pyGDX Documentation
Release 2

Paul Natsuo Kishimoto

Jan 15, 2020

Contents

1 Documentation

1.1 Installation
1.2 GDX data terminology
1.3 Accessing data from GDX files
14 Imternals
2 License
3 History
Python Module Index
Index

13

15

pyGDX Documentation, Release 2

pyGDX is a Python package for accessing data stored in GAMS Data eXchange (GDX) files. GDX
is a proprietary, binary file format used by the General Algebraic Modelling System (GAMS);
pyGDX uses the Python bindings for the GDX API.

pyGDX uses xarray to provide labeled, multidimensional data structures for accessing data. A
gdx.F1ileis athinly-wrapped xarray.Dataset.

Report bugs, suggest feature ideas or view the source code on GitHub.

Contents 1

http://www.gams.com
http://www.gams.com/dd/docs/api/expert-level/gdxqdrep.html
http://xarray.pydata.org
http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset
http://github.com/khaeru/py-gdx

pyGDX Documentation, Release 2

2 Contents

CHAPTER 1

Documentation

1.1 Installation

pyGDX depends on the low-level application programming interface (API) provided with GAMS,
that allows Python code to access the contents of GDX files.

1.1.1 All platforms

1. Install the latest version of GAMS.

The remaining steps depend on the platform:

1.1.2 Linux, Mac OS X

2. Navigate to the GAMS Python API directory. If gams is installed at (for instance)
/opt/gams, this will be /opt/gams/apifiles/Python/api_34 (Python 3.4+, on Linux) or
/opt/gams/apifiles/Python/api (Python 2.7, on Mac OS X).

3. Runeitherpython setup.py install (toinstall all the GAMS bindings) or python
gdxsetup.py install (to install only the GDX bindings needed by pyGDX).

4. Navigate to the directory containing pyGDX, and again run python setup.py
install

https:\T1\textbackslash {}www.gams.comdownload

pyGDX Documentation, Release 2

1.1.3 Windows

Note: There are multiple ways to get a working pyGDX on Windows, but the following is the
simplest for new users.

2. Install Anaconda for Python 3.5. Install into your home directory (e.g.
C:A\Users\Yourname\Anaconda) instead of the system-wide install—this avoids later
issues with permissions.

3. Create a new Anaconda environment using Python 3.4:' open a Command Prompt
and run conda create —--name py34 python=3.4 anaconda xarray
[PACKAGES], where [PACKAGES] are the names of any other packages you may need in
this environment.” Activate the new environment with activate py34.

4. In the same command prompt, navigate to the GAMS Python API directory. If GAMS is in-
stalled at (for instance) C\GAMS\24.6, this will be C\NGAMS\24.6\apifiles\Python\api_34.
Run either python setup.py install (toinstall all the GAMS bindings) or python
gdxsetup.py install (to install only the GDX bindings needed by pyGDX). The
bindings will be installed in the py34 Anaconda environment.

5. Navigate to the directory containing pyGDX, and again run python setup.py
install.

Steps 4 and 5 may be repeated for any new Anaconda environment in which pyGDX is needed.

1.2 GDX data terminology

Objects in GDX files are termed Symbols, and are of several types:
* Sets are ordered collections of labels.

¢ Parameters contain numerical data.

Variables are scalar values.
 Aliases are alternate names for other Symbols.
* Equations, not currently supported by PyGDX.

For clarity (e.g., Python has a built-in class python. set), these terms are capitalized throughout
this documentation.

! This is necessary because GAMS only ships bindings for Python 3.4, and not the newest Python 3.5. Unlike on
Linux, the Python 3.4 bindings do not work with Python 3.5.

2 The Anaconda documentation recommends adding packages when creating the environment, if possible, instead
of installing them later.

4 Chapter 1. Documentation

https:\T1\textbackslash {}www.continuum.iodownloads#_windows
http://conda.pydata.org/docs/using/envs.html#create-a-separate-environment

pyGDX Documentation, Release 2

Both Sets and Parameters may be declared with one-dimensional Sets for each dimension. An
example:

set s 'Animals' /
Aardvark

Blue whale
Chicken

Dingo

Elephant

Frog
Grasshopper

~Q Hh 0 QO QO W

~e.

ot

t 'Colours' [/
Red

Orange

Yellow

Green

Blue

Indigo

Violet

se

~ < PO UK OB

~.

set u 'Countries' /
CA Canada
US United States

CN China
JP Japan
/i

set v(s,t) 'Valid animal colours'
/ set.s.set.t yes /;

parameter p(s,t,u) 'Counts of nationalistic, colourful animals'
/ set.s.set.t.set.u 5 /;

parameter total(s) 'Total populations of each type of animal';
total(s) = sum((t, u), p(s, t, u));

execute_unload 'example.gdx';

In the resulting file example. gdx:
* s, t and u are 1-dimensional Sets.

* v is a 2-dimensional Set, defined over the parent Sets s and t. Any Set defined with ref-
erence to others, in this way, may include or exclude each element of the parent set. For
instance, the following GAMS code defines a subset of u:

1.2. GDX data terminology 5

pyGDX Documentation, Release 2

set na (u) 'North American countries' / CA, US /;

* pand total are Parameters containing numerical data.

1.2.1 Other concepts

The universal Set, x, contains every element appearing in any Set in the GDX file.

* In the above example, » would contain: a b ¢ d e £f g r o y b i v CA US CN
JP.

* GAMS allows defining Sets and Parameters over the universal set:

parameter new (x*) 'More data';
new('L') = 3;

This would add L to the universal Set.

The descriptive text provided on declaration of Symbols or Set elements is stored in GDX files
along with the data contained in those variables.

* For Set v, the string "Valid animal colours".

* For Set element o, the string "Orange".

1.3 Accessing data from GDX files

class gdx.File (filename=", lazy=True, implicit=True, skip={})
Load the file at filename into memory.

If lazy is True (default), then the data for GDX Parameters is not loaded until each individ-
ual parameter is first accessed; otherwise all parameters except those listed in skip (default:
empty) are loaded immediately.

If implicit is True (default) then, for each dimension of any GDX Parameter declared over
“*” (the universal set), an implicit set is constructed, containing only the labels appearing in
the respective dimension of that parameter.

Note: For instance, the GAMS Parameter foo (%, *, x) is loaded as foo (_foo_0,
_foo_1,_foo_2), where _foo_0 is an implicit set that contains only labels appearing
along the first dimension of foo, etc. This workaround is essential for GDX files where * is
large; otherwise, loading foo as declared raises MemoryError.

Fileisasubclass of xarray.Dataset. The GDX data is represented as follows:

6 Chapter 1. Documentation

https://docs.python.org/3/library/exceptions.html#MemoryError
http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset

pyGDX Documentation, Release 2

* One-dimensional GDX Sets are stored as xray coordinates.

e GDX Parameters and multi-dimensional GDX Sets are stored as xarray.
DataArray variables within the xarray.Dataset.

* Other information and metadata on GDX Symbols is stored as attributes of the F'i 1e,
or attributes of individual data variables or coordinates.

Individual Symbols are thus available in one of three ways:

1. As dict-like members of the xarray.Dataset; see the xarray documentation for
further examples.

>>> from gdx import File
>>> f = File('example.gdx')
>>> f['myparam']

2. As attributes of the File:

>>> f . myparam

3. Using get_symbol_by_index (), using the numerical index of the Symbol within
the GDX file.

dealias (name)
Identity the GDX Symbol that name refers to, and return the corresponding xarray .
DataArray.

extract (name)
Extract the GAMS Symbol name from the dataset.

The Sets and Parameters in the F'1 1 e can be accessed directly, as e.g. f[‘name’]; but
for more complex xarray operations, such as concatenation and merging, this carries
along sub-Sets and other Coordinates which confound xarray.

extract () returns a self-contained xarray.DataArray with the declared di-
mensions of the Symbol (and only those dimensions), which does not make reference
tothe File.

get_symbol_by_index (index)
Retrieve the GAMS Symbol from the index-th position of the F'i 1 e.

info (name)
Informal string representation of the Symbol with name.

parameters ()
Return a list of all GDX Parameters.

set (name, as_dict=False)
Return the elements of GAMS Set name.

1.3. Accessing data from GDX files 7

http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray
http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray
http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset
http://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset
http://xarray.pydata.org/en/stable/data-structures.html#dataset
http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray
http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray
http://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray

pyGDX Documentation, Release 2

Because xarray stores non-null labels for each element of a coord, a GAMS sub-Set
will contain some ' ' elements, corresponding to elements of the parent Set which do
not appear in name. set () returns the elements without these placeholders.

sets ()
Return a list of all GDX Sets.

1.4 Internals

Most methods in the GDX API have similar semantics:
* Names are in CamelCase, e.g. gdxMethodName.
¢ A list is returned; the first element is a return code.

GDX hides these details, allowing for simpler code. Methods can be accessed using call (). For
instance, the following code calls the API method gdxFileVersion:

>>> g = GDX()
>>> g.call('FileVersion')

Alternately, methods can be accessed as members of GDX objects, where the CamelCase API
names are replaced by lowercase, with underscores separating words:

>>> g.file_version() # same as above

See GDX.___valid for the list of supported methods.

class gdx.api.GDX
Wrapper around the GDX API.

__wvalid = None
Methods that conform to the semantics of call ().

call (method, *args)
Invoke the GDX API method named gdxMethod.

Optional positional arguments args are passed to the API method. Returns the result of
the method call, with the return code stripped. Refer to the GDX API documentation
for the type and number of arguments and return values for any method.

If the call fails, raise an appropriate exception.

gdx.api.type_str = {<class 'GMS_DT_SET'>: 'set', <class 'GMS_DT PAR'>: 'p
String representations of API constants for G(a)MS D(ata) T(ypes)

gdx.api.vartype_str = {<class 'GMS_VARTYPE_UNKNOWN'>: 'unknown', <class 'Gl
String representations of API constants for G(a)MS VAR(iable) TYPE(s)

8 Chapter 1. Documentation

http://www.gams.com/dd/docs/api/expert-level/gdxqdrep.html#gdxFileVersion
http://www.gams.com/dd/docs/api/expert-level/gdxqdrep.html

CHAPTER 2

License

PyGDX is provided under the MIT license.

https://github.com/khaeru/py-gdx/blob/master/LICENSE

pyGDX Documentation, Release 2

10 Chapter 2. License

CHAPTER 3

History

PyGDX was inspired by the similar package, also named py-gdx, by Geoff Leyland.

11

https://github.com/geoffleyland/py-gdx

pyGDX Documentation, Release 2

12 Chapter 3. History

Python Module Index

gdx.api, 8

13

pyGDX Documentation, Release 2

14 Python Module Index

Index

Symbols

__valid (gdx.api.GDX attribute), 8
C

call () (gdx.api.GDX method), 8
D

dealias () (gdx.File method), T
E

extract () (gdx.File method), 7
F

File (class in gdx), 6

G

GDX (class in gdx.api), 8

gdx.api (module), 8

get_symbol_by_index ()
method), 7

(gdx.File

info () (gdx.File method), 7

P

parameters () (gdx.File method), 7

S

set () (gdx.File method), 7
sets () (gdx.File method), 8

T

type_str (in module gdx.api), 8

V

vartype_str (in module gdx.api), 8

15

	Documentation
	Installation
	GDX data terminology
	Accessing data from GDX files
	Internals

	License
	History
	Python Module Index
	Index

