

 Navigation

 	
 index

 	
 next |

 	Herculeum 0.16.0 documentation

Welcome to pyherc programmer’s reference

Reference

	Intro

	Building blocks

	Main components
	Model

	Character

	Dungeon

	Level

	Rules

	Ports

	Generating a level
	Overview of generating dungeon

	Adding a new type of level

	Modular level generator
	Overview of level generator

	Partitioners

	Room generators

	Decorators

	Portal adders

	Creature adder

	Item adder

	Defining levels

	Generating an item
	Overview of generating item

	Defining items

	Generating characters
	Character generator

	Character selector

	Actions
	Overview of Action system

	Action creation during play

	Interface

	Extending

	Events
	Overview of event system

	Effects
	Overview of effects system

	Effect handles

	Effect

	Creating Effects

	Effects collection

	Configuration
	Configuration scripts

	Level configuration

	Item configuration

	Character configuration

	Player characters

	Effects configuration

	Handling icons

	Magic
	Overview of Magic system

	How spells are cast

	Spell creation during play

	Adding a new type of spell

	Finite-state machines
	Sample configuration

	Syntax of finite-state machine definition

	Error Handling
	General idea

	Specific cases

	Testing
	Overview of testing

	Running tests

	Writing tests

Release notes

	Release 0.1

	Release 0.2

	Release 0.3

	Release 0.4

	Release 0.5

	Release 0.6

	Release 0.7

	Release 0.8

	Release 0.9

	Release 0.10

	Release 0.11

	Release 0.12

	Release 0.13

	Release 0.14

	Release 0.15

Indices and tables

	Index

	Search Page

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Intro

pyherc is a roguelike engine written in combination of Python and Hy. This
document has brief description of some major parts of the system.

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Building blocks

Codebase is divided in two main pieces pyherc and herculeum.
pyherc is a sort of platform or library for writing roguelike games. herculeum
on the other hand is a sample game that has been written on top of pyherc.

Main components

Model

pyherc.data.model.Model is the main class representing
current state of the playing world. It holds reference to important things like:

	Player character

	Dungeon

	Configuration

	Various tables

Character

pyherc.data.character.Character is used to represent both player
character and monsters. It manages things like:

	Stats

	Inventory

	Location

Dungeon

pyherc.data.dungeon.Dungeon is currently very sparse and is only
used to hold reference to first level in the dungeon.

Level

pyherc.data.level.Level is key component, as it is used to store
layout and content of levels where player adventures. It manages:

	Shape of the level, including stairs leading to other levels

	Items

	Characters

Rules

pyherc.rules is what defines what kind of actions player and monsters
are allowed to take and how they affect the world around them. Rules for things
like moving, fighting and drinking potions are found here. Refer to
Actions for more detailed description how actions are created and how to
add more.

Ports

pyherc.ports is the interface that rest of the code uses to connect with
actions subsystem. Instead of interfacing with ActionFactory and relatively
complex logic, client code should use functions defined in this module.

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Generating a level

This section will have a look at level generation, how different parts of the
software work together to create a new level and how to add new levels into
the game.

Overview of generating dungeon

Dungeon is used to represent playing area of the game. It contains levels which
player can explore.

Dungeon is generated by pyherc.generators.dungeon.DungeonGenerator.

Adding a new type of level

Adding a new level is quite straightforward procedure, when you know what
you are doing. Following section will give a rough idea how it can be
accomplished.

Level generator

In order to add a new type of level into the game, a level generator needs to
be written first. It has a simple interface:

(fn generate-level [self portal]
 ...)

Arguments supplied to this function are:

	portal - Portal at an existing level, where this level should be connected

Shape of the level

One of the first things for our level generator to do, is to create a new
Level object:

(new-level model)

This call will instantiate a Level object. Note that the level initially has
no dimensions at all. The datastructure used will allow level to grow to any
direction, as much as there is memory in the computer (more or less anyway).
Now the level generator code can start modifying layout of the level:

(for [y (range 1 39)]
 (for [x (range 1 79)]
 (floor-tile #t(x y) :stone)))

Adding monsters

No level is complete without some monsters. Next we will add a single rat:

(add-character level (.find-free-space level)
 (creature-generator "rat"))

Adding items

Our brave adventurer needs items to loot. Following piece of code will add a
single random food item:

(add-item level (.find-free-space level)
 (self.item-generator :item-type "food"))

Linking to previous level

Our level is almost ready, we still need to link it to level above it. This
is done using the Portal object, that was passed to this generator in the
beginning:

(when portal
 (let [[another-portal (Portal)]]
 (setv another-portal.model model)
 (.add-portal level another-portal
 (.find-free-space level)
 portal)))

First we create a new Portal and link it to our Model. Then we add it to the
new level at random location and link it to portal on a previous level.

Linking to further levels

If you want to this dungeon branch to continue further, you can create new
Portal objects, place them on the level and repeat the process above to
generate level.

Another option is to use proxy level generators, that will cause levels to
be generated at the moment when somebody tries to walk through portal to enter
them.

Adding level into the dungeon

Now you have a generator that can be used to generate new levels. Last step
is to modify an existing level generator to place a portal and create a level
using this new generator. If that step is skipped, new type of levels will
never get generated.

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Modular level generator

Now that we are aware how level generation works in general, we can have
a look at more modular approach.
pyherc.generators.level.new_level_generator() is a high order function
used to construct new modular level generator functions.

(defn new-level-generator [model partitioners room-generators decorators
 portal-adders item-adders creature-adders
 trap-generator rng name description]
 ...)

Calling this function will return a function that can be used to generate
level as configured. It has simple interface:

(fn [portal]
 ...)

Overview of level generator

Instead of performing all the steps by itself, level generator delegates most
of its tasks to sub components.

First new level is created and sent to a partitioner. This component will
divide level into sections and link them to each other randomly. Partitioners
are required to ensure that all sections are reachable.

A room is generated within each section and corridors are used to link rooms
to neighbouring sections. Linking is done according to links set up in the
previous phase. This in turn ensures that each room is reachable.

Adding of creatures is done by creature adders. These contains information of the
type of creatures to add and their placement.

Items are added in the same way as the portals, but item adders are used.

Portals are added by portal adders. These portals will lead deeper in the dungeon
and cause new levels generated when player walks down to them. One special portal
is also created, that links generated level to the higher level.

In decoration step details are added into the level. Walls are built where
empty space meets solid ground and floors are detailed.

Partitioners

pyherc.generators.level.partitioners.grid.grid_partitioning() creates
a basic partitioner, which knows how to divide level into a grid with equal
sized sections.

All partitioners have same interface:

(fn [level]
 ...)

Calling the function will partition level to sections, link sections to each other
and return them in a list.

pyherc.generators.level.partitioners.section.Section is used to represent
section. It defines a rectangular area in level, links to neighbouring areas and
information how they should connect to each other. It also defines connections
for rooms.

Room generators

Room generators are used to create rooms inside of sections created by partitioner.
Each section has information how they link together and these connection points must
be linked together by room generator.

Room generator is instantiated with
pyherc.generators.level.room.new_room_generator() function. It will create a
generator function with following signature:

(fn [section trap-generator]
 ...)

Calling this function should create a room inside section and connect all connection
points together.

Decorators

Decorators can be used to add theme to level. Simple ones can be used to change
appearance of the floor to something different than what was generated by room
generator. More complex usage is to detect where walls are located and change
their appearance.

Decorators have simple interface:

(fn [level]
 ...)

Portal adders

(fn [level]
 ...)

Creature adder

(fn [level]
 ...)

Item adder

(fn [level]
 ...)

Defining levels

Levels are defined in configuration scripts that are fed to
pyherc.config.config.Configuration during system startup.

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Generating an item

This section will have a look at item generation and how to add new items into
the game.

Overview of generating item

pyherc.generators.item.ItemGenerator is used to generate items.

To generate item, following code can be used:

new_item = self.item_generator.generate_item(item_type = 'food')

This will generate a random item of type food. To generate item of specic name,
following code can be used:

new_item = self.item_generator.generate_item(name = 'apple')

This will generate an apple.

Defining items

Items are defined in configuration scripts that are fed to
pyherc.config.config.Configuration during system startup. Following
example defines an apple and dagger for configuration.

from pyherc.generators import ItemConfigurations
from pyherc.generators import ItemConfiguration, WeaponConfiguration
from pyherc.data.effects import EffectHandle

def init_items():
 """
 Initialise common items
 """
 config = []

 config.append(
 ItemConfiguration(name = 'apple',
 cost = 1,
 weight = 1,
 icons = [501],
 types = ['food'],
 rarity = 'common'))

 config.append(
 ItemConfiguration(name = 'dagger',
 cost = 2,
 weight = 1,
 icons = [602, 603],
 types = ['weapon',
 'light weapon',
 'melee',
 'simple weapon'],
 rarity = 'common',
 weapon_configration = WeaponConfiguration(
 damage = [(2, 'piercing'),
 (2, 'slashing')],
 critical_range = 11,
 critical_damage = 2,
 weapon_class = 'simple')))

 return config

config = init_items()

print(len(config))
print(config[0])

Example creates a list containing two ItemConfiguration objects.

2
<pyherc.generators.item.ItemConfiguration object at 0x...>

For more details regarding to configuration, refer to Configuration
page.

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Generating characters

This section will have a look at character generation and related actions.

Character generator

Characters can be created with generate-creature function:

(generate-creature config model item-generator rng "rat")

Supplying creature configuration, model instance, item generator and random
number generator every time is tedious. For that reason, application
configuration pyherc.config.Configuration has attribute
creature_generator that holds reference to function with a simpler
interface, that is configured when system starts:

(creature-generator "rat")

Only name is required, all other parameters are automatically using the values
supplied when the system started. This is also the function that is usually
passed around in the system to places where creatures might be generated (level
generators mainly).

Character selector

When a specific part of the system requires ability to generate characters,
there are two options. First option is to pass a full fledged creature
generator and use that as explained in the previous paragraph. Another, much
simpler option is to use character selector. This is just a function, that
takes no parameters and will return a list of generated creatures. Advantage
of using them over creature generator is simplified usage:

(defn skeletons [empty-pct character-generator rng]
 "create character selector for skeletons"
 (fn []
 (if (> (.randint rng 1 100) empty-pct)
 (character-generator "skeleton warrior")
 [])))

(setv character-selector (skeletons 50
 creature-generator
 random))

(setv monster (character-selector))

Usually character selector are given a descriptive name, like skeletons
or common-critters. For example pyherc.data.features.new_cache()
uses selectors to configure what kind of creatures or items might reside inside
of the cache.

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Actions

This section will have a look at actions, how they are created and handled
during play and how to add new actions.

Overview of Action system

Actions are used to represent actions taken by characters. This include things
like moving, fighting and drinking potions. Every time an action is taken by
a character, new instance of Action class (or rather subclass of it) needs to
be created.

Action creation during play

Actions are instantiated via ActionFactory, by giving it correct parameter
class. For example, for character to move around, it can do it by:

(.execute (action-factory (MoveParameters character
 Direction.west)))

This creates a WalkAction and executes it, causing the character to take a
single step to given direction. Doing this all the time is rather cumbersome,
so there are convenience functions at pyherc.ports that can be used:

(move character Direction.west)

For checking if an action can be performed, following ways are generally
supported:

(.legal? (action-factory (MoveParameters character
 Direction.west)))

(move-legal? character Direction.west)

The first example will always be supported. The second example is generally
supported, but not always.

Interface

Each function at pyherc.ports should return either (Right character)
if the action was succesfull, or (Left character) if it couldn’t be
completed. First parameter of the function should be the character who is
performing the action. Following these conventions allows us to define more
complex actions as terms of simpler ones:

(defn lunge [character direction rng]
 (monad-> (move character direction)
 (attack direction rng)
 (add-cooldown)))

Character is threaded through consecutive calls. If any of the calls fail for
any reason, calls after that one are automatically bypassed.

Extending

ActionFactory has been designed to allow easy adding of new actions. Each
action has a respective factory function that can create it. These factory
functions are registered at the startup of the system in
pyherc.config.Configuration class. When an action is requested, each
factory function is called in turn, until a correct one is found.

Factory function has general structure of:

(fn [parameters]
 (if (can-handle? parameters)
 (Just Action)
 (Nothing)))

If factory function can handle the request, new action is returned, wrapped
inside Just. In case function can not handle this request Nothing is
returned.

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Events

Events, in the context of this article, are used in relaying information of
what is happening in the game world. They should not be confused with UI events
that are created when buttons of UI are pressed.

Overview of event system

Events are represented by classes found at pyherc.events and they all
inherit from pyherc.events.event.Event.

Events are usually created as a result of an action, but nothing prevents
them from being raised from somewhere else too.

Events are relayed by pyherc.data.model.Model.raise_event() and there
exists convenient pyherc.data.character.Character.raise_event() too.

pyherc.data.character.Character.receive_event() method receives an
event that has been raised somewhere else in the system. The default
implementation is to store it in internal array and process when it is
character’s turn to act. The character can use this list of events to remember
what happened between this and his last turn and react accordingly.

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Effects

This section will have a look at effects, how they are created and handled
during the play and how to add new effects.

Overview of effects system

Effects can be understood as on-going statuses that have an effect to an
character. Good example would be poisoning. When character has poison effect
active, he periodically takes small amount of damage, until the effect is
removed or it expires.

Both items and characters can cause effects. Spider can cause poisoning and
healing potion can grant healing.

Effect handles

pyherc.data.effects.effect.EffectHandle are sort of prototypes for
effects. They contain information on when to trigger the effect, name of the
effect, possible overriding parameters and amount of charges.

Effect

pyherc.data.effects.effect.Effect is a baseclass for all effects.
All effects have duration, frequency and tick. Duration tells how long it takes
until effect naturally expires. Frequency tells how often effect is triggered
and tick is internal counter which keeps track when effect should trigger.

When creating a new effect, subclass Effect class and define method:

def do_trigger(self):

Do trigger method is automatically triggered when effect’s internal counter
reaches zero. After the method has been executed, counter will be reset if the
effect has not been expired.

Creating Effects

Effects are cread by pyherc.generators.effects.create_effect(). It
takes configuration that defines effects and named arguments that are effect
specific to create an effect.

EffectsFactory is configured during the start up of the system with information
that links names of effects to concrete Effect subclasses and their parameters.

from pyherc.generators import create_effect, get_effect_creator
from pyherc.data.effects import Poison
from pyherc.test.cutesy import Adventurer
from pyherc.rules import Dying

effect_creator = get_effect_creator({'minor poison': {'type': Poison,
 'duration': 240,
 'frequency': 60,
 'tick': 60,
 'damage': 1,
 'icon': 101,
 'title': 'Minor poison',
 'description': 'Causes minor amount of damage'}})

Pete = Adventurer()
print('Hit points before poisoning: {0}'.format(Pete.hit_points))

poisoning = effect_creator('minor poison', target = Pete)
poisoning.trigger(Dying())

print('Hit points after poisoning: {0}'.format(Pete.hit_points))

Pete the adventurer gets affected by minor poison and as a result loses
1 hit point.

Hit points before poisoning: 10
Hit points after poisoning: 9

Note how the effect factory has been supplied by a dictionary of parameters.
These are matched to the constructor of class specified by ‘type’ key. All
parameters that are present in the constructor, but are not present in the
dictionary needs to be supplied when effect factory creates a new effect
instance. In our example there was only single parameter like this, the target
of poisoning.

It is also possible to supply parameters during call that have been specified
in the dictionary. These parameters are then used to override the default ones.

Effects collection

pyherc.data.effects.effectscollection.EffectsCollection is tasked to
keep track of effects and effect handles for particular object. Both Item and
Character objects use it to interact with effects sub system.

Following example creates an EffectHandle and adds it to the collection.

from pyherc.data.effects import EffectsCollection,EffectHandle

collection = EffectsCollection()
handle = EffectHandle(trigger = 'on kick',
 effect = 'explosion',
 parameters = None,
 charges = 1)
collection.add_effect_handle(handle)

print(collection.get_effect_handles())

The collection now contains a single EffectHandle object.

[<pyherc.data.effects.effect.EffectHandle object at 0x...>]

Following example creates an Effect and adds it to the collection.

from pyherc.data.effects import EffectsCollection, Poison

collection = EffectsCollection()
effect = Poison(duration = 200,
 frequency = 10,
 tick = 0,
 damage = 1,
 target = None,
 icon = 101,
 title = 'minor poison',
 description = 'Causes small amount of damage')
collection.add_effect(effect)

print(collection.get_effects())

The collection now contains a single Poison object.

[<pyherc.data.effects.poison.Poison object at 0x...>]

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Configuration

Configuration of pyherc is driven by external files and internal scripts.
External files are located in resources directory and internal scripts
in package pyherc.config.

Configuration scripts

pyherc supports dynamic detection of configuration scripts. The system can be
configured by placing all scripts containing configuration in a single
package and supplying that package to pyherc.config.config.Config
class during system start:

self.config = Configuration(self.base_path, self.world)
self.config.initialise(herculeum.config.levels)

Level configuration

The file containing level configuration should contain following function to
perform configuration.

def init_level(rng, item_generator, creature_generator, level_size)

This function should create pyherc.generators.level.config.LevelGeneratorFactoryConfig
with appropriate values and return it. This configuration is eventually fed to
pyherc.generators.level.generator.LevelGeneratorFactory when new level
is requested.

Item configuration

The file containing item configuration should contain following function to
perform configuration

def init_items(context):

This function should return a list of pyherc.generators.item.ItemConfiguration
objects.

Character configuration

The file containing character configuration should contain following function
to perform configuration:

def init_creatures(context):

This function should return a list of pyherc.generators.creature.CreatureConfiguration
objects.

Player characters

Player characters are configured almost identically to all the other character.
The only difference is the function used:

def init_players(context):

Effects configuration

The file containing effects configuration should contain following function to
perform configuration

def init_effects(context):

This function should return a list of effect specifications.

Handling icons

Each of the configurators shown above take single parameter, context. This
context is set by client application and can be used to relay information that
is needed in configuration process. One such an example is loading icons.

Example of context can be found at herculeum.config.config.ConfigurationContext.

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Magic

This section will outline how spells are implemented.

Overview of Magic system

SpellCastingAction created by SpellCastingFactory
SpellCastingAction has

	caster

	spell

	effects_factory

	dying_rules

	Spell has

	
	targets []

	EffectsCollection

	spirit

Spell is created by SpellGenerator by using SpellSpecification

	SpellSpecification has

	
	effect_handles

	targeter

	spirit

How spells are cast

Spell creation during play

Adding a new type of spell

Overview

Whole code

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Finite-state machines

Finite-state machine is often used for artificial intelligence routines in
games. They can model different states character can be: patrolling, searching
for food, investigating noise and fighting. There is a small DSL for defining
finite-state machines supplied with pyherc.

Sample configuration

Following code is a sample definition for a very simple finite-state machine.
It has two states addition and subtraction.

(defstatemachine SimpleAdder [message]
 "finite-state machine for demonstration purposes"

 "add 1 to message, 0 to switch state"
 (addition initial-state
 (active (+ message 1))

 "message 0 will change state"
 (transitions [(= message 0) subtraction]))

 "substract 1 from message, 0 to switch state"
 (subtraction (active (- message 1))

 "message 0 will change state"
 (transitions [(= message 0) addition])))

In order to use the finite-state machine, one needs to create an instance of
it and call it like a function:

=> (setv fsm (SimpleAdder))
=> (fsm 1)
2
=> (fsm 2)
3
=> (fsm 0)
-1
=> (fsm 1)
0
=> (fsm 2)
1

As you can see, fsm will first return the argument passed to it plus 1.
As soon as 0 is passed in, finite-state machine switches to subtraction
state and starts returning the argument passed to it minus 1. Passing a 0
again will change the state back to addition.

Sometimes there’s need to perform extra initialisation when finite-state
machine is created or store data across different states. Following example
highlights how --init-- and state forms can be used to achieve this.

(defstatemachine Minimal [message]
 "default initializer"
 (--init-- [bonus] (state bonus bonus))
 "handle message"
 (process initial-state
 (active (* message (state bonus)))))

Following example shows how the finite-state machine defined in previous
example can be used:

=> (setv fsm (Minimal 3))
=> (fsm 1)
3
=> (fsm 5)
15

As you can see, the parameter supplied during initialization of finite-state
machine is stored under symbol bonus and used when finite-state
machine is activated.

Syntax of finite-state machine definition

Finite-state machine is defined with (defstatemachine <name> <parameters>)
form. <name> defines name of the class that will encapsulate finite-state
machine definition. <parameters> is a list of zero or more symbols that
define function interface that the finite-state machine will have. Keyword
only, optional or other special parameter types are not supported.

Inside of defstatemachine form, there are one or more state definitions.
Strings are allowed and they’re treated as comments (ie. ignored). Format
of state definition is
(<name> [initial-state] [(on-activate ...)] [(active ...)] [(on-deactivate ...)] [(transitions ...)]).
<name> is name of the state, it should be unique within a finite-state
machine as transitions refer to them. One and only one of the states should be
marked as an initial-state. This is the state the finite-state machine
will enter when first activated. Rest three forms are all optional. Order of
the forms is not significant. Symbols defined in <parameters> block of
defstatemachine are available to all of these three functions. Strings
are allowed and they are treated as comments (ie. ignored). Special form
--init-- can be used to create initializer method for finite-state
machine. It has syntax of
(--init-- <parameters> <body>). <parameters> is a list of symbols that
are to be added in --init-- method of the finite-state machine and
<body> is one or more s-expressions that are to be executed when
finite-state machine is initialized.

First one is on-activate, which defines code that is executed when the
given state is activated. Second one is active which defines code that is
executed every time for the active state when finite-state machine is
activated. on-activate is mirrored by on-deactivate, which gets
executed every time a state deactivates.
The last one is transitions. It defines one or more two element
lists, where the first element is test and second element is symbol of a
state to switch if the test returns true. transitions are checked for
the active state every time finite-state machine is activated and it is
performed before active code is executed.

In order to store data and pass it between states, state macro can be
used. It has syntax of: (state <symbol> [value]). <symbol> is the
stored data being accessed. If optional value is supplied, stored data
is updated. In any case state returns the current value of the data.

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Error Handling

Pyherc, like any other software contains errors and bugs. Some of them are
so fatal that they could potentially crash the program. This chapter gives
an overview on how runtime errors are handled.

General idea

The general idea is to avoid littering the code with error handling and only
place it where it actually makes difference. Another goal is to keep the game
running as long as possible and avoid error dialogs. Instead of displaying
an error dialog, errors are masked as magical or mystical events. There should
be enough logs though to be able to investigate the situation later.

Specific cases

Character

pyherc.data.character.Character is a central location in code.
Majority actions performed by the characters flow through there after they
have been initiated either by a user interface or artificial intelligence
routine.

pyherc.data.character.guarded_action() is a decorator that should
only be used in Character class. In the following example a move method has
been decorated with both logged and guarded_action decorators:

@guarded_action
@logged
def move(self, direction, action_factory):
 ...

In case an exception is thrown, guarded_action will catch and handle it. The
game might be in inconsistent state after this, but at least it did not crash.
The decorator will set tick of the character to suitable value, so that other
characters have a chance to act before this one is given another try. It will
also emit pyherc.events.error.ErrorEvent that can be processed to
inform the player that there is something wrong in the game.

Since the decorator is emitting an event, it should not be used for methods
that are integral to event handling. This might cause an infinite recursion
that ultimately will crash the program. It is best suited for those methods
that are used to execute actions, like
pyherc.data.character.Character.move()
and pyherc.data.character.Character.pick_up()

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Testing

This section will have a look at various testing approaches utilised in the
writing of the game and how to add more tests.

Overview of testing

Tools currently in use are:

	nose [https://github.com/nose-devs/nose/]

	doctest [http://docs.python.org/library/doctest.html]

	behave [http://pypi.python.org/pypi/behave]

	mockito-python [http://code.google.com/p/mockito-python/]

	pyhamcrest [http://pypi.python.org/pypi/PyHamcrest]

Nosetests are mainly used to help the design and development of the software.
They form nice safety net that catches bugs that might otherwise go unnoticed
for periods of time.

Doctest is used to ensure that code examples and snippets in documentation are
up to date.

Behave is used to write tests that are as close as possible to natural
language.

Additional tool called nosy [http://pypi.python.org/pypi/nosy] can be used to run nosetests automatically as
soon as any file change is detected. This is very useful when doing test
driven development.

Running tests

Nose

Nose tests can be run by issuing following command in pyherc directory:

nosetests

It should output series of dots as tests are executed and summary in
the end:

..
..
..
--
Ran 180 tests in 3.992s

If there are any problems with the tests (or the code they are testing),
error will be shown along with stack trace.

Doctest

Running doctest is as simple. Navigate to the directory containing make.bat
for documentation containing tests (doc/api/) and issue command:

make doctest

This will start sphinx and run the test. Results from each document are
displayed separately and finally summary will be shown:

Doctest summary
===============
 4 tests
 0 failures in tests
 0 failures in setup code
 0 failuers in cleanup code
build succeeded.

Testing of doctests in the sources finished, look at the results in build/doctest/output.txt.

Results are also saved into a file that is placed to build/doctest/ directory

There is handy shortcut in main directory that will execute both and also
gather test coverage metrics from nosetests:

suite.py

Coverage report is placed in cover - directory.

Behave

Navigate to directory containing tests written with behave (behave) and issue
command:

behave

This will start behave and run all tests. Results for each feature are
displayed on screen and finally a summary is shown:

2 features passed, 0 failed, 0 skipped
3 scenarios passed, 0 failed, 0 skipped
21 steps passed, 0 failed, 0 skipped, 0 undefined
Took 0m0.0s

Writing tests

Unit tests

Unit tests are placed in package pyherc.test.unit Any module that is
named as “test_*” will be inspected automatically by Nose when it is gathering
tests to run. It will search for classes named “Test*” and methods named
“test_*”.

Following code is simple test that creates EffectHandle object and tries to
add it into EffectsCollection object. Then it verifies that it actually was
added there.

from pyherc.data.effects import EffectsCollection
from pyherc.test.builders import EffectHandleBuilder
from hamcrest import *
from pyherc.test.matchers import has_effect_handle

class TestEffectsCollection(object):

 def __init__(self):
 super(TestEffectsCollection, self).__init__()
 self.collection = None

 def setup(self):
 """
 Setup test case
 """
 self.collection = EffectsCollection()

 def test_adding_effect_handle(self):
 """
 Test that effect handle can be added and retrieved
 """
 handle = EffectHandleBuilder().build()

 self.collection.add_effect_handle(handle)

 assert_that(self.collection, has_effect_handle(handle))

test_class = TestEffectsCollection()
test_class.setup()
test_class.test_adding_effect_handle()

Interesting parts of the test are especially the usage of EffectHandleBuilder
to create the EffectHandle object and the customer has_effect_handle matcher.

Builders are used because they make setting up objects easy, especially when
dealing with very complex objects (Character for example). They are placed
at pyherc.test.builders module.

Custom matchers are used because they make dealing with verification somewhat
cleaner. If the internal implementation of class changes, we need to only
change how builders construct it and how matchers match it and tests should not
need any modifications. Custom matchers can be found at
pyherc.test.matchers module.

Three macros are provided to help reduce boilerplate from tests: background,
fact and with-background. Background is used to create setup function.
It can return one or more symbols for tests:

(require archimedes)

(background weapons
 [item (-> (ItemBuilder)
 (.with-damage 2 "piercing")
 (.with-name "club")
 (.build))]
 [character (-> (CharacterBuilder)
 (.build))]
 [_ (set-action-factory (-> (ActionFactoryBuilder)
 (.with-inventory-factory)
 (.build)))])

The example code creates background called weapons and initializes it with
item and character symbols. In addition, set-action-factory is
called for side effect.

Facts are executable tests, that can be standalone, or use previously defined
background. When using a background, a list of symbols to retrieved is given
to with-background macro. This will generate a call to background and
retrieve specified symbols to current scope:

(fact "character can wield weapon"
 (with-background weapons [item character]
 (equip character item)
 (assert-that character.inventory.weapon (is- (equal-to item)))))

Each fact should have unique description, since it is used to generate name
for test function.

Cutesy

Cutesy is an internal domain specific language. Basically, it’s just a
collection of functions that can be used to contruct nice looking tests. Theory
is that these easy to read tests can be used to communicate what the system
is supposed to be doing on a high level, without making things complicated
with all the technical details.

Here’s an example, how to test that getting hit will cause hit points to go
down.

from pyherc.test.cutesy import strong, Adventurer
from pyherc.test.cutesy import weak, Goblin
from pyherc.test.cutesy import Level

from pyherc.test.cutesy import place, middle_of
from pyherc.test.cutesy import right_of
from pyherc.test.cutesy import make, hit

from hamcrest import assert_that
from pyherc.test.cutesy import has_less_hit_points

class TestCombatBehaviour():

 def test_hitting_reduces_hit_points(self):
 Pete = strong(Adventurer())
 Uglak = weak(Goblin())

 place(Uglak, middle_of(Level()))
 place(Pete, right_of(Uglak))

 make(Uglak, hit(Pete))

 assert_that(Pete, has_less_hit_points())

test = TestCombatBehaviour()
test.test_hitting_reduces_hit_points()

Tests written with Cutesy follow same guidelines as regular unit tests. However
they are placed in package pyherc.test.bdd

Doctest

Doctest tests are written inside of .rst documents that are used to generate
documentation (including this one you are currently reading). These documents
are placed in doc/api/source folder and folders inside it.

.. testcode:: Starts test code block. Code example is placed inside this
one.

.. testoutput:: Is optional block. It can be omitted if it is enough to see
that the code example can be executed. If output of the example needs to be
verified, expected output is placed here.

Nosetest example earlier in this document is also a doctest example. If you
view source of this page, you can see how it has been constructed.

More information can be found at
Sphinx documentation [http://sphinx.pocoo.org/ext/doctest.html].

Behave

Tests with behave are placed under directory behave/features. They consists of
two parts: feature-file specifying one or more test scenarios and python
implementation of steps in feature-files.

The earlier Cutesy example can be translated to behave as follows:

Feature: Combat
 as an character
 in order to kill enemies
 I want to damage my enemies

 Scenario: hit in unarmed combat
 Given Pete is Adventurer
 And Uglak is Goblin
 And Uglak is standing in room
 And Pete is standing next to Uglak
 When Uglak hits Pete
 Then Pete should have less hitpoints

Each of the steps need to be defined as Python code:

@given(u'{character_name} is Adventurer')
def impl(context, character_name):
 if not hasattr(context, 'characters'):
 context.characters = []
 new_character = Adventurer()
 new_character.name = character_name
 context.characters.append(new_character)

It is advisable not to reimplement all the logic in behave tests, but reuse
existing functionality from Cutesy. This makes tests both faster to write and
easier to maintain. For more information on using behave, have a look at their
online tutorial [http://packages.python.org/behave/tutorial.html].

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.1

New features

	initial release

Fixed bugs

	None

Other notes

	None

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.2

New features

	New area, crypt

	Debug server, point your browser to http://localhost:8080/ to see it

Fixed bugs

	Monsters can no longer enter same location as the player

Other notes

	pyDoubles switched to mockito

	logging is done via aspects

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.3

New features

	Potions now affect characters for multiple turns

Fixed bugs

	None

Other notes

	various builders can now be used in testing

	more hamcrest matchers were added

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.4

New features

	Certain creatures can make poisoned attacks

	First version of Cutesy testing language included

Fixed bugs

	None

Other notes

	get_next_creature does not produce debug log anymore

	very rudimentary monster spawning added to debug server

	very rudimentary item spawning added to debug server

	documentation regarding to testing added

	internals of inventory handling improved

	improved internals of user interface

	tests are grouped by function (unit, integration, acceptance)

	IntegrationTest class has been removed

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.5

New features

New features that are readily visible to players:

	User interface rewrite with PyQt

	16 [https://github.com/tuturto/pyherc/issues/16] inventory window

	Message is shown for missed attack

	Message is shown for dying monster

	Message is shown for picked up item

	Message is shown for dropped item

	Player character can be given a name

Following new features are more technical in nature and not visible during
gameplay:

	_at function added to Cutesy

	is_dead matcher added

	other components can register to receive updates from domain objects

	pyherc.rules.items.drop replaced with DropAction

Fixed bugs

	17 [https://github.com/tuturto/pyherc/issues/17] Taking stairs do not update display correctly

Other notes

	Services are no longer injected to domain objects

	pyherc.rules.effects moved to pyherc.data.effects

	EffectsCollection moved to pyherc.data.effects

	qc added for testing

	poisoning and dying from poison tests moved to BDD side

	is_at and is_not_at changed to is_in and is_not_in

	herculeum.gui.core removed

	PGU and pygame removed as dependencies

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.6

New features

	Support for Qt style sheets

	Splash screen at start up

	icons can be specified in level specific configuration scripts

	new weapons added

	new inventory screen

	player can drink potions

	on-screen counters to show damage, healing and status effects

	player can wield and unwield weapons

Fixed bugs

	22 [https://github.com/tuturto/pyherc/issues/22] python path is not modified before first imports

	19 [https://github.com/tuturto/pyherc/issues/19] mdi user interface is clumsy to use

Known bugs

	26 [https://github.com/tuturto/pyherc/issues/26] spider poisons in combat even when it misses

	25 [https://github.com/tuturto/pyherc/issues/25] dying should make game to return to main screen

	21 [https://github.com/tuturto/pyherc/issues/21] PyQt user interface does not support line of sight

	18 [https://github.com/tuturto/pyherc/issues/18] Entities created by debug server are not shown on map

	5 [https://github.com/tuturto/pyherc/issues/5] Raised events are not filtered, but delivered to all creatures

Other notes

	behave [http://pypi.python.org/pypi/behave] taken into use for BDD

	testing guidelines updated

	“{character_name} is almost dead” added to behave

	pyherc.rules.magic package removed

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.7

New features

	damage is shown negative in counters

	weapons deal different types of damage

	split damage is supported

	more streamlined user interface

	status effects are shown on main screen

	32 [https://github.com/tuturto/pyherc/issues/32] view to show player character

	31 [https://github.com/tuturto/pyherc/issues/31] better ai for skeleton warrior

	30 [https://github.com/tuturto/pyherc/issues/30] showing hit points of player

	29 [https://github.com/tuturto/pyherc/issues/29] being weak against damage

	28 [https://github.com/tuturto/pyherc/issues/28] damage resistance

	24 [https://github.com/tuturto/pyherc/issues/24] skeleton warrior

Fixed bugs

	34 [https://github.com/tuturto/pyherc/issues/34] Split damage weapons do not show full damage on screen

	33 [https://github.com/tuturto/pyherc/issues/33] using stairs while there is damage counter on screen crashes game

	27 [https://github.com/tuturto/pyherc/issues/27] dropping a weapon in use retains the weapon in use

	18 [https://github.com/tuturto/pyherc/issues/18] bug: Entities created by debug server are not shown on map

Known bugs

	26 [https://github.com/tuturto/pyherc/issues/26] bug: spider poisons in combat even when it misses

	25 [https://github.com/tuturto/pyherc/issues/25] bug: dying should make game to return to main screen

	21 [https://github.com/tuturto/pyherc/issues/21] bug: PyQt user interface does not support line of sight

	10 [https://github.com/tuturto/pyherc/issues/10] bug: Player character creation has hard coded values

	9 [https://github.com/tuturto/pyherc/issues/9] bug: Attacks use hard coded time

	5 [https://github.com/tuturto/pyherc/issues/5] bug: Raised events are not filtered, but delivered to all creatures

	3 [https://github.com/tuturto/pyherc/issues/3] bug: FlockingHerbivore has no memory

Other notes

	web.py is not required unless using debug server

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.8

New features

	amount of damage done is reported more clearly

	new area: Crimson Lair

	weapons may have special effects that are triggered in combat

	45 [https://github.com/tuturto/pyherc/issues/45] feature: ranged combat

	44 [https://github.com/tuturto/pyherc/issues/44] feature: armours

	43 [https://github.com/tuturto/pyherc/issues/43] feature: support for vi and cursor keys

	40 [https://github.com/tuturto/pyherc/issues/40] feature: executable for Windows

	39 [https://github.com/tuturto/pyherc/issues/39] feature: the Tome of Um’bano

	37 [https://github.com/tuturto/pyherc/issues/37] feature: creating a new character

	36 [https://github.com/tuturto/pyherc/issues/36] feature: escaping the dungeon

	35 [https://github.com/tuturto/pyherc/issues/35] feature: crimson jaw

	equiping and unequiping raise events

Fixed bugs

	26 [https://github.com/tuturto/pyherc/issues/26] bug: spider poisons in combat even when it misses

	10 [https://github.com/tuturto/pyherc/issues/10] bug: Player character creation has hard coded values

Known bugs

	42 [https://github.com/tuturto/pyherc/issues/42] bug: character generator generates incorrect amount of items in inventory

	38 [https://github.com/tuturto/pyherc/issues/38] bug: damage effect does not take damage modifiers into account

	25 [https://github.com/tuturto/pyherc/issues/25] bug: dying should make game to return to main screen

	21 [https://github.com/tuturto/pyherc/issues/21] bug: PyQt user interface does not support line of sight

	9 [https://github.com/tuturto/pyherc/issues/9] bug: Attacks use hard coded time

	5 [https://github.com/tuturto/pyherc/issues/5] bug: Raised events are not filtered, but delivered to all creatures

Other notes

	41 [https://github.com/tuturto/pyherc/issues/41] player character configuration

	Aspyct is no longer needed to run the game

	behave tests moved under src/pyherc/test/BDD

	parts of the manual are generated directly from game data

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.9

New features

	46 [https://github.com/tuturto/pyherc/issues/46] curses interface

Fixed bugs

	48 [https://github.com/tuturto/pyherc/issues/48] bug: Effects with None as duration or frequency cause crash when triggered

Known bugs

	42 [https://github.com/tuturto/pyherc/issues/42] bug: character generator generates incorrect amount of items in inventory

	38 [https://github.com/tuturto/pyherc/issues/38] bug: damage effect does not take damage modifiers into account

	25 [https://github.com/tuturto/pyherc/issues/25] bug: dying should make game to return to main screen

	21 [https://github.com/tuturto/pyherc/issues/21] bug: PyQt user interface does not support line of sight

	9 [https://github.com/tuturto/pyherc/issues/9] bug: Attacks use hard coded time

	5 [https://github.com/tuturto/pyherc/issues/5] bug: Raised events are not filtered, but delivered to all creatures

Other notes

	47 [https://github.com/tuturto/pyherc/issues/47] switch to Python 3

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.10

New features

	new set of graphics and animations

	regular movement and attack can be done only to cardinal directions

	characters can wait for a bit without doing anything

	new player character, mage

	68 [https://github.com/tuturto/pyherc/issues/68] feature: change direction of character when walking

Fixed bugs

	72 [https://github.com/tuturto/pyherc/issues/72] bug: moving does not take armour into account

	69 [https://github.com/tuturto/pyherc/issues/69] bug: layering of icons

	54 [https://github.com/tuturto/pyherc/issues/54] bug: weapons with multiple damage types cause attacker to move

	9 [https://github.com/tuturto/pyherc/issues/9] bug: Attacks use hard coded time

Known bugs

	42 [https://github.com/tuturto/pyherc/issues/42] bug: character generator generates incorrect amount of items in inventory

	38 [https://github.com/tuturto/pyherc/issues/38] bug: damage effect does not take damage modifiers into account

	25 [https://github.com/tuturto/pyherc/issues/25] bug: dying should make game to return to main screen

	21 [https://github.com/tuturto/pyherc/issues/21] bug: PyQt user interface does not support line of sight

	5 [https://github.com/tuturto/pyherc/issues/5] bug: Raised events are not filtered, but delivered to all creatures

Other notes

	53 [https://github.com/tuturto/pyherc/issues/53]: moved many actions (moving, combat, etc) from Character class to separate functions

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.11

New features

	77 [https://github.com/tuturto/pyherc/issues/76] feature: swapping places

	73 [https://github.com/tuturto/pyherc/issues/73] update to latest version of Hy

	65 [https://github.com/tuturto/pyherc/issues/65] feature: cleaner AI

	62 [https://github.com/tuturto/pyherc/issues/62] feature: pits

	ability to specify starting level on command line

Fixed bugs

	76 [https://github.com/tuturto/pyherc/issues/76] bug: it is impossible use stairs, if there is a creature standing on the other end

Known bugs

	42 [https://github.com/tuturto/pyherc/issues/42] bug: character generator generates incorrect amount of items in inventory

	38 [https://github.com/tuturto/pyherc/issues/38] bug: damage effect does not take damage modifiers into account

	25 [https://github.com/tuturto/pyherc/issues/25] bug: dying should make game to return to main screen

	21 [https://github.com/tuturto/pyherc/issues/21] bug: PyQt user interface does not support line of sight

	5 [https://github.com/tuturto/pyherc/issues/5] bug: Raised events are not filtered, but delivered to all creatures

Other notes

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.12

New features

	81 [https://github.com/tuturto/pyherc/issues/81] restructure dungeon layout

	66 [https://github.com/tuturto/pyherc/issues/66] feature: animation system

Fixed bugs

	86 [https://github.com/tuturto/pyherc/issues/86] bug: patrol AI sometimes gets very confused

	82 [https://github.com/tuturto/pyherc/issues/82] bug: bug: if player is the last character in level, dying will put game into an infinite loop

	42 [https://github.com/tuturto/pyherc/issues/42] bug: character generator generates incorrect amount of items in inventory

	38 [https://github.com/tuturto/pyherc/issues/38] bug: damage effect does not take damage modifiers into account

Known bugs

	25 [https://github.com/tuturto/pyherc/issues/25] bug: dying should make game to return to main screen

	21 [https://github.com/tuturto/pyherc/issues/21] bug: PyQt user interface does not support line of sight

	5 [https://github.com/tuturto/pyherc/issues/5] bug: Raised events are not filtered, but delivered to all creatures

Other notes

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.13

New features

	84 [https://github.com/tuturto/pyherc/issues/84] feature: dragon de platino

	83 [https://github.com/tuturto/pyherc/issues/83] prototype using dictionary instead of list of lists for level structure

	15 [https://github.com/tuturto/pyherc/issues/15] feature: fungus

Fixed bugs

	5 [https://github.com/tuturto/pyherc/issues/5] bug: Raised events are not filtered, but delivered to all creatures

Known bugs

	89 [https://github.com/tuturto/pyherc/issues/89] bug: CharacterBuilder does not add character to given level

	25 [https://github.com/tuturto/pyherc/issues/25] bug: dying should make game to return to main screen

	21 [https://github.com/tuturto/pyherc/issues/21] bug: PyQt user interface does not support line of sight

Other notes

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.14

New features

	112 [https://github.com/tuturto/pyherc/issues/112] better installation instructions

Fixed bugs

	114 [https://github.com/tuturto/pyherc/issues/114] fix setup.py

	111 [https://github.com/tuturto/pyherc/issues/111] bug: mitosis can create creatures on traps, without triggering them

	110 [https://github.com/tuturto/pyherc/issues/110] bug: creatures and stairs are sometimes placed on top of traps

	96 [https://github.com/tuturto/pyherc/issues/96] bug: two characters switching places cause level to be in inconsistent state

Known bugs

	113 [https://github.com/tuturto/pyherc/issues/113] bug: items dropped in pit are floating

	97 [https://github.com/tuturto/pyherc/issues/97] bug: level generation sometimes places multiple characters in same location

	89 [https://github.com/tuturto/pyherc/issues/89] bug: CharacterBuilder does not add character to given level

	25 [https://github.com/tuturto/pyherc/issues/25] bug: dying should make game to return to main screen

	21 [https://github.com/tuturto/pyherc/issues/21] bug: PyQt user interface does not support line of sight

Other notes

	109 [https://github.com/tuturto/pyherc/issues/109] event system restructure

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Herculeum 0.16.0 documentation

Release 0.15

New features

	None

Fixed bugs

	None

Known bugs

	113 [https://github.com/tuturto/pyherc/issues/113] bug: items dropped in pit are floating

	97 [https://github.com/tuturto/pyherc/issues/97] bug: level generation sometimes places multiple characters in same location

	89 [https://github.com/tuturto/pyherc/issues/89] bug: CharacterBuilder does not add character to given level

	25 [https://github.com/tuturto/pyherc/issues/25] bug: dying should make game to return to main screen

	21 [https://github.com/tuturto/pyherc/issues/21] bug: PyQt user interface does not support line of sight

Other notes

	None

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Herculeum 0.16.0 documentation

Index

 Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/plus.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		Herculeum 0.16.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2014, Tuukka Turto.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

