

    
      
          
            
  
Welcome to pygtails’s documentation!


Contents:


	Library Reference
	Game

	GameObject

	Circle

	Rectangle





	Hello Pygtails

	Pygame Constants
	Pygame Keycodes

	Pygame Key Mod Flags

	Pygame Display Mode Flags





	Flags and Bitwise Operations Tutorial
	A Quick Primer on Flags

	Bitwise Operations

	Using Bitwise Operations with Flags












About

Pygtails [https://github.com/josiest/pygtails] is a simple little extension of the pygame library [https://www.pygame.org/].

Pygame is a cool game development library made for python, and it has a great community. It has tons of active users contributing to it’s project showcase [https://www.pygame.org/tags/all]. A new game is posted there sometimes several times a week, and the majority of the submissions to pyweek [https://pyweek.org/] seem to be working with pygame.

Despite all of this, it would be a lie to say that the engine has no shortcomings. In my own opinion, the pygame docs are poorly organized and the library itself isn’t as intuitive as it can be. A quick google search will also bring up criticisms of Pygame being slower than other options. In a direct quote from their about page [https://www.pygame.org/wiki/about]: “It’s not the best game library. It’s not even the second best. But we think it’s sort of ok.”

The Pygtails library attempts to make Pygame a slightly better game library by providing more detailed, organized, and (hopefully) intuitive documentation, as well as by providing some basic front-end functionality present in many popular game engines that Pygame for some reason lacks. One thing that Pygtails does not attempt to do is address the criticisms of Pygame’s slowness.





          

      

      

    

  

    
      
          
            
  
Pygtails Library

A simple wrapper around pygame.

Game        implements engine functionality. Subclass to build games.
GameObject  A simple class to provide a more intuitive approach to gamedev.


Game


	
class pygtails.Game(resolution, title, flags=0, depth=0)

	A class that handles pygame events, input, and mouse-collision.

resolution is a 2-tuple of integers that specify the width and height
of the screen.

title is a string used as the title of the window.

flags is an integer flag representing the different controls over the
display mode that are active. For a full list of the different flags,
see Pygame Display Mode Flags. For more information on how flags
work, see the Flags tutorial.

Public Methods:



main, quit, on_focus, on_key_down, on_key_up, on_mouse_move,

on_mouse_up, on_mouse_down, on_resize, update, add_object,

destroy_object, key_is_pressed






Instance variables:



screen







	
add_object(other)

	Add a GameObject other to the Game and return its id.






	
destroy_object(_id)

	Destroys the object with the given id from the game.

Note: Does not “undraw” the object. This must be done manually (for now)






	
key_is_pressed(key)

	Return True if a key is pressed, False if not.

key is pygame keycode.
For a full list of keycodes, see Pygame Keycodes.






	
main()

	The main loop. Call this to run the game.






	
on_focus(event)

	This method is called whenever the window loses or gains focus.

event is a pygame ACTIVEEVENT event. It contains the event
attributes gain and state.

event.gain is an integer. It has a value of 1 when the window comes
into focus or when the mouse enters the window. It has a value of 0
when the window goes out of focus or when the mouse leaves the window.

event.state is an integer. It has a value of 1 when the mouse exits or
leaves the window. It has a value of 2 when the window gains or loses
focus.

This method is not predefined.






	
on_key_down(event)

	This method is called whenever a key is pressed.

event is a pygame KEYDOWN event. It contains the event
attributes unicode, key, and mod.

event.unicode is the unicode representation of the key being pressed.

event.key is a pygame keycode representing the key being pressed.
For a full list key constants, see Pygame Keycodes.

event.mod is a pygame key mod flag representing the “modulating”
keys (shift, ctrl, alt, etc.) being pressed when the current key was
pressed. For a list of these flags, see Pygame Key Mod Flags.

This method is not predefined.






	
on_key_up(event)

	This method is called whenever a key is released.

event is a pygame KEYUP event. It contains the event attributes
key and mod.

event.key is a pygame keycode representing the key being released.
For a full list key constants, see Pygame Keycodes.

event.mod is a pygame key mod flag representing the “modulating” keys
(shift, ctrl, alt, etc.) pressed when the current key was released.
For a full list of these flags, see Pygame Key Mod Flags.

This method is not predefined.






	
on_mouse_down(event)

	This method is called whenever a mouse button is pressed.

event is a pygame MOUSEBUTTONDOWN event. It contains the event
attributes pos and button.

event.pos is a 2-tuple of integers representing the x and y
coordinates of the mouse when it was released.

event.button is an integer representing the button being pressed. 1
represents the left mouse button, 2 represents the middle mouse button,
and 3 represents the right mouse button.

This method is predefined to implement the GameObject.on_mouse_down
method and to update internal data bout whether or not an object is
clicked.

To redefine this method while keeping the implementation, call
super().on_mouse_up(event) at the top of your function.






	
on_mouse_move(event)

	This method is called whenever the mouse is moved.

event is a pygame MOUSEMOTION event. It contains the event
attributes pos, rel, and buttons.

event.pos is a 2-tuple of integers representing the x and y
coordinates of the mouse.

event.rel is a 2-tuple of integers representing the change in x and y
coordinates since the last time this function was called.

event.buttons is a 3-tuple of integers representing the amount of
mouse buttons being pressed. Index 0 represents the left mouse button,
1 represents the middle mouse button, 2 represents the right mouse
button. If the mouse button is down, the value is 1, 0 if it’s up.

This method is predefined to implement the on_mouse_[enter, exit, drag]
functions.

If you aren’t satisfied with the implementation, feel free
to redefine it. If you want to keep the implementation but also add
additional functionality call super().on_mouse_move(event) when you’re
redefining the function.






	
on_mouse_up(event)

	This method is called whenever a mouse button is released.

event is a pygame MOUSEBUTTONUP event. It contains the event
attributes pos and button.

event.pos is a 2-tuple of integers representing the x and y
coordinates of the mouse when it was released.

event.button is an integer representing the button being released. 1
represents the left mouse button, 2 represents the middle mouse button,
and 3 represents the right mouse button.

This method is predefined to implement the GameObject.on_mouse_up
method and to update internal data about whether or not an object is
clicked.

To redefine this method while keeping the implementation call
super().on_mouse_up(event) at the top of your function.






	
on_resize(event)

	This method is called whenever the window is resized.

event is a pygame VIDEORESIZE event. it contains the event 
attributes size, w, and h.

event.size is a 2-tuple of integers representing the width and height
of the screen.

event.w is an integer representing the width of the screen.

event.h is an integer representing the height of the screen.

This method is not predefined.






	
quit(event)

	The method called when the exit button is pressed.

event is a pygame QUIT event. It has no event attributes.

This method is predefined as:

pygame.quit()
sys.exit()





Redefine it if you need more control.






	
screen

	The pygame Surface used to draw and blit images to the screen.






	
update()

	This method is called every frame.

This method is not predefined.












GameObject


	
class pygtails.GameObject(game)

	A simple class to (hopefully) make pygame more intuitive.

game is the pygame.Game that this GameObject will be added to.

Intializing a GameObject modifies internal data in the Game it’s
instantiated by.

Public Methods:



update, on_mouse_enter, on_mouse_exit, on_mouse_stay, on_mouse_down,

on_mouse_up, on_mouse_drag, move






Instance Variables:



game, ID







	
ID

	An integer that represents this object’s id.






	
destroy()

	Deletes this object from the game world.






	
game

	The pygtails.Game object that this object is a part of.






	
on_mouse_down(event)

	This method is called when the mouse is pressed inside this object.

event is a pygame MOUSEBUTTONDOWN event. It contains the event
attributes pos and button.

event.pos is a 2-tuple of integers representing the x and y
coordinates of the mouse when it was released.

event.button is an integer representing the button being pressed. 1
represents the left mouse button, 2 represents the middle mouse button,
and 3 represents the right mouse button.

This method is not predefined.






	
on_mouse_drag(event)

	This method is called each frame this object is dragged by the mouse.

event is a pygame MOUSEMOTION event. It contains the event
attributes pos, rel, and buttons.

event.pos is a 2-tuple of integers representing the x and y
coordinates of the mouse.

event.rel is a 2-tuple of integers representing the change in x and y
coordinates since the last time this function was called.

event.buttons is a 3-tuple of integers representing the amount of
mouse buttons being pressed. Index 0 represents the left mouse button,
1 represents the middle mouse button, 2 represents the right mouse
button. If the mouse button is down, the value is 1, 0 if it’s up.

This method is not predefined.






	
on_mouse_enter(event)

	This method is called whenever the mouse enters this object.

event is a pygame MOUSEMOTION event. It contains the event
attributes pos, rel, and buttons.

event.pos is a 2-tuple of integers representing the x and y
coordinates of the mouse.

event.rel is a 2-tuple of integers representing the change in x and y
coordinates since the last time this function was called.

event.buttons is a 3-tuple of integers representing the amount of
mouse buttons being pressed. Index 0 represents the left mouse button,
1 represents the middle mouse button, 2 represents the right mouse
button. If the mouse button is down, the value is 1, 0 if it’s up.

This method is not predefined.






	
on_mouse_exit(event)

	This method is called whenever the mouse exits this object.

event is a pygame MOUSEMOTION event. It contains the event
attributes pos, rel, and buttons.

event.pos is a 2-tuple of integers representing the x and y
coordinates of the mouse.

event.rel is a 2-tuple of integers representing the change in x and y
coordinates since the last time this function was called.

event.buttons is a 3-tuple of integers representing the amount of
mouse buttons being pressed. Index 0 represents the left mouse button,
1 represents the middle mouse button, 2 represents the right mouse
button. If the mouse button is down, the value is 1, 0 if it’s up.

This method is not predefined.






	
on_mouse_stay(event)

	This method is called each frame the mouse is within this object.

event is a pygame MOUSEMOTION event. It contains the event
attributes pos, rel, and buttons.

event.pos is a 2-tuple of integers representing the x and y
coordinates of the mouse.

event.rel is a 2-tuple of integers representing the change in x and y
coordinates since the last time this function was called.

event.buttons is a 3-tuple of integers representing the amount of
mouse buttons being pressed. Index 0 represents the left mouse button,
1 represents the middle mouse button, 2 represents the right mouse
button. If the mouse button is down, the value is 1, 0 if it’s up.

This method is not predefined.






	
on_mouse_up(event)

	This method is called on mouse up if this object is clicked.

event is a pygame MOUSEBUTTONUP event. It contains the event
attributes pos and button.

event.pos is a 2-tuple of integers representing the x and y
coordinates of the mouse when it was released.

event.button is an integer representing the button being released. 1
represents the left mouse button, 2 represents the middle mouse button,
and 3 represents the right mouse button.

This method is not predefined.






	
update()

	This method is called every frame.

This method is not predefined.












Circle


	
class pygtails.Circle(game, corner, radius)

	A GameObject with a circular “hitmask”.

game is the Game this object is a part of.

corner is a 2-tuple of integers representing the x and y coordinates of
the upper-left corner of the bounding square of circle.

radius is a numeric value representing the radius of the circle.

Initializing a Circle will modify internal data in the Game it’s
instantiated with.

Public Methods:



update, on_mouse_enter, on_mouse_exit, on_mouse_stay, on_mouse_down,

on_mouse_up, on_mouse_drag, move






Instance Variables:



game, ID, center, corner, radius







	
center

	A 2-tuple of integers representing the center of the circle.

Setting this will change the center and corner attributes.






	
corner

	A 2-tuple of integers representing the center of the circle.

Setting this will change the corner and center attributes.






	
radius

	An integer representing the radius of the circle.

Setting this will change the radius and center attributes.












Rectangle


	
class pygtails.Rectangle(game, corner, width, height)

	A GameObject with a rectangular “hitmask”.

game is the Game this object is a part of.

corner is a 2-tuple of integers representing the x and y coordinates of
the upper-left corner of the rectangle.

width is an integer representing the width of the rectangle.

height is an integer representing the height of the rectangle.

Initializing a Rectangle will modify internal data in the Game it’s
instantiated with.

Public Methods:



update, on_mouse_enter, on_mouse_exit, on_mouse_stay, on_mouse_down,

on_mouse_up, on_mouse_drag, move






Instance Variables:



game, ID, corner, width, height







	
corner

	The upper left corner of the rectangle.

A 2-tuple of integers that represent the x and y coordinates of
the upper-left corner of the rectangle.

This attribute is mutable.






	
corners

	A tuple of all of the corners of the rectangle.

A 2-dimensional tuple, where the inner tuples are 2-tuples of integers
representing the x and y coordinates of the different corners of the
rectangle.

The order that the points appear are top-left, top-right, bottom-right,
bottom-left.

This attribute is immutable.






	
height

	An integer that represents the height of the rectangle.

This attribute is mutable.






	
width

	An integer that represents the width of the rectangle.

This attribute is mutable.















          

      

      

    

  

    
      
          
            
  
Hello, Pygtails!

This page provides a simple hello world program written with pygtails and a step-by-step breakdown of what’s happening.

import pygame
from pygtails import Game

class Hello(Game):
    def __init__(self):
        super().__init__((400, 300), "Hello, world!")
        self.screen.fill((255, 255, 255))
        pygame.display.flip()

game = Hello()
game.main()





Let’s start from the beginning

import pygame
from pygtails import Game





Pygtails is merely an extension of pygame and having pygame installed is a requirement. import pygame will import the pygame module.

pygtails.Game is the main class to use to run your pygtails games. from pygtails import Game imports the Game class directly into the current namespace so that you don’t have to preface Game with pygtails. everytime you reference it.

pygtails.Game also saves an instance of a pygame.Surface object to an attribute named screen that acts as the main display window for your game. The Game constructor takes the same arguments as pygame.display.set_mode and is documented here [https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode].

So super().__init__((400, 300), “Hello, world!”) uses the pygtails.Game constructor to create a screen with dimensions 400x300 pixels and with aa title “Hello, world!”

self.screen.fill((255, 255, 255)) accesses the Surface object that was created in the previous line and fills it with the color white. The most basic specification of Surface.fill takes a 3-tuple of integers as the RGB values for a color.

Whenever anything is drawn to the screen, it’s actually drawn to a sort of buffer screen and changes don’t immediately show up. In order to see the changes, we need flush the buffer screen onto the actual screen. To do this we call pygame.display.flip()

game = Hello()
game.main()





Finaly we create an instance of the class we just created and call its main method to run the game. And we’re finished! This is the most basic program you can create with pygame and pygtails. To practice using the API, try starting from scratch and creating programs with different sizes, names and background colors without looking at the already written code for reference.





          

      

      

    

  

    
      
          
            
  
Pygame Constants

One of the reasons I decided to create this little library is because I feel that pygame isn’t very well documented. Part of this is attributed to poor organization (in my opinion) of documentation of related data types and functions. This documentation aims to remedy that by putting the documentation in a visible spot to be easy to reference.


Pygame Keycodes

The following table is almost directly taken from the pygame.key documentation [https://www.pygame.org/docs/ref/key.html].








	Keycode Name

	Ascii

	Description





	K_BACKSPACE

	\b

	backspace



	K_TAB

	\t

	tab



	K_CLEAR

	
	clear



	K_RETURN

	\r

	return



	K_PAUSE

	
	pause



	K_ESCAPE

	^[

	escape



	K_SPACE

	
	space



	K_EXCLAIM

	!

	exlclamation point



	K_QUOTEDBL

	“

	double quote



	K_HASH

	#

	hashtag



	K_DOLLAR

	$

	dollar sign



	K_AMPERSAND

	&

	ampersand



	K_QUOTE

	‘

	single quote



	K_LEFTPAREN

	(

	opening parenthesis



	K_RIGHTPAREN

	)

	closing parenthesis



	K_ASTERISK

	*

	asterisk



	K_PLUS

	+

	plus



	K_COMMA

	,

	comma



	K_MINUS

	-

	hyphen



	K_PERIOD

	.

	period



	K_SLASH

	/

	forward slash



	K_0

	0

	0



	K_1

	1

	1



	K_2

	2

	2



	K_3

	3

	3



	K_4

	4

	4



	K_5

	5

	5



	K_6

	6

	6



	K_7

	7

	7



	K_8

	8

	8



	K_9

	9

	9



	K_COLON

	:

	colon



	K_SEMICOLON

	;

	semicolon



	K_LESS

	<

	less-than



	K_EQUALS

	=

	equals



	K_GREATER

	>

	greater-than



	K_QUESTION

	?

	question mark



	K_AT

	@

	at sign



	K_LEFTBRACKET

	[

	opening sqaure bracket



	K_BACKSLASH

	\

	backslash



	K_RIGHTBRACKET

	]

	closing right bracket



	K_CARET

	^

	caret



	K_UNDERSCORE

	_

	underscore



	K_BACKQUOTE

	`

	backtick



	K_a

	a

	a



	K_b

	b

	b



	K_c

	c

	c



	K_d

	d

	d



	K_e

	e

	e



	K_f

	f

	f



	K_g

	g

	g



	K_h

	h

	h



	K_i

	i

	i



	K_j

	j

	j



	K_k

	k

	k



	K_l

	l

	l



	K_m

	m

	m



	K_n

	n

	n



	K_o

	o

	o



	K_p

	p

	p



	K_q

	q

	q



	K_r

	r

	r



	K_s

	s

	s



	K_t

	t

	t



	K_u

	u

	u



	K_v

	v

	v



	K_w

	w

	w



	K_x

	x

	x



	K_y

	y

	y



	K_z

	z

	z



	K_DELETE

	
	delete



	K_KP0

	
	numpad 0



	K_KP1

	
	numpad 1



	K_KP2

	
	numpad 2



	K_KP3

	
	numpad 3



	K_KP4

	
	numpad 4



	K_KP5

	
	numpad 5



	K_KP6

	
	numpad 6



	K_KP7

	
	numpad 7



	K_KP8

	
	numpad 8



	K_KP9

	
	numpad 9



	K_KP_PERIOD

	.

	numpad period



	K_KP_DIVIDE

	/

	numpad divide



	K_KP_MULTIPLY

	*

	numpad multiply



	K_KP_MINUS

	-

	numpad minus



	K_KP_PLUS

	+

	numpad plus



	K_KP_ENTER

	\r

	numpad enter



	K_KP_EQUALS

	=

	numpad equals



	K_UP

	
	up arrow



	K_DOWN

	
	down arrow



	K_RIGHT

	
	right arrow



	K_LEFT

	
	left arrow



	K_INSERT

	
	insert



	K_HOME

	
	home



	K_END

	
	end



	K_PAGEUP

	
	page up



	K_PAGEDOWN

	
	page down



	K_F1

	
	F1



	K_F3

	
	F3



	K_F4

	
	F4



	K_F5

	
	F5



	K_F6

	
	F6



	K_F7

	
	F8



	K_F9

	
	F9



	K_F10

	
	F10



	K_F11

	
	F11



	K_F12

	
	F12



	K_F13

	
	F13



	K_F14

	
	F14



	K_F15

	
	F15



	K_NUMLOCK

	
	num lock



	K_CAPSLOCK

	
	caps lock



	K_SCROLLOCK

	
	scroll lock



	K_RSHIFT

	
	right shift



	K_LSHIFT

	
	left shift



	K_RCTRL

	
	right control



	K_LCTRL

	
	left control



	K_RALT

	
	right alt



	K_LALT

	
	left alt



	K_RMETA

	
	right meta



	K_LMETA

	
	left meta



	K_LSUPER

	
	left “windows” key



	K_RSUPER

	
	right “windows” key



	K_MODE

	
	mode shift



	K_HELP

	
	help



	K_PRINT

	
	print screen



	K_SYSREQ

	
	sysrq



	K_BREAK

	
	break



	K_MENU

	
	menu



	K_POWER

	
	power



	K_EURO

	
	euro









Pygame Key Mod Flags

The following table is interpreted from the pygame.key documentation [https://www.pygame.org/docs/ref/key.html]. Descriptions left blank are Key Mod Flags that are unclear, and I haven’t been able to determine what they do.

Key Mod descriptions prefaced with “Both” shouldn’t be confused with “either”







	Key Mod Name

	Description





	KMOD_NONE

	No Key Mods



	KMOD_LSHIFT

	Left Shift



	KMOD_RSHIFT

	Right Shift



	KMOD_SHIFT

	Both Shifts



	KMOD_CAPS

	Caps Lock



	KMOD_LCTRL

	Left Control



	KMOD_RCTRL

	Right Control



	KMOD_CTRL

	Both Controls



	KMOD_LALT

	Left Alt



	KMOD_RALT

	Right Alt



	KMOD_ALT

	Both Alts



	KMOD_LMETA

	Left Meta



	KMOD_RMETA

	Right Meta



	KMOD_META

	Both Metas



	KMOD_NUM

	Num Lock



	KMOD_MODE

	








Pygame Display Mode Flags

The following table is taken almost directly from the pygame.display documentation [https://www.pygame.org/docs/ref/display.html].







	Display Mode Name

	Descripton





	FULLSCREEN

	Create a fullscreen display



	DOUBLEBUF

	Recommended for HWSURFACE or OPENGL



	HWSURFACE

	Hardware-accelerate, only in FULLSCREEEN



	OPENGL

	Create an OpenGL-renderable display



	RESIZABLE

	Create a resizable window



	NOFRAME

	Create window with no border or controls












          

      

      

    

  

    
      
          
            
  
Flags and Bitwise Operations Tutorial


A Quick Primer on Flags

If you’re unfamiliar with the concept of a flag in the context of computer science, hopefully this is a decent place to start. A flag, in this case, is an integer value that represents a combination of different values. Each value is represented as a power of two, or as a bit of an integer. If we look at the binary representation of an integer, it can be said that for each value in the flag, if the value is “active” it’s it’s relative “bit” will be represented as a 1. If the value is “inactive” it’s relative bit is represented as a 0.

As an example, let’s say we have a flag with two possible values; let’s say “left” and “right”; let’s say “left” is represented by the 2^0 place and “right” is represented by the 2^1 place. The possible flag values can then be represented by the following table:








	
	R inactive

	R active





	L inactive

	00 (0)

	10 (2)



	L active

	01 (1)

	11 (3)









Bitwise Operations

Performing operations on flags is usualy done with bitwise operations. Bitwise operations deal with the binary representations of integers. This is perfect for flags because flags are defined by their binary representations.

Combining two or more flag values is usually done with bitwise-OR (|). The result of a bitwise-OR will include a 1 in every place it appeared in any of the combining values. The following are examples of the product of bitwise-OR operations on two integers::

8 (1000) | 1 (0001) = 9 (1001)
6 (0110) | 3 (0011) = 7 (0111)





Checking to see if a flag value is active is usually done with bitwise-AND (&). The result of a bitwise-AND will only have a 1 where both of the combining values are 1. The following are examples of the product of  bitwise-AND operations on two integers::

8 (1000) & 1 (0001) = 0 (0000)
6 (0110) & 3 (0011) = 2 (0010)








Using Bitwise Operations with Flags

In the context of pygame, an example of how this can be used is to check if mutliple key mods are down. To check if both ctrl and alt are pressed, you might check the value of the key mod against KMOD_LCTRL | KMOD_LALT. Assuming mod is the flag value for the current key mods being pressed, a good way to do check if a specific combination is being pressed would look something like::

combo = KMOD_LCTRL | KMOD_LALT
mod & combo == combo





This will perform an inclusive check (other key mods can be pressed as well) to see if ctrl and alt are pressed.:

KMOD_LCTRL | KMOD_LALT == mod





will perform an exclusive check.







          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	
       	
       pygtails	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | C
 | D
 | G
 | H
 | I
 | K
 | M
 | O
 | P
 | Q
 | R
 | S
 | U
 | W
 


A


  	
      	add_object() (pygtails.Game method)


  





C


  	
      	center (pygtails.Circle attribute)


      	Circle (class in pygtails)


  

  	
      	corner (pygtails.Circle attribute)

      
        	(pygtails.Rectangle attribute)


      


      	corners (pygtails.Rectangle attribute)


  





D


  	
      	destroy() (pygtails.GameObject method)


  

  	
      	destroy_object() (pygtails.Game method)


  





G


  	
      	Game (class in pygtails)


  

  	
      	game (pygtails.GameObject attribute)


      	GameObject (class in pygtails)


  





H


  	
      	height (pygtails.Rectangle attribute)


  





I


  	
      	ID (pygtails.GameObject attribute)


  





K


  	
      	key_is_pressed() (pygtails.Game method)


  





M


  	
      	main() (pygtails.Game method)


  





O


  	
      	on_focus() (pygtails.Game method)


      	on_key_down() (pygtails.Game method)


      	on_key_up() (pygtails.Game method)


      	on_mouse_down() (pygtails.Game method)

      
        	(pygtails.GameObject method)


      


      	on_mouse_drag() (pygtails.GameObject method)


  

  	
      	on_mouse_enter() (pygtails.GameObject method)


      	on_mouse_exit() (pygtails.GameObject method)


      	on_mouse_move() (pygtails.Game method)


      	on_mouse_stay() (pygtails.GameObject method)


      	on_mouse_up() (pygtails.Game method)

      
        	(pygtails.GameObject method)


      


      	on_resize() (pygtails.Game method)


  





P


  	
      	pygtails (module)


  





Q


  	
      	quit() (pygtails.Game method)


  





R


  	
      	radius (pygtails.Circle attribute)


  

  	
      	Rectangle (class in pygtails)


  





S


  	
      	screen (pygtails.Game attribute)


  





U


  	
      	update() (pygtails.Game method)

      
        	(pygtails.GameObject method)


      


  





W


  	
      	width (pygtails.Rectangle attribute)


  







          

      

      

    

  _static/up.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to pygtails’s documentation!
        


        		
          Library Reference
          
            		
              Game
            


            		
              GameObject
            


            		
              Circle
            


            		
              Rectangle
            


          


        


        		
          Hello Pygtails
        


        		
          Pygame Constants
          
            		
              Pygame Keycodes
            


            		
              Pygame Key Mod Flags
            


            		
              Pygame Display Mode Flags
            


          


        


        		
          Flags and Bitwise Operations Tutorial
          
            		
              A Quick Primer on Flags
            


            		
              Bitwise Operations
            


            		
              Using Bitwise Operations with Flags
            


          


        


      


    
  

_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/minus.png





_static/plus.png





_static/file.png





_static/up-pressed.png





_static/ajax-loader.gif





_static/comment-bright.png





