these will be examined after hook() returns.

The pre_find_module_path(pfmp_api) Method

You may write a hook with the special function pre_find_module_path(pfmp_api).
This method is called when the hooked module name is first seen
by Analysis, before it has located the path to that module or package
(hence the name “pre-find-module-path”).

Hooks of this type are only recognized if they are stored in
a sub-folder named pre_find_module_path in a hooks folder,
either in the distributed hooks folder or an --additional-hooks-dir folder.
You may have normal hooks as well as hooks of this type for the same module.
For example PyInstaller includes both a hooks/hook-distutils.py
and also a hooks/pre_find_module_path/hook-distutils.py.

The pfmp_api object that is passed has the following immutable attribute:

	module_name:

	A string, the fully-qualified name of the hooked module.

The pfmp_api object has one mutable attribute, search_dirs.
This is a list of strings that specify the absolute path, or paths,
that will be searched for the hooked module.
The paths in the list will be searched in sequence.
The pre_find_module_path() function may replace or change
the contents of pfmp_api.search_dirs.

Immediately after return from pre_find_module_path(), the contents
of search_dirs will be used to find and analyze the module.

For an example of use,
see the file hooks/pre_find_module_path/hook-distutils.py.
It uses this method to redirect a search for distutils when
PyInstaller is executing in a virtual environment.

The pre_safe_import_module(psim_api) Method

You may write a hook with the special function pre_safe_import_module(psim_api).
This method is called after the hooked module has been found,
but before it and everything it recursively imports is added
to the “graph” of imported modules.
Use a pre-safe-import hook in the unusual case where:

	The script imports package.dynamic-name

	The package exists

	however, no module dynamic-name exists at compile time (it will be defined somehow at run time)

You use this type of hook to make dynamically-generated names known to PyInstaller.
PyInstaller will not try to locate the dynamic names, fail, and report them as missing.
However, if there are normal hooks for these names, they will be called.

Hooks of this type are only recognized if they are stored in a sub-folder
named pre_safe_import_module in a hooks folder,
either in the distributed hooks folder or an --additional-hooks-dir folder.
(See the distributed hooks/pre_safe_import_module folder for examples.)

You may have normal hooks as well as hooks of this type for the same module.
For example the distributed system has both a hooks/hook-gi.repository.GLib.py
and also a hooks/pre_safe_import_module/hook-gi.repository.GLib.py.

The psim_api object offers the following attributes,
all of which are immutable (an attempt to change one raises an exception):

	module_basename:

	String, the unqualified name of the hooked module, for example text.

	module_name:

	String, the fully-qualified name of the hooked module, for example
email.mime.text.

	module_graph:

	The module graph representing all imports processed so far.

	parent_package:

	If this module is a top-level module of its package, None.
Otherwise, the graph node that represents the import of the
top-level module.

The last two items, module_graph and parent_package,
are related to the module-graph, the internal data structure used by
PyInstaller to document all imports.
Normally you do not need to know about the module-graph.

The psim_api object also offers the following methods:

	add_runtime_module(fully_qualified_name):

	Use this method to add an imported module whose name may not
appear in the source because it is dynamically defined at run-time.
This is useful to make the module known to PyInstaller and avoid misleading warnings.
A typical use applies the name from the psim_api:

psim_api.add_runtime_module(psim_api.module_name)

	add_alias_module(real_module_name, alias_module_name):

	real_module_name is the fully-qualifed name of an existing
module, one that has been or could be imported by name
(it will be added to the graph if it has not already been imported).
alias_module_name is a name that might be referenced in the
source file but should be treated as if it were real_module_name.
This method ensures that if PyInstaller processes an import of
alias_module_name it will use real_module_name.

	append_package_path(directory):

	The hook can use this method to add a package path
to be searched by PyInstaller, typically an import
path that the imported module would add dynamically to
the path if the module was executed normally.
directory is a string, a pathname to add to the
__path__ attribute.

Building the Bootloader

PyInstaller comes with pre-compiled bootloaders for some platforms in
the bootloader folder of the distribution folder.
When there is no pre-compiled bootloader, the pip [http://www.pip-installer.org/] setup will attempt to build one.

If there is no precompiled bootloader for your platform,
or if you want to modify the bootloader source,
you need to build the bootloader.
To do this,

	cd into the distribution folder.

	cd bootloader.

	Make the bootloader with: python ./waf distclean all.

This will produce the bootloader executables,

	./PyInstaller/bootloader/YOUR_OS/run,

	./PyInstaller/bootloader/YOUR_OS/run_d

	./PyInstaller/bootloader/YOUR_OS/runw and

	./PyInstaller/bootloader/YOUR_OS/runw_d

Note: If you have multiple versions of Python, the Python you use to run
waf is the one whose configuration is used.

If this reports an error, read the detailed notes that follow,
then ask for technical help.

Development tools

On Debian/Ubuntu systems, you can run the following to
install everything required:

sudo apt-get install build-essential

On Fedora/RHEL and derivates, you can run the following:

su
yum groupinstall "Development Tools"

On Mac OS X you can get gcc by installing Xcode [http://developer.apple.com/xcode]. It is a suite of tools
for developing software for Mac OS X. It can be also installed from your
Mac OS X Install DVD. It is not necessary to install the version 4 of Xcode.

On Solaris and AIX the bootloader is built and tested with gcc.

Building for Windows

On Windows you can use the Visual Studio C++ compiler
(Visual Studio 2008 is recommended).
A free version you can download is Visual Studio Express [http://www.microsoft.com/express/].

Note: When compiling libs to link with Python it is important
to use the same level of Visual Studio as was used to compile Python.
That is not the case here. The bootloader is a self-contained static
executable that imposes no restrictions on the version of Python being used.
So you can use any Visual Studio version that is convenient.

If Visual Studio is not convenient,
you can download and install the MinGW distribution from one of the
following locations:

	MinGW-w64 [http://mingw-w64.sourceforge.net/] required, uses gcc 4.4 and up.

	TDM-GCC [http://tdm-gcc.tdragon.net/] - MinGW (not used) and MinGW-w64 installers

On Windows, when using MinGW-w64, add PATH_TO_MINGW\bin
to your system PATH. variable. Before building the
bootloader run for example:

set PATH=C:\MinGW\bin;%PATH%

Change to the bootloader subdirectory. Run:

python ./waf distclean all

This will produce the bootloader executables run*.exe
in the .\PyInstaller\bootloader\YOUR_OS directory.

Building for LINUX

By default, the bootloaders on Linux are LSB binaries.

LSB is a set of open standards that should increase compatibility among Linux
distributions.
PyInstaller produces a bootloader as an LSB binary in order
to increase compatibility for packaged applications among distributions.

Note: LSB version 4.0 is required for successfull building of bootloader.

On Debian- and Ubuntu-based distros, you can install LSB 4.0 tools by adding
the following repository to the sources.list file:

deb http://ftp.linux-foundation.org/pub/lsb/repositories/debian lsb-4.0 main

then after having update the apt repository:

sudo apt-get update

you can install LSB 4.0:

sudo apt-get install lsb lsb-build-cc

Most other distributions contain only LSB 3.0 in their software
repositories and thus LSB build tools 4.0 must be downloaded by hand.
From Linux Foundation download LSB sdk 4.0 [http://ftp.linuxfoundation.org/pub/lsb/bundles/released-4.0.0/sdk/] for your architecture.

Unpack it by:

tar -xvzf lsb-sdk-4.0.3-1.ia32.tar.gz

To install it run:

cd lsb-sdk
./install.sh

After having installed the LSB tools, you can follow the standard building
instructions.

NOTE: if for some reason you want to avoid LSB compilation, you can
do so by specifying –no-lsb on the waf command line, as follows:

python waf configure --no-lsb build install

This will also produce support/loader/YOUR_OS/run,
support/loader/YOUR_OS/run_d, support/loader/YOUR_OS/runw and
support/loader/YOUR_OS/runw_d, but they will not be LSB binaries.

Changelog for PyInstaller

3.2.1 (2017-01-15)

	New, updated and fixed hooks: botocore (#2094), gi (#2347), jira (#2222),
PyQt5.QtWebEngineWidgets (#2269), skimage (#2195, 2225), sphinx (#2323,)
xsge_gui (#2251).

Fixed the following issues:

	Don’t fail if working directory already exists (#1994)

	Avoid encoding errors in main script (#1976)

	Fix hasher digest bytes not str (#2229, #2230)

	(Windows) Fix additional dependency on the msvcrt10.dll (#1974)

	(Windows) Correctly decode a bytes object produced by pefile (#1981)

	(Windows) Package pefile with pyinstaller. This partially
undoes some changes in 3.2 in which the packaged pefiles were
removed to use the pypi version instead. The pypi version was
considerably slower in some applications, and still has a couple
of small issues on PY3. (#1920)

	(OS X) PyQt5 packaging issues on MacOS (#1874)

	(OS X) Replace run-time search path keyword (#1965)

	(OS X) (Re-) add argv emulation for OSX, 64-bit (#2219)

	(OS X) use decode(“utf-8”) to convert bytes in getImports_macholib() (#1973)

	(Bootloader) fix segfaults (#2176)

	(setup.py) pass option –no-lsb on GNU/Linux only (#1975)

	Updates and fixes in documentation, manuals, et al. (#1986, 2002, #2153,
#2227, #2231)

3.2 (2016-05-03)

	Even the “main” script is now byte-compiled (#1847, #1856)

	The manual is on readthedocs.io now (#1578)

	On installation try to compile the bootloader if there is none for
the current plattform (#1377)

	(Unix) Use objcopy to create a valid ELF file (#1812, #1831)

	(Linux): Compile with _FORTIFY_SOURCE (#1820)

	New, updated and fixed hooks: CherryPy (#1860), Cryptography (#1425,
#1861), enchant (1562), gi.repository.GdkPixbuf (#1843), gst
(#1963), Lib2to3 (#1768), PyQt4, PyQt5, PySide (#1783, #1897,
#1887), SciPy (#1908, #1909), sphinx (#1911, #1912), sqlalchemy
(#1951), traitlets wx.lib.pubsub (#1837, #1838),

	For windowed mode add isatty() for our dummy NullWriter (#1883)

	Suppress “Failed to execute script” in case of SystemExit (#1869)

	Do not apply Upx compressor for bootloader files (#1863)

	Fix absolute path for lib used via ctypes (#1934)

	(OSX) Fix binary cache on NFS (#1573, #1849)

	(Windows) Fix message in grab_version (#1923)

	(Windows) Fix wrong icon paramter in Windows example (#1764)

	(Windows) Fix win32 unicode handling (#1878)

	(Windows) Fix unnecessary rebuilds caused by rebuilding winmanifest
(#1933)

	(Cygwin) Fix finding the Python library for Cygwin 64-bit (#1307,
#1810, #1811)

	(OSX) Fix compilation issue (#1882)

	(Windows) No longer bundle pefile, use package from pypi for windows
(#1357)

	(Windows) Provide a more robust means of executing a Python script

	AIX fixes.

	Update waf to version 1.8.20 (#1868)

	Fix excludedimports, more predictable order how hooks are applied
#1651

	Internal impovements and code clean-up (#1754, #1760, #1794, #1858,
#1862, #1887, #1907, #1913)

	Clean-ups fixes and improvements for the test suite

Known Issues

	Apps built with Windows 10 and Python 3.5 may not run on Windows versions
earlier than 10 (#1566).

	The multipackage (MERGE) feature (#1527) is currently broken.

	(OSX) Support for OpenDocument events (#1309) is broken.

3.1.1 (2016-01-31)

Fixed the following issues:

	Fix problems with setuptools 19.4 (#1772, #1773, #1790, #1791)

	3.1 does not collect certain direct imports (#1780)

	Git reports wrong version even if on unchanged release (#1778)

	Don’t resolve symlinks in modulegraph.py (#1750, #1755)

	ShortFileName not returned in win32 util (#1799)

3.1 (2016-01-09)

	Support reproducible builds (#490, #1434, #1582, #1590).

	Strip leading parts of paths in compiled code objects (#1059, #1302,
#1724).

	With --log-level=DEBUG, a dependency graph-file is emitted in
the build-directory.

	Allow running pyinstaller as user root. By popular demand, see
e.g. #1564, #1459, #1081.

	New Hooks: botocore, boto3, distorm3, GObject, GI (G Introspection),
GStreamer, GEvent, kivy, lxml.isoschematron, pubsub.core,
PyQt5.QtMultimedia, scipy.linalg, shelve.

	Fixed or Updated Hooks: astroid, django, jsonschema logilab, PyQt4,
PyQt5, skimage, sklearn.

	Add option --hiddenimport as an alias for --hidden-import.

	(OSX): Fix issues with st_flags (#1650).

	(OSX) Remove warning message about 32bit compatibility (#1586).

	(Linux) The cache is now stored in $XDG_CACHE_HOME/pyinstaller
instead of $XDG_DATA_HOME - the cache is moved automatically (#1118).

	Documentation updates, e.g. about reproducible builds

	Put back full text of GPL license into COPYING.txt.

	Fix crashes when looking for ctypes DLLs (#1608, #1609, #1620).

	Fix: Imports in byte-code not found if code contains a function (#1581).

	Fix recursion into bytes-code when scanning for ctypes (#1620).

	Fix PyCrypto modules to work with crypto feature (--key option)
(#1663).

	Fix problems with excludedimports in some hook excluding the
named modules even if used elswhere (#1584, #1600).

	Fix freezing of pip 7.1.2 (#1699).

	FreeBSD and Solaris fixes.

	Search for ldconfig in $PATH first (#1659)

	Deny processing outdated package _xmlplus.

	Improvements to the test-suite, testing infrastructure and
continuous integration.

	For non-release builds, the exact git revision is not used.

	Internal code refactoring.

	Enhancements and clean-ups to the hooks API - only relevant for hook
authors. See the manual for details. E.g:

	Removed attrs in hooks - they were not used anymore anyway.

	Change add/del_import() to accept arbitrary number of module
names.

	New hook utility function copy_metadata().

Known Issues

	Apps built with Windows 10 and Python 3.5 may not run on Windows versions
earlier than 10 (#1566).

	The multipackage (MERGE) feature (#1527) is currently broken.

	(OSX) Support for OpenDocument events (#1309) is broken.

3.0 (2015-10-04)

	Python 3 support (3.3 / 3.4 / 3.5).

	Remove support for Python 2.6 and lower.

	Full unicode support in the bootloader (#824, #1224, #1323, #1340, #1396)

	(Windows) Python 2.7 apps can now run from paths with non-ASCII characters

	(Windows) Python 2.7 onefile apps can now run for users whose usernames
contain non-ASCII characters

	Fix sys.getfilesystemencoding() to return correct values (#446, #885).

	(OSX) Executables built with PyInstaller under OS X can now be digitally
signed.

	(OSX) 32bit precompiled bootloader no longer distributed, only 64bit.

	(Windows) for 32bit bootloader enable flag LARGEADDRESSAWARE that allows
to use 4GB of RAM.

	New hooks: amazon-product-api, appy, certifi, countrycode, cryptography, gi,
httplib2, jsonschema, keyring, lensfunpy, mpl_toolkits.basemap, ncclient,
netCDF4, OpenCV, osgeo, patsy, PsychoPy, pycountry, pycparser, PyExcelerate,
PyGobject, pymssql, PyNaCl, PySiDe.QtCore, PySide.QtGui, rawpy, requests,
scapy, scipy, six, SpeechRecognition, u1db, weasyprint, Xlib.

	Hook fixes: babel, ctypes, django, IPython, pint, PyEnchant, Pygments, PyQt5,
PySide, pyusb, sphinx, sqlalchemy, tkinter, wxPython.

	Add support for automatically including data files from eggs.

	Add support for directory eggs support.

	Add support for all kind of namespace packages e.g.
zope.interface, PEP302 (#502, #615, #665, #1346).

	Add support for pkgutil.extend_path().

	New option --key to obfuscate the Python bytecode.

	New option --exclude-module to ignore a specific module or package.

	(Windows) New option --uac-admin to request admin permissions
before starting the app.

	(Windows) New option --uac-uiaccess allows an elevated
application to work with Remote Desktop.

	(Windows) New options for Side-by-side Assembly searching:

	--win-private-assemblies bundled Shared Assemblies into the
application will be changed into Private Assemblies

	--win-no-prefer-redirects while searching for Assemblies
PyInstaller will prefer not to follow policies that redirect to
newer versions.

	(OSX) New option --osx-bundle-identifier to set .app bundle identifier.

	(Windows) Remove old COM server support.

	Allow override PyInstaller default config directory by environment
variable PYINSTALLER_CONFIG_DIR.

	Add FreeBSD support.

	AIX fixes.

	Solaris fixes.

	Use library modulegraph for module dependency analysis.

	Bootloader debug messages LOADER: ... printed to stderr.

	PyInstaller no longer extends sys.path and bundled 3rd-party
libraries do not interfere with their other versions.

	Enhancemants to Analysis():

	New arguments excludedimports to exclude Python modules in
import hooks.

	New argument binaries to bundle dynamic libraries in .spec
file and in import hooks.

	New argument datas to bundle additional data files in .spec
file and in import hooks.

	A lot of internal code refactoring.

	Test suite migrated to pytest framework.

	Improved testing infrastructure with continuous integration (Travis - Linux,
Appveyor - Windows)

	Wiki and bug tracker migrated to github.

Known Issues

	Apps built with Windows 10 and Python 3.5 may not run on Windows versions
earlier than 10 (#1566).

	The multipackage (MERGE) feature (#1527) is currenty broken.

	(OSX) Support for OpenDocument events (#1309) is broken.

2.1 (2013-09-27)

	Rewritten manual explaining even very basic topics.

	PyInstaller integration with setuptools (direct installation with easy_install or pip
from PYPI - https://pypi.python.org/pypi). After installation there will be available
command ‘pyinstaller’ for PyInstaller usage.

	(Windows) Alter –version-file resource format to allow unicode support.

	(Windows) Fix running frozen app running from paths containing foreign characters.

	(Windows) Fix running PyInstaller from paths containing foreign characters.

	(OSX) Implement –icon option for the .app bundles.

	(OSX) Add argv emulation for OpenDocument AppleEvent (see manual for details).

	Rename –buildpath to –workpath.

	Created app is put to –distpath.

	All temporary work files are now put to –workpath.

	Add option –clean to remove PyInstaller cache and temporary files.

	Add experimental support for Linux arm.

	Minimum suported Python version is 2.4.

	Add import hooks for docutils, jinja2, sphinx, pytz, idlelib, sqlite3.

	Add import hooks for IPython, Scipy, pygst, Python for .NET.

	Add import hooks for PyQt5, Bacon, raven.

	Fix django import hook to work with Django 1.4.

	Add rthook for twisted, pygst.

	Add rthook for pkg_resource. It fixes the following functions for frozen app
pkg_resources.resource_stream(), pkg_resources.resource_string().

	Better support for pkg_resources (.egg manipulation) in frozen executables.

	Add option –runtime-hook to allow running custom code from frozen app
before loading other Python from the frozen app. This is usefull for some
specialized preprocessing just for the frozen executable. E.g. this
option can be used to set SIP api v2 for PyQt4.

	Fix runtime option –Wignore.

	Rename utils to lowercase: archieve_viewer.py, bindepend.py, build.py,
grab_version.py, make_comserver.py, makespec.py, set_version.py.

	(OSX) Fix missing qt_menu.nib in dist directory when using PySide.

	(OSX) Fix bootloader compatibility with Mac OS X 10.5

	(OSX) Search libpython in DYLD_LIBRARY_PATH if libpython cannot be found.

	(OSX) Fix Python library search in virtualenv.

	Environment variable PYTHONHOME is now unset and path to python home
is set in bootloader by function Py_SetPythonHome().This overrides
sys.prefix and sys.exec_prefix for frozen application.

	Python library filename (e.g. python27.dll, libpython2.7.so.1.0, etc)
is embedded to the created exe file. Bootloader is not trying several
filenames anymore.

	Frozen executables now use PEP-302 import hooks to import frozen modules
and C extensions. (sys.meta_path)

	Drop old import machinery from iu.py.

	Drop own code to import modules from zip archives (.egg files) in frozen
executales. Native Python implementation is kept unchanged.

	Drop old crypto code. This feature was never completed.

	Drop bootloader dependency on Python headers for compilation.

	(Windows) Recompile bootloaders with VS2008 to ensure win2k compatibility.

	(Windows) Use 8.3 filenames for homepath/temppath.

	Add prefix LOADER to the debug text from bootloader.

	Allow running PyInstaller programatically.

	Move/Rename some files, code refactoring.

	Add more tests.

	Tilde is in PyInstaller recognized as $HOME variable.

2.0 (2012-08-08)

	Minimum suported Python version is 2.3.

	(OSX) Add support for Mac OS X 64-bit

	(OSX) Add support Mac OS X 10.7 (Lion) and 10.8 (Mountain Lion).

	(OSX) With argument –windowed PyInstaller creates application bundle (.app)

	automatically.

	Add experimental support for AIX (thanks to Martin Gamwell Dawids).

	Add experimental support for Solaris (thanks to Hywel Richards).

	Add Multipackage function to create a collection of packages to avoid

	library duplication. See documentation for more details.

	New symplified command line interface. Configure.py/Makespec.py/Build.py

	replaced by pyinstaller.py. See documentation for more details.

	Removed cross-building/bundling feature which was never really finished.

	Added option –log-level to all scripts to adjust level of output
(thanks to Hartmut Goebel).

	rthooks.dat moved to support/rthooks.dat

	Packaged executable now returns the same return-code as the

	unpackaged script (thanks to Brandyn White).

	Add import hook for PyUSB (thanks to Chien-An “Zero” Cho).

	Add import hook for wx.lib.pubsub (thanks to Daniel Hyams).

	Add import hook for pyttsx.

	Improve import hook for Tkinter.

	Improve import hook for PyQt4.

	Improve import hook for win32com.

	Improve support for running PyInstaller in virtualenv.

	Add cli options –additional-hooks-dir and –hidden-import.

	Remove cli options -X, -K, -C, –upx, –tk, –configfile, –skip-configure.

	UPX is used by default if available in the PATH variable.

	Remove compatibility code for old platforms (dos, os2, MacOS 9).

	Use Python logging system for message output (thanks to Hartmut
Goebel).

	Environment variable MEIPASS2 is accessible as sys._MEIPASS.

	Bootloader now overrides PYTHONHOME and PYTHONPATH.
PYTHONHOME and PYTHONPATH is set to the value of MEIPASS2 variable.

	Bootloader uses absolute paths.

	(OSX) Drop dependency on otool from Xcode on Mac OSX.

	(OSX) Fix missing qt_menu.nib in dist directory when using PyQt4.

	(OSX) Bootloader does not use DYLD_LIBRARY_PATH on Mac OS X anymore.
@loader_path is used instead.

	(OSX) Add support to detect .dylib dependencies on Mac OS X containing
@executable_path, @loader_path and @rpath.

	(OSX) Use macholib to detect dependencies on dynamic libraries.

	Improve test suite.

	Improve source code structure.

	Replace os.system() calls by suprocess module.

	Bundle fake ‘site’ module with frozen applications to prevent loading
any user’s Python modules from host OS.

	Include runtime hooks (rthooks) in code analysis.

	Source code hosting moved to github:
https://github.com/pyinstaller/pyinstaller

	Hosting for running tests daily:
https://jenkins.shiningpanda-ci.com/pyinstaller/

1.5.1 (2011-08-01)

	New default PyInstaller icon for generated executables on Windows.

	Add support for Python built with –enable-shared on Mac OSX.

	Add requirements section to documentation.

	Documentation is now generated by rst2html and rst2pdf.

	Fix wrong path separators for bootloader-file on Windows

	Add workaround for incorrect platform.system() on some Python Windows
installation where this function returns ‘Microsoft’ instead ‘Windows’.

	Fix –windowed option for Mac OSX where a console executable was
created every time even with this option.

	Mention dependency on otool, ldd and objdump in documentation.

	Fix typo preventing detection of DLL libraries loaded by ctypes module.

1.5 (2011-05-05)

	Full support for Python 2.7.

	Full support for Python 2.6 on Windows. No manual redistribution
of DLLs, CRT, manifest, etc. is required: PyInstaller is able to
bundle all required dependencies (thanks to Florian Hoech).

	Added support for Windows 64-bit (thanks to Martin Zibricky).

	Added binary bootloaders for Linux (32-bit and 64-bit, using LSB),
and Darwin (32-bit). This means that PyInstaller users on this
platform don’t need to compile the bootloader themselves anymore
(thanks to Martin Zibricky and Lorenzo Mancini).

	Rewritten the build system for the bootloader using waf (thanks
to Martin Zibricky)

	Correctly detect Python unified binary under Mac OSX, and bail out
if the unsupported 64-bit version is used (thanks to Nathan Weston).

	Fix TkInter support under Mac OSX (thanks to Lorenzo Mancini).

	Improve bundle creation under Mac OSX and correctly support also
one-dir builds within bundles (thanks to Lorenzo Mancini).

	Fix spurious KeyError when using dbhash

	Fix import of nested packages made from Pyrex-generated files.

	PyInstaller is now able to follow dependencies of binary extensions
(.pyd/.so) compressed within .egg-files.

	Add import hook for PyTables.

	Add missing import hook for QtWebKit.

	Add import hook for pywinauto.

	Add import hook for reportlab (thanks Nevar).

	Improve matplotlib import hook (for Mac OSX).

	Improve Django import hooks.

	Improve compatibility across multiple Linux distributions by
being more careful on which libraries are included/excluded in
the package.

	Improve compatibility with older Python versions (Python 2.2+).

	Fix double-bouncing-icon bug on Mac OSX. Now windowed applications
correctly start on Mac OSX showing a single bouncing icon.

	Fix weird “missing symbol” errors under Mac OSX (thanks to Isaac
Wagner).

1.4 (2010-03-22)

	Fully support up to Python 2.6 on Linux/Mac and Python 2.5
on Windows.

	Preliminar Mac OSX support: both one-file and one-dir is supported;
for non-console applications, a bundle can be created. Thanks
to many people that worked on this across several months (Daniele
Zannotti, Matteo Bertini, Lorenzo Mancini).

	Improved Linux support: generated executables are fatter but now
should now run on many different Linux distributions (thanks to David
Mugnai).

	Add support for specifying data files in import hooks. PyInstaller
can now automatically bundle all data files or plugins required
for a certain 3rd-party package.

	Add intelligent support for ctypes: PyInstaller is now able to
track all places in the source code where ctypes is used and
automatically bundle dynamic libraries accessed through ctypes.
(Thanks to Lorenzo Mancini for submitting this). This is very
useful when using ctypes with custom-made dynamic libraries.

	Executables built with PyInstaller under Windows can now be digitally
signed.

	Add support for absolute imports in Python 2.5+ (thanks to Arve
Knudsen).

	Add support for relative imports in Python 2.5+.

	Add support for cross-compilation: PyInstaller is now able to
build Windows executables when running under Linux. See documentation
for more details.

	Add support for .egg files: PyInstaller is now able to look for
dependencies within .egg files, bundle them and make them available
at runtime with all the standard features (entry-points, etc.).

	Add partial support for .egg directories: PyInstaller will treat them
as normal packages and thus it will not bundle metadata.

	Under Linux/Mac, it is now possible to build an executable even when
a system packages does not have .pyc or .pyo files available and the
system-directory can be written only by root. PyInstaller will in
fact generate the required .pyc/.pyo files on-the-fly within a
build-temporary directory.

	Add automatic import hooks for many third-party packages, including:

	PyQt4 (thanks to Pascal Veret), with complete plugin support.

	pyodbc (thanks to Don Dwiggins)

	cElementTree (both native version and Python 2.5 version)

	lxml

	SQLAlchemy (thanks to Greg Copeland)

	email in Python 2.5 (though it does not support the old-style
Python 2.4 syntax with Python 2.5)

	gadfly

	PyQWt5

	mako

	Improved PyGTK (thanks to Marco Bonifazi and foxx).

	paste (thanks to Jamie Kirkpatrick)

	matplotlib

	Add fix for the very annoying “MSVCRT71 could not be extracted” bug,
which was caused by the DLL being packaged twice (thanks to Idris
Aykun).

	Removed C++-style comments from the bootloader for compatibility
with the AIX compiler.

	Fix support for .py files with DOS line endings under Linux (fixes
PyOpenGL).

	Fix support for PIL when imported without top-level package (“import
Image”).

	Fix PyXML import hook under NT (thanks to Lorenzo Mancini)

	Fixed problem with PyInstaller picking up the wrong copy of optparse.

	Improve correctness of the binary cache of UPX’d/strip’d files. This
fixes problems when switching between multiple versions of the
same third-party library (like e.g. wxPython allows to do).

	Fix a stupid bug with modules importing optparse (under Linux) (thanks
to Louai Al-Khanji).

	Under Python 2.4+, if an exception is raised while importing a module
inside a package, the module is now removed from the parent’s
namespace (to match the behaviour of Python itself).

	Fix random race-condition at startup of one-file packages, that was
causing this exception to be generated: “PYZ entry ‘encodings’ (0j)
is not a valid code object”.

	Fix problem when having unicode strings among path elements.

	Fix random exception (“bad file descriptor”) with “prints” in non-console
mode (actually a pythonw “bug” that’s fixed in Python 3.0).

	Sometimes the temporary directory did not get removed upon program
exit, when running on Linux.

	Fixed random segfaults at startup on 64-bit platforms (like x86-64).

1.3 (2006-12-20)

	Fix bug with user-provided icons disappearing from built executables
when these were compressed with UPX.

	Fix problems with packaging of applications using PIL (that was broken
because of a bug in Python’s import machinery, in recent Python
versions). Also add a workaround including Tcl/Tk with PIL unless
ImageTk is imported.

	(Windows) When used under Windows XP, packaged programs now have
the correct look & feel and follow user’s themes (thanks to the manifest
file being linked within the generated executable). This is especially
useful for applications using wxPython.

	Fix a buffer overrun in the bootloader (which could lead to a crash)
when the built executable is run from within a deep directory (more than
70-80 characters in the pathname).

	Bootstrap modules are now compressed in the executable (so that they
are not visible in plaintext by just looking at it with a hex editor).

	Fixed a regression introduced in 1.1: under Linux, the bootloader does
not depend on libpythonX.X.so anymore.

1.2 (2006-06-29)

	Fix a crash when invoking UPX with certain kinds of builds.

	Fix icon support by re-adding a resource section in the bootloader
executable.

1.1 (2006-02-13)

	(Windows) Make single-file packages not depend on MSVCRT71.DLL anymore,
even under Python 2.4. You can eventually ship your programs really as
single-file executables, even when using the newest Python version!

	Fix problem with incorrect python path detection. Now using helpers from
distutils.

	Fix problem with rare encodings introduced in newer Python versions: now all
the encodings are automatically found and included, so this problem should
be gone forever.

	Fix building of COM servers (was broken in 1.0 because of the new build
system).

	Mimic Python 2.4 behaviour with broken imports: sys.modules is cleaned up
afterwise. This allows to package SQLObject applications under Windows
with Python 2.4 and above.

	Add import hook for the following packages:

	GTK

	PyOpenGL (tested 2.0.1.09)

	dsnpython (tested 1.3.4)

	KInterasDB (courtesy of Eugene Prigorodov)

	Fix packaging of code using “time.strptime” under Python 2.3+.

	(Linux) Ignore linux-gate.so while calculating dependencies (fix provided
by Vikram Aggarwal).

	(Windows) With Python 2.4, setup UPX properly so to be able to compress
binaries generated with Visual Studio .NET 2003 (such as most of the
extensions). UPX 1.92+ is needed for this.

1.0 (2005-09-19) with respect to McMillan’s Python Installer 5b5

	Add support for Python 2.3 (fix packaging of codecs).

	Add support for Python 2.4 (under Windows, needed to recompiled the
bootloader with a different compiler version).

	Fix support for Python 1.5.2, should be fully functional now (required
to rewrite some parts of the string module for the bootloader).

	Fix a rare bug in extracting the dependencies of a DLL (bug in PE header
parser).

	Fix packaging of PyQt programs (needed an import hook for a hidden import).

	Fix imports calculation for modules using the “from __init__ import” syntax.

	Fix a packaging bug when a module was being import both through binary
dependency and direct import.

	Restyle documentation (now using docutils and reStructuredText).

	New Windows build system for automatic compilations of bootloader in all
the required flavours (using Scons)

Credits

Thanks goes to all the kind PyInstaller contributors who have contributed
new code, bug reports, fixes, comments and ideas. A brief list follows,
please let us know if your name is omitted by accident:

Contributions to PyInstaller 3.2.1

Special Thanks to Thomas Waldmann and David Vierra for support when working on
the new build system.

	Hartmut Goebel - Core developer and release manager.

	Martin Zibricky - Core developer.

	David Cortesi - Core developer and documentation manager.

	Bryan A. Jones - Core developer.

	David Vierra - Core developer and encoding specialist.

	Cecil Curry - brave bug-fixing and code-refactoring

	Amane Suzuki

	Andy Cycle

	Axel Huebl

	Bruno Oliveira

	Dan Auerbach

	Daniel Hyams

	Denis Akhiyarov

	Dror Asaf

	Dustin Spicuzza

	Emanuele Bertoldi

	Glenn Ramsey

	Hugh Dowling

	Jesse Suen

	Jonathan Dan

	Jonathan Springer

	Jonathan Stewmon

	Julie Marchant

	Kenneth Zhao

	Linus Groh

	Mansour Moufid

	Martin Zibricky

	Matteo Bertini

	Nicolas Dickreuter

	Peter Würtz

	Ronald Oussoren

	Santiago Reig

	Sean Fisk

	Sergei Litvinchuk

	Stephen Rauch

	Thomas Waldmann

	Till Bald

	xoviat

Contributions to PyInstaller 3.2

	Hartmut Goebel - Core developer and release manager.

	Martin Zibricky - Core developer.

	David Cortesi - Core developer and documentation manager.

	Bryan A. Jones - Core developer.

	David Vierra - Core developer and encoding specialist.

	Cecil Curry - brave bug-fixing and code-refactoring

	And Cycle - unicode fixes.

	Chris Hager - QtQuick hook.

	David Schoorisse - wrong icon paramter in Windows example.

	Florian Bruhin - typo hunting.

	Garth Bushell - Support for objcopy.

	Insoleet - lib2to3 hook

	Jonathan Springer - hook fixes, brave works on PyQt.

	Matteo Bertini - code refactoring.

	Jonathan Stewmon - bug hunting.

	Kenneth Zhao - waf update.

	Leonid Rozenberg - typo hunting.

	Merlijn Wajer - bug fixing.

	Nicholas Chammas - cleanups.

	nih - hook fixes.

	Olli-Pekka Heinisuo - CherryPy hook.

	Rui Carmo - cygwin fixes.

	Stephen Rauch - hooks and fixes for unnecessary rebuilds.

	Tim Stumbaugh - bug hunting.

Contributions to PyInstaller 3.1.1

	Hartmut Goebel - Core developer and release manager.

	David Vierra - Core developer and encoding specialist.

	Torsten Landschoff - Fix problems with setuptools

	Peter Inglesby - resolve symlinks in modulegraph.py

	syradium - bug hunting

	dessant - bug hunting

	Joker Qyou - bug hunting

Contributions to PyInstaller 3.1

	Hartmut Goebel - Core developer and release manager.

	Martin Zibricky - Core developer.

	David Cortesi - Core developer and documentation manager.

	Bryan A. Jones - Core developer.

	David Vierra - Core developer and encoding specialist.

	Andrei Kopats - Windows fixes.

	Andrey Malkov - Django runtime hooks.

	Ben Hagen - kivy hook, GStreamer realtime hook.

	Cecil Curry - Module Version Comparisons and and reworking hooks.

	Dustin Spicuzza - Hooks for GLib, GIntrospection, Gstreamer, etc.

	giumas - lxml.isoschematron hook.

	Jonathan Stewmon - Hooks for botocore, boto, boto3 and gevent.monkey.

	Kenneth Zhao - Solaris fixes.

	Matthew Einhorn - kivy hook.

	mementum - pubsub.core hook.

	Nicholas Chammas - Documentation updates.

	Nico Galoppo - Hooks for skimage and sklearn.

	Panagiotis H.M. Issaris - weasyprint hook.

	Penaz - shelve hook.

	Roman Yurchak - scipy.linalg hook.

	Starwarsfan2099 - Distorm3 hook.

	Thomas Waldmann - Fixes for Bootloader and FreeBSD.

	Tim Stumbaugh - Bug fixes.

	zpin - Bug fixes.

Contributions to PyInstaller 3.0

	Martin Zibricky - Core developer and release manager.

	Hartmut Goebel - Core developer.

	David Cortesi - Initial work on Python 3 support, Python 3 fixes, documentation updates, various hook fixes.

	Cecil Curry - ‘six’ hook for Python 3, various modulegraph improvements, wxPython hook fixes,

	David Vierra - unicode support in bootloader, Windows SxS Assembly Manifest fixes and many other Windows improvements.

	Michael Mulley - keyring, PyNaCl import hook.

	Rainer Dreyer - OS X fixes, hook fixes.

	Bryan A. Jones - test suite fixes, various hook fixes.

	Philippe Pepiot - Linux fixes.

	Emanuele Bertoldi - pycountry import hook, Django import hook fixes.

	Glenn Ramsey - PyQt5 import hook - support for QtWebEngine on OSX, various hook fixes, Windows fixes.

	Karol Woźniak - import hook fixes.

	Jonathan Springer - PyGObject hooks. ctypes, PyEnchant hook fixes, OS X fixes.

	Giuseppe Masetti - osgeo, mpl_toolkits.basemap and netCDF4 import hooks.

	Yuu Yamashita - OS X fixes.

	Thomas Waldmann - FreeBSD fixes.

	Boris Savelev - FreeBSD and Solaris fixes.

	Guillermo Gutiérrez - Python 3 fixes.

	Jasper Geurtz - gui fixes, hook fixes.

	Holger Pandel - Windows fixes.

	Anthony Zhang - SpeechRecognition import hook.

	Andrei Fokau - Python 3.5 fixes.

	Kenneth Zhao - AIX fixes.

	Maik Riechert - lensfunpy, rawpy import hooks.

	Tim Stumbaugh - hook fixes.

	Andrew Leech - Windows fixes.

	Patrick Robertson - tkinter import hook fixes.

	Yaron de Leeuw - import hook fixes.

	Bryan Cort - PsychoPy import hook.

	Phoebus Veiz - bootloader fixes.

	Sean Johnston - version fix.

	Kevin Zhang - PyExcelerate import hook.

	Paulo Matias - unicode fixes.

	Lorenzo Villani - crypto feature, various fixes.

	Janusz Skonieczny - hook fixes.

	Martin Gamwell Dawids - Solaris fixes.

	Volodymyr Vitvitskyi - typo fixes.

	Thomas Kho - django import hook fixes.

	Konstantinos Koukopoulos - FreeBSD support.

	Jonathan Beezley - PyQt5 import hook fixes.

	Andraz Vrhovec - various fixes.

	Noah Treuhaft - OpenCV import hook.

	Michael Hipp - reportlab import hook.

	Michael Sverdlik - certifi, httplib2, requests, jsonschema import hooks.

	Santiago Reig - appy import hook.

Contributions to PyInstaller 2.1 and older

	Glenn Ramsey - PyQt5 import hook.

	David Cortesi - PyInstaller manual rewrite.

	Vaclav Smilauer - IPython import hook.

	Shane Hansen - Linux arm support.

	Bryan A. Jones - docutils, jinja2, sphinx, pytz, idlelib import hooks.

	Patrick Stewart <patstew at gmail dot com> - scipy import hook.

	Georg Schoelly <mail at georg-schoelly dot com> - storm ORM import hook.

	Vinay Sajip - zmq import hook.

	Martin Gamwell Dawids - AIX support.

	Hywel Richards - Solaris support.

	Brandyn White - packaged executable return code fix.

	Chien-An “Zero” Cho - PyUSB import hook.

	Daniel Hyams - h2py, wx.lib.pubsub import hooks.

	Hartmut Goebel - Python logging system for message output. Option –log-level.

	Florian Hoech - full Python 2.6 support on Windows including automatic
handling of DLLs, CRT, manifest, etc. Read and write resources from/to Win32
PE files.

	Martin Zibricky - rewrite the build system for the bootloader using waf.
LSB compliant precompiled bootloaders for Linux. Windows 64-bit support.

	Peter Burgers - matplotlib import hook.

	Nathan Weston - Python architecture detection on OS X.

	Isaac Wagner - various OS X fixes.

	Matteo Bertini - OS X support.

	Daniele Zannotti - OS X support.

	David Mugnai - Linux support improvements.

	Arve Knudsen - absolute imports in Python 2.5+

	Pascal Veret - PyQt4 import hook with Qt4 plugins.

	Don Dwiggins - pyodbc import hook.

	Allan Green - refactoring and improved in-process COM servers.

	Daniele Varrazzo - various bootloader and OS X fixes.

	Greg Copeland - sqlalchemy import hook.

	Seth Remington - PyGTK hook improvements.

	Marco Bonifazi - PyGTK hook improvements. PyOpenGL import hook.

	Jamie Kirkpatrick - paste import hook.

	Lorenzo Mancini - PyXML import hook fixes under Windows. OS X support. App
bundle creation on OS X. Tkinter on OS X. Precompiled bootloaders for OS X.

	Lorenzo Berni - django import hook.

	Louai Al-Khanji - fixes with optparse module.

	Thomas Heller - set custom icon of Windows exe files.

	Eugene Prigorodov <eprigorodov at naumen dot ru> - KInterasDB import hook.

	David C. Morrill - vtkpython import hook.

	Alan James Salmoni - Tkinter interface to PyInstaller.

Man Pages

	pyinstaller

	pyi-makespec

pyinstaller

SYNOPSIS

pyinstaller <options> SCRIPT

DESCRIPTION

Automatically calls pyi-configure, pyi-makespec and pyi-build in one
run. In most cases, running pyinstaller will be all you have to
do.

Please see the PyInstaller Manual for more information.

OPTIONS

	-h, --help

	show this help message and exit

	-v, --version

	Show program version info and exit.

	--distpath DIR

	Where to put the bundled app (default: ./dist)

	--workpath WORKPATH

	Where to put all the temporary work files, .log, .pyz
and etc. (default: ./build)

	-y, --noconfirm

	Replace output directory (default:
SPECPATH/dist/SPECNAME) without asking for
confirmation

	--upx-dir UPX_DIR

	Path to UPX utility (default: search the execution
path)

	-a, --ascii

	Do not include unicode encoding support (default:
included if available)

	--clean

	Clean PyInstaller cache and remove temporary files
before building.

	--log-level LEVEL

	Amount of detail in build-time console messages. LEVEL
may be one of DEBUG, INFO, WARN, ERROR, CRITICAL
(default: INFO).

What to generate

	-D, --onedir

	Create a one-folder bundle containing an executable
(default)

	-F, --onefile

	Create a one-file bundled executable.

	--specpath DIR

	Folder to store the generated spec file (default:
current directory)

	-n NAME, --name NAME

	Name to assign to the bundled app and spec file
(default: first script’s basename)

What to bundle, where to search

	--add-data <SRC;DEST or SRC:DEST>

	Additional non-binary files or folders to be added to
the executable. The path separator is platform
specific, os.pathsep (which is ; on Windows
and : on most unix systems) is used. This option
can be used multiple times.

	--add-binary <SRC;DEST or SRC:DEST>

	Additional binary files to be added to the executable.
See the --add-data option for more details. This
option can be used multiple times.

	-p DIR, --paths DIR

	A path to search for imports (like using PYTHONPATH).
Multiple paths are allowed, separated by ‘:’, or use
this option multiple times

	--hidden-import MODULENAME, --hiddenimport MODULENAME

	Name an import not visible in the code of the
script(s). This option can be used multiple times.

	--additional-hooks-dir HOOKSPATH

	An additional path to search for hooks. This option
can be used multiple times.

	--runtime-hook RUNTIME_HOOKS

	Path to a custom runtime hook file. A runtime hook is
code that is bundled with the executable and is
executed before any other code or module to set up
special features of the runtime environment. This
option can be used multiple times.

	--exclude-module EXCLUDES

	Optional module or package (the Python name, not the
path name) that will be ignored (as though it was not
found). This option can be used multiple times.

	--key KEY

	The key used to encrypt Python bytecode.

How to generate

	-d, --debug

	Tell the bootloader to issue progress messages while
initializing and starting the bundled app. Used to
diagnose problems with missing imports.

	-s, --strip

	Apply a symbol-table strip to the executable and
shared libs (not recommended for Windows)

	--noupx

	Do not use UPX even if it is available (works
differently between Windows and *nix)

Windows and Mac OS X specific options

	-c, --console, --nowindowed

	Open a console window for standard i/o (default)

	-w, --windowed, --noconsole

	Windows and Mac OS X: do not provide a console window
for standard i/o. On Mac OS X this also triggers
building an OS X .app bundle. This option is ignored
in *NIX systems.

	-i <FILE.ico or FILE.exe,ID or FILE.icns>, --icon <FILE.ico or FILE.exe,ID or FILE.icns>

	FILE.ico: apply that icon to a Windows executable.
FILE.exe,ID, extract the icon with ID from an exe.
FILE.icns: apply the icon to the .app bundle on Mac OS
X

Windows specific options

	--version-file FILE

	add a version resource from FILE to the exe

	-m <FILE or XML>, --manifest <FILE or XML>

	add manifest FILE or XML to the exe

	-r RESOURCE, --resource RESOURCE

	Add or update a resource to a Windows executable. The
RESOURCE is one to four items,
FILE[,TYPE[,NAME[,LANGUAGE]]]. FILE can be a data file
or an exe/dll. For data files, at least TYPE and NAME
must be specified. LANGUAGE defaults to 0 or may be
specified as wildcard * to update all resources of the
given TYPE and NAME. For exe/dll files, all resources
from FILE will be added/updated to the final
executable if TYPE, NAME and LANGUAGE are omitted or
specified as wildcard *.This option can be used
multiple times.

	--uac-admin

	Using this option creates a Manifest which will
request elevation upon application restart.

	--uac-uiaccess

	Using this option allows an elevated application to
work with Remote Desktop.

Windows Side-by-side Assembly searching options (advanced)

	--win-private-assemblies

	Any Shared Assemblies bundled into the application
will be changed into Private Assemblies. This means
the exact versions of these assemblies will always be
used, and any newer versions installed on user
machines at the system level will be ignored.

	--win-no-prefer-redirects

	While searching for Shared or Private Assemblies to
bundle into the application, PyInstaller will prefer
not to follow policies that redirect to newer
versions, and will try to bundle the exact versions of
the assembly.

Mac OS X specific options

	--osx-bundle-identifier BUNDLE_IDENTIFIER

	Mac OS X .app bundle identifier is used as the default
unique program name for code signing purposes. The
usual form is a hierarchical name in reverse DNS
notation. For example:
com.mycompany.department.appname (default: first
script’s basename)

ENVIRONMENT VARIABLES

	PYINSTALLER_CONFIG_DIR

	This changes the directory where PyInstaller caches some
files. The default location for this is operating system
dependent, but is typically a subdirectory of the home
directory.

SEE ALSO

pyi-configure(1), pyi-makespec(1), pyi-build(1), The
PyInstaller Manual, pyinstaller(1)

Project Homepage http://www.pyinstaller.org

pyi-makespec

SYNOPSIS

pyi-makespec <options> SCRIPT [SCRIPT …]

DESCRIPTION

The spec file is the description of what you want PyInstaller to do
with your program. pyi-makespec is a simple wizard to create spec
files that cover basic usages:

pyi-makespec [--onefile] yourprogram.py

By default, pyi-makespec generates a spec file that tells
PyInstaller to create a distribution directory contains the main
executable and the dynamic libraries. The option --onefile
specifies that you want PyInstaller to build a single file with
everything inside.

In most cases the specfile generated by pyi-makespec is all you
need. If not, see When things go wrong in the manual and be sure to
read the introduction to Spec Files.

OPTIONS

	-h, --help

	show this help message and exit

	--log-level LEVEL

	Amount of detail in build-time console messages. LEVEL
may be one of DEBUG, INFO, WARN, ERROR, CRITICAL
(default: INFO).

What to generate

	-D, --onedir

	Create a one-folder bundle containing an executable
(default)

	-F, --onefile

	Create a one-file bundled executable.

	--specpath DIR

	Folder to store the generated spec file (default:
current directory)

	-n NAME, --name NAME

	Name to assign to the bundled app and spec file
(default: first script’s basename)

What to bundle, where to search

	--add-data <SRC;DEST or SRC:DEST>

	Additional non-binary files or folders to be added to
the executable. The path separator is platform
specific, os.pathsep (which is ; on Windows
and : on most unix systems) is used. This option
can be used multiple times.

	--add-binary <SRC;DEST or SRC:DEST>

	Additional binary files to be added to the executable.
See the --add-data option for more details. This
option can be used multiple times.

	-p DIR, --paths DIR

	A path to search for imports (like using PYTHONPATH).
Multiple paths are allowed, separated by ‘:’, or use
this option multiple times

	--hidden-import MODULENAME, --hiddenimport MODULENAME

	Name an import not visible in the code of the
script(s). This option can be used multiple times.

	--additional-hooks-dir HOOKSPATH

	An additional path to search for hooks. This option
can be used multiple times.

	--runtime-hook RUNTIME_HOOKS

	Path to a custom runtime hook file. A runtime hook is
code that is bundled with the executable and is
executed before any other code or module to set up
special features of the runtime environment. This
option can be used multiple times.

	--exclude-module EXCLUDES

	Optional module or package (the Python name, not the
path name) that will be ignored (as though it was not
found). This option can be used multiple times.

	--key KEY

	The key used to encrypt Python bytecode.

How to generate

	-d, --debug

	Tell the bootloader to issue progress messages while
initializing and starting the bundled app. Used to
diagnose problems with missing imports.

	-s, --strip

	Apply a symbol-table strip to the executable and
shared libs (not recommended for Windows)

	--noupx

	Do not use UPX even if it is available (works
differently between Windows and *nix)

Windows and Mac OS X specific options

	-c, --console, --nowindowed

	Open a console window for standard i/o (default)

	-w, --windowed, --noconsole

	Windows and Mac OS X: do not provide a console window
for standard i/o. On Mac OS X this also triggers
building an OS X .app bundle. This option is ignored
in *NIX systems.

	-i <FILE.ico or FILE.exe,ID or FILE.icns>, --icon <FILE.ico or FILE.exe,ID or FILE.icns>

	FILE.ico: apply that icon to a Windows executable.
FILE.exe,ID, extract the icon with ID from an exe.
FILE.icns: apply the icon to the .app bundle on Mac OS
X

Windows specific options

	--version-file FILE

	add a version resource from FILE to the exe

	-m <FILE or XML>, --manifest <FILE or XML>

	add manifest FILE or XML to the exe

	-r RESOURCE, --resource RESOURCE

	Add or update a resource to a Windows executable. The
RESOURCE is one to four items,
FILE[,TYPE[,NAME[,LANGUAGE]]]. FILE can be a data file
or an exe/dll. For data files, at least TYPE and NAME
must be specified. LANGUAGE defaults to 0 or may be
specified as wildcard * to update all resources of the
given TYPE and NAME. For exe/dll files, all resources
from FILE will be added/updated to the final
executable if TYPE, NAME and LANGUAGE are omitted or
specified as wildcard *.This option can be used
multiple times.

	--uac-admin

	Using this option creates a Manifest which will
request elevation upon application restart.

	--uac-uiaccess

	Using this option allows an elevated application to
work with Remote Desktop.

Windows Side-by-side Assembly searching options (advanced)

	--win-private-assemblies

	Any Shared Assemblies bundled into the application
will be changed into Private Assemblies. This means
the exact versions of these assemblies will always be
used, and any newer versions installed on user
machines at the system level will be ignored.

	--win-no-prefer-redirects

	While searching for Shared or Private Assemblies to
bundle into the application, PyInstaller will prefer
not to follow policies that redirect to newer
versions, and will try to bundle the exact versions of
the assembly.

Mac OS X specific options

	--osx-bundle-identifier BUNDLE_IDENTIFIER

	Mac OS X .app bundle identifier is used as the default
unique program name for code signing purposes. The
usual form is a hierarchical name in reverse DNS
notation. For example:
com.mycompany.department.appname (default: first
script’s basename)

ENVIRONMENT VARIABLES

	PYINSTALLER_CONFIG_DIR

	This changes the directory where PyInstaller caches some
files. The default location for this is operating system
dependent, but is typically a subdirectory of the home
directory.

SEE ALSO

pyi-build(1), The PyInstaller Manual, pyinstaller(1)

Project Homepage http://www.pyinstaller.org

Index

 P

P

 	
 	
 Python Enhancement Proposals

 	PEP 302, [1]

 _static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/pyinstaller-draft1a-100_trans.png

_images/CArchive.png

_images/SE_exe.png

nav.xhtml

 Table of Contents

 		
 PyInstaller Manual

 		
 Requirements

 		
 Windows

 		
 Mac OS X

 		
 Linux

 		
 AIX, Solaris, and FreeBSD

 		
 License

 		
 How To Contribute

 		
 How to Install PyInstaller

 		
 Installing in Windows

 		
 Installing in Mac OS X

 		
 Installing from the archive

 		
 Verifying the installation

 		
 Installed commands

 		
 What PyInstaller Does and How It Does It

 		
 Analysis: Finding the Files Your Program Needs

 		
 Bundling to One Folder

 		
 How the One-Folder Program Works

 		
 Bundling to One File

 		
 How the One-File Program Works

 		
 Using a Console Window

 		
 Hiding the Source Code

 		
 Using PyInstaller

 		
 Options

 		
 General Options

 		
 What to generate

 		
 What to bundle, where to search

 		
 How to generate

 		
 Windows and Mac OS X specific options

 		
 Windows specific options

 		
 Windows Side-by-side Assembly searching options (advanced)

 		
 Mac OS X specific options

 		
 Shortening the Command

 		
 Using UPX

 		
 Encrypting Python Bytecode

 		
 Supporting Multiple Platforms

 		
 Supporting Multiple Python Environments

 		
 Supporting Multiple Operating Systems

 		
 Making Linux Apps Forward-Compatible

 		
 Capturing Windows Version Data

 		
 Building Mac OS X App Bundles

 		
 Making Mac OS X apps Forward-Compatible

 		
 Building 32-bit Apps in Mac OS X

 		
 Getting the Opened Document Names

 		
 Run-time Information

 		
 Using __file__ and sys._MEIPASS

 		
 Using sys.executable and sys.argv[0]

 		
 LD_LIBRARY_PATH / LIBPATH considerations

 		
 Using Spec Files

 		
 Spec File Operation

 		
 Adding Files to the Bundle

 		
 Adding Data Files

 		
 Using Data Files from a Module

 		
 Adding Binary Files

 		
 Advanced Methods of Adding Files

 		
 Giving Run-time Python Options

 		
 Spec File Options for a Mac OS X Bundle

 		
 Multipackage Bundles

 		
 Example MERGE spec file

 		
 Globals Available to the Spec File

 		
 When Things Go Wrong

 		
 Recipes and Examples for Specific Problems

 		
 Finding out What Went Wrong

 		
 Build-time Messages

 		
 Build-Time Dependency Graph

 		
 Build-Time Python Errors

 		
 Getting Debug Messages

 		
 Getting Python’s Verbose Imports

 		
 Helping PyInstaller Find Modules

 		
 Extending the Path

 		
 Listing Hidden Imports

 		
 Extending a Package’s __path__

 		
 Changing Runtime Behavior

 		
 Getting the Latest Version

 		
 Asking for Help

 		
 Advanced Topics

 		
 The Bootstrap Process in Detail

 		
 Bootloader

 		
 Python imports in a bundled app

 		
 The TOC and Tree Classes

 		
 TOC Class (Table of Contents)

 		
 The Tree Class

 		
 Inspecting Archives

 		
 ZlibArchive

 		
 CArchive

 		
 Using pyi-archive_viewer

 		
 Inspecting Executables

 		
 Creating a Reproducible Build

 		
 Understanding PyInstaller Hooks

 		
 How a Hook Is Loaded

 		
 Hook Global Variables

 		
 Useful Items in PyInstaller.compat

 		
 Useful Items in PyInstaller.utils.hooks

 		
 The hook(hook_api) Function

 		
 The pre_find_module_path(pfmp_api) Method

 		
 The pre_safe_import_module(psim_api) Method

 		
 Building the Bootloader

 		
 Development tools

 		
 Building for Windows

 		
 Building for LINUX

 		
 Changelog for PyInstaller

 		
 3.2.1 (2017-01-15)

 		
 3.2 (2016-05-03)

 		
 3.1.1 (2016-01-31)

 		
 3.1 (2016-01-09)

 		
 3.0 (2015-10-04)

 		
 2.1 (2013-09-27)

 		
 2.0 (2012-08-08)

 		
 1.5.1 (2011-08-01)

 		
 1.5 (2011-05-05)

 		
 1.4 (2010-03-22)

 		
 1.3 (2006-12-20)

 		
 1.2 (2006-06-29)

 		
 1.1 (2006-02-13)

 		
 1.0 (2005-09-19) with respect to McMillan’s Python Installer 5b5

 		
 Credits

 		
 Contributions to PyInstaller 3.2.1

 		
 Contributions to PyInstaller 3.2

 		
 Contributions to PyInstaller 3.1.1

 		
 Contributions to PyInstaller 3.1

 		
 Contributions to PyInstaller 3.0

 		
 Contributions to PyInstaller 2.1 and older

 		
 Man Pages

 		
 pyinstaller

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 ENVIRONMENT VARIABLES

 		
 SEE ALSO

 		
 pyi-makespec

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 ENVIRONMENT VARIABLES

 		
 SEE ALSO

_static/SE_exe.png

_static/ZlibArchive.png
Comprassad pye B

Compraszad oy B

Comprassad pye B

[recinsman]
N

_images/ZlibArchive.png
Comprassad pye B

Compraszad oy B

Comprassad pye B

[recinsman]
N

_static/CArchive.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

