

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pygromacs 0.1 documentation

Welcome to pygromacs’s documentation!

Contents:

	Software Development Toolbox Project

	pygromacs package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Petter Johansson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pygromacs 0.1 documentation

Software Development Toolbox Project

This program was (partly) written for the Software Development Toolbox
course given by PDC at KTH, Fall of 2014.

	Author:	Petter Johansson

	Email:	petter.johansson@scilifelab.se

	Source:	https://github.com/pjohansson/pygromacs

Project Abstract

The motivation of this project was partly to switch pygromacs to a test
driven development model, and partly to add documentation using Sphinx
and Read the Docs.

Moving to test driven development

I started out by choosing PyTest as a test suite. A function was added
to setup.py to make it easy to run a local test:

python setup.py test

Later on, coverage reporting was added using a PyTest plug-in. Finally,
Travis CI [1] and Coveralls [2] integration was added, mostly to try
the services out.

Using test driven development, the existing class MdpFile in
pygromacs/gmxfiles.py for handling a Gromacs MDP input file with
the following functionality was modified:

	Reading input file parameters, values, and optional comments

	Adding, removing and modifying values

	Inspecting the read parameters through searching

	Saving the file to a new path, backing up any existing file at path

Tests were implemented for all present functionality, and changes made
to existing functionality were made in a write-tests-first work flow.

Reflections on the switch

Prior to the project the test suite PyUnit had been used to create a
single test, but at that point the idea was to write some tests after
implementing features to make sure that they worked correctly. I had
no experience with actual test driven development.

After trying out the method of writing tests first I’m of the mind that
it works very well. As far as I can tell right now it has the following
very nice features:

	It forces me to define the functionality of functions before writing
them.

	As I write I have easy access to feedback on whether functionality
is working properly.

	Since every feature has a test written for it I get constant assurance
that features keep working as I modify code.

To me these are all very useful features. By forcing myself to write a
test for a single functional addition and then writing its implementation
I’m always writing against a simple, very specific target. It’s a clear
difference from how I’ve written code in the past: I used to work against
a very loosely defined idea of what a function or class should do. The
implementation and features could change at will, sometimes several times
during the coding of them.

Since I’m not a trained programmer I’ve
had difficulties with actually following the advice of writing a software
specification before starting to code, but in some sense writing the tests
first has forced me to at least think of how I want results structured
before heading into the coding process. That has been a very interesting
and useful experience. As a result, my code is leaning more towards
doing smaller tasks, but doing them well and returning a well defined
result once finished. I am sure that it has reduced the complexity of
my programming.

The utility of tests

While having to write a test specification first when doing test driven
development has been hugely advantageous to me, the tests themselves
feel just as important in many ways. Setting up the initial test and
some edge cases that need to be passed helps keeping the actual code
clean when programming, but also gives me something akin to a progress
report during the implementation. At all times I know what remains to
be done until the function is fully featured.

Perhaps most important, though, is the fact that the tests are continuously
checked when editing the code. Since unit tests are implemented for
hopefully every present functionality, the test suite instantly raises
an error if the same result is not produced anymore. This gives me
control over what functionality breaks when modifying code, making it
much easier to return to old functions and modify them when needed, without
the risk of breaking the program in various, possibly obscure ways. I
am safe in the knowledge that if my modified code passes the tests, I
can move on instead of having to remember which parts of the code are
interacting with the modifications. For example, this was put to the
test in commit 2078e30 [https://github.com/pjohansson/pygromacs/commit/2078e30889f748ba7ab47c7a860ece0fe28e89f4] where I made a printing function not return
its output, ran the test suite, and moved on when no issues were found.

Making a change to some functionality, then, is more or less as simple
as changing the test specification, either modifying the expected controls
or adding new ones as required, then changing the function to the new
spec. If this breaks another test, either make sure that the spec is not
contradicting itself, or return to the function to fix it. This work flow
is very comfortable to me.

Writing the tests

It took some time to get used to writing tests in a simple way and still
get good coverage. I have tried to write them in very modular ways, with
every functionality getting their separate tests, in which I individually
also check edge cases. In test_get_option() of pygromacs/tests/test_mdp.py
I write the tests in order of verifying that some options read from a file
correspond to ones that I enter manually('nsteps', 'Tcoupl'), then
add a test for an option that is present in the file but not set ('include'),
an option that is not present in the file ('not-a-parameter') and
finally two cases where I try to find an option by entering an integer (10)
and boolean (True) instead of a string, to ensure that those return nothing
instead of raising a Type Error.

Trying to think of possible edge and error cases for tests is challenging,
and again has forced me to think of how my program should handle them even
before starting to program. In the same file, the test test_comment()
sets up quite a few variations on how a comment can be entered for a
parameter option, and defines how the end result should appear as. It is
the best example of how I used the tests to create the function specification,
as I returned to it after the initial pass and rewrote the tests to produce
better looking results. The edge cases present in the test put me in line
of how to modify the code.

Documentation using Sphinx

Adding documentation to the project has been a lot of fun using the
suggested tools of the course. While taking some time to set up it
has shown me not only how simple it is to create fully covered project
web sites, but as with tests it has helped me to think my functions
through before writing them.

For the project, documentation was added to all functions and classes
in pygromacs/gmxfiles.py and generated using Sphinx. The module
documentation is available at the Read the Docs web page [http://pygromacs.readthedocs.org/en/working/modules/pygromacs.html].

Module documentation

Grasping the syntax of .rst files was simple enough for the most part,
and a pleasant surprise in how easy it is to use. It took some time to
figure out how to link module functions and attributes when writing
function documentation, but once the syntax was down it was a breeze
to use the autodoc tools to parse docstrings. Moving on I plan to
create separate pages with usage documentation that is not generated
from docstrings, but written in an easy-to-read-manner, but it’s
comforting to know that it’s easy to get both without a lot of extra
effort.

Enforcing better code

As with trying out test driven development, properly documenting my
functions actually helped me improve the code quality of the project.
I noticed that trying to explain the function in a way that’s easy to
read means that the function itself should be reasonably simple, and
not throw unexpected returns or behaviour.

I set out to make sure that every function has a well documented input
and output, which means that both have to be on well defined forms.
As with test assertions this made me consider up-front what I wanted
the function to do, and draft the result in text. To use the same example
as before, when writing the documentation for a function that printed the
file contents, I thought that the function also returning the output was
too ugly to put into text since there’s no reason for that return value
to be there (other than its current debugging purpose). In commit 2078e30 [https://github.com/pjohansson/pygromacs/commit/2078e30889f748ba7ab47c7a860ece0fe28e89f4]
I revert this behaviour, informed by having written a concise docstring
for the function.

Writing prettier docstrings

I was not quite happy with writing docstrings in the ReST markup format,
since they became somewhat hard to read when browsing the source. A search
on the Internet led me to the Sphinx extension Napoleon [3] which
parses docstrings written in Numpy or Google format, both of which are
easy to read as plain text. In commit b221fb9 [https://github.com/pjohansson/pygromacs/commit/b221fb90f494f79317aecab9a58b7ec0adcc41a2] I move all docstrings to
this format.

A big advantage of this style is that attributes, input and output are
clearly labelled and that their Types are encouraged to be a part of any
argument. As with the return values as described above this makes me think
of how to parse input data when designing the function documentation, which
helps me avoid duck typing and encourage that different types of data are
used to warp functions in strange ways. Which I have a tendency to do when
not keeping myself on a tight leash.

Final reflections

For me this project has been very useful. My program suite can now
easily read and modify .mdp files for Gromacs and further modifications
will be well documented. Getting familiar with tests
is making me more confident when coding, since I know that I should not
be able to break things without noticing. And seeing hands-on that it’s easy
to write legible documentation and setting up a web page for it was also
neat, although I’m probably the only one who will ever read it.

Most interesting though, is that both trying out test driven development
as a structure, and writing proper documentation is forcing me to write
simpler code. My code will mostly be avoiding functions that change things
outside of their scope, or implement weird and undocumented state changes.
I’m trying as much as possible to instead write small, simple functions
that do only a few things and have well defined input and output.

Footnotes

	[1]	https://travis-ci.org/pjohansson/pygromacs

	[2]	https://coveralls.io/r/pjohansson/pygromacs

	[3]	http://sphinxcontrib-napoleon.readthedocs.org/en/latest/

 Copyright 2014, Petter Johansson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pygromacs 0.1 documentation

pygromacs package

Submodules

pygromacs.gmxfiles module

	
class pygromacs.gmxfiles.MdpFile(path='')[source]

	Bases: builtins.object

Container for MDP files.

	Parameters:	path (str, optional) – Read from file at this path

	
path

	Path to the last-read file. Used as default by save()
when writing changes to disk.

	
lines

	This is an ordered list of MdpOption objects, containing
the parameters, values, and comments which together make up a file.
It is a list to keep a read file as close to the original as possible
when modifying it.

	
options

	This is a dictionary of parameters, linking to objects in
lines. Used internally to quickly access any parameter
of that list and thus file.

	
class MdpOption(parameter='', value='', comment='', index=None)[source]

	Bases: builtins.object

Container for an MDP option.

	Parameters:	
	parameter (str) – A parameter,

	value (str) – its value

	comment (str) – and comment

	index (int) – Index of option in MdpFile.lines

	
print(comment=True)[source]

	Print option as a line.

Uses a standard MDP format. Use comment to print or ignore
a comment.

	
MdpFile.get_option(parameter)[source]

	Return the value of a parameter.

	Parameters:	parameter (str) – A parameter

	Returns:	The parameter value, empty if not found

	Return type:	str

	
MdpFile.print(comment=True)[source]

	Print the current file.

	Parameters:	comment (bool, optional) – Print or ignore comments

	
MdpFile.print_option(parameter)[source]

	Print a parameter, its value and comment.

	
MdpFile.read(path)[source]

	Read an MDP file at path.

Updates path to given value. Parameters and lines
are stored in lines and options.

	
MdpFile.remove_option(parameter)[source]

	Remove a parameter from the file.

	
MdpFile.save(path='', verbose=True, ext='mdp')[source]

	Save current MDP file.

The written content is set in lines.

	Parameters:	
	path (str, optional) – Write file to this path (default: path)

	verbose (bool, optional) – Print information about save

	ext (str, optional) – Use this file extension (default: ‘mdp’)

	
MdpFile.search(parameter)[source]

	Search for a parameter in the file.

Prints any matching option and its value.

	Returns:	Number of options found

	Return type:	int

	
MdpFile.set_comment(parameter, comment)[source]

	Add a comment to a parameter.

	
MdpFile.set_option(parameter, value, comment='')[source]

	Set a parameter value.

If the parameter is not set the option is appended to
end of lines.

	Parameters:	
	parameter (str) – A parameter to set,

	value (str) – its new value

	comment (str, optional) – and comment

	
class pygromacs.gmxfiles.Topol(**kwargs)[source]

	Bases: builtins.object

pygromacs.utils module

	
pygromacs.utils.prepare_path(path, verbose=True)[source]

	Prepare a path for writing.

Creates required directories and backs up any conflicting file.

	Parameters:	
	path (str) – Path to file

	verbose (bool, optional) – Whether or not to print information
about a performed backup

	Returns:	The path to a backed up file, empty if no backup was taken

	Return type:	str

Module contents

 Copyright 2014, Petter Johansson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	pygromacs 0.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pygromacs	

 	
 	
 pygromacs.gmxfiles	

 	
 	
 pygromacs.utils	

 Copyright 2014, Petter Johansson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	pygromacs 0.1 documentation

Index

 G
 | L
 | M
 | O
 | P
 | R
 | S
 | T

G

 	

 	get_option() (pygromacs.gmxfiles.MdpFile method)

L

 	

 	lines (pygromacs.gmxfiles.MdpFile attribute)

M

 	

 	MdpFile (class in pygromacs.gmxfiles)

 	

 	MdpFile.MdpOption (class in pygromacs.gmxfiles)

O

 	

 	options (pygromacs.gmxfiles.MdpFile attribute)

P

 	

 	path (pygromacs.gmxfiles.MdpFile attribute)

 	prepare_path() (in module pygromacs.utils)

 	print() (pygromacs.gmxfiles.MdpFile method)

 	

 	(pygromacs.gmxfiles.MdpFile.MdpOption method)

 	print_option() (pygromacs.gmxfiles.MdpFile method)

 	

 	pygromacs (module)

 	pygromacs.gmxfiles (module)

 	pygromacs.utils (module)

R

 	

 	read() (pygromacs.gmxfiles.MdpFile method)

 	

 	remove_option() (pygromacs.gmxfiles.MdpFile method)

S

 	

 	save() (pygromacs.gmxfiles.MdpFile method)

 	search() (pygromacs.gmxfiles.MdpFile method)

 	

 	set_comment() (pygromacs.gmxfiles.MdpFile method)

 	set_option() (pygromacs.gmxfiles.MdpFile method)

T

 	

 	Topol (class in pygromacs.gmxfiles)

 Copyright 2014, Petter Johansson.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/plus.png

_static/comment-bright.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		pygromacs 0.1 documentation »

 All modules for which code is available

		pygromacs.gmxfiles

		pygromacs.utils

 © Copyright 2014, Petter Johansson.
 Created using Sphinx 1.2.2.

_modules/pygromacs/utils.html

 Navigation

 		
 index

 		
 modules |

 		pygromacs 0.1 documentation »

 		Module code »

 Source code for pygromacs.utils

import os

[docs]def prepare_path(path, verbose=True):
 """Prepare a path for writing.

 Creates required directories and backs up any conflicting file.

 Args:
 path (str): Path to file
 verbose (bool, optional): Whether or not to print information
 about a performed backup

 Returns:
 str: The path to a backed up file, empty if no backup was taken

 """

 # Extract the directory and filename from the given path
 directory, filename = os.path.split(path)
 if directory == "":
 directory = "."

 # If the directory does not exists, create it
 if not os.path.exists(directory):
 os.makedirs(directory)

 # Search for first non-existent filename based on path
 i = 1
 backup = path
 while os.path.exists(backup):
 new_file = ''.join(['#', filename, '.%d#' % i])
 backup = os.path.join(directory, new_file)
 i += 1

 # If there was a conflict, move file to backup location
 if backup != path:
 os.rename(path, backup)
 if verbose:
 print("Backed up '%s' to '%s'." % (path, backup))
 else:
 backup = ""

 return backup

 © Copyright 2014, Petter Johansson.
 Created using Sphinx 1.2.2.

modules/modules.html

 Navigation

 		
 index

 		
 modules |

 		pygromacs 0.1 documentation »

pygromacs

		pygromacs package
		Submodules

		pygromacs.gmxfiles module

		pygromacs.utils module

		Module contents

 © Copyright 2014, Petter Johansson.
 Created using Sphinx 1.2.2.

_modules/pygromacs/gmxfiles.html

 Navigation

 		
 index

 		
 modules |

 		pygromacs 0.1 documentation »

 		Module code »

 Source code for pygromacs.gmxfiles

#!/usr/bin/env python

import os
from contextlib import redirect_stdout
from pygromacs.utils import prepare_path

"""Interfaces for reading and modifying Gromacs standard files."""

[docs]class Topol(object):

 def __init__(self, **kwargs):
 self.filename = kwargs.pop('file', None)
 self.read()

 return None

[docs]class MdpFile(object):
 """Container for MDP files.

 Args:
 path (str, optional): Read from file at this path

 Attributes:
 path: Path to the last-read file. Used as default by :func:`save`
 when writing changes to disk.

 lines: This is an ordered list of :class:`MdpOption` objects, containing
 the parameters, values, and comments which together make up a file.
 It is a list to keep a read file as close to the original as possible
 when modifying it.

 options: This is a dictionary of parameters, linking to objects in
 :attr:`lines`. Used internally to quickly access any parameter
 of that list and thus file.

 """

 def __init__(self, path=""):
 self.path = path
 self.lines = []
 self.options = {}

 if self.path:
 self.read(path)

[docs] class MdpOption(object):
 """Container for an MDP option.

 Args:
 parameter (str): A parameter,
 value (str): its value
 comment (str): and comment
 index (int): Index of option in :attr:`MdpFile.lines`

 """

 def __init__(self, parameter="", value="", comment="", index=None):
 self.parameter = str(parameter)
 self.value = str(value)
 self.comment = str(comment)
 self.index = index

[docs] def print(self, comment=True):
 """Print option as a line.

 Uses a standard MDP format. Use ``comment`` to print or ignore
 a comment.

 """

 string = ""
 if self.parameter:
 string += "%-24s = %s" % (self.parameter, self.value)
 if comment and self.comment:
 string += "; %s" % self.comment
 if self.parameter or comment:
 print(string)

[docs] def get_option(self, parameter):
 """Return the value of a parameter.

 Args:
 parameter(str): A parameter

 Returns:
 str: The parameter value, empty if not found

 """

 try:
 value = self.options[parameter].value
 except KeyError:
 value = ""
 print("option '%s' not in list" % parameter)

 return value

[docs] def set_comment(self, parameter, comment):
 """Add a comment to a parameter."""

 if parameter not in self.options.keys():
 print("option '%s' not in list" % parameter)
 return None

 # Verify that comment is of good form
 self.options[parameter].comment = comment.lstrip(';').strip()

 return None

[docs] def set_option(self, parameter, value, comment=""):
 """Set a parameter value.

 If the parameter is not set the option is appended to
 end of :attr:`lines`.

 Args:
 parameter (str): A parameter to set,
 value (str): its new value
 comment (str, optional): and comment

 """

 if parameter in self.options.keys():
 self.options[parameter].value = str(value)
 else:
 index = len(self.lines)
 self.options[parameter] = self.MdpOption(parameter, value, "", index)
 self.lines.append(self.options[parameter])

 if comment:
 self.set_comment(parameter, comment)

[docs] def remove_option(self, parameter):
 """Remove a parameter from the file."""

 if parameter in self.options.keys():
 # Find index of parameter and remove
 index = self.options[parameter].index
 self.options.pop(parameter)
 self.lines.pop(index)

 # Adjust indices of following in list
 for option in self.lines[index:]:
 option.index -= 1

[docs] def search(self, parameter):
 """Search for a parameter in the file.

 Prints any matching option and its value.

 Returns:
 int: Number of options found

 """

 query = str(parameter).strip().lower()

 i = 0
 for option in self.options.keys():
 if option.lower().find(query) != -1:
 self.print_option(option)
 i += 1

 return i

[docs] def print_option(self, parameter):
 """Print a parameter, its value and comment."""

 if parameter in self.options.keys():
 self.options[parameter].print()

[docs] def print(self, comment=True):
 """Print the current file.

 Args:
 comment (bool, optional): Print or ignore comments

 """

 for option in self.lines:
 option.print(comment)

[docs] def read(self, path):
 """Read an MDP file at ``path``.

 Updates :attr:`path` to given value. Parameters and lines
 are stored in :attr:`lines` and :attr:`options`.

 """

 def parse_line(line):
 try:
 option, comment = line.split(';', 1)
 except ValueError:
 option, comment = line, ""
 try:
 parameter, value = option.split('=')
 except ValueError:
 parameter, value = "", ""
 return [var.strip() for var in (parameter, value, comment)]

 def add_line(line, index):
 parameter, value, comment = parse_line(line)

 # Link option keyword to place in ordered list
 option = self.MdpOption(parameter, value, comment, index)
 if parameter and value:
 self.options[parameter] = option

 return option

 # Verify file extension
 if (not os.access(path, os.F_OK)) and (not path.endswith('.mdp')):
 path += '.mdp'

 self.path = path
 self.lines = []
 self.options = {}
 try:
 with open(self.path, 'r') as fp:
 self.lines = [add_line(line, index)
 for index, line in enumerate(fp.readlines())]

 except FileNotFoundError:
 self.path = ""
 print("could not open '%s' for reading" % self.path)

[docs] def save(self, path="", verbose=True, ext='mdp'):
 """Save current MDP file.

 The written content is set in :attr:`lines`.

 Args:
 path (str, optional): Write file to this path (default: :attr:`path`)
 verbose (bool, optional): Print information about save
 ext (str, optional): Use this file extension (default: 'mdp')

 """

 if path == "":
 path = self.path

 # Verify file extension
 if not path.endswith(ext):
 path = '.'.join([path, ext])

 # Verify path and backup collision
 prepare_path(path, verbose)

 # Actually save the file
 with open(path, 'w') as fp:
 with redirect_stdout(fp):
 self.print()

 if verbose:
 print("Saved MDP file to '%s'." % path, end = "")

 © Copyright 2014, Petter Johansson.
 Created using Sphinx 1.2.2.

_static/file.png

_static/down.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		pygromacs 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Petter Johansson.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/down-pressed.png

